OCA

Oracle Database 12¢c Administrator
Certified Associate

STUDY GUIDE

Includes Real-World Scenarios, Hands-On Exercises,
and Access to Exam Prep Software Featuring:

+ Custom Test Engine
+ Over 300 Sample Questions
+ Electronic Flashcards

(11 (N U]

2 R Ry g ol

OCA: Oracle’

Database 12c Administrator
Certified Associate
Study Guide

Biju Thomas

C4sBEX

Senior Acquisitions Editor: Jeff Kellum

Development Editor: Lisa Bishop

Technical Editors: Arup Nanda and Syed Jaffar Hussain
Production Editor: Dassi Zeidel

Copy Editor: Kathy Grider-Carlyle

Editorial Manager: Pete Gaughan

Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher: Chris Webb

Media Project Manager 1: Laura Moss-Hollister

Media Associate Producer: Shawn Patrick

Media Quality Assurance: Marilyn Hummel

Book Designer: Judy Fung

Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Kathy Pope

Indexer: Ted Laux

Project Coordinator, Cover: Todd Klemme

Cover Designer: Wiley

Cover Image: © Getty Images Inc./Jeremy Woodhouse

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-64395-2

ISBN: 978-1-118-76325-4 (ebk)

ISBN: 978-1-118-93133-2 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax
(317) §72-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2014930413

TRADEMARKS: Wiley and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written per-
mission. Oracle is a registered trademark of Oracle, Inc. All other trademarks are the property of their respec-
tive owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.
10987654321

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing OCA: Oracle Database 12c Administrator Certified Associate Study
Guide. This book is part of a family of premium-quality Sybex books, all of which are written
by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing con-
sistently exceptional books. With each of our titles, we’re working hard to set a new standard
for the industry. From the paper we print on, to the authors we work with, our goal is to bring
you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about this
or any other Sybex book by sending me an email at contactus@sybex. com. If you think you’ve
found a technical error in this book, please visit http://sybex.custhelp.com. Customer feed-
back is critical to our efforts at Sybex.

Best regards,

Ji et

Chris Webb
Associate Publisher
Sybex, an Imprint of Wiley

mailto:contactus@sybex.com
http://sybex.custhelp.com

To the ladies in my family: my lovely wife, loving mom, and lovable sisters.

Thanks for always being there for me.

To my children: Joshua and Jeanette. You brighten my day, every day!

Acknowledgments

I thank the great publishing team at Wiley for helping me throughout the writing process. I am
grateful to Jeff Kellum, acquisitions editor at Wiley, for initiating this project and having faith
in me. [am indebted to Lisa Bishop, developmental editor, for offering valuable suggestions to
improve the readability and organization of the book. Thank you both for your patience and
hard work throughout this project.

Thank you Kathy Grider-Carlyle, copy editor, for meticulously going through the chapters
and making sure there is no ambiguity and that all the pieces tie together. I thank Dassi Zeidel,
production editor, for ensuring consistency and accuracy and coordinating the production pro-
cess. [would like to thank Pete Gaughan, Connor O’Brien, Jenni Housh, Rayna Erlick, and
everyone at Wiley who helped in the making of this book.

A technical book is judged by not only who wrote it, but also who reviewed it. [am
much honored to have two great Oracle experts as technical reviewers, both Oracle ACE
Directors and recipients of the DBA of the Year award. I thank Arup Nanda for reviewing
each paragraph of every chapter and for the invaluable comments, tips, and edits. I thank
Syed Jaffar Hussain for reading and ensuring the technical accuracy. The input from two
Oracle stalwarts certainly improved the content and reliability of the book.

I sincerely thank Gavin Powell for initially signing up as a coauthor to this book. Due to
unforeseen events, Gavin could complete only one chapter. I thank Gavin for working with
me and helping with the book.

I have many friends to thank at OneNeck IT Solutions for their friendship and encourage-
ment. My heartfelt thanks to Chuck Vermillion (SVP & General Manager) for his support and
confidence in me. Thank you Danny Carrizosa for the motivation and your willingness to help
out wherever needed. I thank Phil Pearson and the entire team for their trust in my technical
abilities. It sure is great working with you all.

Last but not least, no words can express the ceaseless support and encouragement given by
my dear wife. Thank you, Shiji. You are the best. I owe my kids several weekends and thank
them for their patience and tolerance of so much of my attention being given to this book.

About the Author

Biju Thomas is an Oracle ACE, Oracle Certified Professional, and Certified Oracle Database
SQL Expert. Biju has been developing and administering Oracle databases since 1993. He
now spends time mentoring DBAs, performance tuning, and designing Oracle solutions. He is
Principal Solutions Architect at OneNeck IT Solutions (http: //www.oneneck.com). He is a fre-
quent presenter at Oracle conferences and a contributor to Oracle technical journals. He blogs
at http://www.bijoos.com/oraclenotes, and you can follow his tweets @biju_thomas.

About the Contributor

Gavin Powell spent 25 years as an IT professional in positions such as Oracle DBA, per-
formance tuner, data architect, and developer. In the last 10 years, he has branched out into
technical writing (many titles in print) in between contract and consulting jobs. He also
enjoys music, songwriting, performing, singing, playing too many instruments, home record-
ing/producing, and studying music at Berklee.

About the Technical Reviewers

Arup Nanda has been an Oracle DBA for the last 20 years, working on all aspects of
Oracle technology from modeling to performance tuning to disaster recovery. He has writ-
ten over 500 published articles, presented over 300 sessions in 22 countries, and coauthored
5 books. He is an Oracle ACE Director, Oak Table Network member, editor for SELECT
Journal, and a board member of Exadata SIG of IOUG. In recognition, Oracle conferred

on him the coveted DBA of the Year and Architect of the Year awards in 2003 and 2012,
respectively. He lives in Danbury, CT.

Syed Jaffar Hussain has over 21 years I'T experience that includes more than 14 years of
production Oracle database administration. Oracle has honored him with the prestigious
Oracle ACE Director role and named him DBA of the Year for 2011, both for his excel-
lent knowledge and contributions to the Oracle community. He is an Oracle Certified
Master (OCM) for Oracle Database 10g, a status granted only after passing extensive
challenges in a hands-on environment. He is also an Oracle Database 10g RAC Certified
Expert. Syed Jaffar is a well-known Oracle speaker, and he coauthored Expert Oracle
RACI12 and Oracle 11g R1/R2 Real Application Clusters Essentials. He blogs regularly
at http://jaffardba.blogspot.com.

http://www.oneneck.com
http://www.bijoos.com/oraclenotes
http://jaffardba.blogspot.com

Contents at a Glance

Introduction

Assessment Test

Part | Oracle Database 12¢: SQOL Fundamentals
Chapter 1 Introducing Oracle Database 12c RDBMS

Chapter 2 Introducing SQL

Chapter 3 Using Single-Row Functions

Chapter 4 Using Group Functions

Chapter 5 Using Joins and Subqueries

Chapter 6 Manipulating Data

Chapter 7 Creating Tables and Constraints

Part 1l Oracle Database 12c: Installation

and Administration

Chapter 8 Introducing Oracle Database 12c Components

and Architecture
Chapter 9 Creating and Operating Oracle Database 12¢
Chapter 10 Understanding Storage and Space Management
Chapter 11 Managing Data Concurrency and Undo
Chapter 12 Understanding Oracle Network Architecture
Chapter 13 Implementing Security and Auditing
Chapter 14 Maintaining the Database and Managing Performance
Chapter 15 Using Backup and Recovery
Chapter 16 Controlling Resources and Jobs
Chapter 17 Upgrading to Oracle Database 12¢
Chapter 18 Using Grid Infrastructure and Data Movement Tools
Appendix A Answers to Review Questions
Appendix B About the Additional Study Tools

Index

XX

XXXV

35
89
175
227
281
319

381

383
431
511
569
603
677
753
825
903
957
1005

1083
1119

1123

Contents

Introduction xx
Assessment Test XXXV
Part | Oracle Database 12¢: SQL Fundamentals 1
Chapter 1 Introducing Oracle Database 12¢c RDBMS 3
Relational Database Management Systems 4

Characteristics of a Relational Database 5

Oracle’s Implementation of RDBMS and ORDBMS 8

The Oracle Database 12¢ 9

Oracle Database 12¢ Implementations 9

Connecting to Oracle Database 13

Database Management Tools 14

Oracle Database 12¢ in the Cloud 19

Familiarizing SQL*Plus 19

Summary 30

Exam Essentials 31

Review Questions 32

Chapter 2 Introducing SQL 35
SQL Fundamentals 36

Oracle Datatypes 38

Operators and Literals 42

Writing Simple Queries 46

Using the SELECT Statement 46

Filtering Rows 51

Sorting Rows 62

Sorting NULLs 64

Limiting Rows 67

Using Expressions 68

Accepting Values at Runtime 72

Using Ampersand Substitution Variables 73

Saving a Variable for a Session 75

Using Positional Notation for Variables 77

Summary 78

Exam Essentials 78

Review Questions 80

Chapter 3 Using Single-Row Functions 89
Single-Row Function Fundamentals 90

Functions for NULL Handling 91

Chapter 4

Chapter 5

Contents

Using Single-Row Character Functions
Character Function Overview
Character Function Descriptions

Using Single-Row Numeric Functions
Numeric Function Overview
Numeric Function Descriptions

Using Single-Row Date Functions
Date Format Conversion
Date Function Overview
Date Function Descriptions

Using Single-Row Conversion Functions
Conversion Function Overview
Conversion Function Descriptions

Using Other Single-Row Functions
Miscellaneous Function Overview
Miscellaneous Function Descriptions

Summary

Exam Essentials

Review Questions

Using Group Functions

Group Function Fundamentals

Utilizing Aggregate Functions
Grouping Data with GROUP BY
Group Function Overview
Group Function Descriptions: Part 1
Group Function Descriptions: Part 2

Limiting Grouped Data with HAVING
Creating Superaggregates with CUBE and ROLLUP

Nesting Functions
Summary
Exam Essentials
Review Questions

Using Joins and Subqueries

Writing Multiple-Table Queries
Inner Joins
Cartesian Joins
Outer Joins
Other Multiple-Table Queries
Using Set Operators
The UNION Operator
The UNION ALL Operator
The INTERSECT Operator

95

95

96
108
108
109
119
119
120
121
131
131
133
154
154
155
167
168
169

175

176
177
178
182
184
194
207
208
215
218
218
219

227

228
229
239
240
245
247
248
249
250

Chapter 6

Chapter 7

Contents

The MINUS Operator
Putting It All Together

Using Subqueries
Single-Row Subqueries
Multiple-Row Subqueries
Subquery Returns No Rows
Correlated Subqueries
Scalar Subqueries
Multiple-Column Subqueries
Subqueries in Other DML Statements

Summary

Exam Essentials

Review Questions

Manipulating Data

Using DML Statements
Inserting Rows into a Table
Updating Rows in a Table
Deleting Rows from a Table
Merging Rows

Understanding Transaction Control
Savepoints and Partial Rollbacks
Data Visibility

Summary

Exam Essentials

Review Questions

Creating Tables and Constraints

Database Objects Overview
Schema Objects
Using Sequences
Built-in Datatypes
Character Datatypes
Numeric Datatypes
Date and Time Datatypes
Date Arithmetic
Binary Datatypes
Row ID Datatypes
Creating Tables
Naming Tables and Columns
Specifying Default Values for Columns
Adding Comments
Creating a Table from Another Table
Modifying Tables
Adding Columns

Xi

250
250
252
253
254
256
258
259
267
268
269
270
271

281

282
283
289
294
297
299
302
304
306
307
308

319

320
322
324
325
325
329
330
334
336
337
338
339
341
348
348
350
350

xii

Part I

Chapter 8

Chapter 9

Contents

Modifying Columns
Renaming Columns
Dropping Columns
Hiding Columns from Table
Dropping Tables
Renaming Tables
Making Tables Read-Only
Managing Constraints
Creating Constraints
Dropping Constraints
Enabling and Disabling Constraints
Deferring Constraint Checks
Summary
Exam Essentials
Review Questions

Oracle Database 12c: Installation
and Administration

Introducing Oracle Database 12¢c Components
and Architecture

Oracle Database Fundamentals
Relational Databases
Oracle Database 12¢ Objects
Interacting with Oracle Database 12¢
Oracle Database 12¢ Architecture
User and Server Processes
The Oracle Instance
Oracle Storage Structures
Summary
Exam Essentials
Review Questions

Creating and Operating Oracle Database 12¢

Oracle Database 12¢ Software Installation
Planning the Oracle Database 12¢ Software Install
Using the Oracle Universal Installer
Using DBCA to Create an Oracle 12¢ Database
Invoking the Database Configuration Assistant
Configuring an Oracle Database Using the DBCA
Deleting an Oracle Database Using the DBCA
Managing Database Templates Using the DBCA
Working with Oracle Database Metadata
Data Dictionary Views
Dynamic Performance Views

353
354
354
356
357
357
358
361
362
367
367
369
373
374
375

381

383

385
385
386
388
391
394
396
410
424
425
426

431

432
433
440
447
447
472
472
473
475
476
477

Chapter 10

Chapter 11

Contents

Managing Initialization-Parameter Files
Locating the Default Parameter File
Modifying Initialization-Parameter Values
Starting Up and Shutting Down an Oracle Instance
Starting Up an Oracle Database 12¢ Instance
Shutting Down an Oracle Database 12¢ Instance
Monitoring the Database Alert Log
Summary
Exam Essentials
Review Questions

Understanding Storage and Space Management

Understanding the Physical and Logical Storage
Contents of a Data Block
Managing Tablespaces
Identifying Default Tablespaces
Creating and Maintaining Tablespaces
Obtaining Tablespace Information
Managing Data Files
Performing Operations on Data Files
Using the Oracle Managed Files Feature
Querying Data File Information
Managing Space
Automatic Space Management Features
Monitoring Tablespace Free Space
Using Segment Advisor
Avoiding Out-of-Space Errors
Summary
Exam Essentials
Review Questions

Managing Data Concurrency and Undo

Managing Data Changes Using DML
Understanding “Change”
Differentiating Undo and Redo
Configuring and Monitoring Undo

Managing Data Concurrency
Understanding Locks and Transactions
Maximizing Data Concurrency
Detecting and Resolving Lock Conflicts

Summary

Exam Essentials

Review Questions

xiii

479
484
485
490
491
495
497
503
504
506

511

512
514
516
516
516
531
534
535
539
544
547
547
551
554
559
562
563
565

569

570
571
572
576
584
585
587
590
595
595
597

Xiv Contents

Chapter 12

Chapter 13

Understanding Oracle Network Architecture

Introducing Network Configurations
Single-Tier Architecture
Two-Tier Architecture
n-Tier Architecture
An Overview of Oracle Net Features
Connectivity
Manageability
Scalability
Security
Accessibility
Configuring Oracle Net on the Server
Understanding the Oracle Listener
Managing Oracle Listeners
Dynamically Registering Services
Oracle Net Logging and Tracing on the Server
Configuring Oracle Net for the Client
Client-Side Names Resolution Options
The Host Naming Method
The Oracle Easy Connect Method
The Local Naming Method
Troubleshooting Client-Side Connection Problems
An Overview of Oracle Shared Server
Dedicated Server vs. Shared Server
Advantages and Disadvantages of Shared Server
Oracle Shared Server Infrastructure
Configuring the Oracle Shared Server
Managing a Shared Server
Understanding Database Resident Connection Pooling
Configuring DRCP
Comparing Connection Architectures
Communicating Between Databases
Introduction to Database Links
Creating Database Links
Summary
Exam Essentials
Review Questions

Implementing Security and Auditing

Creating and Managing User Accounts
Configuring Authentication
Assigning Tablespaces and Quotas
Assigning a Profile and Account Settings

603

604
605
605
606
607
608
608
609
611
613
613
614
618
634
635
637
637
638
639
641
646
648
648
650
651
653
658
661
662
663
666
666
667
669
670
672

677

678
679
681
684

Chapter 14

Chapter 15

Contents

Removing a User from the Database
Managing Default User Accounts
Granting and Revoking Privileges
Granting Object Privileges
Granting System Privileges
Role Privileges
Applying the Principle of Least Privilege
Controlling Resource Usage by Users
Implementing Password Security Features
Auditing Database Activity
Managing Statement Auditing
Managing Privilege Auditing
Managing Object Auditing
Using SQL Developer for Audit Management
Purging the Audit Trail
Managing Fine-Grained Auditing
Implementing Unified Auditing
Summary
Exam Essentials
Review Questions

Maintaining the Database and
Managing Performance

Proactive Database Maintenance
Managing Optimizer Statistics
Gathering Performance Statistics
Automatic Database Diagnostic Monitoring
The Advisory Framework
Monitoring Server-Generated Alerts
Understanding Automatic Diagnostic Repository
Managing Performance
Sources of Tuning Information
Tuning Memory
Automatic Shared Memory Management
Automatic SQL Execution Memory Management
Managing Memory Using EM Cloud Control
Summary
Exam Essentials
Review Questions

Using Backup and Recovery

Understanding and Configuring Recovery Components
Understanding Control Files
Understanding Checkpoints

XV

686
687
687
688
692
701
705
711
714
718
720
724
725
727
729
732
735
745
746
747

753

754
755
775
782
793
798
801
806
807
812
813
815
817
819
820
821

825

827
827
831

xvi Contents

Chapter 16

Understanding Redo Log Files
Understanding Archived Redo Log (ARCHIVELOG) Files
Understanding the Fast Recovery Area

Performing Backups

Understanding Backup Terminology
Backing Up the Control File
Backing Up the Database

Using RMAN to Perform Backups
Managing Backups

Understanding Types of Database Failures

Statement Failures
User-Process Failures
Network Failures
User-Error Failures
Instance Failures
Media Failures

Performing Recovery Operations

Understanding Instance Startup

Keeping an Instance from Failing

Recovering from Instance Failure

Tuning Instance Recovery

Recovering from User Errors

Recovering from the Loss of a Control File

Using the Data Recovery Advisor

Recovering from the Loss of a Redo Log File

Recovering from the Loss of a Non-System-Critical
Data File

Recovering from the Loss of a System-Critical Data File

Table Recovery Using RMAN

Summary

Exam Essentials

Review Questions

Controlling Resources and Jobs

Resource Management with the Resource Manager

Functions of the Resource Manager
Understanding Resource Manager Components
Configuring the Database Resource Manager
Accessing and Creating Resource Plans
Updating and Deleting Resources

Monitoring the Resource Manager

Task Automation with Oracle Scheduler

Scheduler Architecture
Using Oracle Scheduler

832
839
844
848
848
850
851
852
861
864
865
865
866
866
867
868
868
868
870
870
871
873
881
883
884

886
892
893
894
895
897

903

904
904
905
911
916
924
927
930
930
934

Chapter 17

Chapter 18

Contents

Relating Tasks with Job Chains
Scheduling Jobs on Remote Systems
Prioritizing Jobs with Oracle Scheduler

Summary

Exam Essentials

Review Questions

Upgrading to Oracle Database 12¢

Determining the Database Upgrade Method
Using Direct Upgrade
Migrating to Oracle Database 12¢
Preparing for a Database Upgrade
Running the Pre-Upgrade Information Tool
Preparing the Oracle Home
Reducing Upgrade Downtime
Upgrading the Database
Using Database Upgrade Assistant
Performing a Manual Upgrade
Completing the Post-Upgrade Tasks
Migrating to Unified Auditing
Downgrading to an Earlier Release
Summary
Exam Essentials
Review Questions

Using Grid Infrastructure and
Data Movement Tools

Tools for Moving Data
Migrating Data Using Data Pump

Data Pump Architecture

Using Data Pump Clients

Using the Data Pump Wizard

Upgrading an 11g R2 Database to 12¢

Using Full Transportable Export

Loading Data with SQL*Loader

Specifying SQL*Loader Command-Line Parameters

Specifying Control File Options
Populating External Tables

Loading External Tables Using Data Pump

Loading External Tables Using Loader
Introducing Grid Infrastructure

Installing Oracle Grid Infrastructure

Managing Oracle ASM Storage

Using Oracle Restart

xvii

943
947
948
951
951
952

957

958
959
961
963
964
974
975
976
976
987
991
994
995
997
997
999

1005

1006
1008
1009
1012
1033

1037
1039
1040
1042
1046
1046
1048
1050
1051
1061
1068

xviii Contents

Appendix A

Appendix B

Index

Summary
Exam Essentials
Review Questions

Answers to Review Questions

Chapter 1: Introducing Oracle Database 12¢ RDBMS
Chapter 2: Introducing SQL
Chapter 3: Using Single-Row Functions
Chapter 4: Using Group Functions
Chapter 5: Using Joins and Subqueries
Chapter 6: Manipulating Data
Chapter 7: Creating Tables and Constraints
Chapter 8: Introducing Oracle Database 12¢ Components
and Architecture
Chapter 9: Creating and Operating Oracle Database 12¢
Chapter 10: Understanding Storage and Space Management
Chapter 11: Managing Data Concurrency and Undo
Chapter 12: Understanding Oracle Network Architecture
Chapter 13: Implementing Security and Auditing
Chapter 14: Maintaining the Database and
Managing Performance
Chapter 15: Using Backup and Recovery
Chapter 16: Controlling Resources and Jobs
Chapter 17: Upgrading to Oracle Database 12¢
Chapter 18: Using Grid Infrastructure and
Data Movement Tools

About the Additional Study Tools

Additional Study Tools
Sybex Test Engine
Electronic Flashcards
Bonus Author Materials
PDF of Glossary of Terms
Adobe Reader

System Requirements

Using the Study Tools

Troubleshooting
Customer Care

1076
1077
1078

1083

1084
1085
1087
1089
1090
1092
1094

1096
1098
1100
1102
1104
1106

1108
1110
1112
1114

1116

1119

1120
1120
1120
1120
1120
1121
1121
1121
1121
1122

1123

Table of Exercises

Exercise 1.1
Exercise 9.1
Exercise 9.2

Practicing SQL*Plus File Commands

Manually Delete or Remove an Oracle Database 473

Creating an Oracle Database 12c Database........................ 501

Introduction

There is high demand for professionals in the information technology (IT) industry, and
Oracle certifications are the hottest credential in the database world. You have made the right
decision to pursue certification, because being certified in the latest version of Oracle, Oracle
Database 12c¢, will give you a distinct advantage in this highly competitive market.

Many readers may already be familiar with Oracle and do not need an introduction
to Oracle databases. For those who aren’t familiar with the company, Oracle, founded in
1977, sold the first commercial relational database and is now the world’s leading database
company and second-largest independent software company with revenues of more than
$37 billion, and is headquartered in Redwood City, California.

Oracle databases are the de facto standard for large Internet sites, mission-critical enter-
prise applications, and cloud solutions. With the acquisition of Sun Microsystems, Oracle
offers complete enterprise business solutions with engineered systems capable of running
world-class databases and applications. Enterprise Resource Planning (ERP) application
suites, data warehouses, and business applications at many large and medium-sized com-
panies rely on Oracle. The demand for DBA resources remains higher than others during
weak economic times.

This book is intended to help you on your exciting path toward becoming an Oracle
Database 12¢ Administrator Certified Associate (OCA), which is the first step on the path
toward Oracle Certified Professional (OCP) and Oracle Certified Master (OCM) certification.
This book covers two of the exams required for the OCA certification. Using this book and a
practice database, you can start learning Oracle Database 12¢ and pass the 120-061 “Oracle
Database 12¢: SQL Fundamentals” and 1Z20-062 “Oracle Database 12¢: Installation and
Administration” exams.

Why Become Oracle Certified?

The number one reason to become OCA or OCP certified is to gain more visibility and
greater access to the industry’s most challenging opportunities. Oracle certification is the
best way to demonstrate your knowledge and skills in Oracle database systems. Preparing
for the certification exam may be the best time spent on your career because you learn the
tasks that are necessary to be successful as a DBA.

Certification is proof of your knowledge and shows that you have the skills required to
support Oracle core products. The Oracle certification program can help a company identify
proven performers who have demonstrated their skills and who can support the company’s
investment in Oracle technology. It demonstrates that you have a solid understanding of your
job role and the Oracle products used in that role.

The certification tests are scenario-based, which is the most effective way to assess your
hands-on expertise and critical problem-solving skills. OCPs are among the best paid in the
IT industry. Salary surveys consistently show the OCP certification to yield higher salaries
than the other certifications, including Microsoft, Novell, and Cisco.

Introduction XXi

So, whether you are beginning a career, changing careers, securing your present posi-
tion, or seeking to refine and promote your position, this book is for you!

Oracle Certifications

Oracle certifications follow a track that is oriented toward a job role. The primary certi-
fication tracks are Database, Applications, Java, Enterprise Management, Virtualization,
and Operating Systems. Within each track, Oracle has a tiered certification program of
OCA and OCP. Only the Database track has OCM. The Database track is clearly for the
Database Administrator job role.

For the latest certification information on all of Oracle certification paths,
A ITE please visit the Oracle website at http://education.oracle.com/pls/web_
prod-plg-dad/db_pages.getpage?page_id=39&p_org_id=1001&lang=US.

The role of database administrator (DBA) has become a key to success in today’s highly
complex database systems. The best DBAs work behind the scenes, but are in the spotlight
when critical issues arise. They plan, create, maintain, and ensure that the database is avail-
able for the business, most importantly, DBAs troubleshoot, diagnose, and resolve issues.
They have tools to proactively monitor the database for performance issues and to prevent
unscheduled downtime. The DBA’s job requires a broad understanding of the architecture
of an Oracle database and expertise in solving problems.

Sybex has Oracle certification study guides for the Database track. The following sections
will introduce you to the different tiers in the Oracle Database 12¢ certification track.

Oracle Database 12¢c Administrator Certified Associate

The Oracle Certified Associate (OCA) credential is the first step toward achieving the Oracle
Certified Professional (OCP) certification. OCA shows that you have the fundamental knowl-
edge and skills to support an Oracle Database 12¢ database. This certification requires you to
pass two exams that demonstrate your Oracle basics:

170-061: Oracle Database 12¢: SQL Fundamentals
1Z0-062: Oracle Database 12c¢: Installation and Administration

If you have already passed any one of the following tests, you need not take the 120-061
exam. You only need to pass the 120-062.

170-051: Oracle Database 11g SQL Fundamentals I
170-047: Oracle Database SQL Expert

The 1Z0-061 exam can be taken at a testing location or from your home using the
Internet. The 1Z0-062 test is offered at a Pearson Vue facility.

To register for the test, visit Pearson Vue at http:// www.pearsonvue.com.

d#TE

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=39&p_org_id=1001&lang=US
http://www.pearsonvue.com

xxii Introduction

Oracle Database 12¢c Administrator Certified Professional

The Oracle Certified Professional credential shows that you have the skill and technical
expertise to manage and implement enterprise databases. The OCP tier challenges you to
demonstrate your continuing experience and knowledge of Oracle technologies. The OCP test
will measure your knowledge in setting up and managing multitenant architecture databases
and in backup and recovery. The Oracle Database 12¢ Administrator Certified Professional
certification requires you to have the OCA certification as well as to pass the following exam.

170-063: Oracle Database 12¢: Advanced Administration

In addition, the OCP candidate must take one instructor-led Oracle university hands-on
requirement class.

You should verify the list of approved hands-on courses at the Oracle
dﬁTE Education website at http://education.oracle.com/pls/web_prod-plqg-
dad/db_pages.getpage?page_id=244#5.

Oracle Database 12c Administrator Certified Master

The highest level of certification available in any track is the Oracle Certified Master. The
OCM certification credential shows that you have the highest level of expertise in an Oracle
product. To become a certified master, you must first achieve OCP status and then complete
two advanced instructor-led classes at an Oracle Education facility. You must also pass a
hands-on examination at an Oracle Education facility. At the time of writing this book, the
Oracle Database 12¢ Certified Master Exam is not released.

More Information and Resources

You can find most current information about Oracle certification at http://education
.oracle.com/certification. You may be asked to choose the country of residence before
being directed to the site. Follow the links under Certifications to choose the track and
learn more.

Choose the Database track to view the different certification versions available. Choose
Oracle Database 12¢ Administrator Certified Associate, and then click on the test to find
out more about the test contents, the objectives covered in the test, the passing score, and
to register for the test.

The Oracle documentation is available online at http://tahiti.oracle.com. Oracle
documentation contains a wealth of information, which can be used to supplement what
you learn from this book.

Oracle provides training series with step-by-step instructions to perform a variety of
Oracle Database 12c¢ tasks. The Oracle by Example (OBE) tutorial can be found at http://
apex.oracle.com/pls/apex/f?p=44785:1.

Oracle Technology Network (http: //www.oracle.com/technology/index.html) is a
great resource for database administrators and developers. You can read articles; view sample
code; access documentation; participate in forums; and most importantly, download Oracle
Database 12¢, Oracle Enterprise Manager Cloud Control 12¢, and other Oracle products.

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/certification
http://tahiti.oracle.com
http://apex.oracle.com/pls/apex/f?p=44785:1
http://apex.oracle.com/pls/apex/f?p=44785:1
http://www.oracle.com/technology/index.html
http://education.oracle.com/certification

Introduction xxiii

OCA/OCP Study Guides

The Oracle Database 12¢ Administration track certification consists of three tests: two
for OCA and one for OCP. Sybex offers study guides to help you achieve OCA and OCP
certification.

OCA: Oracle Database 12¢ Administrator Certified Associate Study Guide
(9781118643952) — Covers exams 1Z0-061: Oracle Database 12¢: SQL Fundamentals
and 1Z20-062: Oracle Database 12¢: Installation and Administration.

OCP: Oracle Database 12¢ Administrator Certified Professional Study Guide
(9781118644072) — Covers exam 1Z20-063: Oracle Database 12¢: Advanced
Administration.

These two books are offered in a boxed set as OCP: Oracle Certified Professional on
Oracle Database 12c¢ Certification Kit (9781118957684).

Oracle Exam Requirements

The Oracle Database 12¢ Database Certified Associate certification tests your basic SQL
skills for the SQL exam and database architecture and administration skills for the DBA
exam. The SQL exam tests your knowledge of writing SQL and using the functions avail-
able in Oracle Database 12¢. The Installation and Administration exam concentrates

on the architecture and the basic administration of Oracle 12¢ databases. The following
sections detail the skills needed to pass the SQL Fundamentals and the Installation and
Administration exams.

OCA SQL (120-061) Requirements

To pass the Oracle Database 12¢ SQL Fundamentals exam, you must have the following skills:
Write SQL SELECT statements that display data from one or more tables
Join tables using ANSI syntax and Oracle traditional syntax
Restrict, sort, and aggregate data using single-row, conversion, and group functions
Werite subqueries and queries using SET operators
Manipulate data: insert, update, delete

Create and manage tables and other database objects

OCA Installation and Administration (120-062) Requirements

To pass the Oracle Database 12¢ Installation and Administration exam, you must have the
following skills:

Understand the Oracle server architecture (database and instance)
Install Oracle Database 12¢ software and create a database
Use Database Configuration Assistant and Enterprise Manager tools

Understand the physical and logical storage of the database, and be able to manage
space allocation and growth

xxiv

Introduction

Use the data dictionary views and set database parameters

Manage and manipulate data, including its storage, loading, and reorganization
Create and manage tables, constraints, and indexes

Manage redo logs, archive logs, and automatic undo

Configure Oracle Net on the server side and client side

Understand backup and recovery architecture

Secure the database and audit database usage

Use advisors to tune and manage the database

Upgrade the database

Move data between databases

Install and manage Grid Infrastructure, Oracle Restart, and Automatic Storage
Management

Tips for Taking the OCA Exams

The following tips will help you prepare for and pass each exam.

Each test consists of between 70 and 95 questions to be completed in 120 to 150 minutes
(depending on the exam). Answer the questions you are sure of first, before you run out
of time.

Many questions on the exam have answer choices that at first glance look identical.
Read the questions carefully. Do not jump to conclusions. Make sure you clearly under-
stand what each question asks.

Most questions are based on scenarios. Some of the scenarios contain nonessential infor-
mation and exhibits. You need to be able to identify what’s important and what’s not.

Do not leave any questions unanswered. There is no negative scoring. After selecting
an answer, you can mark difficult questions or the ones you are unsure of and come
back to them later.

When answering questions you are not sure about, use a process of elimination to get
rid of the obviously incorrect answers first. Doing this greatly improves your odds if
you need to make an educated guess.

If you are not sure of your answer, mark it for review and then look for other questions
that may help you eliminate any incorrect answers. At the end of the test, you can review
the questions you marked earlier.

)’ You should be familiar with the exam objectives, which are included at the
AdoTE beginning of each chapter. Please check the objective listing on the Oracle

Education website for any changes or updates. The detail page for each
exam shows the passing score, number of questions, and minutes allocated
along with the exam fees and any other requirements.

Introduction XXV

What Is Covered in This Book

This book covers everything you need to pass the Oracle Database 12¢ Certified Associate
exams. Part I includes the first seven chapters that cover the objectives for the Oracle Database
12¢ SQL Fundamentals exam. Part II of the book includes the remaining 11 chapters that
cover the objectives for the Oracle Database 12¢ Installation and Administration exam.

Part I: Oracle Database 12¢ SQL Fundamentals

Chapter 1: Introducing Oracle Database 12¢ RDBMS introduces you to the features of
Oracle Database 12¢ and the aspects of a relational database.

Chapter 2: Introducing SQL introduces you to writing simple queries using SELECT
statements. It also introduces you to filtering and sorting data.

Chapter 3: Using Single-Row Functions discusses the single-row functions and conver-
sion functions available, with details on how and where to use them.

Chapter 4: Using Group Functions explains data aggregations, Oracle’s built-in group
function, and nesting of functions.

Chapter 5: Using Joins and Subqueries explains how data from multiple tables can be
related via joins, subqueries, and by using SET operators.

Chapter 6: Manipulating Data explores how to manipulate data: adding, removing,
and updating data. The chapter also covers how transaction control works.

Chapter 7: Creating Tables and Constraints explains how to create and manage tables
and constraints. It also discusses the various datatypes available in Oracle Database 12¢
to store data.

Part ll: Oracle Database 12c Installation and Administration

Chapter 8: Introducing Oracle Database 12¢ Components and Architecture is the first
chapter to start if you’re reading for the Oracle Database 12¢ Installation and Admin-
istration exam. This chapter introduces you to the Oracle Database 12¢ database archi-
tecture and the relationship between logical and physical storage structures.

Chapter 9: Creating and Operating an Oracle Database 12¢ explains how you can
install the Oracle Database 12¢ software and create a database. It discusses the initial-
ization parameters, stages of database startup and shutdown, where to find log and
trace files, and how to use the data dictionary.

Chapter 10: Understanding Storage and Space Management explores the logical and
physical storage of the database. You will learn space management and the various types
of tablespaces. This chapter also discusses monitoring space and reclaiming wasted space.

Chapter 11: Managing Data Concurrency and Undo shows you how you can add,
update, and remove data from tables, as well as how transactions work. It introduces you
to undo data and undo management. This chapter also discusses how Oracle manages
locks to ensure data concurrency. Be sure to read Chapter 6 before you read this chapter.

XXvi Introduction

Chapter 12: Understanding Oracle Network Architecture introduces you to the Oracle
Net configuration and setup. You will learn to set up network architecture on the server
and client.

Chapter 13: Implementing Security and Auditing shows how you can secure your data-
base using privileges, profiles, and roles. You will also learn to audit database usage.

Chapter 14: Maintaining the Database and Managing Performance explores the tools
available in Oracle Database 12¢ to manage the performance of the database. You will
learn about optimizer statistics, Automatic Workload Repository, various advisors, and
Automatic Memory Management.

Chapter 15: Using Backup and Recovery introduces you to the backup architecture
concepts. It discusses the various backup modes and using RMAN. It also delves into
the various recovery scenarios and how best to get the data back. It shows you how to
use the Data Recovery Advisor, which can help find and recover the database, as well
as offer advice.

Chapter 16: Controlling Resources and Jobs shows you how to manage the resources
available on the database server using the Resource Manager. You will also learn about
the Oracle Scheduler job management system.

Chapter 17: Upgrading to Oracle Database 12¢ familiarizes you with the process of
upgrading a database to Oracle Database 12¢. You also learn the various upgrade and
migration methods.

Chapter 18: Using Grid Infrastructure and Data Movement Tools introduces you to
Data Pump and SQL*Loader, the tools available in Oracle Database 12¢ to move and
load data. This chapter also covers the Grid Infrastructure installation and configura-
tion, including setting up Automatic Storage Management disks.

Each chapter ends with Review Questions that are specifically designed to help you
retain the knowledge presented. To really nail down your skills, read and answer each
question carefully.

What's Available Online?

The book includes a number of companion study tools, which can be downloaded from
www. sybex.com/go/ocal2sg. See Appendix B, “About the Additional Study Tools,” for
information on how to access and install these tools:

Test Preparation Software The test preparation software prepares you to pass both the
120-061 and 1Z0-062 exams. You’ll find all the review and assessment questions from
the book plus an additional four practice exams (two for each exam) that appear exclu-
sively from the downloadable study tools.

Electronic Flashcards The companion study tools include over 400 flashcards specifically
written to hit you hard, so don’t get discouraged if you don’t ace your way through them at
first! They’re there to ensure that you’re really ready for the exam. And no worries—armed
with the review questions, practice exams, and flashcards, you’ll be more than prepared
when exam day comes!

http://www.sybex.com/go/oca12sg

Introduction XXVii

Author Bonus Material I’ve included all of the code from the book, as well as three bonus
Whitepapers that show you how to install an Oracle 12¢ database on Windows, how to
create non-CDB Oracle Database 12¢ on Windows, and how to install Oracle Enterprise
Manager 12¢ on Virtual Box.

Glossary A complete glossary of common terms is available at www. sybex.com/go/ocal2sg.

How to Use This Book

This book provides a solid foundation for the serious effort of preparing for the Oracle
Database 12¢ Certified Associate exams. To best benefit from the book, use the following
study method:

1. Take the assessment tests immediately following this introduction. (The answers are at
the end of the tests.) Carefully read the explanations for any questions you get wrong,
and note in which chapters the material is covered. This information should help you
plan your study strategy.

2. Study each chapter carefully, making sure you fully understand the information and
the test objectives listed at the beginning of each chapter. Pay close attention to any
chapter related to questions you missed in the assessment test.

3. Complete all hands-on activities in the chapter, referring to the chapter so that you
understand the reason for each step you take. It is best to have an Oracle Database
12¢ database available to try out the examples and the code provided in the book.
All the code is also included with the additional study tools.

4. Answer the review questions related to that chapter. Note the review questions that
confuse or trick you, and study those sections of the book again.

5. The two bonus exams for each exam are included with the accompanying study tools.
They will give you a complete overview of what you can expect to see on the real test.

6. Answer all the flashcard questions included with the study tools.

7. Remember to use the study tools included with this book. The electronic flash cards
and the Sybex test engine exam-preparation software has been specifically designed to
help you study and pass your exams.

The additional study tools can be downloaded from www. sybex.com/go/

dnz ocal2sg.

To learn all the material covered in this book, you will need to apply yourself regularly
and with discipline. Try to set the same time period every day to study, and select a com-
fortable and quite place to do so. If you work hard, you will be surprised at how quickly
you will learn this material. You can also find supplemental reading material and Oracle
documentation references on my blog that will deepen your knowledge of what you read in
this book. All the best!

http://www.sybex.com/go/oca12sg
http://www.sybex.com/go/oca12sg
http://www.sybex.com/go/oca12sg

xXviii Introduction

Box. This is convenient, especially if you are new to Oracle. Prebuilt Ora-
cle VMs can be downloaded from http://www.oracle.com/technetwork/
community/developer-vm. You will have to install and set up Oracle VM
VirtualBox to use the prebuilt VMs.

é/ Prebuilt Oracle Database 12¢ can be downloaded and set up on Virtual-
P

How to Contact the Author

I welcome feedback from you about this book or about books you’d like to see from me in
the future. You can reach me by writing to biju.thomas.sybex@gmail.com. For more infor-
mation about database administration and Oracle Database 12c¢ certification, please visit
my blog at www.bijoos.com/oraclenotes. You may follow me on social media through
Twitter (@biju_thomas) and Facebook (Oracle Notes www. facebook.com/oraclenotes).
Sybex strives to keep you supplied with the latest tools and information you need for
your work. Please check their website at www. sybex . com, where we’ll post additional con-
tent, errata, and updates that supplement this book if the need arises. Enter search terms
in the Search box (or type the book’s ISBN— 9781118643952), and click Go to get to the
book’s update page.

http://www.oracle.com/technetwork/community/developer-vm
mailto:biju.thomas.sybex@gmail.com
http://www.bijoos.com/oraclenotes
http://www.facebook.com/oraclenotes
http://www.sybex.com
http://www.oracle.com/technetwork/community/developer-vm

Exam Objectives XXix

Exam Objectives

Part I: 1Z0-061 Oracle Database 12¢: SQL Fundamentals
Objective Map

1 Introduction Chapter 1
1.1 Describe the features of Oracle Database 12¢, Chapter 1
1.2 Describe the salient features of Oracle Cloud 12¢, Chapter 1
1.3 Explain the theoretical and physical aspects of a relational database, Chapter 1

1.4 Describe Oracle server’s implementation of RDBMS and object relational data-
base management system (ORDBMS), Chapter 1

2 Retrieving Data Using the SQL SELECT Statement, Chapter 2

2.1 Explain the capabilities of SQL SELECT statements, Chapter 2

2.2 Execute a basic SELECT statement, Chapter 2
3 Restricting and Sorting Data, Chapter 2

3.1 Limit the rows that are retrieved by a query, Chapter 2

3.2 Sort the rows that are retrieved by a query, Chapter 2

3.2 Use ampersand substitution to restrict and sort output at runtime, Chapter 2
4 Using Single-Row Functions to Customize Output, Chapter 3

4.1 Describe various types of functions available in SQL, Chapter 3

4.2 Use character, number, and date functions in SELECT statements, Chapter 3
5 Using Conversion Functions and Conditional Expressions, Chapter 3

5.1 Describe various types of conversion functions that are available in SQL,
Chapter 3

5.2 Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions,
Chapter 3

5.3 Apply conditional expressions in a SELECT statement, Chapter 3
6 Reporting Aggregated Data Using the Group Functions, Chapter 4
6.1 Identify the available group functions, Chapter 4
6.2 Describe the use of group functions, Chapter 4
6.3 Group data by using the GROUP BY clause, Chapter 4
6.4 Include or exclude grouped rows by using the HAVING clause, Chapter 4

XXX Introduction

7 Displaying Data from Multiple Tables Using Joins, Chapter 5

7.1 Write SELECT statements to access data from more than one table using equi-
joins and nonequijoins, Chapter 5

7.2 Join a table to itself by using a self-join, Chapter 5

7.3 View data that generally does not meet a join condition by using OUTER joins,
Chapter 5

7.4 Generate a Cartesian product of all rows from two or more tables, Chapter 5
8 Using Subqueries to Solve Queries, Chapter 5
8.1 Define subqueries, Chapter §
8.2 Describe the types of problems that the subqueries can solve, Chapter 5
8.3 Describe the types of subqueries, Chapter 5
8.4 Write single-row and multiple-row subqueries, Chapter 5
8.5 Using the set operators, Chapter 5
8.6 Describe set operators, Chapter 5
8.7 Use a set operator to combine multiple queries into a single query, Chapter 5
8.8 Control the order of rows returned, Chapter 5
9 Managing Tables Using DML Statements, Chapter 6
9.1 Truncate data, Chapter 6
9.2 Insert rows into a table, Chapter 6
9.3 Update rows in a table, Chapter 6
9.4 Delete rows from a table, Chapter 6
9.5 Control transaction, Chapter 6
10 Introduction to Data Definition Language, Chapter 7
10.1 Categorize the main database objects, Chapter 7
10.2 Explain the table structure, Chapter 7
10.3 Describe the datatypes that are available for columns, Chapter 7
10.4 Create a simple table, Chapter 7
10.5 Explain how constraints are created at the time of table creation, Chapter 7

10.6 Describe how schema objects work, Chapter 7

Part Il: 1Z0-062 Oracle Database 12¢ Installation and
Administration Exam Objectives
1.1 Exploring the Oracle Database Architecture, Chapter 8

1.1.1 List the architectural components of Oracle Database, Chapter 8
1.1.2 Explain the memory structures, Chapter 8

Exam Objectives XXXi

1.1.3 Describe the background processes, Chapter 8

1.1.4 Explain the relationship between logical and physical storage structures,
Chapter 8

1.2 Oracle Database Management Tools, Chapter 8
1.2.1 Use database managements tools, Chapter 8
1.3 Oracle Database Instance, Chapter 9
1.3.1 Understand initialization parameter files, Chapter 9
1.3.2 Start up and shut down an Oracle database instance, Chapter 9
1.3.3 View the alert log and access dynamic performance views, Chapter 9
2.1 Oracle Software Installation Basics, Chapter 9
2.1.1 Plan for an Oracle database software installation, Chapter 9
2.3 Installing Oracle Database Software, Chapter 9
2.3.1 Install the Oracle database software, Chapter 9
2.4 Creating an Oracle Database Using DBCA, Chapter 9

2.4.1 Create a database by using the Database Configuration Assistant (DBCA),
Chapter 9

2.4.2 Generate database creation scripts by using DBCA, Chapter 9
2.4.3 Manage database design template by using DBCA, Chapter 9
2.4.4 Configure database options by using DBCA, Chapter 9

1.5 Managing Database Storage Structures, Chapter 10
1.5.1 Describe the storage of table row data in blocks, Chapter 10
1.5.2 Create and manage tablespaces, Chapter 10

1.7 Managing Space, Chapter 10
1.7.1 Explain how Oracle database server automatically manages space, Chapter 10
1.7.2 Save space by using compression, Chapter 10
1.7.3 Proactively monitor and manage tablespace space usage, Chapter 10
1.7.4 Use the Segment Advisor, Chapter 10

1.7.5 Reclaim wasted space from tables and indexes by using the segment shrink,
Chapter 10

1.7.6 Manage resumable space allocations, Chapter 10
1.8 Managing Undo Data, Chapter 11
1.8.1 Explain DML and undo data generation, Chapter 11
1.8.2 Monitor and administer undo data, Chapter 11
1.8.3 Describe the difference between undo data and redo data, Chapter 11
1.8.4 Configure undo retention, Chapter 11

xxxii

Introduction

1.9 Managing Data Concurrency, Chapter 11

1.9.1. Describe the locking mechanism and how Oracle manages data concurrency,
Chapter 11

1.9.2 Monitor and resolve locking conflicts, Chapter 11
1.4 Configuring the Oracle Network Environment, Chapter 12
1.4.1 Configure Oracle Net services, Chapter 12
1.4.2 Use tools for configuring and managing the Oracle network, Chapter 12
1.4.3 Configure client-side network, Chapter 12
1.4.4 Understand database resident connection polling, Chapter 12
1.4.5 Configure communication between databases, Chapter 12
1.10 Implementing Oracle Database Auditing, Chapter 13
1.10.1 Explain DBA responsibilities for security and auditing, Chapter 13
1.10.2 Enable standard database auditing and Unified Auditing, Chapter 13
1.6 Administering User Security, Chapter 13
1.6.1 Create and manage database user accounts, Chapter 13
1.6.2 Grant and revoke privileges, Chapter 13
1.6.3 Create and manage roles, Chapter 13
1.6.4 Create and manage profiles, Chapter 13
1.16. Performing Database Maintenance, Chapter 14
1.16.1 Manage the Automatic Workload Repository (AWR), Chapter 14
1.16.2 Use the Automatic Database Diagnostic Monitor (ADDM), Chapter 14
1.16.3 Describe and use the advisory framework, Chapter 14
1.16.4 Set alert thresholds, Chapter 14
1.16.5 Use automated tasks, Chapter 14
1.17 Managing Performance, Chapter 14
1.17.1 Use Enterprise Manager to monitor performance, Chapter 14
1.17.2 Use Automatic Memory Management, Chapter 14
1.17.3 Use the Memory Advisor to size memory buffers, Chapter 14
1.18 Managing Performance SQL Tuning, Chapter 14
1.18.1 Manage optimizer statistics, Chapter 14
1.18 2 Use the SQL Tuning Advisor, Chapter 14
1.18.3 Use the SQL Access Advisor to tune a workload, Chapter 14
1.19 Managing Resources Using Database Resource Manager, Chapter 16
1.19.1 Configure the Database Resource Manager, Chapter 16
1.19.2 Access and create resource plans, Chapter 16

1.19.3 Monitor the Resource Manager, Chapter 16

Exam Objectives XxXiii

1.20 Automating Tasks by Using Oracle Scheduler, Chapter 16
1.20.1 Use Oracle Scheduler to simplify management tasks, Chapter 16
1.20.2 Use job chains to perform a series of related tasks, Chapter 16
1.20.3 Use Scheduler jobs on remote systems, Chapter 16
1.20.4 Use advanced Scheduler features to prioritize jobs, Chapter 16
1.11 Backup and Recovery Concepts, Chapter 15

1.11.1 Identify the importance of checkpoints, redo log files, and archive log files,
Chapter 15

1.12 Backup and Recovery Configuration, Chapter 15
1.12.1 Configure the fast recovery area, Chapter 15
1.12.1 Configure ARCHIVELOG mode, Chapter 15
1.13 Performing Database Backups, Chapter 15
1.13.1 Create consistent database backups, Chapter 15
1.13.2 Back up your database without shutting it down, Chapter 15
1.13.3 Create incremental backups, Chapter 15
1.13.4 Automate database backups, Chapter 15
1.13.5 Manage backups, Chapter 15
1.14 Performing Database Recovery, Chapter 15
1.14.1 Determine the need for performing recovery, Chapter 15

1.14.2 Use Recovery Manager (RMAN) and the Data Recovery Advisor to perform
recovery of the control file, redo log file, and data file, Chapter 15

2.6 Upgrading Database Software, Chapter 17
2.6.1 Describe upgrade methods, Chapter 17
2.6.2 Describe data migration methods, Chapter 17
2.6.3 Describe the upgrade process, Chapter 17

2.7 Preparing to Upgrade to Oracle Database 12¢, Chapter 17

2.7.1 Describe upgrade requirements when certain features or options are used in
Oracle database, Chapter 17

2.7.2 Use the Pre-Upgrade Information tool before performing an upgrade,
Chapter 17

2.7.3 Prepare the new Oracle home prior to performing an upgrade, Chapter 17
2.8 Upgrading to Oracle Database 12¢, Chapter 17

2.8.1 Upgrade the database to Oracle Database 12¢ by using the Database Upgrade
Assistant (DBUA), Chapter 17

2.8.2 Perform a manual upgrade to Oracle Database 12¢ by using scripts and
tools, Chapter 17

XXXiV Introduction

2.9 Performing Post-Upgrade Tasks, Chapter 17
2.9.1 Migrate to Unified Auditing, Chapter 17
2.9.2 Perform post-upgrade tasks, Chapter 17
1.15 Moving Data, Chapter 18
1.15.1 Describe ways to move data, Chapter 18
1.15.2 Use SQL*Loader to load data from a non-Oracle database, Chapter 18
1.15.3 Use external tables to move data via platform-independent files, Chapter 18

1.15.4 Use Data Pump Export and Import to move data between Oracle databases,
Chapter 18

2.10 Migrating Data by Using Oracle Data Pump, Chapter 18
2.10.1 Migrate data by using Oracle Data Pump, Chapter 18
2.2 Installing Oracle Grid Infrastructure for a Standalone Server, Chapter 18

2.2.1 Configure storage for Oracle Automatic Storage Management (ASM),
Chapter 18

2.2.2 Install Oracle Grid Infrastructure for a standalone server, Chapter 18
2.5 Using Oracle Restart, Chapter 18
2.5.1 Use Oracle Restart to manage components, Chapter 18

Assessment Test XXXV

Assessment Test

Exam 1Z20-061: SQL Fundamentals

1. Which operator will be evaluated first in the following SELECT statement?

SELECT (2+3%4/2-5) FROM dual;
A. +

B. *
C./
D. —

2. John wants to remove the values present in column SALARY in the EMPLOYEES table for all
employees who belong to DEPARTMENT_ID 90. Which SQL would accomplish the task?

A. DELETE FROM EMPLOYEES (SALARY) WHERE DEPARTMENT_ID = 90;

B. INSERT INTO EMPLOYEES (SALARY) VALUES (NULL) WHERE DEPARTMENT_ID = 90;
C. UPDATE EMPLOYEES SET SALARY = NULL WHERE DEPARTMENT_ID = 90;

D. MERGE EMPLOYEES SET SALARY IS NULL WHERE DEPARTMENT_ID = 90;

3. Which function can possibly return a non-NULL value when one of the arguments is NULL?
NULLIF

LENGTH

CONCAT

INSTR

E. TAN

SO0 w >

4. The following statement will raise an exception on which line?

select dept_name, avg(all salary)
,count(x) "number of employees"
from emp , dept
where emp.deptno = dept.dept_no
and count(x) > 5
group by dept_name
order by 2 desc;

A. select dept_name, avg(all salary), count(x) "number of employees"
B. where emp.deptno = dept.dept_no
C. and count(*) > 5

XXXVi Assessment Test

D. group by dept_name
E. order by 2 desc;

5. Review the code segment.

INSERT INTO salaries VALUES (101, 23400, SYSDATE);
UPDATE salaries

SET salary = salary * 1.1

AND effective_dt = SYSDATE

WHERE empno = 333;

o M W N =

Which line has an error?
A 2
B. 4
C. 5

D. No error
6. Review the following SQL and choose the most appropriate option.

SELECT job_id, COUNT(*)
FROM employees
GROUP BY department_id;
A. The statement will show the number of jobs in each department.
B. The statement will show the number of employees in each department.
C. The statement will generate an error.

D. The statement will work if the GROUP BY clause is removed.

7. Which datatype stores data outside the Oracle database?
A. UROWID

BFILE

BLOB

NCLOB

E. EXTERNAL

cCow

8. The DEPT table has the following data.

SQL> SELECT % FROM dept;

DEPTNO DNAME Loc
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO

40 OPERATIONS BOSTON

10.

1.

Assessment Test XXXVii

Consider this INSERT statement:

INSERT INTO (SELECT * FROM dept WHERE deptno = 10)
VALUES (50, 'MARKETING', 'FORT WORTH');

Choose the best answer.

A. The INSERT statement is invalid; a valid table name is missing.

B. 50 is not a valid DEPTNO value, since the subquery limits DEPTNO to 10.
C. The statement will work without error.

D. A subquery and a VALUES clause cannot appear together.

Which two of the following queries is valid syntax that would return all rows from the
EMPLOYEES and DEPARTMENTS tables, even if there are no corresponding/related rows in
the other table?

A. SELECT last_name, first_name, department_nameFROM employees e FULL
JOIN departments dON e.department_id = d.department_id;

B. SELECT last_name, first_name, department_nameFROM employees e OUTER
JOIN departments dON e.department_id = d.department_id;

C. SELECT e.last_name, e.first_name, d.department_nameFROM employees
eLEFT OUTER JOIN departments dON e.department_id = d.department_
FdRIGHT OUTER JOIN employees fON f.department_id = d.department_id;

D. SELECT e.last_name, e.first_name, d.department_nameFROM employees
eCROSS JOIN departments dON e.department_id = d.department_id;

E. SELECT last_name, first_name, department_nameFROM employeesFULL OUTER
JOIN departments USING (department_id);
Which of the following statements could use an index on the columns PRODUCT_ID and
WAREHOUSE _ID of the OE.INVENTORIES table?
A. select count(distinct warehouse_id)from oe.inventories;

B. select product_id, quantity_on_hand from oe.inventories where product_
id = 100;
C. dinsert into oe.inventories values (5,100,32);

D. None of these statements could use the index.
The following statements are executed:

create sequence my_seq;

select my_seq.nextval from dual;
select my_seq.nextval from dual;
rollback;

select my_seq.nextval from dual;

xxxviii Assessment Test

12.

13.

14.

What will be selected when the last statement is executed?
A. 0
B. 1
C. 2
D. 3
E. NULL

Which of the following statements are true? (Choose two.)

A. Primary key constraints allow NULL values in the columns.

B. Unique key constraints allow NULL values in the columns.

C. Primary key constraints do not allow NULL values in the columns.

D. A non-unique index cannot be used to enforce primary key constraints.
The current time in Dubai is “04-APR-2013 08:50:00” and the time in Dallas is

“03-APR-2013 23:50:00”. A user from Dubai is connected to a session in the data-
base located on a server in Dallas. What will be the result of his query?

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY HH24:MI:SS') FROM dual;

A. 04-APR-20138 08:50:00

B. 03-APR-2013 8 23:50:00
C. 03-APR-2013 2324:50:00
D. None of the above

The FIRED_EMPLOYEES table has the following structure.

EMPLOYEE_ID NUMBER (4)
FIRE_DATE DATE

How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(x) FROM FIRED_EMPLOYEES;
COUNT (%)

INSERT INTO FIRED_EMPLOYEES VALUES (104, TRUNC(SYSDATE));
SAVEPOINT A;

INSERT INTO FIRED_EMPLOYEES VALUES (106, TRUNC(SYSDATE));
SAVEPOINT B;

INSERT INTO FIRED_EMPLOYEES VALUES (108, TRUNC(SYSDATE));
ROLLBACK TO A;

Assessment Test XXXiX

INSERT INTO FIRED_EMPLOYEES VALUES (104, TRUNC(SYSDATE));
COMMIT;

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

A. 109

B. 106

C. 105

D. 107

15. At a minimum, how many join conditions should there be to avoid a Cartesian join if

there are three tables in the FROM clause?

A1

B. 2

C.3

D. There is no minimum.
16. Why does the following statement fail?
CREATE TABLE FRUITS-N-VEGETABLES
(NAME VARCHAR2 (40));

A. The table should have more than one column in its definition.
B. NAME is a reserved word, which cannot be used as a column name.
C. The table name is invalid.

D. Column length cannot exceed 30 characters.

17. Which two statements are true about NULL values?
A. You cannot search for a NULL value in a column using the WHERE clause.

B. If a NULL value is returned in the subquery or if NULL is included in the list when
using a NOT IN operator, no rows will be returned.

C. Only = and != operators can be used to search for NULL values in a column.

D. In an ascending order sort, NULL values appear at the bottom of the result set.

E. Concatenating a NULL value to a non-NULL string results in a NULL.

18. Table CUSTOMERS has a column named CUST_ZIP which could be NULL. Which of the fol-

lowing functions include the NULL rows in its result?

A. COUNT (CUST_ZIP)

B. SUM (CUST_ZIP)

C. AVG (DISTINCT CUST_ZIP)

D

. None of the above

x| Assessment Test

19. Using the following EMP table, you need to increase everyone’s salary by 5 percent of
their combined salary and bonus. Which of the following statements will achieve the
desired results?

Column Name emp_id name salary bonus

Key Type pk pk

NULLs/Unique NN NN NN

FK Table

Datatype VARCHAR?2 VARCHAR2 NUMBER NUMBER
Length 9 50 11,2 11,2

A. UPDATE emp SET salary = (salary + bonus)*1.05;

B. UPDATE emp SET salary = salaryx1.05 + bonus*1.05;

C. UPDATE emp SET salary = salary + (salary + bonus)x0.05;

D. A, B, and C will achieve the desired results.

E. None of these statements will achieve the desired results.

20. Which option is not available in Oracle when modifying tables?
A. Add new columns
B. Rename existing column
C. Drop existing column

D. None of the above

21. The following data is from the EMPLOYEES table:

DEPARTMENT_ID EMPNO FIRST_NAME
30 119 Karen
50 124 Kevin
50 135 Ki
80 146 Karen
178 Kimberely
50 188 Kelly
50 197 Kevin

Which row (empno) will be returned last when the following query is executed?

select department_id, employee_id empno, first_name
from employees

Assessment Test

order by 1, 2

A. 188
B. 178
C. 146
D. 119
22. INTERVAL datatypes store a period of time. Which components are included in the
INTERVAL DAY TO SECOND datatype column? (Choose all that apply.)
A. Years
Quarters
Months
Days

Hours

m m O O W

Minutes
Seconds

Fractional seconds

23. Which components are not part of the easy connect connection string? (Choose two.)
hostname

service name

database sid

port number

moow>» E 0

network protocol

24. The table CUSTOMERS has the following data:

ID NAME ZIP UPD_DATE
L921 LEEZA 75252 01-JAN-00
B023 WILLIAMS 15215
K783 KATHY 75252 15-FEB-00
B445 BENJAMIN 76021 15-FEB-00
D334 DENNIS 12443

You issue the following command to alter the table:

1. ALTER TABLE CUSTOMERS

2. MODIFY

3. (UPD_DATE DEFAULT SYSDATE NOT NULL,
4 ZIP NOT NULL);

xli

xlii Assessment Test

Which line of code will cause an error?
A. Line 2
B. Line 3
C. Line 4
D. There will be no error.
25. In ANSI SQL, a self-join can be represented by using which of the following? (Choose
the best answer.)
A. NATURAL JOIN clause
CROSS JOIN clause
JOIN .. USING clause
JOIN .. ON clause
All of the above

mOOom

26. What will be result of trunc(2916.16, -1)?
2916.2

290

2916.1

2900

E. 2910

S0 w >

27. The table ADDRESSES is created using the following syntax. How many indexes will be
created automatically when this table is created?

CREATE TABLE ADDRESSES (

NAME VARCHAR2 (40) PRIMARY KEY,

STREET VARCHAR2 (40),

CITY VARCHAR2 (40),

STATE CHAR (2) REFERENCES STATE (ST_CODE),
ZIP NUMBER (5) NOT NULL,

PHONE VARCHAR2 (12) UNIQUE);

A0

B. 1
C. 2
D. 3
28. Which line of the following code has an error?

SELECT *
FROM emp

29.

30.

31.

32.

33.

Assessment Test xliii

WHERE comm = NULL
ORDER BY ename;

A. SELECT *

B. FROM emp

C. WHERE comm = NULL

D. There is no error in this statement.
How do you represent the following business rule in an ER diagram? “A customer may
have one or more orders; an order must belong to one and only one customer.”

A. Single solid line.

B. Single line that is solid at one end and dotted at another end.

C. Single solid line with a crowfoot at one end.

D. The business rule cannot be represented in the ER diagram.

What order does Oracle use in resolving a table or view referenced in a SQL statement?
A. Table/view within user’s schema, public synonym, private synonym

B. Table/view within user’s schema, private synonym, public synonym

C. Public synonym, table/view within user’s schema, private synonym

D. Private synonym, public synonym, table/view within user’s schema

Which two options are not true when you execute a COMMIT statement?
A. All locks created by DML statements are released in the session.
B. All savepoints created are erased in the session.

C. Queries started before the COMMIT in other sessions will show the current
changes after COMMIT.

D. All undo information written from the DML statements are erased.

Which two operators are used to add more joining conditions in a multiple-table query?
A. NOT
B. OR
C. AND

D. Comma (,)
What is wrong with the following SQL?

SELECT department_id, MAX(COUNT(x))
FROM employees
GROUP BY department_id;

xliv Assessment Test

A. Aggregate functions cannot be nested.

w

GROUP BY clause should not be included when using nested aggregate functions.

C. The department_id column in the SELECT clause should not be used when using
nested aggregate functions.

D. When using COUNT function cannot be nested.

34. Which types of constraints can be created on a view?
A. Check, NOT NULL
B. Primary key, foreign key, unique key
C. Check, NOT NULL, primary key, foreign key, unique key
D. No constraints can be created on a view.
35. Which two declarations define the maximum length of a CHAR datatype column
in bytes?
A. CHAR (20)
CHAR (20) BYTE
CHAR (20 BYTE)
BYTE (20 CHAR)
CHAR BYTE (20)

mOOo®

36. Which SELECT statement clauses can be used to limit the rows returned (say, you want
to display the rows 6 through 15). (Choose two.)

A. WHERE
B. OFFSET
C. FETCH
D. FILTER

37. You query the database with the following:

SELECT PRODUCT_ID FROM PRODUCTS
WHERE PRODUCT_ID LIKE '%S_J_C' ESCAPE '\';

b

Choose the PRODUCT_ID strings from the options that will satisfy the query. (Choose two.)
A. BTS_J_C

B. SJC
C. SKJKC
D. S_J.C

Assessment Test xlv

38. The EMPLOYEE table is defined as follows:

EMP_NAME VARCHAR2(40)
HIRE_DATE DATE
SALARY NUMBER (14,2)

Which query is most appropriate to use if you need to find the employees who were
hired before 01-Jan-1998 and have a salary above 5,000 or below 1,000?

A. SELECT emp_name FROM employee WHERE hire_date > TO_
DATE('01011998', '"MMDDYYYY')AND SALARY < 1000 OR > 5000;

B. SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998', 'MMDDYYYY')AND SALARY < 1000 OR SALARY > 5000;

C. SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998', 'MMDDYYYY')AND (SALARY < 1000 OR SALARY > 5000);

D. SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998', 'MMDDYYYY')AND SALARY BETWEEN 1000 AND 5000;

39. What happens when you issue the following command? (Choose all correct answers.)

TRUNCATE TABLE SCOTT.EMPLOYEE;

A. All the rows in the table EMPLOYEE owned by SCOTT are removed.
B. The storage space used by the table EMPLOYEE is released (except the initial extent).

C. If foreign key constraints are defined to this table using the ON DELETE CASCADE
clause, the rows from the child tables are also removed.

D. The indexes on the table are dropped.
E. You cannot truncate a table if triggers are defined on the table.
40. Which two statements will drop the primary key defined on table EMP. The primary
key name is PK_EMP.
A. ALTER TABLE EMP DROP PRIMARY KEY;
DROP CONSTRAINT PK_EMP;
ALTER TABLE EMP DROP CONSTRAINT PK_EMP;
ALTER CONSTRAINT PK_EMP DROP CASCADE;
DROP CONSTRAINT PK_EMP ON EMP;

mOoow

xlvi

Assessment Test

Exam 1Z20-062: Installation and Administration

E.

1. W
A.
B
Cc
D

hich database version cannot be upgraded directly to Oracle Database 12¢?
11.2.0.2

. 11.2.0.1

. 11.1.0.7

. 10.2.0.5

All of the above

2. The following steps might be related to relocating a data file belonging to the USERS
tablespace. Pick the steps that are required for relocating the data file from /diskl to

/d

A.

mOOo

isk2.

Copy the file ' /diskl/users0l.dbf' to '/disk2/users@l.dbf' using an OS
command.

ALTER DATABASE MOVE DATAFILE '/diskl/users0l.dbf' to '/disk2/users0l.dbf’
ALTER DATABASE RENAME FILE '/diskl/users@l.dbf' to '/disk2/users0l.dbf'
ALTER TABLESPACE USERS OFFLINE
ALTER TABLESPACE USERS ONLINE

3. Which of the following is not considered part of an Oracle database?

A.
B.
C.
D.

Data files
Redo logs
The pfile and spfile

Control files

4. The highest level at which a user can request a lock is the level.

A.
B.
C.
D.

5. To

Schema
Table
Row
Block

grant the SELECT privilege on the table HR.CUSTOMERS to all users in the database,

which statement would you use?

A.

GRANT SELECT ON HR.CUSTOMERS TO ALL USERS;

B. GRANT SELECT ON HR.CUSTOMERS TO ALL;
C.
D. GRANT SELECT ON HR.CUSTOMERS TO PUBLIC;

GRANT SELECT ON HR.CUSTOMERS TO ANONYMOUS;

Assessment Test xlvii

6. Which query can be used to find and categorize all chained jobs (only chained jobs),
and includes any remote steps as applied to those chained jobs, as executed from the
current database? (Choose the best answers, more than one if appropriate.)

10.

A.

D.

select table_name from dictionary where table_name like 'DBA_%SCHED%'
or table_name 1like 'DBA_%REMOTE%';

SELECT TABLE_NAME FROM DICTIONARY WHERE TABLE_NAME LIKE 'DBA_%CHAIN%'
OR TABLE_NAME LIKE 'DBA_%REMOTE%';

select table_name from dictionary where table_name like 'DBA_%CHAIN%'
or table_name like 'DBA_%REMOTE%';

select table_name from dictionary where table_name like 'DBA_%SCHED%'

or table_name 1like 'DBA_%CHAIN%';

E. None of the above
The Automatic Workload Repository (AWR) is primarily populated with performance
statistics by which Oracle Database 12¢ background process?
A. MMNL

B. QMNI1

C. MMON

D. MMAN

The initialization parameter RESUMABLE_TIMEOUT is set to 600. Which other statements
are the minimum required to enable a resumable session?

A.
B.
C.
D.

No other setup is required if the RESUMABLE_TIMEOUT is a nonzero value.
ALTER SESSION ENABLE RESUMABLE

ALTER SESSION ENABLE RESUMABLE TIMEOUT ©

ALTER SESSION BEGIN RESUMABLE SESSION

Which utility is used to install Oracle Database 12¢?

A.
B.
C.
D.

DBCA
OUl
runlnstaller

Oracle Database 12¢ is installed using the URL to www.oracle.com.

You have just made changes to the listener.ora file for the listener called listenerl
using Oracle Net Manager. Which of the following commands or combinations of
commands would you use to put the changes into effect with the least amount of client
disruption?

A.

Isnrctl stop listenerl followed by lsnrctl start listenerl

B. Usrnctl restart listenerl
C.
D

. Usnrctl cycle services

lsnrctl reload listenerl

http://www.oracle.com

xlviii Assessment Test

11. If a job is not running and a STOP_JOB procedure is executed, what will happen?
(Choose the best answer.)

A. An error will not occur.

B. The job will stop running.

C. The job will be dropped altogether.

D. All of the above.

E. None of the above.

12. Where does Oracle Database 12¢ record all the changes made to the database that can

be used for recovery operations?

A. Control files

B. Redo log files

C. Alert log file

D. Parameter file
13. What is accomplished when you issue the following statement?

ALTER USER JOHN DEFAULT ROLE ALL;

A. John is assigned all the roles created in the database.
B. Any existing roles remain the same, but any future roles created will be enabled.
C. All of John’s roles are enabled except the roles with passwords.
D. All of John’s roles are enabled including the roles with passwords.
14. Which activity is a must do before upgrading a database to 12¢ using the manual
upgrade method?
A. Run dbms_stats.gather_dictionary_stats.
B. Run $ORACLE_HOME/rdbms/admin/emremove.sql.
C. Run dbms_stats.gather_database_stats.
D. Run preupgrd.sql script.
15. What would you do to reduce the time required to start the instance after a data-
base crash?
A. Multiplex the redo log files
Increase the size of the redo log files
Set FAST_START_MTTR_TARGET parameter to 0
All of the above

None of the above

mOOo®

Assessment Test xlix

16. When you are configuring Oracle Shared Server, which initialization parameter would
you likely need to modify?

A.

mOOo

DB_CACHE_SIZE
DB_BLOCK_BUFFERS
LARGE_POOL_SIZE
BUFFER_SIZE

None of the above

17. Which options are available in DBCA to configure recovery-related operations?

A.
B.
C.
D.

Data Guard
Standby Database
Fast Recovery Area

Archiving

18. When you started the Oracle Database 12¢ database, you got an ORA-01157: cannot
identify data file ..error. After invoking RMAN, which command would you first
use before performing the REPAIR FAILURE?

A.
B.
C.
D.

RECOVER FAILURE
ADVISE FAILURE
LIST FAILURE

CHANGE FAILURE

19. Which of the following commands is most likely to generate an error message?
(Choose two.)

A.
B.
C.
D.
E.

ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=MEMORY;
ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=SPFILE;
ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=MEMORY;
ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=SPFILE;
ALTER SYSTEM SET UNDO_TABLESPACE=RBS1 SCOPE=BOTH;

20. You performed a SHUTDOWN ABORT on the database. What happens when you issue the
STARTUP command?

A.
B.

Startup will fail, because you have not completed the instance recovery.

Oracle automatically performs recovery. All committed changes are written to
data files.

During instance recovery, you have the option to selectively commit uncommitted
transactions.

After the database starts, you have to manually clean out uncommitted transactions
from the transaction table.

| Assessment Test

21. Where does the following procedure allow jobs to be created?
BEGIN
DBMS_SCHEDULER.CREATE_GROUP (group_name=>"'things'
,group_type=>'DB_DEST',member=>"'LOCAL");
END;

/

On a remote server as a database destination
On a remote server using a hostname and IP address

On a local database server only

S0 w >

On a local server using a hostname and an IP address

E. None of the above

22. Which of the following statements is not always true? (Choose two.)
A. Every database should have at least two tablespaces.
B. Every database should have at least two data files.
C. Every database should have at least three multiplexed redo logs.

D. Every database should have at least three control files.

23. How can you prevent someone from using an all-alphabet password?
A. Set the initialization parameter PASSWORD_COMPLEXITY to ALPHANUM.
B. Alter that user’s profile setting PASSWORD_COMPLEXITY to ALPHNANUM.

C. Alter the user’s profile to use a password-verify function that performs comparisons
to validate the password.

D. There is no mechanism that lets you prevent an all-alphabet password.

24. Which metadata view can be used to find Oracle Scheduler priorities?
A. DBA_CHAINS
B. DBA_SCHEDULER_CHAINS
C. DBA_SCHEDULER_JOBS
D. DBA_SCHEDULER_DESTS
E. None of the above

25. Which component of the SGA has the dictionary cache?
A. Buffer cache
B. Library cache
C. Shared pool

Assessment Test li

D. Program global area
E. Large pool
F. Result cache
26. Which of the following advisors is used to determine if the database read-consistency
mechanisms are properly configured?
A. Undo Management Advisor
B. SQL Access Advisor
C. SQL Tuning Advisor
D. Memory Advisor
27. Which storage parameter is used to make sure that each extent is a multiple of the
value specified?
A. MINEXTENTS
B. INITIAL
C. MINIMUM EXTENT
D. MAXEXTENTS
28. What is (are) the name of the audit trail view(s) where audit records from Unified Auditing
is (are) stored, when database auditing, RM AN, and Data Pump auditing are enabled?
A. UNIFIED_AUDIT_TRAIL
B. UNIFIED_AUDIT_TRAIL, COMPONENT_AUDIT_TRAIL
C. SYS.AUDS
D. AUDIT_TRAIL_DB, AUDIT_TRAIL_DP, AUDIT_TRAIL_RMAN
29. Which of the following is the utility that you can use to test the network connections
across TCP/IP?
A. trcasst
B. lsnrctl
C. namesctl
D. ping
E. None of the above

30. Undo data in an undo tablespace is not used for which of the following purposes?
A. Providing users with read-consistent queries

Rolling forward after an instance failure

Flashback queries

Recovering from a failed transaction

mOOo®

Restoring original data when a ROLLBACK is issued

Assessment Test

31. In which file could you tell SQL*Loader to use the direct path option?

A.
B.
C.
D.

Log file
Parfile
Bad file
Data file

32. Which of the following is false about shared servers?

A.

Shared servers can process requests from many users.

B. Shared servers receive their requests directly from dispatchers.
C.
D

. The SHARED_SERVERS parameter configures the number of shared servers to start at

Shared servers place completed requests on a dispatcher response queue.

instance startup.

33. Identify the statement that is not true about checkpoints.

34.

35.

A.

Instance recovery is complete when the data from the last checkpoint up to the
latest SCN in the control file has been written to the data files.

A checkpoint keeps track of what has already been written to the data files.

The redo log group writes must occur before a commit complete is returned to
the user.

The distance between the checkpoint position in the redo log file and the end of
the redo log group can never be more than 90 percent of the size of the largest redo
log group.

How much the checkpoint lags behind the SCN is controlled by both the size of
the redo log groups and by setting the parameter FAST_START_MTTR_TARGET.

Which parameter is used to enable the Automatic Memory Management feature of the
Oracle database?

A.
B.
C.
D.

MEMORY_MANAGEMENT
MEMORY_TARGET
SGA_TARGET
MEMORY_SIZE

When performing a Data Pump Import using impdp, which of the following options is
not a valid value to the TABLE_EXISTS_ACTION parameter?

A.

SKIP

B. APPEND
C.
D. RECREATE

TRUNCATE

36.

37.

38.

39.

40.

Assessment Test liii

Two tablespaces are critical to the database. The loss of a data file in these tablespaces
requires an instance shutdown to recover. Which are these tablespaces?

A.
B.
C.
D.

TEMP
SYSTEM
UNDO
SYSAUX

Which initialization parameter determines the location of the alert log file?

A.
B.
C.
D.

DIAGNOSTIC_DEST
BACKGROUND_DUMP_DEST
ALERT_LOG_DEST
USER_DUMP_DEST

Which statement regarding a global temporary table and redo generation is true?

A.
B.

C.

D.

Global temporary tables generate the same amount of redo as persistent tables.

Global temporary tables generate redo from undo when a DML operation is per-
formed on them.

By setting the TEMP_UNDO_ENABLED to TRUE, you turn off the undo generation for
DML on temporary tables.

All of the above are true.

Which database management tools are automatically installed and configured when
Oracle Database 12¢ database is configured? (Choose two.)

A.
B.
C.
D.

OEM Database Express
OEM Cloud Control
SQL*Plus

SQL Developer

Which parameter is used to set up the directory for Oracle to create data files, if the
DATAFILE clause does not specify a filename when you’re creating or altering tablespaces?

A.

mOoom

DB_FILE_CREATE_DEST
DB_CREATE_FILE_DEST
DB_8K_CACHE_SIZE
USER_DUMP_DEST
DB_CREATE_ONLINE_LOG_DEST_1

liv

41.

42,

43.

44.

Assessment Test

In Oracle Database 12¢, which script is recommended to run for upgrading a database
from 11.1.0.7?

A. catupgrd.sql
B. utlul2li.sql
C. catctl.pl

D. utlul2ls.sql

How do you enable Database Resident Connection Pooling (DRCP)?

A. Using listener.ora configuration.

B. Using Oracle Net Manager configuration.

C. Using a PL/SQL package.

D. Depends on the application. PHP, HTTP, and SQL*Net applications have different

configurations.

Which initialization parameter determines the location of the alert log file?

A. LOG_ARCHIVE_DEST

B. USER_DUMP_DEST

C. BACKGROUND_DUMP_DEST

D. DIAGNOSTIC_DEST
Which product do you install to configure an Oracle Automatic Storage Management
instance?

A. Oracle Database 12¢ database

B. Oracle Database 12¢ Grid Infrastructure

C. Oracle Database 12¢ Automatic Storage Management

D

. Oracle Restart

Answers to Assessment Test v

Answers to Assessment Test

Exam 1Z20-061: SQL Fundamentals

1. B. In the arithmetic operators, unary operators are evaluated first, then multiplication
and division, and finally addition and subtraction. The expression is evaluated from
left to right. See Chapter 2 for more information.

2. C. Except for option C, all other SQL statements are not valid syntactically. To change
a value in a column for existing rows, you need to use the UPDATE statement. The DELETE
statement deletes the entire row. The INSERT statement adds a new row. The MERGE state-
ment performs kind of an upsert—it inserts if the row does not exist, and updates if the
row exists. For more information, read Chapter 6.

3. C. CONCAT will return a non-NULL if only one parameter is NULL. Both CONCAT parame-
ters would need to be NULL for CONCAT to return NULL. The NULLIF function returns NULL
if the two parameters are equal. The LENGTH of a NULL is NULL. INSTR will return NULL if
NULL is passed in, and the tangent (TAN) of a NULL is NULL. See Chapter 3 to learn more.

4. C. Group functions cannot appear in the WHERE clause. Read Chapter 4 to learn more
about group functions.

5. B. When using multiple columns to update in a single UPDATE statement, the column
assignments in the SET clause must be separated by a comma, not an AND operator.
See Chapter 6 for more information.

6. C. Since job_id is used in the SELECT clause, it must be used in the GROUP BY clause
also. For more information, see Chapter 4.

7. B. UROWID datatype is used ot store ROWID data. The BFILE datatype stores only the
locator to an external file in the database; the actual data is stored as an operating sys-
tem file. BLOB, NCLOB, and CLOB are other Large Object data types in Oracle Data-
base 12¢c. EXTERNAL is not a valid datatype. Read Chapter 7 for more information.

8. C. The statement will work without error. Option B would be correct if you used the
WITH CHECK OPTION clause in the subquery. See Chapter 5 for more information about
subqueries.

9. A, E. An outer join on both tables can be achieved using the FULL OUTER JOIN syn-
tax. The join condition can be specified by using the ON clause to specify the columns
explicitly or using the USING clause to specify columns with common column names.
Options B and D would result in errors. In option B, the join type is not specified; OUTER
is an optional keyword. In option D, CROSS JOIN is used to get a Cartesian result, and
Oracle does not expect a join condition. See Chapter 5 for more information.

lvi

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Answers to Assessment Test

A, B. The index contains all the information needed to satisfy the query in option A,
and a full-index scan would be faster than a full-table scan. A subset of indexes columns
is specified in the WHERE clause of option B, hence Oracle database can use the index.
Read Chapter 7 to learn more about using an index.

D. The CREATE SEQUENCE statement will create an increasing sequence that will start
with 1, increment by 1, and be unaffected by the rollback. A rollback will never stuff
values back into a sequence. Read Chapter 7 for more information.

B, C. Primary key and unique key constraints can be enforced using non-unique
indexes. Unique constraints allow NULL values in the columns, but primary keys
do not. See Chapter 7 for more information.

B. The SYSDATE function returns the date and time on the server where the database
instance is started. CURRENT_DATE returns local date and time. See Chapter 3 for more
information.

D. The first INSERT statement and last INSERT statement will be saved in the database.
The ROLLBACK TO A statement will undo the second and third inserts. For more infroma-
tion, see Chapter 6.

B. There should be at least 7-1 join conditions when joining n tables to avoid a Cartesian
join. See Chapter 5 for more information.

C. The table and column names can include only three special characters: #, $, and _.
No other characters are allowed in the table name. You can have letters and numbers
in the table name. Read Chapter 7 for more information.

B, D. You can use the IS NULL or IS NOT NULL operator to search for NULLs or non-
NULLs in a column. Since NULLs are sorted higher, they appear at the bottom of the
result set in an ascending order sort. See Chapter 2 for more information.

D. COUNT (<column_name>) does not include the NULL values, whereas COUNT (x)
includes the NULL values. No other aggregate function takes NULL into consideration.
See Chapter 4 for more information.

E. These statements don’t account for possible NULL values in the BONUS column.
Read Chapter 3 for more information.

D. Using the ALTER TABLE statement, you can add new columns, rename existing col-
umns, and drop existing columns. To learn more about managing tables, read chapter 7.

B. Since DEPARTMENT_ID is NULL for employee 178, NULL will be sorted after the non-
NULL values when doing an ascending order sort. Since we did not specify the sort order
or NULLS FIRST clause, the defaults are ASC and NULLS LAST. Read Chapter 2 for more
information.

D, E, F, G. The INTERVAL DAY TO SECOND dataype is used to store an interval
between two datetime components. Read Chapter 7 for more information.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Answers to Assessment Test lvii

C, E. The easy connect syntax is @<host>:<port>/<service_name>. For databases
where the sid is the same as the database unique name, the service name is the same as
the sid; thus you can say option C is also part of the easy connect string. However, in
reality it is the service name. Easy connect only supports TCP protocol. See Chapter 1
for more information.

B. When altering an existing column to add a NOT NULL constraint, no rows in the
table should have NULL values. In the example, there are two rows with NULL values.
Read Chapter 7 for more information.

D. NATURAL JOIN and JOIN .. USING clauses will not allow alias names to be used.
Since a self-join is getting data from the same table, you must include alias names and
qualify column names. See Chapter 5 for more information.

E. The TRUNC function used with a negative second argument will truncate to the left
of the decimal. See Chapter 3 for more information.

C. Oracle creates unique indexes for each unique key and primary key defined in the
table. The table ADDRESSES has one unique key and a primary key. Indexes will not be
created for NOT NULL or foreign key constraints. See Chapter 7 for more information.

D. Although there is no error in this statement, the statement will not return the
desired result. When a NULL is compared, you cannot use the = or != operators; you
must use the IS NULL or IS NOT NULL operator. See Chapter 2 for more information.

C. The solid line represents that the order must belong to a customer, and the crow-
foot represents that a customer can have more than one order. See Chapter 1 for more
information.

B. Private synonyms override public synonyms, and tables or views owned by the user
always resolve first. See Chapter 7 for more information.

C, D. When a COMMIT is executed, all locks are released, savepoints are erased, and
queries started before the COMMIT will constitute a read-consistent view using the
undo information. See Chapter 6 for more information.

B, C. The operators OR and AND are used to add more joining conditions to the query.
NOT is a negation operator, and a comma is used to separate column names and table
names. For more information, see Chapter 5.

C. Since we are finding the aggregate of aggregate, non-aggregate columns should not
be used in the SELECT clause. See Chapter 4 for more information.

B. You can create primary key, foreign key, and unique key constraints on a view. The
constraints on views are not enforced by Oracle. To enforce a constraint, it must be
defined on a table. See Chapter 7 for more information.

lviii

35.

36.

37.

38.

39.

40.

Answers to Assessment Test

A, C. The maximum lengths of CHAR and VARCHAR2 columns can be defined in
characters or bytes. BYTE is the default; the default can be changed by setting the data-
base parameter NLS_LENGTH_SEMANTICS. See Chapter 7 for more information.

B, C. The row limiting feature uses OFFSET and FETCH clauses to filter the rows. To
get to rows 6 through 15 here, you may use the clause OFFSET 5 ROWS FETCH NEXT 10
ROWS. See Chapter 2 for more information.

D. The substitution character % may be substituted for zero or many characters. The
substitution character _ does not have any effect in this query because an escape char-
acter precedes it, so it is treated as a literal. See Chapter 2 for more information.

C. You have two main conditions in the question: one on the hire_date and the other
on the salary. So an AND operator should be used. In the second part, you have two
options: the salary can be either more than 5000 or less than 1000, so the second part
should be enclosed in parentheses; use an OR operator. Option B is similar to option C
except for the parentheses, but the difference changes the meaning completely. Option B
would select the employees who were hired before 01-Jan-1998 or have a salary above
5,000 or have a salary below 1,000. Read Chapter 2 for more information.

A, B. The TRUNCATE command is used to remove all the rows from a table or cluster. By
default, this command releases all the storage space used by the table and resets the table’s
high-water mark to zero. None of the indexes, constraints, or triggers on the table are
dropped or disabled. If there are valid foreign key constraints defined to this table, you
must disable all of them before truncating the table. Read Chapter 6 for more information.

A, C. Since there can be only one primary key per table, the syntax in option
A works. Any constraint (except NOT NULL) can be dropped using the syntax in
option C. See Chapter 7 for more information.

Exam 1Z20-062: Installation and Administration

1

B. Database Upgrade Assistant and a manual upgrade both support an upgrade from
10.2.0.5, 11.1.0.7, 11.2.0.2, and higher-version databases. For 11.2.0.1, you must upgrade
to 11.2.0.2 or higher before upgrading to 12.1.0. See Chapter 17 for more information.

. B. To rename or relocate a data file in Oracle Database 12¢, you need to use only the

statement specified in option B. To rename a data file in pre-12¢ databases, you need to
take the tablespace offline so that Oracle does not try to update the data file while you
are renaming. Using OS commands, copy the data file to the new location and using
the ALTER DATABASE RENAME FILE command or the ALTER TABLESPACE RENAME FILE
command, rename the file in the database’s control file. To rename the file in the data-
base, the new file should exist. Bring the tablespace online for normal database opera-
tion. For more information, read Chapter 10.

C. Although pfiles and spfiles are physical files used to configure the Oracle instance,
they are not considered part of the database. For more information, see Chapter 8.

P

10.

1.

12.

13.

Answers to Assessment Test lix

B. The highest level at which a user can request a lock is the table level; the only other
lock level available to a user is a row-level lock. Users cannot lock at the block or
schema level. Read Chapter 11 for more information.

D. PUBLIC is the group or class of database users where all existing and future database
users belong. Read Chapter 13 for more information.

B, C. B and C are both the best answers. They are identical because queries in Oracle
are case-insensitive. For more information, read Chapter 16.

C. The Manageability Monitor (MMON) process gathers performance statistics from
the SGA (System Global Area) and stores them in the AWR. MMNL (Manageability
Monitor Light) also does some AWR-related statistics gathering, but not to the extent
that MMON does. QMNT is the process that monitors Oracle advanced queuing fea-
tures. MM AN (Memory Manager) is the process that dynamically manages the sizes
of each SGA component when directed to make changes by the ADDM (Automatic
Database Diagnostic Monitoring). See Chapter 14 for more information.

B. RESUMABLE_TIMEOUT set at the initialization parameter is used only as the default
timeout value for a resumable session. The resumable session must be enabled using
option B. Option C disables the resumable session. Option D is invalid. Read Chapter
10 for more information.

B. Use the Oracle Universal Installer (OUI) to install and configure the Oracle Data-
base 12¢ software. The OUI is a Java-based application that provides the same installa-
tion look and feel no matter which operating system is being used for the installation.
runlnstaller is the executable that invokes OUI on Linux/Unix systems. See Chapter 9
for more information.

C. Although you can use choice A to stop and start the listener, doing so temporarily
disrupts clients attempting to connect to the database. Choice D is fine if you are start-
ing and stopping the default listener called LISTENER, but we are using a nondefault
listener. Choice B is not valid because RESTART is not a valid command-line argument
for lsnrctl. Therefore, the best method is C, to use the lsnrctl reload listenerl
command to load the new set of values for the listener without disrupting connection
service to the databases the listener is servicing. For more information, see Chapter 12.

E. An error will occur because the job is not running, given that a job that is not execut-
ing cannot be stopped. The error produced will be 0RA-27366, including other follow-

ing errors as the error trap is pushed up the stack back to the executable (something like
SQL*Plus), which executed the STOP_JOB procedure. See Chapter 16 for more information.

B. Redo log files record all the changes made to the Oracle database, whether the change
is committed or not. See Chapter 15 for more information.

D. Default roles are enabled when a user connects to the database, even if the roles are
password protected. Read Chapter 13 for more information.

Ix

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Answers to Assessment Test

D. Although options A and B are recommended practices for upgrade performance,
option D is a must. The Pre-Upgrade Information tool must be run, and all errors
must be taken care of before upgrading the database. Option C is not required for the
upgrade process. For more information, read Chapter 17.

E. To tune the instance recovery time, configure the FAST_START_MTTR_TARGET param-
eter to a nonzero value. The default is 300 seconds. A lower value will reduce the
instance recovery time, but may cause frequent checkpoints. A value of 0 turns off
MTTR tuning. Read Chapter 15 for more information.

C. Oracle Shared Server requires a shift of memory away from individual session pro-
cesses to the SGA. More information has to be kept in the SGA (in the UGA) within
the shared pool. A large pool is configured and is responsible for most of the SGA
space allocation. The cache size and block buffers settings do not affect Oracle Shared
Server. See Chapter 12 for more information.

C, D. Recovery options are optional when you create a database. Specify Fast Recov-
ery Area and Enable Archiving are the options available. Read Chapter 9 for more
information.

B. The REPAIR FAILURE command works only after an ADVISE FAILURE. Option A is
invalid. LIST FAILURE displays the failures. CHANGE FAILURE can be used to lower or
raise the priority of a failure. For more information, see Chapter 15.

A, C. You cannot dynamically change the parameter UNDO_MANAGEMENT after the instance
has started. You can, however, change the UNDO_TABLESPACE parameter to switch to
another undo tablespace while the instance is up and running. See Chapter 11 for more
information.

B. Oracle automatically performs instance recovery after a database crash or SHUTDOWN
ABORT. All uncommitted changes are rolled back, and committed changes are written
to data files during instance recovery. Read Chapter 9 for more information.

C. DB_DEST implies a database instance destination identified by a TNS name. LOCAL
implies the current machine only. See Chapter 16 for more information.

C, D. Every database must have at least two redo log files, which may or may not
be multiplexed. Every database must have one control file. It is a good idea to have
more than one control file for redundancy. Because SYSTEM and SYSAUX are mandatory
tablespaces, there will be at least two data files. Read Chapter 8 for more information.

C. There are no standard password complexity settings in either the initialization
parameters or profiles. A password-verify function can validate new passwords
against any rules that you can code in PL/SQL, including regular expression com-
parisons. For more information, read Chapter 13.

B. DBA_CHAINS does not exist. DBA_SCHEDULER_CHAINS only shows chained groups of jobs.
DBA_SCHEDULER_DESTS shows on job execution destinations. The DBA_SCHEDULER_JOBS
metadata view has a JOB_PRIORITY column. For more information, read Chapter 16.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Answers to Assessment Test Ixi

C. The shared pool has three components: library cache, result cache, and dictionary
cache. Read Chapter 8 for more information.

A. You can use the Undo Management Advisor to monitor and manage the undo
segments to ensure maximum levels of read consistency and minimize occurrences
of ORA-01555: Snapshot Too 0ld error messages. For more information, see
Chapter 14.

C. The MINIMUM EXTENT parameter is used to make sure each extent is a multiple of
the value specified. This parameter is useful to reduce fragmentation in the tablespace.
Read Chapter 10 for more information.

A. Trrespective of the components audited, all audit trail information is queried from
UNIFIED_AUDIT_TRAIL. Audit records are stored in a table under the AUDSYS table. See
Chapter 13 for more information.

D. Protocols come with tools that allow you to test network connectivity. One such
utility for TCP/IP is ping. The user supplies either an IP address or a hostname to the
ping utility. It then searches the network for this address. If it finds one, it displays
information on data that is sent and received and on how quickly it found this address.
The other choices are Oracle-supplied utilities. Read Chapter 12 for more information.

B. The online redo log files are used to roll forward after an instance failure; undo data
is used to roll back any uncommitted transactions. See Chapter 11 for more information.

B. The log and bad files are written to (not read from) SQL*Loader, and the data file
contains only data. The direct=y option, which tells SQL*Loader to use the direct
path option, can appear on the command line or in the parfile. See Chapter 18 for
more information.

B. Shared servers can process requests from many users. The completed requests

are placed into the dispatchers’ response queues. The servers are configured with the
SERVERS parameter. However, shared servers do not receive requests directly from dis-
patchers. The requests are taken from the request queue. Read Chapter 12 for more
information.

D. The distance between the checkpoint position in the redo log file and the end of the
redo log group can never be more than 90 percent of the size of the smallest redo log
group. See Chapter 15 for more information.

B. A nonzero value for the MEMORY_TARGET parameter enables the Automatic Memory
Management. SGA_TARGET enables Automatic Shared Memory Management. Automatic
Memory Management tunes both SGA and PGA components of the memory. For more
information, read Chapter 14.

D. REPLACE is the valid value; it drops the existing table and creates the table using the
definition from the dump file. SKIP leaves the table untouched. APPEND inserts rows to
the existing table. TRUNCATE leaves the structure but removes all existing rows before
inserting rows. Read Chapter 18 to learn more.

Ixii

36

37.

38

39.

40.

41.

42.

43.

44.

Answers to Assessment Test

B, C. Only the SYSTEM and UNDO tablespaces require the instance to be shut down when
their data files need to be recovered. See Chapter 15 for more information.

A. Oracle Database 12¢ uses the Automatic Diagnostic Repository to maintain the
alert log and other diagnostic information. The BACKGROUND_DUMP_DEST parameter is
derived from the DIAGNOSTIC_DEST. See Chapter 9 for more information.

B. Option A is not correct because operations on temporary tablespaces do not gen-
erate redo, and a temporary table is created in a temporary tablespace. When DML
is performed on a temporary table, the undo is written by default to the active undo
tablespace, which generates redo. By setting the parameter TEMP_UNDO_ENABLED, you
can direct the undo writing to a temporary tablespace instead of an undo tablespace,
thus eliminating redo generation. Option C is wrong. When TEMP_UNDO_ENABLED is
true, the undo gets generated as usual; however, the undo gets generated in the temp
tablespace, so the redo is not generated. See Chapter 11 for more information.

A, C. OEM Database Express is automatically configured when you create a data-
base using DBCA. SQL*Plus is installed along with Oracle RDBMS software tools.
SQLDeveloper and OEM Cloud Control must be downloaded and installed separately.
Read Chapter 8 for more information.

B. DB_CREATE_FILE_DEST specifies the directory to use to create data files and temp
files. This directory is also used for control files and redo log files if the DB_CREATE_
ONLINE_LOG_DEST_1 parameter is not set. See Chapter 10 for more information.

C. In the previous database releases, the upgrade script was named catupgrd.sql. In
Oracle Database 12c, the upgrade script is also catupgrd.sql, but it must be invoked
using the catctl.pl perl script. This script runs the upgrade in parallel by default, thereby
reducing the upgrade time. The utlul211.sql script is replaced with the preupgrd.sql
script and is used for pre-upgrade information. The utlul21ls.sql script is a post-upgrade
status tool. For more information, see Chapter 17.

C. DRCP is enabled and disabled by using the database package DBMS_CONNECTION_POOL.
The procedure START_POOL starts the server pool and STOP_POOL stops it. The CONFIGURE _
POOL procedure can be used to configure various parameters. Read Chapter 12 for more
information.

D. DIAGNOSTIC_DEST determines the location of the alert log file and trace files. See
Chapter 14 for more information.

B. Oracle Grid Infrastructure includes Oracle ASM and Oracle Restart. ASM disks are
managed and controlled by a special type of instance known as the ASM instance. The
ASM instance does not have any data files or database associated to it; it has only the
memory structures and processes. See Chapter 18 for more information.

Oracle Database
12¢: SQL
Fundamentals

Introducing Oracle
Database 12c RDBMS

ORACLE DATABASE 12c: SQL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Introduction
= Describe the features of Oracle Database 12c.
= Describe the salient features of Oracle Cloud 12c.

= Explain the theoretical and physical aspects of a
relational database.

= Describe Oracle server’s implementation of RDBMS and
object relational database management system (ORDBMS).

Organizations and individuals collect and use a variety of infor-
: mation (data). A database collects data, stores and organizes
ST data, and retrieves related data used by a business. Oracle is the
world’s most widely used database management system. With the release of its Database 12,
Oracle has enhanced the capabilities of its feature-rich database to include cloud architecture.
The ¢ in 12¢ stands for cloud computing. From Oracle version 8 onward, Oracle includes the
core emphasis of the release along with the version number in its name. Versions 8 and 9 are
called i to indicate Internet computing; versions 10 and 11 are called g for grid computing.

With the cloud enablement, Oracle Database 12¢ lets you manage many databases as
one, thereby reducing overhead and valuable resource consumption.

This chapter will introduce you to the Oracle Database 12¢ high-level components and
how the Oracle database is organized. You will also learn about the relational and object
capabilities of the database, and the tools available for database administrators (DBAs) to
retrieve information and manage the database.

Exam objectives are subject to change at any time without prior notice and

dﬂE at Oracle’s sole discretion. Please visit Oracle’s Training and Certification
website at http://www.oracle.com/education/certification for the
most current exam objectives.

Relational Database Management
Systems

A database management system (DBMS) controls the storage, organization, and retrieval of
data. In a DBMS, the kernel code is the software piece that manages the storage and memory
component of the database. There is metadata in the DBMS that keeps track of all the com-
ponents of the database, also known as the dictionary. The code or language used to retrieve
data from the database is known as SQL, which stands for Structured Query Language.
Over the years, database management systems have evolved from hierarchical to network
to relational database management systems (RDBMS). A relational database management
system is an organized model of subjects and characteristics that have relationships among
the subjects. A well-designed relational database provides volumes of information about
a business or process. RDBMS is the most widely used database system, and the object

http://www.oracle.com/education/certification

Relational Database Management Systems 5

structures are related. We see relationships everywhere in our daily lives: parents and chil-
dren, team and players, doctor and patient, to name a few. The main advantages of RDBMS
include the way it stores and retrieves information and how the data integrity is maintained.
RDBMS structures are easy to understand and build. These structures are logically repre-
sented using the entity-relationship (ER) model. The exam will have one or two questions on
the ER diagram and/or the RDBMS concept. You may already be familiar with the RDBMS
concepts and ER diagrams; a brief refresher is included here.

Characteristics of a Relational Database

Relational databases have the following three major characteristics that constitute a
well-defined RDBMS:

Structures are objects that store or access data from the database. Tables, views, and
indexes are examples of structures in Oracle.

Operations are the actions that are used to define the structures or to manipulate data
between the structures. SELECT statements and CREATE statements are examples of
operations in Oracle.

Integrity rules govern what kinds of actions are allowed on data and the database
structure. These rules protect the data and the structure of the database. The primary
keys and foreign keys are examples of integrity rules in Oracle.

Logical Model

In the design phase of the system development cycle, a logical model of the database is
created. A logical model of an RDBMS is typically a block diagram of entities and rela-
tionships, referred to as an entity-relationship (ER) model or ER diagram.

An ER model has entity, relationship, and attributes. An ER model is visual, showing
the structure, characteristics, and interactions within and around the data being modeled.

Entities and Attributes An entity in a logical model is much like a noun in grammar—a
person, place, or thing. The characteristics of an entity are known as its attributes. Attributes
are detailed information about an entity that serves to qualify, identify, classify, or quantify
it. For example: ABC Inc. has many offices in the United States; each office has many depart-
ments, and each department may have many employees. Placing the organization of ABC Inc.
in terms of the ER model, you could identify OFFICE, DEPARTMENT, and EMPLOYEE
as entities. Each entity will also have its own characteristics. For instance, when you say
“office,” you might want to know the address and city where the office is located, the state,
and how many employees work there. Similarly, you might want to know the department
name, its manager, the employee’s name, date of birth, hiring date, and salary grade. You
might also like to know the employee’s spouse’s name. See Figure 1.1.

There are optional and mandatory attributes. In Figure 1.1, the spouse’s name, along with the
employee information, is optional; whereas the employee name, the department he/she belongs
to, hire date, and date of birth are mandatory in Figure 1.2. An asterisk along with the attribute
name indicates that it is mandatory. The optional attribute may be indicated with a small o.

6 Chapter 1 = Introducing Oracle Database 12c RDBMS

FIGURE 1.1 Entities and attributes
Office Department Employee
Address Department Name Name
City Manager DOB
State Join Date
ZIP Grade
Spouse

Relationships and Unique Identifiers In the example of ABC Inc., the relationship between
the entities is described as “each office has many departments,” “one department belongs to
only one office,” “each department has many employees,” and “one employee can belong

to only one department.” If there is an office in one city, there should be at least one depart-
ment. So it is mandatory to have at least one occurrence of department for each location.
There may be many departments in one location. In the ER model, a solid line represents a
mandatory relationship, and a crowfoot represents the “many.” But in some departments,
there may not be any employees at all. Optional occurrence is represented by a dotted line.

You should be able to identify each occurrence of an entity uniquely. Now what happens

if there are two employees with the same name? How do you distinguish them? For office
location, the city and state uniquely identify each office; for department, the department
name identifies it uniquely. For employee, you can introduce a unique identifier (UID) called
employee number. Figure 1.2 is a refined version of Figure 1.1, and it shows the entities,
attributes, relationships, optional and mandatory attributes, and UIDs. UID is represented
in the diagram using a pound (#) symbol.

FIGURE 1.2 An entity-relationship (ER) model

OFFICE DEPARTMENT EMPLOYEE
#L0C_ID # DEPT_NO #EMP_NO
* ADDRESS * DEPT_NAME * NAME
* CITY MGR_ID __.2"] ~poB
« STATE *LOC_ID <] *Jon_pT
*ZIP GRADE

« SPOUSE

* DEPT_NO

Three types of relationships can be defined between the entities. (Figure 1.3):

One-to-One A one-to-one relationship is one in which each occurrence of one entity is
represented by a single occurrence in another entity. For example, product and patent—one
product might have a patent, and one patent corresponds to only one product.

One-to-Many A one-to-many relationship is one in which an occurrence of one entity
can be represented by many occurrences in another entity. For example, department and

Relational Database Management Systems 17

employees—one department has one or more employees, and an employee belongs to only
one department.

Many-to-Many A many-to-many relationship is one in which an occurrence from one
entity can be represented by one or more occurences in another entity, and an occurrence
from the second entity may be represented by one or many occurences in the first entity.
Many-to-many relationships should not exist in RDBMS because they cannot be properly
joined to represent a single row correctly. To solve this, create another entity that has an
one-to-many relationship with the first entity and an one-to-many relationship with the
second entity. For example, doctor and patient—a patient can visit many doctors, and

a doctor can have many patients.

FIGURE 1.3 Types of relationships

One-to-One
Product F------- Patent
One-to-Many
Department Employee

Many-to-Many

Doctor ~ fr----<] Patient

The logical model also provides information known as access paths. They are the common
ways you usually query the database in order to retreive information. For example, you would
always query the employee records with the Dept_No or Emp_No. Think of the access paths
as an index to the data; they help us locate data just as the index of a book helps us quickly
find the information we need.

When you have established the relationships between entities, it’s time to normalize
the design. Normalization is the process of eliminating redundant information from the
entities until you can uniquely identify each occurrence of the entity. This may not always
be practical due to performance and implementation issues. In such cases, you can denor-
malize to some extent.

Physical Model

The physical model is created by taking the logical model and creating a database and data-
base objects to represent the entities and relationships. In the physical model, each entity
becomes a table and attributes of the entity become columns of the table. The relationship
between the entities is part of one or more constraints between the tables. Physical implemen-
tations might force you to combine, separate, or create completely new entities in order to
best realize the logical model. The unique identifiers of an entity become the primary key of
the table. Stored procedures, functions, and triggers may be created to enforce business rules.

Chapter 1 = Introducing Oracle Database 12c RDBMS

In RDBMS, the physical database storage is independent of the

doTE logical model.

Oracle’s Implementation of RDBMS and ORDBMS

A database server is the key to information management. An Oracle database satisfies all
three major characteristics of the relational model. Oracle lets you define tables, columns,
column characteristics such as datatype, length, whether the values are mandatory, and
default values. Defining foreign key ensures the referential integrity of the data. You can
define primary keys and indexes on the data. The primary key of a relational table uniquely
identifies each record in the table; it may consist of a single attribute (column) or multiple
attributes in combination. A foreign key is a column (or collection of columns) in one table
that uniquely identifies a row of another table, defining the relationship between the tables.

Records in a database table can be seen as instances of the entity. Each occurrence of an
entity is differentiated by the values of the attributes. Oracle stores these records as rows of
the table and the attributes as columns in each row. In the most generic form, a database
table can be seen as a single spreadsheet with unlimited numbers of columns and rows.
The columns are not defined until the user names them and gives them a datatype. Oracle
extends the concept of spreadsheets by defining relationships between multiple spreadsheets,
constraints on columns, and providing mechanisms for multiple users to access the same
database table(s) at the same time.

The data access path is implemented in Oracle using indexes. Indexing allows us
to predefine to the relational database system the most common access paths that will
be used. These indexes decrease the time required to search for data in a table using a
number of algorithms such as B-tree, bitmap, etc.

Oracle implements the RDBMS characteristics using the following set of structures:

Tables are used for data storage.
Views and synonyms are created for data access.
Indexes are used to speed up data retrieval.

Primary keys, foreign keys, and unique keys are called constraints and are created to
enforce data integrity.

Triggers are created to satisfy the business rules.
Roles and privileges are used for security.
Procedures, functions, and packages are used to code the application.

Oracle, since version 81, is also an Object Relational DBMS. An RDBMS that implements
object-oriented features such as user-defined types, inheritance, and polymorphism is called
ORDBMS. It lets you create user-defined object types in the relational database system.
Object types are structures that consist of built-in or user-defined data types. For example,
Address can be defined as an object type and can be referenced in tables.

The Oracle Database 12¢ 9

Here’s an example where STREET_TYPE is defined as:

STREET_TYPE

STREET_NUMBER NUMBER (6)
STREET_NAME1 VARCHAR2 (40)
STREET_SUFFIX VARCHAR2 (10)
APARTMENT_NO VARCHAR2 (5)

Here’s an example where ADDRESS_TYPE is an object type defined using another object type as:

ADDRESS_TYPE

STREET STREET_TYPE
CITY VARCHAR2 (30)
STATE CHAR (2)

ZIP NUMBER (5)

In this example for CUSTOMER_TABLE, the object CUST_ADDR is a type.

CUSTOMER_TABLE

CUST_NAME VARCHAR2 (40)
CUST_ADDR ADDRESS_TYPE
CUST_PHONE VARCHAR2 (12)
CUST_FAX VARCHAR2 (12)

Now that the ADDRESS_TYPE is defined, it can be used in any number of tables, where
ADDRESS needs to be stored. This is a small example to show you how objects can be
reused and how the functionality of the RDBMS can be extended to include built-in
complex business rules.

The Oracle Database 12¢

An Oracle Database 12c¢ server is a feature-rich RDBMS that extends its capabilities
beyond any other RDBMS in the market, with object relational and cloud capabilities.
In this section, we will discuss the capabilities and features of Oracle Database 12c.

Oracle Database 12c¢ Implementations

Let’s start with the architecture of the database server at a very high level. Detailed
architecture and components are discussed in various chapters in Part II of this book.

The physical structure of an Oracle Database 12¢ server consists of two major compo-
nents: the database and the instance. The database is a set of physical files saved on the disk
that store information. The instance is a set of memory structures and processes that uses
the physical components to manipulate and retrieve data.

10 Chapter 1 = Introducing Oracle Database 12c RDBMS

Figure 1.4 shows the database architecture. The host machine is where the Oracle
instance is running. It has the memory structures and processes. The storage array, or
disk, is where the database resides.

FIGURE 1.4 An Oracle database server

Host Machine

Instance / User
SGA “
PGA
Background
Processes
A

Storage Disk
4

Database

In the architecture shown in Figure 1.4, one instance communicates with one database.
The host machine is where users and applications connect and interact. If the machine goes
down for some reason, the database will be unavailable. Oracle alleviates this issue by intro-
ducing an architecture named the Real Application Clusters (RAC).

Figure 1.5 shows RAC architecture. In this architecture, more than one instance com-
municates to a single database. Oracle RAC takes reliability a step further by removing the
database server as a single point of failure. If an instance fails, the remaining instances in the
RAC pool remain open and active; and connections from failed instances can be failed-over
to active instances. The RAC load balancer directs the user connection request to the appro-
priate instance.

With RAC, high availability and CPU/memory capacity available to the database is
increased. Oracle manages the connection load balancing and failover automatically.

Many organizations have several hundreds or thousands of Oracle databases. Imagine
if the policy were to have one instance per server, then you would have as many servers as
the number of instances to manage. If you have a high-capacity server or if the database
resource requirements are minimal, you can have more than one instance on the same host
machine. Figure 1.6 shows an architecture in which more than one database is hosted on
the same machine.

The Oracle Database 12¢

FIGURE 1.5 An Oracle database server — RAC

RAC
@ User

A
v v v

Host Machine-1 Machine-2 Machine-3
Instance-1 Instance-2 Instance-3
SGA < > SGA < > SGA
PGA PGA PGA
Processes Processes Processes
X A .4
Shared Storage Disk

AR

Instance A y / y Instance B J \ Instance C
SGA < > SGA < > SGA
PGA PGA PGA

Processes Processes Processes

A A A

Storage Disk

Database A Database B Database C

12 Chapter 1 = Introducing Oracle Database 12c RDBMS

Figure 1.6 clearly shows that even though you consolidated multiple database servers to one
host, you still have the same overhead of managing the database. You need instance memory
structures, processes, and management activities such as backup for each instance or database.

With Oracle 12¢, a new architecture feature is introduced known as the multitenant archi-
tecture. The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB) that includes zero, one, or many pluggable databases (PDBs). All
databases created prior to Oracle Database 12¢ are non-CDB; a pluggable database appears
as a non-CDB to the application, so existing code and application need not be changed when
you move to Oracle Database 12c.

The PDBs belonging to a CDB share the database overhead such as redo, undo, and
memory. Oracle RDBMS is responsible for keeping the pluggable databases separate, private
for the application, and secure. The instance and SGA are assigned to a container database.
Figure 1.7 shows the multitenant database architecture. The databases that are part of the
CDB are known as pluggable databases.

FIGURE 1.7 Oracle Database 12¢c — Multitenant architecture with pluggable databases

Host Machine

CDB Instance

SGA

PGA

Processes

- Multitenant Database T~

CDB Root
][][][][
PDB Database Database Database
Root A B C
N Storage Disk)

\/Cﬁ/

Common Database Database
Files A Files B Files
Database
C Files

¥/

The Oracle Database 12¢ 13

Pluggable databases in the multitenant architecture, as the name suggests, can be
unplugged and plugged to another CDB easily. With the pluggable databases and multitenant
architecture, Oracle Database 12¢ offers the following benefits:

Increased server utilization: Because the overhead associated with each database is now
shared among all databases, you can consolidate more databases with the same resources.

Cost reduction: By consolidating hardware and sharing database memory and files, the
cost of hardware is less.

Application transparency: Although the architecture changed, each PDB acts and
works as a traditional pre-12¢ Oracle database. There is no need to change application
code or architecture to start using Oracle Database 12c.

Manage many databases as one: Administrative activities such as patching and upgrade
are performed on the container database so they do not need to be repeated for each
database in the CDB. This drastically reduces the administrative time required.

Less backup configuration: With multiple databases consolidated into one server, you
still have to back up each database separately. With container and pluggable databases,
you only need to back up one multitenant container database.

Easier provisioning: In the container database architecture, it is very easy to clone and
provision pluggable databases.

Less time to upgrade: When you upgrade the container database, all the pluggable
databases are automatically upgraded.

Move databases: It is also possible to move a pluggable database from one container
database to another. This is especially useful if you plan to upgrade all but a few data-
bases to the next release. Before upgrading the container database, you may move a
few pluggable databases to another container database, or move pluggable databases to
another CDB of higher release.

Separation of duties: Database administrators can be defined as a CDB administrator
(common user with administrative privileges on all CDB and PDBs) or a PDB administra-
tor (local user in PDB with administrative privilege only on the PDB).

In the next section, you will learn about users and schema in the database, which is the
basis for connecting to the database.

Connecting to Oracle Database

Before you can connect to an Oracle database, you must create a user. When you create
a new Oracle database, several default users are automatically created. (The preferred
method for creating a database is to use the Database Configuration Assistant [DBCA],
which is discussed in Chapter 9, “Creating and Operating Oracle Database 12¢.”)

SYS is the data dictionary or metadata dictionary owner for the database. Using this
account for day-to-day operations is not recommended. You connect to SYS to start and
stop database and other key administrative tasks. SYSTEM is a powerful administrative user
in the database. Initially, you use this user connection to create database users and other

14 Chapter 1 = Introducing Oracle Database 12c RDBMS

administrators in the database. Along with SYS and SYSTEM, several other database users are
also created based on the options you choose during the installation and on the components
installed in the database.

In a container database, the users are either common or local. Common users are visible
on the container as well as in all pluggable databases; they have the same username and pass-
word across all pluggable databases and in the container database. The schema for common
user is still local to each pluggable database and the container database.

A schema is a collection of database objects owned by a user account in the database.
The objects in the schema may be related to support a business application. A schema and
user have a one-to-one relationship in a database. A schema is created as a user in the data-
base, but when the user owns database objects, it is called a schema. Schema objects are
discussed in Chapter 7, “Creating Tables and Constraints.”

When an object is created under someone’s schema, the user has full privilege on the object
by default. Using Oracle’s roles and privileges, a schema owner or administrator can grant
privilege on his or her object (such as a table) to another user in the same database. This is
known as object-level privilege. For certain users, you may want to grant privileges on all the
objects in the database; this is accomplished by using the system privileges. Privileges and sys-
tem security are discussed in Chapter 13, “Implementing Security and Auditing.”

The next section will introduce you to the tools available to manage and administer
Oracle Database 12c.

Database Management Tools

Oracle Database 12¢ comes with multiple feature-rich tools to help administrators manage
and monitor the database and all of its components. In this section, you will review the tools
that are used for everyday administration of Oracle database. Let’s start with the tool that is
equally beneficial to DBAs, developers, and power users.

SQL Developer

SOL Developer is a graphical tool used to perform everyday activities in the Oracle database.
It has several predefined menu functions; therefore, there is no need to remember the syntax
or SQL command to perform basic functions. In addition to Oracle (database versions higher
than 9i Release 2), SQL Developer can also connect to Microsoft Access, Microsoft SQL
Server, MySQL, IBM DB2, and Sybase Adaptive Server databases to view data and metadata.

SQL Developer is installed along with Oracle Database 12¢ on Windows platforms. For
Linux, you must download and install it outside of an Oracle Database 12¢ installation. The
distribution usually included in the database software distribution might not be the current
version. It is better to always download the latest version and install SQL Developer from
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads. As
instructed on the download page, you will also need Java JRE installed for SQL Developer
to work.

Once it is installed, you can invoke SQL Developer from /usr/local/bin directory on
Linux or from the Oracle Installation program group on Windows. Figure 1.8 shows the

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads

The Oracle Database 12¢ 15

initial SQL Developer screen. To get started and learn more about SQL Developer, click the
choices available in the screen.

FIGURE 1.8 Theinitial SQL Developer screen

Oracle SQL Developer - Databases.jws : IdeConnections#C12DB1-SYSDBA.jpr : Start Page

File Edit View Navigate Run Team Tools Window Help
Goaa 908 Q-0 -~ & 8 M

@ Start Page

\é ORACLE

S0L DEVELOPER

Cet Started iiﬂ Community
OrersicnViden Featured Tuter ials Featured Online Demonstrations
What's New Optimizer Access Paths Database Copy
Release Notes SOL Tuning Advisor Reporting Features
Documentation Working with Tuning Utilities Oracle Data Pump Feature

SQL Developer on OTN

All Online Tutorials All Online Demonstrations

[+] Show on Startup Copyright ® 2005, 2013, Oracle and for its affiliates, All rights res ed.

[Z] Messages - Log

The Connections navigation pane is the most commonly used pane, which navigates
through the database objects providing you with information and options to modify the
objects. In Figure 1.9, you can see the various sections and navigations in SQL Developer.
The section marked 1 shows various database connections and the objects in those data-
bases. Section 2 provides you with a set of predefined reports. If you know how to write
SQL, you can define your own reports as well. Section 3 shows the DBA navigation screen,
showing you various DBA tasks.

Section 4 is the SQL worksheet. You use this section to interact directly with the data-
base using SQL language. Output from the SQL commands is listed in section 5; both
query output and script output are visible. Section 6 is the logging pane. This is useful
when you are debugging code.

For simplicity and ease of results capture, the SQL statements used in this
doTE book are using SQL*Plus. All of the SQL commands can also run using the
SQL Worksheet in SQL Developer.

16 Chapter 1 = Introducing Oracle Database 12c RDBMS

FIGURE 1.9 SQL Developer navigation windows

§ Oracle SQL Developer - Databases.jws : C12DB1-SYSDBA - o x
Eile Edit View Navigate RBun Team Tools Window Help
Godd 2¢ 0 © & &aus

Conntctions - (3 starPage | c12081-svsp8a - | (4 Tablespaces | [
0T R PED-BA BQ Gueaa 3 c120B1-5vSDBA ~
[Connections Worksheet | Query Builder

=] a C12D81-5VSDBA

c select * from database_propertie;
@ 1 Tables (Filterad) =Ll 5

- Views 4
-{F Editioning Views
[Indexes e
- Packages &/ script Outpur x| B> Query Result X
@[3 Proceduras
@ B3 Functions A 5 @) B soL | ANlRows Fetched: 38 in 0.052 seconds
@[Queues {} PROPERTY_NAME 1} PROPERTY_VALUE |} DESCRIFTION
-4 Queues Tables —
[) 22 NLS_CALENDAR GREGORIAN Calendar systen
Reports = 23 NLS_CHARACTERSET AL3I2UTFE Character set
23 an Repons 24 NLS_NUMERIC_CHARACTERS . Numeric characters
@-{@ Data Dictionary Reports 25 NLS_TSO_CURRENCY AMERICA 150 currency
#-{2 Data Modeler Reponts 26 NLS_CURRENCY i Local currency
&-{2 OLAP Reponts 2 27 NLS_TERRITORY AMERTCA Territory
3 e :"“‘:::" R;":"‘ 28 NLS_LANGUAGE AMERTICAN Language
r
& User Defined Repons 29 DST_SECONDARY_TT_VERSTON 0 Varsion of secondary timezons data file
P 30 DST_PRIMARY_TT_VERSTOM 18 5 Version of prinary timezone data file
31 DST_UPGRADE_STATE NONE State of Day Light Saving Time Upgrade
+ @B 32 WAX_STRTNG_STZE STANDARD WAX_STRTNG_STZE paranter used for dictionary netadata
aﬁmnz(linns - 33 EXPORT_VIEWS_VERSION 8 Export views revision #
=- c12081-5vsD8A 34 WORKLOAD_CAPTURE_MODE (nully CAPTURE implies workload capture is in progress
(& Container Database
@& Database Configuratio
M - Lo =
& @ Database Status 3 essiges=Cod

&-[F Data Pump 6
@13 rMAN Backup/Recover

1 [Becaiires Manansr

Messages Extensions =

SQL*Plus

SQL*Plus is Oracle’s command-line interface to the Oracle database. You run SQL commands
to query the database or to manage the database. SQL*Plus is packaged with the Oracle soft-
ware and can be installed using the client software installation routine on any machine. This
tool is automatically installed when you install the Oracle Database 12¢ server software.

On Unix/Linux platforms, you can invoke SQL*Plus using the sqlplus executable found
in the $ORACLE_HOME/bin directory. On Windows, SQL*Plus is under the Oracle Home
Group menu. On Windows and Unix/Linux platforms, when you start SQL*Plus, you will
be prompted for a username and password, as shown in Figure 1.10.

Once you are in SQL*Plus, you can connect to another database or change your connec-
tion by using the CONNECT command, with this syntax:

CONNECT <username>/<password>@<connect_string>

The slash separates the username and password. The connect string following @ is the
database alias name known as the net service name. If you omit the password, you will be
prompted to enter it. If you omit the connect string, SQL*Plus tries to connect you to the local
database defined in the ORACLE_SID variable (or the net service name defined by TWO_TASK
variable). You will not be prompted for the <connect_string>. Include <connect_string>
along with <username> as in bthomas@myowndb.

The Oracle Database 12¢ 17

FIGURE 1.10 A SQL*Plus screen

(T

ISQL*Plus: Release 12.1.8.1.8 Production on Sat Sep 7 15:57:31 2813

Copyright (c> 1982, 2813, Oracle. All rights reserved.

Enter user—name: hr
Enter passuword:
Last Successful login time: Thu Sep 85 2813 13:3@:19 -B85:80

Gonnected to:

Oracle Database 12c Enterprise Edition Release 12.1.8.1.8 - 64hit Production
With the Partitioning. OLAP. Advanced Analytics and Real Application Testing opt
ions

S0L> show user
USER is “HR"
SQL>

You may replace the connect string with a construct called the easy connect. The syntax
is [//]1Host[: Port] /<service_name>]. For example, to connect to database service named
C12DB1 on machine BTLNX63, where the listener is running in port 1521, use

sqlplus system@"btlnx63:1521/C12DB1"
You can invoke and connect to SQL*Plus using the sqlplus command, with this syntax:
sqlplus <username>/<password>@<connectstring>

If you invoke the tool with just sqlplus, you will be prompted for a username and pass-
word, as in Figure 1.10. If you invoke SQL*Plus with a username, you will be prompted for
a password. See Figure 1.11 for an example.

FIGURE 1.11 A SQL*Plus screen with a password prompt

[samuel@tlnx63 ~]$ echo $0RACLE HOME
Jubl/app/oracle/product/12. 1. 0/dbhome_1
[samuel@tlnx63 ~]% echo $0RACLE_SID
C120BL

[samuel@tlnx63 ~]$% echo $TWO_TASK
C12PDBL

[samuel@btiﬁxﬁS ~1% sqlplus system

SOL*PLlus: Release 12.1.0.1.0 Production on Wed Nov 20 16:17:17 20813

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password:
[ast Successtul login time: Wed Nov 20 2013 16:16:58 -06:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.6 - 64bit Production
with the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

SQL= show user
USER 1is "SYSTEM"
soL=

18 Chapter 1 = Introducing Oracle Database 12c RDBMS

Once you are connected to SQL*Plus, you will get the SQL> prompt. This is the default
prompt, which can be changed using the SET SQLPROMPT command. Type the command you
want to execute at this prompt. With SQL*Plus, you can enter, edit, and execute SQL state-
ments; perform database administration; and execute statements interactively by accepting
user input. You can also format query results and perform calculations.

To exit from SQL*Plus, use the EXIT command. On platforms where a return code is
used, you can provide a return code while exiting. You can also use the QUIT command to
complete the session. EXIT and QUIT are synonymous.

The command sqlplus -help displays a help screen to show the

A&TE various options available when starting SQL*Plus. Multiple administrative
connections such as SYSDBA, SYSOPER, SYSBACKUP, SYSASM, SYSKM,
and SYSDG are also available. They are discussed in this book in various
chapters.

Oracle Enterprise Manager Database Express 12¢

Oracle Enterprise Manger (OEM) Database Express 12¢ is a web-based tool that can
be configured using default by Database Configuration Assistant (DBCA, the tool
you use to create and configure databases) when you create an Oracle database. OEM
Database Express by default uses port 5500, hence is invoked using URL https://
database_host_machine:5500/em.

OEM Database Express is designed to manage only one database, and is intended for
database administrators. When you invoke Database Express, you will be prompted for a
username and password to connect to the database. You should provide a user account that
has administrative privileges.

For the SQL section of this book, you will not be using this tool, so we will not discuss
it in more detail here. You can read more information about OEM Database Express in
Chapter 3, “Getting Started with Database Administration,” of “Oracle Database 2 Day
DBA 12c¢ Release 1 (Part E17643-12),” found at http://docs.oracle.com/.

Oracle Enterprise Manager Cloud Control 12¢

Oracle Enterprise Manager Cloud Control 12¢ (OEM 12¢) is Oracle’s integrated enterprise
management administrative tool, providing complete cloud management solutions. With
OEM 12¢, you can manage multiple databases and all products under the Oracle stack. It

is a complete cloud lifecycle management answer to quickly set up, administer, and support
enterprise clouds and Oracle environments from applications to storage.

OEM 12c¢ is not part of the Oracle Database 12¢ software install; it must be downloaded
and installed separately. To read more about OEM 12¢, please check out “Oracle Enterprise
Manager Cloud Control Introduction 12¢ Release 3 (Part E25353-14)” at http://docs
.oracle.com/.

https://database_host_machine:5500/em
https://database_host_machine:5500/em
http://docs.oracle.com/
http://docs.oracle.com/
http://docs.oracle.com/

Becoming Familiar with SQL*Plus 19

Oracle Database 12c in the Cloud

Cloud architecture emphasizes sharing resources and maximizing the effectiveness of shared
resources. Cloud resources are shared not only by multiple users, but are also capable of
reallocation based on demand. Cloud computing allows organizations to provision resources
and applications rapidly, with improved manageability and less administrative overhead.

By enabling customers to efficiently use their information technology infrastruc-
ture, Oracle Database 12¢ was designed for the cloud. The following are the benefits
of having Oracle Database 12¢ in the cloud architecture:

It consolidates multiple Oracle databases into multitenant container databases.

With multitenant architecture, DBAs can manage multiple databases as one database
for many administrative tasks on the database. DBAs need to perform fewer patches
and upgrades and will not need to configure many backups.

It automatically optimizes database storage and performance based on usage.

Oracle Database 12¢ supports smart compression and storage tier. The heat map fea-
ture tracks data usage information; administrators can create appropriate policies to
automatically move and compress data based on age and activity of data.

Oracle RAC supports deployment of database instances across a pool of servers, helping
to avoid downtime caused by unplanned server outages.

With Oracle Enterprise Manager Cloud Control 12¢, the provisioning and cloning of
databases are simplified.

Oracle Database 12¢ helps customers reduce I'T complexity and cost through private data-
base cloud deployments by consolidation. Cloud computing offers an opportunity for IT orga-
nizations to be more responsive to changes in application workloads and business demands.

Because the test is on SQL and the tool used throughout the book for executing SQL is
SQL*Plus, the next section will discuss some fundamentals of SQL*Plus.

Becoming Familiar with SQL*Plus

SQL*Plus, widely used by DBAs and developers to interact with a database, is a powerful tool
from Oracle. Using SQL*Plus, you can execute all SQL statements and PL/SQL programs,
format results from queries, and administer the database.

Earlier in this chapter, you learned how to connect to the database using SQL*Plus. In
this section, you will learn about entering SQL commands, understanding the difference
between SQL commands and SQL*Plus commands, editing the SQL*Plus buffer, and run-
ning commands in a script.

Entering SQL Statements

A SQL statement can spread across multiple lines, and the commands are not case sensi-
tive. The previously executed SQL statement will always be available in the SOL buffer.

20 Chapter 1 = Introducing Oracle Database 12c RDBMS

The buffer can be edited or saved to a file. You can terminate a SQL statement in any of
the following ways:

End with a semicolon (;): The statement is completed and executed.
Enter a slash (/) on a new line by itself: The statement in the buffer is executed.
Enter a blank line: The statement is saved in the buffer.

You can use the RUN command instead of a slash to execute a statement in the buffer.
The SQL prompt returns when the statement has completed execution. You can enter your
next command at the prompt.

Only SQL statements and PL/SQL blocks are stored in the SQL buffer;
A ITE SQL*Plus commands are not stored in the buffer.

Entering SQL*Plus Commands

SQL*Plus has its own commands to perform specific tasks on the database, as well as to
format the query results. Unlike SQL statements, which are terminated with a semicolon or
a blank line, SQL*Plus commands are entered on a single line. Pressing Enter executes the
SQL*Plus command.

When you log in to the SQL*Plus session, you get the SQL prompt. By default, the prompt
is SQL>. You can change this prompt using the SET SQLPROMPT SQL*Plus command. When you
continue a SQL command to the next line, a line number appears at the beginning of the line.
As shown here, when you type SELECT USERNAME in the first line (the SQL prompt line) and
press Enter, line number 2 appears where you continue the SQL command FROM DBA_USERS.

SQL> SELECT USERNAME
2 FROM DBA_USERS

SQL statements can span multiple lines. If you want to continue a SQL*Plus command
onto the next line, you must end the current line with a hyphen (-), which indicates command
continuation. When a command continuation character is entered, SQL*Plus will not show
the line number next, but instead displays the greater than symbol (>). This is in contrast to
SQL statements, which can be continued to the next line without a continuation operator.
For example, the following SQL statement gives an error, because SQL*Plus treats the hyphen
operator (-) as a continuation character instead of a minus operator:

SQL> SELECT 800 -
> 400 FROM dual;
SELECT 800 400 FROM dual
*
ERROR at line 1:
ORA-00923: FROM keyword not found where expected
SQL>

Becoming Familiar with SQL*Plus 21

You need to put the hyphen in the next line for the query to succeed:

SQL> SELECT 800
2 - 400 FROM dual;

800-400

sQL>

Getting Structural Information with the DESCRIBE Command

You can use the DESCRIBE command to obtain information about the database objects.
Using DESCRIBE on a table or view shows the columns, its datatypes, and whether each
column can be NULL. Using DESCRIBE on a stored program, such as procedure or function,
shows the parameters that need to be passed in/out, their datatype, and whether there is a
default value. You can abbreviate this command to the first four characters or more—DESC,
DESCR, and DESCRIB are all valid.

If you’re connected to the HR schema and need to see the tables and views in this schema,
use the following query:

SQL> SELECT * FROM tab;

TNAME TABTYPE CLUSTERID
COUNTRIES TABLE
DEPARTMENTS TABLE
EMPLOYEES TABLE
EMP_DETAILS_VIEW VIEW
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
REGIONS TABLE

8 rows selected.
To see the columns or definition of the EMPLOYEES table, execute:

SQL> DESCRIBE employees
Name Null? Type

EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)

22 Chapter 1 = Introducing Oracle Database 12c RDBMS

LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)

If there are invisible columns in the table, they are not displayed by the DESCRIBE command
unless you use SET COLINVISIBLE ON.

y Invisible columns are newly introduced in Oracle Database 12¢, where a
A&’TE column in the table can be hidden from the application. Invisible columns
help to remove a column from the table quickly without actually dropping
the column. Invisible columns are discussed in Chapter 7.

Editing the SQL Buffer

The most recent SQL statement executed or entered is stored in the SQL buffer of
SQL*Plus. You can run the command in this buffer again by simply typing a slash or
using the RUN command.

SQL*Plus provides a set of commands to edit the buffer. Suppose you want to add another
column or add an ORDER BY condition to the statement in the buffer. You do not need to type
the entire SQL statement again. Instead, just edit the existing statement in the buffer.

One way to edit the SQL*Plus buffer is to use the EDIT command to write the buffer
to an operating-system file named afiedt.buf (this is the default filename, which can be
changed) and then use a system editor to make changes.

é You can use your favorite text editor by defining it in SQL*Plus. For
P example, to make Notepad your favorite editor, just issue the command
DEFINE _EDITOR = NOTEPAD.

To view the editor defined, just execute DEFINE _EDITOR as shown here.

SQL> define _editor
DEFINE _EDITOR = "Notepad" (CHAR)
Provide the entire path if the program is not available in the search path.

Another way to edit the buffer is to use the SQL*Plus editing commands. You can make
changes, delete lines, add text, and list the buffer contents using the commands described in
the following sections. Most editing commands operate on the current line. You can change

Becoming Familiar with SQL*Plus 23

the current line simply by typing the line number. All commands can be abbreviated, except
DEL (which is already abbreviated).

LIST

The LIST command lists the contents of the buffer. The asterisk indicates the current line. The
abbreviated command for LIST is L.

SQL> L
1 SELECT empno, ename
2% FROM emp

SQL> LIST LAST
2x FROM emp

SQL>

The command LIST n displays line n, and LIST * displays the current line. The command
LIST m ndisplays lines from m through n. If you substitute * for mor n, it implies from or to
the current line. The command LIST LAST displays the last line.

APPEND
The APPEND text command adds text to the end of a line. The abbreviated command is A.

SQL> A WHERE empno <> 7926
2% FROM emp WHERE empno <> 7926
SQL>

CHANGE

The CHANGE /old/new command changes an old entry to a new entry. The abbreviated
command is C. If you omit new, old will be deleted.

SQL> C /<>/=

2x FROM emp WHERE empno = 7926
SQL> C /7926

2% FROM emp WHERE empno =
SQL>

The ellipses (...) can be used as wildcard characters. The following example changes
everything in the line from “fro” to the new value.

SQL> 1

1x select name from v$instance
SQL> c/fro.../from védatabase

1x select name from v$database
SQL>

24 Chapter 1 = Introducing Oracle Database 12c RDBMS

The next example shows the substitution of a string in the middle of the line using ellipses.

SQL> 1

1x select owner from dba_tables where table_name like 'HR%'
SQL> c/dba...table/dba_views where view

1% select owner from dba_views where views where table_name like 'HR%'
SQL>

INPUT

The INPUT text command adds a line of text. Its abbreviation is I. If text is omitted, you
can add as many lines as you want.

SQL> I
3 7777 AND
4 empno = 4354
5
SQL> I ORDER BY 1
SQL> L
1 SELECT empno, ename
2 FROM emp WHERE empno =
3 7777 AND
4 empno = 4354
5% ORDER BY 1

DEL
The DEL command used alone or with * deletes the current line. The DEL m n command

deletes lines from m through n. If you substitute * for mor n, it implies the current line. The
command DEL LAST deletes the last line.

SQL> 3
3% 7777 AND
SQL> DEL
SQL> L
1 SELECT empno, ename
2 FROM emp WHERE empno =
3 empno = 4354
4% ORDER BY 1
SQL> DEL 3 *

Becoming Familiar with SQL*Plus 25

SQL> L

1 SELECT empno, ename

2x FROM emp WHERE empno =
SQL>

CLEAR BUFFER

The CLEAR BUFFER command (abbreviated CL BUFF) clears the buffer. This deletes all lines
from the buffer.

SQL> L

1 SELECT empno, ename

2x FROM emp WHERE empno =
SQL> CL BUFF
buffer cleared
SQL> L
No lines in SQL buffer.
SQL>

Using Script Files

SQL*Plus provides commands to save the SQL buffer to a file, as well as to run SQL
statements from a file. SQL statements saved in a file are called a script file.
You can work with script files as follows:

To save the SQL buffer to an operating-system file, use the command SAVE f7lename.
If you do not provide an extension, the saved file will have the extension .sql.

By default, the SAVE command will not overwrite an existing file. If you want to over-
write an existing file, you need to use the keyword REPLACE.

To add the buffer to the end of an existing file, use the SAVE f7lename APPEND command.
You can edit the saved file using the EDIT f7lename command.

You can bring the contents of a script file to the SQL buffer using the GET f7lename
command.

If you want to run a script file, use the command START f7lename. You can also run a
script file using @77 lename.

An @@filename used inside a script file looks for the filename in the directory where
the parent script file is saved and executes it.

Exercise 1.1 will familiarize you with the script file commands, as well as the other top-
ics covered so far.

26 Chapter 1 = Introducing Oracle Database 12c RDBMS

Practicing SQL*Plus File Commands

In this exercise, you will learn how to edit the SQL*Plus buffer using various buffer edit
commands.

1. Enter the following SQL code; the third line is a blank line so that the SQL code is
saved in the buffer:

SQL> SELECT employee_id, first_name, last_name
2 FROM employees
3

SQL>

2. Listthe SQL buffer:

SQL> L
1 SELECT employee_id, first_name, last_name
2% FROM employees

SQL>

3. Save the buffer to a file named myfile; the default extension will be .sql:

SQL> SAVE myfile
Created file MYFILE.sql
SQL>

4. Choose to edit the file:

SQL> EDIT myfile
SQL>

5. Add WHERE EMPLOYEE_ID = 106 as the third line to the SQL statement.
6. Listthe buffer:

SQL> LIST
1 SELECT employee_id, first_name, last_name
2x FROM employees

SQL>

The buffer listed is still the old buffer. The edited changes are not reflected because
you edited the file MYFILE, which is not yet loaded to the buffer.

Becoming Familiar with SQL*Plus 21

EXERCISE 1.1 (continued)

7

10.

1.

12.

Bring the file contents to the buffer:

SQL> GET myfile
1 SELECT employee_id, first_name, last_name
2 FROM employees
3x WHERE employee_id = 106

SQL>
List the buffer to verify its contents:
SQL> LI
1 SELECT employee_id, first_name, last_name
2 FROM employees
3x WHERE employee_id = 106
SQL>
Change the employee number from 106 to 110:

SQL> C/106/110
3% WHERE employee_id = 110
SQL>

Save the buffer again to the same file:
SQL> SAVE myfile
SP2-0540: File "MYFILE.sql" already exists.

Use "SAVE filename[.ext] REPLACE".
SQL>

An error is returned, because SAVE will not overwrite the file by default.

Save the file using the REPLACE keyword:

SQL> SAVE myfile REPLACE
Wrote file MYFILE.sql
SQL>

Execute the file:

SQL> START myfile

28 Chapter 1 = Introducing Oracle Database 12c RDBMS

EXERCISE 1.1 (continued)

EMPLOYEE_ID FIRST_NAME LAST_NAME
110 John Chen
SQL>

13. Change the employee number from 110 to 106, and append this SQL code to the file;
then execute it using @:

SQL> C/110/106

3% WHERE employee_id = 106
SQL> SAVE myfile APPEND
Appended file to MYFILE.sql
SQL> @MYFILE

EMPLOYEE_ID FIRST_NAME LAST_NAME
110 John Chen
EMPLOYEE_ID FIRST_NAME LAST_NAME
106 Valli Pataballa
SQL>

Saving Query Results to a File

You can use the SPOOL f7lename command to save the query results to a file. By default, the
SPOOL command creates a . lst file extension. SPOOL overwrites an existing file by default. If
you include the APPEND option—as in SPOOL f7lename APPEND—the results are added to an
existing file. A new file will be created if the file does not exist already.

SPOOL OFF stops writing the output to the file. SPOOL OUT stops the writing of output and
sends the output file to the printer. SPOOL with no clauses lists the current spooling status.

Adding Comments to a Script File

Comments in the script file can improve readability and make the code more understandable.
You can enter comments in SQL*Plus using the REMARKS (abbreviated REM) command. Lines in
the script file beginning with the keyword REM are comments and are not executed. You can
also enter a comment between /* and x/. Comments can also be entered following -- (double
hyphen); all characters following —- in the line are treated as comments by Oracle.

While a script file with comments is being executed, the remarks entered using the REMARKS
command are not displayed on the screen, but the comments within /* and */ are displayed
on the screen with the prefix DOC> when there is more than one line between /* and */. You
can turn this off by using SET DOCUMENT OFF.

Becoming Familiar with SQL*Plus 29

Now that you understand the concepts of RDBMS and how Oracle Database 12¢
helps organizations achieve the cloud architecture, let’s move on to the core of the Oracle
Database 12¢ SQL Fundamentals OCA exam in the coming chapters. Before moving on
to Chapter 2, “Introducing SQL,” please make sure you have an Oracle Database 12¢ to
practice on and try out the examples.

You may perform a quick default install of the database after downloading the software
from OTN (www. technet.oracle.com).

@ Real World Scenario

Install Oracle Database 12¢ for SQL Practice

To be able to practice the examples provided in this book and to familiarize yourself with
Oracle Database 12¢ SQL, an Oracle Database 12c database must be available to you. If
you do not have such a database, you can follow these instructions to install software
and create databases on a Windows machine.

Download and Install Software

You may download Oracle Database 12¢ software from Oracle Technology Network (OTN)
or from Oracle Cloud Delivery service (edelivery.oracle.com). After downloading the soft-
ware, you can invoke the setup.exe to install software. For detailed instructions on down-
loading and installing Oracle software, refer to www.bijoos.com/certify/dbl2csw.pdf. You
can also refer to Chapter 9 to install database software.

Create Oracle Database

Databases are created using the Database Configuration Assistant tool. You can choose the

Create Database With Default Configuration option to create a database quickly. For detailed
instructions on creating a database, refer to www.bijoos.com/certify/dbl2c_ndb.pdf. You
can also refer to Chapter 9 to create a database.

Create Sample Schema

The sample schema provided by Oracle includes HR, OE, PM, SH, and IX. For the majority of
the SQL used in the book, the HR schema is used. If you did not install the sample schema
during database creation, you can do so using the following procedure.

When you install Oracle software, you can choose the Create Database With Default
Configuration option, but this will not include the sample schemas. The account SYS is the
Oracle dictionary owner, and SYSTEM is a database administrator (DBA) account. Initially, the
sample schema user accounts are locked. You need to log in to the database using SQL*Plus
as the SYSTEM user and then unlock the account using the ALTER USER statement. To unlock
the HR schema, use ALTER USER hr IDENTIFIED BY hrpassword ACCOUNT UNLOCK;. Now
you can log in to the database using the hr user with the password hrpassword. Remember,
the password is case sensitive by default.

http://www.technet.oracle.com
http://www.bijoos.com/certify/db12csw.pdf
http://www.bijoos.com/certify/db12c_ndb.pdf

30 Chapter 1 = Introducing Oracle Database 12c RDBMS

To install the sample schemas in an existing Oracle Database 12¢, follow the instruc-
tions in the Oracle document “Oracle Database Sample Schemas 12¢ Release 1 (12.1) Part
E15979-04" at http://docs.oracle.com/. Chapter 2 of this document provides instruc-
tions on how to install the sample schemas using Database Configuration Assistant
(DBCA) as well as on running scripts. The same chapter also gives you steps to reinitialize
the sample schema data.

The manual installation of HR and OE sample data on Linux-based Oracle Database 12¢
databases can be quickly summarized as:

Change the directory to SORACLE_HOME /demo/schema/human_resources.

Connect to database using SQL*Plus as SYSDBA (sqlplus sys@mydb as sysdba).
Run the schema and objects creation script (@hr_main.sql).

Change the directory to $ORACLE_HOME /demo/schema/order_entry.

Connect to the database using SQL*Plus as SYSDBA (sqlplus sys@mydb as sysdba).

Run the schema and objects creation script (@oe_main.sql).

Summary

This chapter reviewed the concepts of relational database systems and Object RDBMS.
You also learned how Oracle implements the RDBMS and relational theory into the Oracle
database. The entity-relationship diagram is a modeling tool used in the beginning stages or
application development.

You also learned about the high-level architecture and various implementations of
Oracle, such as single database, RAC database, and container database.

Oracle Database 12c¢ is cloud enabled. The multitenant architecture of the database helps to
consolidate multiple Oracle databases (pluggable databases) into a single container database.

Various tools are available for the DBA to connect to the Oracle database and administer it.
SQL*Plus is Oracle’s SQL command-line interface tool. SQL Developer is a graphical tool, with
ease of navigation and predefined tasks. You also saw an overview of SQL*Plus in this chapter,
including how to connect to the database using SQL*Plus and basic editing commands.

SQL*Plus supports all SQL statements and has its own formatting and enhancement com-
mands. Using this tool, you can produce interactive SQL statements and formatted reports.
SQL*Plus is the command-line interface to the database widely used by DBAs. SQL*Plus has
its own buffer where SQL statements are buffered. You can edit the buffer using SQL*Plus
editing commands. The DESCRIBE command is used to get information on a table, view, func-
tion, or procedure. Multiple SQL and SQL*Plus commands can be stored in a file and can be
executed as a unit. Such files are called script files.

http://docs.oracle.com/
mailto:(@hr_main.sql
mailto:(@oe_main.sql

Exam Essentials 3

Exam Essentials

Know RDBMS Concepts. Review the RDBMS concepts. Understand entities and relationships.

Understand what structures make Object RDBMS. Learn how Oracle implements the
object relational database management system.

Know the tools. Have an understanding of what tools are available for database manage-
ment in Oracle and their purposes.

Learn the various architectures Oracle Database 12¢ can implement. Oracle database can
be installed as a single instance single database, multiple instance RAC database, or multi-
tenant container database.

Identify Oracle Database 12¢ cloud features. Know the features of Oracle Database 12¢
that make cloud implementation easier.

32 Chapter 1 = Introducing Oracle Database 12c RDBMS

Review Questions

1. Look at the diagram. What kind of relationship exists between MOVIES and
CHARACTERS?

MOVIES ACTORS
MOVIE_NAME # ACTOR_NAME

* RATING * SEX
RELEASE_DATE DOB
PHONE

CHARACTORS

MOVIE_NAME
CHARACTER_NAME | °~

i

ACTOR_NAME

Each movie may have one or more characters.

Each movie must have one or more characters.

o w »

Many movies may have many characters.
D. One movie can have only one character.
2. When the physical model is being designed from the logical model, which element may
be attributed as a table from the ER diagram?
A. Relationship
B. Attribute
C. Unique identifier
D. Entity

3. Which statement about the object type is true?
A. They are structures that consist of built-in or user-defined data types.
B. They are structures that consist of only built-in data types.
C. They are structures that consist of only user-defined data types.

D. Only one column in a table can be object type.

4. Which of the following is not a benefit of Oracle Database 12¢?
A. Manage multiple databases as one
B. Fast provisioning of cloned databases
C. Plug and unplug databases
D. Patch each pluggable database separately

10.

Review Questions

Which one of the following Oracle SQL*Plus command lines is not valid?
A. sqglplus <username>

B. sqlplus @<connect_string>

C. sqlplus <username>@<connect_string>

D. sqlplus

Which database tools are parts of Oracle Database 12¢? Choose two.
A. Oracle Enterprise Manager Cloud Control 12¢

B. Oracle Enterprise Manager Database Express 12¢

C. SQL Developer

D. TOAD (Tool for Oracle Application Developers)

33

In the physical implementation of RDBMS, which database object is used to represent

unique identifiers?
A. Any constraint
B. Index

C. Primary key
D. Foreign key

SQL Developer is a tool primarily for whom?
A. Database administrators

B. End users

C. Application developers

D. All of the above

Which architecture in the Oracle Database 12¢ implementation guards against
unplanned machine downtime?

A. Multitenancy Container Database
B. Real Application Clusters
C. Consolidate multiple databases and instances to one server

D. None of the above

Which connection method to the Oracle database is known as the easy connect?
A. <username>@<connect_string>

B. <username>@<host>:<port>/<service_name>

C. Both A and B

D. Neither A or B

Introducing SQL

ORACLE DATABASE 12c: SQL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Retrieving Data Using the SQL SELECT Statement
= Explain the capabilities of SQL SELECT statements.

= Execute a basic SELECT statement.

v Restricting and Sorting Data
= Limit the rows that are retrieved by a query.
= Sort the rows that are retrieved by a query.

= Use ampersand substitution to restrict and sort output

at runtime.

Oracle Database 12¢ is a very powerful and feature-rich rela-
tional database management system (RDBMS). SQL has been
adopted by most RDBMSs for the retrieval and management
of data schema creation, and access control. The American National Standards Institute
(ANSI) has been refining standards for the SQL language for more than 25 years. Oracle,
like many other companies, has taken the ANSI standard of SQL and extended it to include
much additional functionality.

SQL is the basic language used to manipulate and retrieve data from Oracle Database 12¢.
SQL is a nonprocedural language, meaning it does not have programmatic constructs such as
loop structures. PL/SQL is Oracle’s procedural extension of SQL, and SQLJ allows embedded
SQL operations in Java code. The scope of the Oracle Database 12¢ SQL Fundamentals test
includes only SQL.

In this chapter, we will discuss Oracle SQL fundamentals such as the various types of
SQL statements, introduce SQL*Plus and a few SQL*Plus commands, and discuss SELECT
statements.

You will learn how to write basic SQL statements to retrieve data from tables. This
will include coverage of SQL SELECT statements, which are used to query data from the
database-storage structures, such as tables and views. You will also learn how to limit
the information retrieved and to display the results in a specific order.

SQL Fundamentals

SQL is the standard language used to query and modify data as well as manage data-
bases. SQL is the common language used by programmers, database administrators,
and users to access and manipulate data as well as to administer databases. To get
started with SQL in this chapter, we will use the sample HR schema supplied with Oracle
Database 12c.

SQL statements are like plain English but with specific syntax. SQL is a simple, yet pow-
erful language used to create, access, and manipulate data and structures in the database.
SQL statements can be categorized as listed in Table 2.1.

SQL Fundamentals 37

TABLE 2.1 SQL Statement Categories

SQL Category

Description

Data Manipulation Language (DML)

Data Definition Language (DDL)

Transaction Control

Session Control

System Control

Used to access, insert, modify, or delete data in

the existing structures of the database. DML state-
ments include those used to query information
(SELECT), add new rows (INSERT), modify existing
rows (UPDATE), delete existing rows (DELETE), perform
a conditional update or insert operation (MERGE), see
an execution plan of SQL (EXPLAIN PLAN), and lock
a table to restrict access (LOCK TABLE). Including the
SELECT statement in the DML group is debatable
within the SQL community, because SELECT does
not modify data.

Used to define, alter, or drop database objects and
their privileges. DDL statements include those used

to create, modify, drop, or rename objects (CREATE,
ALTER, DROP, RENAME), remove all rows from a database
object without dropping the structure (TRUNCATE),
manage access privileges (GRANT, REVOKE), audit
database use (AUDIT, NOAUDIT), and add a description
about an object to the dictionary (COMMENT).

Used to group a set of DML statements as a single
transaction. Using these statements, you can save
the changes (COMMIT) or discard the changes (ROLL-
BACK) made by DML statements. Also included in the
transaction-control statements are statements to set
a point or marker in the transaction for possible roll-
back (SAVEPOINT) and to define the properties for the
transaction (SET TRANSACTION).

Used to control the properties of a user session. (A
session is the point from which you are connected to
the database until you disconnect.) Session-control
statements include those to control the session prop-
erties (ALTER SESSION) and to enable/disable roles
(SET ROLE).

Used to manage the properties of the database.
There is only one statement in this category (ALTER
SYSTEM).

38 Chapter 2 =« Introducing SQL

Table 2.1 provides an overview of all the statements that will be covered in this book.
Do not worry if you do not understand certain terms, such as role, session, privilege, and
so on. We will cover all the statements in the coming chapters and include many examples.
In this chapter, we will begin by writing simple statements to query the database (SELECT
statements), but we’ll go over some fundamentals first.

This section provided an overview of SQL*Plus, the tool you will be using to enter and
execute SQL statements in Oracle Database 12c¢. In the next sections, we will discuss some
of the Oracle Database 12¢ SQL fundamentals before showing you how to write your first
SQL query (a SELECT statement).

Oracle Datatypes

The basic structure of data storage in Oracle Database 12¢ is a table. A table can be con-
sidered as a spreadsheet with columns and rows. Data is stored in the table as rows. Each
column in the table has storage characteristics such as the type of data contained in the
column. Oracle has several built-in datatypes to store different kinds of data. In this sec-
tion, we will go over the built-in datatypes available in Oracle Database 12¢. Chapter 7,
“Creating Tables and Constraints,” includes a detailed discussion of datatypes and how to
create and maintain tables.

When you create a table to store data in the database, you need to specify a datatype
for all the columns you define in that table. Oracle has many datatypes to suit application
requirements. Oracle Database 12¢ also supports ANSI and DB2 datatypes. The Oracle
built-in datatypes can be broadly classified as shown in Table 2.2.

TABLE 2.2 Oracle Built-in Datatypes

Category Datatypes

Character CHAR, NCHAR, VARCHAR2, NVARCHAR?2

Number NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE
Long and raw LONG, LONG RAW, RAW

Date and time DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE,

TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR
TO MONTH, INTERVAL DAY TO SECOND

Large object CLOB, NCLOB, BCLOB, BFILE

Row ID ROWID, UROWID

In the following sections, we will discuss only a few of the built-in datatypes to get you
started with SQL. We discuss all the datatypes and their usage in detail in Chapter 7.

SQL Fundamentals 39

CHAR(<size>) and VARCHAR2(<size>)

The CHAR datatype is a fixed-length alphanumeric string, which has a maximum length
in bytes (to specify length in characters, use the CHAR keyword inside parentheses along
with a size; see Chapter 7). Data stored in CHAR columns is space-padded to fill the maxi-
mum length. Its size can range from a minimum of 1 byte to a maximum of 2,000 bytes.
The default size is 1.

When you create a column using the CHAR datatype, the database will ensure that all
data placed in this column has the defined length. If the data is shorter than the defined
length, it is space-padded on the right to the specified length. If the data inserted is longer
than the column length, an error is raised.

The VARCHAR2 datatype is a variable-length alphanumeric string, which has a maximum
length in bytes (to specify the length in characters, use the CHAR keyword inside parentheses
along with a size; see Chapter 7). VARCHAR?2 columns require only the amount of space
needed to store the data and can store up to 32KB (32,767 bytes). There is no default size for
the VARCHAR?2 datatype. An empty VARCHAR2(2000) column takes up as much room in
the database as an empty VARCHAR2(1) column.

VARCHAR2 columns by default allow only 4,000 bytes or characters. To be able to
store more than 4,000 bytes or characters, the MAX_STRING_SIZE database parameter needs
to be set to EXTENDED. The default value of this parameter is STANDARD, which allows only
4,000 bytes in a VARCHAR2 column.

The default size of a CHAR datatype is 1. For a VARCHAR2 datatype, you must
AdoTE always specify the size.

The VARCHAR?2 and CHAR datatypes have different comparison rules for trailing
spaces. With the CHAR datatype, trailing spaces are ignored. With the VARCHAR2
datatype, trailing spaces are not ignored, and they sort higher than no trailing spaces.
Here’s an example:

CHAR datatype: 'Yo' = 'Yo '
VARCHAR2 datatype: 'Yo' < 'Yo

NUMBER (<p>, <s>)

The NUMBER datatype stores numbers with a precision of <p> digits and a scale of <s> dig-
its. The precision and scale values are optional. Numeric datatypes are used to store negative
and positive integers, fixed-point numbers, and floating-point numbers. The precision can be
between 1 and 38, and the scale has a range between —84 and 127. If the precision and scale
are omitted, Oracle assumes the maximum of the range for both values.

You can have precision and scale digits in the integer part. The scale rounds the value after
the decimal point to <s> digits. For example, if you define a column as NUMBER(5,2), the
range of values you can store in this column is from —999.99 to 999.99—that is, 5 -2 = 3 for
the integer part, and the decimal part is rounded to two digits. Even if you do not include the
decimal part for the value inserted, the maximum number you can store in a NUMBER(S,2)
definition is 999.

40 Chapter 2 =« Introducing SQL

Oracle will round numbers inserted into numeric columns with a scale smaller than the
inserted number. For example, if a column were defined as NUMBER (4,2) and you specified
a value of 12.125 to go into that column, the resulting number would be rounded to 12.13
before it was inserted into the column. If the value exceeds the precision, however, an Oracle
error is returned. You cannot insert 123.1 into a column defined as NUMBER (4,2). Specifying
the scale and precision does not force all inserted values to be a fixed length.

If the scale is negative, the number is rounded to the left of the decimal. Basically, a negative
scale forces <s> number of zeros just to the left of the decimal.

If you specify a scale that is greater than the precision value, the precision defines the
maximum number of digits to the right of the decimal point after the zeros. For example, if
a column is defined as NUMBER(3,35), the range of values you can store is from —0.00999 to
0.00999—that is, it requires two zeros (<s>-<p>) after the decimal point and rounds the deci-
mal part to three digits (<p>) after zeros. Table 2.3 shows several examples of how numeric
data is stored with various definitions.

TABLE 2.3 Precision and Scale Examples

Value Datatype Stored Value Explanation

123.2564 NUMBER 123.2564 The range and precision are set to the max-
imum, so the datatype can store any value.

1234.9876 NUMBER(6,2) 1234.99 Because the scale is only 2, the decimal
part of the value is rounded to two digits.

12345.12345 NUMBER(6,2) Error The range of the integer part is only from
-9999 to 9999.

123456 NUMBER(6,2) Error The precision is larger than specified; the
range is only from —9999 to 9999.

1234.9876 NUMBER(6) 1235 The decimal part is rounded to the
next integer.

123456.1 NUMBER(6) 123456 The decimal part is rounded.

12345.345 NUMBER(5,-2) 12300 The negative scale rounds the number <s>

digits left to the decimal point. -2 rounds
to hundreds.

1234567 NUMBER(5,-2) 1234600 Rounded to the nearest hundred.

12345678 NUMBER(5,-2) Error Outside the range; can have only five dig-
its, excluding the two zeros representing
hundreds, for a total of seven digits:
(s—(-p)=s+p=5+2=7).

SQL Fundamentals M

Value Datatype Stored Value Explanation

123456789 NUMBER(5,-4) 123460000 Rounded to the nearest 10,000.

1234567890 NUMBER(5,-4) Error Outside the range; can have only five dig-
its, excluding the four trailing zeros.

12345.58 NUMBER(*, 1) 12345.6 The use of * in the precision specifies the
default limit (38).

0.1 NUMBER(4,5) Error Requires a zero after the decimal point
(5-4=1).

0.01234567 NUMBER(4,5) 0.01235 Rounded to four digits after the decimal

point and zero.

0.09999 NUMBER(4,5) 0.09999 Stored as it is; only four digits after the
decimal point and zero.

0.099996 NUMBER(4,5) Error Rounding this value to four digits after the
decimal and zero results in 0.1, which is
outside the range.

DATE

The DATE datatype is used to store date and time information. This datatype can be con-
verted to other forms for viewing, but it has a number of special functions and properties
that make date manipulation and calculations simple. The time component of the DATE
datatype has a resolution of one second—no less. The DATE datatype occupies a storage
space of 7 bytes. The following information is contained within each DATE datatype:

Century
Year
Month
Day
Hour
Minute
Second

DATE datatype does not have fractional seconds or time zone. Date values are inserted
or updated in the database by converting either a numeric value or a character value into a
DATE datatype using the function TO_DATE. Oracle defaults the format to display the date
as DD-MON-YY (the format is determined by parameter NLS_DATE_FORMAT). This format
shows that the default date must begin with a two-digit day, followed by a three-character
abbreviation for the month, followed by a two-digit year. If you specify the date without

42 Chapter 2 = Introducing SQL

including a time component, the time is defaulted to midnight, or 00:00:00 in military
time. The SYSDATE function returns the current system date and time from the database
server to which you’re currently connected.

TIMESTAMP [<precision>]

The TIMESTAMP datatype stores date and time information with fractional precision for
seconds. The only difference between the DATE and TIMESTAMP datatypes is the ability
to store fractional seconds up to a precision of nine digits. The default precision is 6 and
can range from O to 9. Similar to the SYSDATE function, the SYSTIMESTAMP function returns
the current system date and time, with fractional precision for seconds.

Operators and Literals

An operator is a manipulator that is applied to a data item in order to return a result. Special
characters represent different operations in Oracle (+ represents addition, for example).
Operators are commonly used in all programming environments, and you should already

be familiar with the following operators, which may be classified into two types:

Unary Operator A unary operator has only one operand. It has the format
<operator><operand>. Examples are +2 and -35.

Binary Operator A binary operator has two operands. It has the format
<operandl><operator><operand2>. You can insert spaces between the operand and
operator to improve readability. Examples are 5 + 4 and 7 x §.

We’ll now discuss the various types of operators available in Oracle.

Arithmetic Operators

Arithmetic operators operate on numeric values. Table 2.4 shows the various arithmetic
operators in Oracle and how to use them.

TABLE 2.4 Arithmetic Operators

Operator Purpose Example

+ - Unary operators: Used to represent positive or negative data -234.44
item. For positive items, the + is optional.

+ Addition: Used to add two data items or expressions. 2+4

- Subtraction: Used to find the difference between two data 20.4-2
items or expressions.

* Multiplication: Used to multiply two data items or expressions. 5%10

/ Division: Used to divide a data item or expression with another. 8.4/2

SQL Fundamentals 43

o Do not use two hyphens (--) to represent double negation; use a space or
ING parentheses in between, as in -(-20). Two hyphens represent the begin-

ning of a comment in SQL.

Concatenation Operator

The concatenation operator is used to concatenate or join two character (text) strings. The
result of concatenation is another character string. Concatenating a zero-length string (' ') or a
NULL with another string results in a string, not a NULL (NULL in Oracle Database 12¢ represents
unknown or missing data). Two vertical bars (| |) are used as the concatenation operator.

Here are two examples:

'Oraclel2c' || 'Database' resultsin 'Oraclel2cDatabase’.

'Oraclel2c ' || 'Database' resultsin 'Oraclel2c Database'.

Operator Precedence

If multiple operators are used in the same expression, Oracle evaluates them in the order
of precedence set in the database engine. Table 2.5 lists the precedence. Operators with
higher precedence are evaluated before operators with lower precedence. Operators

with the same precedence are evaluated from left to right.

TABLE 2.5 SQL Operator Precedence

Precedence Operator Purpose

1 -+ Unary operators, negation

2 x / Multiplication, division

3 + - || Addition, subtraction, concatenation

Using parentheses changes the order of precedence. The innermost parenthesis is
evaluated first. In the expression 1+2%3, the result is 7, because 2x3 is evaluated first and
the result is added to 1. In the expression (1+2)x3, 1+2 is evaluated first, and the result is
multiplied by 3, giving 9.

Literals
A literal is a value that represents a fixed value (constant). There are four types of literals:

Text (or character)

Numeric (integer and number)

44 Chapter 2 = Introducing SQL

Datetime
Interval

You can use literals within many of the SQL functions, expressions, and conditions.

Text Literals

A text literal must be enclosed in single quotation marks. Any character between the quotation
marks is considered part of the text value. Oracle treats all text literals as though they were
CHAR datatypes for comparison (blank padded). The maximum length of a text literal is
4,000 bytes if the database parameter MAX_STRING_SIZE is STANDARD. Single quotation marks
can be included in the literal text value by preceding it with another single quotation mark.
Here are some examples of text literals:

'The Quick Brown Fox'
'That man''s suit is black'
'And I quote: "This will never do." '
'12-SEP-2011"
Alternatively, you can use Q or g quoting, which provides a range of delimiters. The syn-
tax for using the Q/q quoting with a quote-delimiter text literal is as follows:

[Qlq]"' <quote_delimiter> <text literal> <quote_delimiter>'

<quote_delimiter> is any character except a space, tab, or carriage return. The quote
delimiter can be a single quotation mark, but make sure inside the text literal a single quo-
tation mark is not immediately followed by another single quotation mark. If the opening
quote delimiter is [or { or < or (, then the closing quote must be the corresponding] or }
or > or). For all other quote delimiters, the opening quote delimiter must be the same as
the closing quote delimiter. Here are some examples of text literals using the alternative
quoting mechanism:

q'<The Quick Brown Fox>'

Q'#The Quick Brown Fox#'

q'{That man's suit 1is black}'

Q' (And I quote: "This will never do.")'
Q'"And I quote: "This will never do." "'
q'[12-SEP-2001]"

Numeric Literals

Integer literals can be any number of numerals, excluding a decimal separator and up to
38 digits long. Here are two examples:

24
-456

SQL Fundamentals 45

Number literals and floating-point literals can include scientific notation, as well as
digits and the decimal separator. E or e represents a number in scientific notation; the
exponent can be in the range of =130 to 1285. If the literal is followed by an F or f, it is
treated as a BINARY_FLOAT datatype. If the literal is followed by a D or d, it is treated as a
BINARY_DOUBLE datatype. Here are some examples:

24.0
-345.65
23E-10
1.5f
-34.567D
-4d
—4.0E+0

Datetime Literals
You can specify a date value as a string literal using the datetime literals. The most com-
mon methods to represent the datetime values are to use the conversion function TO_DATE
or TO_TIMESTAMP with the appropriate format mask. To complete this discussion of literals,
we will discuss the datetime literals briefly.

The DATE literal uses the keyword DATE followed by the date value in single quotes, and the
value must be specified in YYYY-MM-DD format with no time component. The time component
will be defaulted to midnight (00:00:00). The following are examples of the DATE literal:

DATE '2008-03-24'
DATE '1999-12-31'

Similar to the TIMESTAMP datatype, the TIMESTAMP literal can be used to specify the
year, month, date, hour, minute, second, and fractional second. You can also include time-
zone data along with the TIMESTAMP literal. The time zone information can be specified
using the UTC offset or using the time-zone region name. The literal must be in the format
YYYY-MM-DD HH24:MI:SS TZ.

Here are some examples of the TIMESTAMP literal:

TIMESTAMP '2008-03-24 03:25:34.123'

TIMESTAMP '2008-03-24 03:25:34.123 -7:00'
TIMESTAMP '2008-03-24 03:25:34.123 US/Central’
TIMESTAMP '2008-03-24 03:25:34.123 US/Central CDT'

Interval Literals

Interval literals specify a period of time in terms of years and months or in terms of days
and seconds. These literals correspond to the Oracle datatypes INTERVAL YEAR TO
MONTH and INTERVAL DAY TO SECOND. We’ll discuss these datatypes in more
detail in Chapter 7.

46 Chapter 2 = Introducing SQL

Writing Simple Queries

A query is a request for information from the database tables. Queries do not modify
data; they read data from database tables and views. Simple queries are those that
retrieve data from a single table or view. A table is used to store data and is stored in
rows and columns. The basis of a query is the SELECT statement. The SELECT statement
can be used to get data from a single table or from multiple tables. Queries using multiple
tables are discussed in later chapters.

Using the SELECT Statement

The SELECT statement is the most commonly used statement in SQL. It allows you to retrieve
information already stored in the database. The statement begins with the keyword SELECT,
followed by the names of the columns with data you want to query. You can select informa-
tion either from all the columns (denoted by *) or from name-specific columns in the SELECT
clause to retrieve data. When * is used in the column projection, it lists the columns in the
same order as they are defined in the table definition. The FROM clause provides the name of
the table, view, or materialized view to use in the query. These objects are discussed in detail
in later chapters. For simplicity, we will use tables for the rest of this chapter.

The simple SELECT statement at a high level is of the form:

SELECT column_list

FROM table

WHERE filtering_conditions
ORDER BY column_list

OFFSET n_rows

FETCH row_limiting_conditions

The SELECT clause lists the columns from the table you are interested in reading. The FROM
clause identifies the table name. The SELECT and FROM clauses are mandatory, and the rest of
the clauses are optional. The FETCH clause is used to limit rows; the OFFSET clause is used to
skip rows; the WHERE clause is used for filtering; and the ORDER BY clause is for sorting. We
will discuss all of these clauses in detail in the coming sections of this chapter.

Let’s use the JOBS table defined in the HR schema of Oracle Database 12¢. You can use
the SQL*Plus tool to connect to the database as discussed earlier in the chapter. The JOBS
table definition is provided in Table 2.6.

TABLE 2.6 JOBS Table Definition

Column Name Datatype Length

JOB_ID VARCHAR2 10

JOB_TITLE VARCHAR2 35

Writing Simple Queries 47

Column Name Datatype Length
MIN_SALARY NUMBER 6,0
MAX_SALARY NUMBER 6,0

The simple form of a SELECT statement to retrieve all the columns and rows from the
JOBS table is as follows (only part of output result set is shown here):

SQL> SELECT * FROM jobs;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
AD_ASST Administration Assistant 3000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountant 4200 9000
IT_PROG Programmer 4000 10000
MK_MAN Marketing Manager 9000 15000
MK_REP Marketing Representative 4000 9000
HR_REP Human Resources Representative 4000 9000
PR_REP Public Relations Representative 4500 10500

19 rows selected.

The keywords, column names, and table names are not case sensitive. Only
doTE literals enclosed in single quotation marks are case sensitive in Oracle.

How do you list only the job title and minimum salary from this table? If you know the
column names and the table name, writing the query is simple. Here, the column names are
JOB_TITLE and MIN_SALARY, and the table name is JOBS. Execute the query by ending the
query with a semicolon. In SQL*Plus, you can execute the query by entering a slash on a
line by itself or by using the RUN command.

SQL> SELECT job_title, min_salary FROM jobs;

JOB_TITLE MIN_SALARY

President 20080
Administration Vice President 15000

48 Chapter 2 =« Introducing SQL

Administration Assistant 3000
Finance Manager 8200
Accountant 4200
Accounting Manager 8200
Public Accountant 4200
Programmer 4000
Marketing Manager 9000
Marketing Representative 4000
Human Resources Representative 4000
Public Relations Representative 4500

19 rows selected.

Notice that the numeric column (MIN_SALARY) is aligned to the right, and the character
column (JOB_TITLE) is aligned to the left. If you want the column heading MIN_SALARY to
be more meaningful, you can provide a column alias to appear in the query results.

Column Alias Names

The column alias name is defined next to the column name with a space or by using the key-
word AS. If you want a space in the column alias name, you must enclose it in double quota-
tion marks. The case is preserved only when the alias name is enclosed in double quotation
marks; otherwise, the display will be uppercase. The following example demonstrates using
an alias name for the column heading in the previous query:

SELECT job_title AS Title, min_salary AS "Minimum Salary"

FROM jobs;

TITLE Minimum Salary
President 20080
Administration Vice President 15000
Administration Assistant 3000
Finance Manager 8200
Accountant 4200
Accounting Manager 8200
Programmer 4000
Marketing Manager 9000
Marketing Representative 4000

Human Resources Representative 4000

Writing Simple Queries 49

Public Relations Representative 4500

19 rows selected.

In this listing, the column alias name Title appears in all capital letters because it was
not enclosed in double quotation marks.

when you do not know the column names or when you are too lazy to type
all the column names. The invisible columns and pseudo columns are not
included in *.

é/ The asterisk (*) is used to select all columns in the table. This is useful
P

Ensuring Uniqueness

The DISTINCT keyword (or UNIQUE keyword) following SELECT ensures that the resulting
rows are unique. Uniqueness is verified against the complete row, not the first column. If
you need to find the unique departments in the EMPLOYEES table, issue this query:

SELECT DISTINCT department_id
FROM employees;

DEPARTMENT_ID
100
30

90
20
70

110
50
80
40
60
10

12 rows selected.

To demonstrate that uniqueness is enforced across the row, let’s do one more query using
the SELECT DISTINCT clause. Notice DEPARTMENT_ID repeating for each JOB_ID value in the
following example:

SELECT DISTINCT department_id, job_id
FROM employees;

50 Chapter 2 = Introducing SQL

DEPARTMENT_ID
110

90

50

80

110

10

20

40

30

AC_ACCOUNT
AD_VP
ST_CLERK
SA_REP
AC_MGR

AD_ASST
MK_REP
HR_REP
PU_MAN

20 rows selected.

&

SELECT * FROM TAB; shows all the tables and views in your schema. Don’t
be alarmed if you see a table name similar to BINSPJV23QpwQfu®zPN9uaX
w+w==$0. These are tables that belong to the Recycle Bin (or dropped tables).
The tasks of creating tables and managing tables are discussed in Chapter 7.

The DUAL Table

The DUAL table is a special table available to all users in the database. It has one column and
one row. Oracle optimized the database so that it no longer performs physical or logical
input/output on the DUAL table. The DUAL table is mostly used to select system variables or
to evaluate an expression. Here are a few examples. The first query is to show the contents
of the DUAL table.

SQL> SELECT *

FROM dual;

SQL> SELECT SYSDATE, USER FROM dual;

SYSDATE USER

13-JUL-13 HR

Writing Simple Queries 51

SQL> SELECT 'I'"'m ' || user || ' Today is ' || SYSDATE
2 FROM dual;

"I''M'||USER||'TODAYIS'||SYSDATE

I'm HR Today s 13-JUL-13

sQL>
)’ SYSDATE and USER are built-in functions that provide information about
A&TE the environment. These functions are discussed in Chapter 3, “Using

Single-Row Functions.”

Filtering Rows

You can use the WHERE clause in the SELECT statement to restrict the number of rows processed.
Any logical conditions of the WHERE clause use the comparison operators. Rows are returned
or operated upon where the data satisfies the logical condition(s) of the WHERE clause. You can
use column names or expressions in the WHERE clause, but not column alias names. The WHERE
clause follows the FROM clause in the SELECT statement.

How do you list the employees who work for department 90? The following example
shows how to limit the query to only the records belonging to department 90 by using a
WHERE clause:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id = 90;

Name DEPARTMENT_ID
Steven King 90
Neena Kochhar 90
Lex De Haan 90
You need not include the column names in the SELECT clause to use them
P in the WHERE clause.

You can use various operators in Oracle Database 12¢ in the WHERE clause to limit the
number of rows.

52 Chapter 2 = Introducing SQL

Comparison Operators

Comparison operators compare two values or expressions and give a Boolean result
of TRUE, FALSE, or NULL. The comparison operators include those that test for equality,
inequality, less than, greater than, and value comparisons.

= (Equality)
The = operator tests for equality. The test evaluates to TRUE if the values or results of an

expression on both sides of the operator are equal. The following shows an example of find-
ing all the employees belonging to department 90—that is, the department ID is equal to 90:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id = 90;

Name DEPARTMENT_ID
Steven King 90
Neena Kochhar 90
Lex De Haan 90

I=, <>, or A= (Inequality)

You can use any one of these three operators to test for inequality. The test evaluates to TRUE
if the values on both sides of the operator do not match. The following shows an example

of querying employees whose commission is not the default 35 percent—that is, to find all
employees with a commission percent that is not 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees

WHERE commission_pct != .35;

Name COMMISSION_PCT
John Russell 4
Karen Partners .3
Alberto Errazuriz 3
Gerald Cambrault 3
Jack Livingston .2
Kimberely Grant .15
Charles Johnson .1

32 rows selected.

Writing Simple Queries 53

< (Less Than)

The < operator evaluates to TRUE if the left side (expression or value) of the operator is less
than the right side of the operator. The following shows an example of employees with a
commission percent less than 15:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct < .15;

Name COMMISSION_PCT
Mattea Marvins 1
David Lee 1
Sundar Ande 1
Amit Banda .1
Sundita Kumar 1
Charles Johnson 1

6 rows selected.

> (Greater Than)
The > operator evaluates to TRUE if the left side (expression or value) of the operator is

greater than the right side of the operator. The following shows an example of employees
with a commission percent over 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct > .35;

Name COMMISSION_PCT

John Russell .4

<= (Less Than or Equal To)

The <= operator evaluates to TRUE if the left side (expression or value) of the operator is less
than or equal to the right side of the operator. The following shows an example similar to
the one for less than, but here we include all employees who have a commission percent less
than 15 or equal to 15:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct <= .15;

54 Chapter 2 =« Introducing SQL

Name COMMISSION_PCT
Oliver Tuvault .15
Danielle Greene .15

Mattea Marvins
David Lee
Sundar Ande

Amit Banda .

William Smith .15
Elizabeth Bates .15
Sundita Kumar .1
Kimberely Grant .15
Charles Johnson .1

11 rows selected.

>= (Greater Than or Equal To)
The >= operator evaluates to TRUE if the left side (expression or value) of the operator is

greater than or equal to the right side of the operator. The following shows an example
of employees with commission percent at or over 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct >= .35;

Name COMMISSION_PCT
John Russell .4
Janette King .35
Patrick Sully .35
Allan McEwen .35
ANY or SOME

You can use the ANY or SOME (both are the same and can be used interchangeably) operator
to compare a value to each value in a list or subquery. The ANY and SOME operators always
must be preceded by one of the following comparison operators: =, I=, <, >, <=, or >=,
Consider the following SQL with ANY operator:

SELECT first_name || " ' || last_name "Name", department_id
FROM employees
WHERE department_id <= ANY (10, 15, 20, 25);

Writing Simple Queries 55

Name DEPARTMENT_ID
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20

Oracle in fact expands the ANY condition to department_id <= 10 OR department_id
<= 15 OR department_id <= 20 OR department_id <= 25. The behavior of ANY with each
comparison operator is

X = ANY (list): Evaluates to TRUE if value of X matches at least one value in the list.

X !'= ANY (list): Evaluates to TRUE if value of X does not match one or more value
in the list.

X > ANY (list): Evaluates to TRUE if value of X is higher than the smallest value in
the list.

X < ANY (list): Evaluates to TRUE if value of X is lower than the biggest value in
the list.

X >= ANY (list): Evaluates to TRUE if value of X is higher than or equal to the
smallest value in the list.

X <= ANY (list): Evaluates to TRUE if value of X is lower than or equal to the biggest
value in the list.

ALL

You can use the ALL operator to compare a value to every value in a list or subquery. The
ALL operator must always be preceded by one of the following comparison operators: =, !=,
<, >, <=, or >=. The following shows an example of using the ALL operator:

SELECT first_name || " ' || last_name "Name", department_id
FROM employees
WHERE department_id >= ALL (80, 90, 100);

Name DEPARTMENT_ID
Nancy Greenberg 100
Daniel Faviet 100
John Chen 100
Ismael Sciarra 100
Jose Manuel Urman 100
Luis Popp 100
Shelley Higgins 110
William Gietz 110

8 rows selected.

56 Chapter 2 = Introducing SQL

The SQL code is evaluated by Oracle as department_id >= 80 AND department_id >=
90 AND department_id >= 100. The behavior of ALL with each comparison operator is

X = ALL (list): Evaluates to TRUE if value of X matches all of the values in the list.
X != ALL (list): Evaluates to TRUE if value of X does not match any value in the list.

X > ALL (list): Evaluates to TRUE if value of X is higher than the biggest value in
the list.

X < ALL (list): Evaluates to TRUE if value of X is lower than the smallest value in
the list.

X >= ALL (list): Evaluates to TRUE if value of X is higher than or equal to the high-
est value in the list.

X <= ALL (list): Evaluates to TRUE if value of X is lower than or equal to the small-
est value in the list.

The ANY, SOME, and ALL operators make more sense when used with subqueries rather than
a list of known values. Subqueries are discussed in Chapter 5, “Using Joins and Subqueries.”

¢ For all the comparison operators discussed, if one side of the operator is
P NULL, the result is NULL. At least one question with the ANY, ALL operator
will be on the OCA test, so make sure you understand these operators
thoroughly.

Logical Operators

Logical operators are used to combine the results of two comparison conditions (compound
conditions) to produce a single result or to reverse the result of a single comparison. NOT,
AND, and OR are the logical operators. When a logical operator is applied to NULL, the result
is UNKNOWN. UNKNOWN acts similarly to FALSE; the only difference is that NOT FALSE is TRUE,
whereas NOT UNKNOWN is also UNKNOWN.

NOT

You can use the NOT operator to reverse the result. It evaluates to TRUE if the operand is FALSE,
and it evaluates to FALSE if the operand is TRUE. NOT returns NULL if the operand is NULL. The
following shows an example of employees that do not belong to department number greater
or equal to 30—that is, it basically evaluates to department number less than 30:

SELECT first_name, department_id
FROM employees
WHERE not (department_id >= 30);

FIRST_NAME DEPARTMENT_ID

Jennifer 10

Writing Simple Queries 57

Michael 20
Pat 20
AND

The AND operator evaluates to TRUE if both operands are TRUE. It evaluates to FALSE if either
operand is FALSE. Otherwise, it returns NULL. The following shows an example of employees
with the last name Smith and a salary over $7,500. Both conditions must evaluate to TRUE:

SELECT first_name, salary
FROM employees

WHERE last_name = 'Smith'
AND salary > 7500;

FIRST_NAME SALARY
Lindsey 8000
OR

The OR operator evaluates to TRUE if either operand is TRUE. It evaluates to FALSE if both
operands are FALSE. Otherwise, it returns NULL. The following shows an example of
employees whose last name is Smith or whose first name is Kelly. Either one condition
must evaluate to TRUE:

SELECT first_name, last_name
FROM employees

WHERE first_name = 'Kelly'

OR last_name = 'Smith';
FIRST_NAME LAST_NAME
Kelly Chung
Lindsey Smith
William Smith

Logical Operator Truth Tables

The following tables are the truth tables for the three logical operators.
Table 2.7 is a truth table for the AND operator.

58 Chapter 2 = Introducing SQL

TABLE 2.7 AND Truth Table

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 2.8 is the truth table for the OR operator.

TABLE 2.8 OR Truth Table

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Table 2.9 is the truth table for the NOT operator.

TABLE 2.9 NOT Truth Table

NOT

TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

Other Operators

In the following sections, we will discuss the operators that can be used in the WHERE clause
of the SQL statement that were not discussed earlier.

IN and NOT IN

You can use the IN and NOT IN operators to test a membership condition. IN is equivalent
to the =ANY operator, which evaluates to TRUE if the value exists in the list or the result set

Writing Simple Queries 59

from a subquery. The NOT IN operator is equivalent to the !=ALL operator, which evaluates
to TRUE if the value does not exist in the list or the result set from a subquery. The following
examples demonstrate how to use these two operators:

SELECT first_name, last_name, department_id

FROM employees
WHERE department_id IN (10, 20, 90);

FIRST_NAME

Jennifer
Michael
Pat
Steven
Neena
Lex

6 rows selected.

FIRST_NAME

Hermann
Pat
Michael
SQL>

o
ING

BETWEEN

LAST_NAME DEPARTMENT_ID
Whalen 10
Hartstein 20
Fay 20
King 90
Kochhar 90
De Haan 90
LAST_NAME DEPARTMENT_ID
Baer 70
Fay 20
Hartstein 20

When using the NOT IN operator, if any value in the list or the result
returned from the subquery is NULL, the NOT IN condition is evaluated to
FALSE. For example, last_name not in ('Smith', 'Thomas', NULL)
evaluates to last_name != 'Smith' AND last_name != 'Thomas' AND
last_name != NULL. Any comparison on a NULL value results in NULL. So
the previous condition does not return any row even though there may
be some rows with LAST_NAME as Smith or Thomas.

You can use the BETWEEN operator to test a range. BETWEEN A AND B evaluates to TRUE if
the value is greater than or equal to A and less than or equal to B. If NOT is used, the result
is the reverse. The following example lists all the employees whose salary is between
$5,000 and $6,000:

SELECT first_name, last_name, salary

FROM employees

60 Chapter 2 = Introducing SQL

WHERE salary BETWEEN 5000 AND 6000;

FIRST_NAME LAST_NAME SALARY
Bruce Ernst 6000
Kevin Mourgos 5800
Pat Fay 6000
EXISTS

The EXISTS operator is always followed by a subquery in parentheses. EXISTS evaluates to
TRUE if the subquery returns at least one row. The following example lists the employees
who work for the administration department. Here is an example of using EXISTS:

SELECT last_name, first_name, department_id

FROM employees e

WHERE EXISTS (select 1 FROM departments d
WHERE d.department_id = e.department_id

AND d.department_name = 'Administration');
LAST_NAME FIRST_NAME DEPARTMENT_ID
Whalen Jennifer 10
SQL>
Don't worry if you do not understand the SQL examples now; subqueries
dﬂz are discussed in detail in Chapter 5.

IS NULL and IS NOT NULL

To find the NULL values or NOT NULL values, you need to use the IS NULL operator. The = or
1= operator will not work with NULL values. IS NULL evaluates to TRUE if the value is NULL.
IS NOT NULL evaluates to TRUE if the value is not NULL. To find the employees who do not
have a department assigned, use this query:

SELECT last_name, department_id
FROM employees
WHERE department_id IS NULL;

LAST_NAME DEPARTMENT_ID

Writing Simple Queries 61

SQL>
SELECT last_name, department_id
FROM employees

WHERE department_id = NULL;

No rows selected.

LIKE

Using the LIKE operator, you can perform pattern matching. The pattern-search character % is
used to match any character and any number of characters. The pattern-search character _
is used to match any single character. If you are looking for the actual character % or _ in the
pattern search, you can include an escape character in the search string and notify Oracle
using the ESCAPE clause.

The following query searches for all employees whose first name begins with Su and
whose last name does not begin with S:

SELECT first_name, last_name
FROM employees

WHERE first_name LIKE 'Su%'
AND last_name NOT LIKE 'S%';

FIRST_NAME LAST_NAME
Sundar Ande
Sundita Kumar
Susan Mavris

The following example looks for all JOB_ID values that begin with AC_. Because _ is a
pattern-matching character, you must qualify it with an escape character. Oracle does not
have a default escape character.

SELECT job_id, job_title
FROM jobs
WHERE job_id like 'AC_%' ESCAPE '\';

JOB_ID JOB_TITLE

AC_MGR Accounting Manager
AC_ACCOUNT Public Accountant

Table 2.10 shows more examples of pattern matching.

62 Chapter 2 = Introducing SQL

TABLE 2.10 Pattern-Matching Examples

Pattern Matches Does Not Match
%SONI_1 SONIC1, ULTRASONI21 SONICS1, SONI315

_IME TIME, LIME IME, CRIME

\%SONI_1 ESCAPE '"\' %SONICL, %SONI91 SONICI1, ULTRASONIC1
%ME_ _ _LE ESCAPE '\' CRIME_FILE, TIME_POLE CRIMESPILE, CRIME_ALE

Sorting Rows

The SELECT statement may include the ORDER BY clause to sort the resulting rows in a specific
order based on the data in the columns. Without the ORDER BY clause, there is no guarantee
that the rows will be returned in any specific order. If an ORDER BY clause is specified, by
default the rows are returned in ascending order of the columns specified. If you need to sort
the rows in descending order, use the keyword DESC next to the column name. You can spec-
ify the keyword ASC to explicitly state to sort in ascending order, although it is the default.
The ORDER BY clause follows the FROM clause and the WHERE clause in the SELECT statement.

To retrieve all employee names of department 90 from the EMPLOYEES table ordered by
last name, use this query:

SELECT first_name || ' ' || last_name "Employee Name"
FROM employees

WHERE department_id = 90

ORDER BY last_name;

Employee Name
Lex De Haan
Steven King
Neena Kochhar
SQL>

You can specify more than one column in the ORDER BY clause. In this case, the result
set will be ordered by the first column in the ORDER BY clause, then the second, and so on.
Columns or expressions not used in the SELECT clause can also be used in the ORDER BY
clause. The following example shows how to use DESC and multiple columns in the ORDER
BY clause:

SELECT first_name, hire_date, salary, manager_id mid
FROM employees

Writing Simple Queries 63

WHERE department_id IN (110,100)
ORDER BY mid ASC, salary DESC, hire_date;

FIRST_NAME HIRE_DATE SALARY MID
Shelley 07-JUN-02 12008 101
Nancy 17-AUG-02 12008 101
Daniel 16-AUG-02 9000 108
John 28-SEP-05 8200 108
Jose Manuel 07-MAR-06 7800 108
Ismael 30-SEP-05 7700 108
Luis 07-DEC-07 6900 108
William 07-JUN-02 8300 205

8 rows selected.
sQL>

é/ You can use column alias names in the ORDER BY clause.
P

If the DISTINCT keyword is used in the SELECT clause, you can use only those columns
listed in the SELECT clause in the ORDER BY clause. If you have used any operators on col-
umns in the SELECT clause, the ORDER BY clause also should use them. Here is an example:

SELECT DISTINCT 'Region ' || region_id
FROM countries
ORDER BY region_id;

ORDER BY region_id
*
ERROR at line 3:
ORA-01791: not a SELECTed expression

SELECT DISTINCT 'Region ' || region_id
FROM countries
ORDER BY 'Region ' || region_id;

"REGION' | |[REGION_ID

Region 1
Region 2

64 Chapter 2 = Introducing SQL

Region 3
Region 4

Not only can you use the column name or column alias to sort the result set of a query,
but you can also sort the results by specifying the position of the column in the SELECT clause.
This is useful if you have a lengthy expression in the SELECT clause and you need the results
sorted on this value. The following example sorts the result set using positional values:

SELECT first_name, hire_date, salary, manager_id mid
FROM employees

WHERE department_id IN (110,100)

ORDER BY 4, 2, 3;

FIRST_NAME HIRE_DATE SALARY MID
Shelley 07-JUN-02 12008 101
Nancy 17-AUG-02 12008 101
Daniel 16-AUG-02 9000 108
John 28-SEP-05 8200 108
Ismael 30-SEP-05 7700 108
Jose Manuel 07-MAR-06 7800 108
Luis 07-DEC-07 6900 108
William 07-JUN-02 8300 205

8 rows selected.

ﬁ" The ORDER BY clause cannot have more than 255 columns or expressions.
ING

Sorting NULLs

By default, in an ascending-order sort, the NULL values appear at the bottom of the result
set—that is, NULLs are sorted higher. For descending-order sorts, NULL values appear at

the top of the result set—again, NULL values are sorted higher. You can change the default
behavior by using the NULLS FIRST or NULLS LAST keyword, along with the column names
(or alias names or positions). The following examples demonstrate how to use NULLS FIRST
in an ascending sort:

SELECT last_name, commission_pct

FROM employees

WHERE last_name LIKE 'R%'

ORDER BY commission_pct ASC, last_name DESC;

Writing Simple Queries

LAST_NAME COMMISSION_PCT
Russell .4
Rogers

Raphaely

Rajs

SELECT last_name, commission_pct

FROM employees

WHERE Tlast_name LIKE 'R%'

ORDER BY commission_pct ASC NULLS FIRST, last_name DESC;

LAST_NAME COMMISSION_PCT
Rogers

Raphaely

Rajs

Russell .4
sSQL>

65

@ Real World Scenario
Why Do You Limit and Sort Rows?

The power of an RDBMS and SQL lies in getting exactly what you want from the data-
base. The sample tables you considered under the HR schema are small, so even if you
get all the information from the table, you can still find the specific data you're seeking.
But what if you have a huge transaction table with millions of rows?

You know how easy it is to look through a catalog in the library to find a particular book or
to search through an alphabetical listing to find your name. When querying a large table,
make sure you know what you want.

The WHERE clause lets you query for exactly what you're seeking. The ORDER BY clause
lets you sort rows. The following steps can be used as an approach to query data from a
single table:

1. Know the columns of the table. You can issue the DESCRIBE command to get the
column names and datatype. Understand which column has what information.

2. Pick the column names you are interested in including in the query. Use these columns
in the SELECT clause.

66 Chapter 2 =« Introducing SQL

3. ldentify the column or columns where you can limit the rows, or the columns that
can show you only the rows of interest. Use these columns in the WHERE clause of
the query, and supply the values as well as the appropriate operator.

4. If the query returns more than a few rows, you may be interested in having them
sorted in a particular order. Specify the column names and the sorting order in the
ORDER BY clause of the query.

Let’s consider a table named PURCHASE_ORDERS. First, use the DESCRIBE command to list
the columns:

SQL> DESCRIBE purchase_orders

Name Null? Type

ORDER# NOT NULL NUMBER (16)
ORDER_DT NOT NULL DATE
CUSTOMER# NOT NULL VARCHAR2 (12)
BACK_ORDER CHAR (1)
ORD_STATUS CHAR (1)
TOTAL_AMT NOT NULL NUMBER (18,4)
SALES_TAX NUMBER (12,2)

The objective of the query is to find the completed orders that do not have any sales tax.
You want to see the order number and total amount of the order. The corresponding col-
umns that appear in the SELECT clause are ORDER# and TOTAL_AMT. Because you're inter-
ested in only the rows with no sales tax in the completed orders, the columns to appear in
the WHERE clause are SALES_TAX (checking for zero sales tax) and ORD_STATUS (checking for
the completeness of the order, which is status code C). Because the query returns multiple
rows, you want to order them by the order number. Notice that the SALES_TAX column can
be NULL, so you want to make sure you get all rows that have a sales tax amount of zero

or NULL.

SELECT order#, total_amt
FROM purchase_orders
WHERE ord_status = 'C'
AND (sales_tax IS NULL
OR sales_tax = 0)
ORDER BY ordert;

An alternative is to use the NVL function to deal with the NULL values. This function is dis-
cussed in Chapter 3.

Writing Simple Queries 67

Limiting Rows

The row-limiting clause in the SELECT statement follows the ORDER BY clause, if used. Use
the OFFSET and FETCH clauses to limit the number of rows retrieved by specifying a certain
number of rows or certain percent of rows to be retrieved. The WHERE clause and FETCH
clause are used to restrict the amount of rows returned in the query. WHERE is used for filter-
ing the rows; FETCH is used for limiting the rows.

The OFFSET clause is optional and used to skip a specified number of rows before the
retrieval begins. If the offset is higher than the number of rows retrieved or is NULL, no rows
are returned. The ROW and ROWS keywords are optional and used only for readability. You
need not provide the ROW or ROWS keyword when using the FETCH and OFFSET clauses.

The FETCH clause can specify the number of rows to return or a percentage of rows to
return. The FIRST and NEXT keywords can be used interchangeably and are for semantic
clarity only. Either one must be used.

The following examples clarify the use of the row-limiting clauses in SELECT. First, show
the top five salary-earned employees:

SELECT first_name, department_id, salary
FROM employees

ORDER BY salary DESC

FETCH FIRST 5 ROWS ONLY;

FIRST_NAME DEPARTMENT_ID SALARY
Steven 90 24000
Neena 90 17000
Lex 90 17000
John 80 14000
Karen 80 13500

If there is a tie in the last row, using the WITH TIES clause instead of the ONLY clause
will retrieve all rows with ties. The ONLY or WITH TIES keyword must always be used with
the FETCH clause. In the following example, the top two salaried employees are queried.
Because there is a tie for the second position, all tied records are retrieved:

SELECT first_name, department_id, salary
FROM employees

ORDER BY salary DESC

FETCH FIRST 2 ROWS WITH TIES;

FIRST_NAME DEPARTMENT_ID SALARY
Steven 90 24000
Neena 90 17000

Lex 90 17000

68 Chapter 2 = Introducing SQL

The OFFSET clause is used to skip rows before the limiting begins. The following example
shows the third through fifth position in salary:

SELECT first_name, department_id, salary
FROM employees

ORDER BY salary DESC

OFFSET 2 ROWS

FETCH NEXT 3 ROWS WITH TIES;

FIRST_NAME DEPARTMENT_ID SALARY
Lex 90 17000
John 80 14000
Karen 80 13500

There are 107 rows in the EMPLOYEES table; instead of number of rows, you may limit
using a PERCENT. The ONLY or WITH TIES keyword is a must whether using ROWS or PERCENT
in the FETCH clause. The following example shows using PERCENT to retrieve 5 percent rows
from the EMPLOYEES table:

SELECT first_name, salary
FROM employees
FETCH FIRST 5 PERCENT ROWS ONLY;

FIRST_NAME SALARY
Steven 24000
Neena 17000
Lex 17000
Alexander 9000
Bruce 6000
David 4800
type="tip"

Using the ORDER BY clause with the FETCH clause is not mandatory but is highly recom-
mended to achieve a consistent result set.

Using Expressions

An expression is a combination of one or more values, operators, and SQL functions that
result in a value. The result of an expression generally assumes the datatype of its components.

Writing Simple Queries 69

The simple expression 5 + 6 evaluates to 11 and assumes a datatype of NUMBER. Expressions
can appear in the following clauses:

The SELECT clause of queries

The WHERE clause, ORDER BY clause, and HAVING clause
The VALUES clause of the INSERT statement

The SET clause of the UPDATE statement

We will review the syntax of using a HAVING clause and INSERT, UPDATE
A&TE statements in later chapters.

You can include parentheses to group and evaluate expressions and then apply the result
to the rest of the expression. When parentheses are used, the expression in the innermost
parentheses is evaluated first. Here is an example of a compound expression:

((2%4)/(3+1))*10.

The result of 2x4 is divided by the result of 3+1. Then the result from the division
operation is multiplied by 10.

The CASE Expression

You can use the CASE expression to derive the IF..THEN..ELSE logic in SQL. Here is the
syntax of the simple CASE expression:

CASE <expression>

WHEN <compare value> THEN <return value>
[ELSE <return value>]

END

The CASE expression begins with the keyword CASE and ends with the keyword END. The
ELSE clause is optional. The maximum number of arguments in a CASE expression is 253.
The following query displays a description for the REGION_ID column based on the value:

SELECT country_name, region_id,
CASE region_id WHEN 1 THEN 'Europe'
WHEN 2 THEN 'America'
WHEN 3 THEN 'Asia'
ELSE 'Other' END Continent
FROM countries
WHERE country_name LIKE 'I%';

70 Chapter 2 = Introducing SQL

COUNTRY_NAME REGION_ID CONTINE
Israel 4 Other
India 3 Asia
Italy 1 Europe
sQL>

The other form of the CASE expression is the searched CASE, where the values are
derived based on a condition. Oracle evaluates the conditions top to bottom; when a
condition evaluates to true, the rest of the WHEN clauses are not evaluated. This version
has the following syntax:

CASE

WHEN <condition> THEN <return value>
[ELSE <return value>]

END

The following example categorizes the salary as Low, Medium, and High using a
searched CASE expression:

SELECT first_name, department_id, salary,
CASE WHEN salary < 6000 THEN 'Low'
WHEN salary < 10000 THEN 'Medium'
WHEN salary >= 10000 THEN 'High' END Category
FROM employees
WHERE department_id <= 30
ORDER BY first_name;

FIRST_NAME DEPARTMENT_ID SALARY CATEGO
Alexander 30 3100 Low
Den 30 11000 High
Guy 30 2600 Low
Jennifer 10 4400 Low
Karen 30 2500 Low
Michael 20 13000 High
Pat 20 6000 Medium
Shelli 30 2900 Low
Sigal 30 2800 Low

9 rows selected.

Writing Simple Queries n

Oracle uses the ampersand (&) character to substitute values at runtime. In the next sec-
tion, we will discuss how to create SQL statements that can be used to get a different set of
results based on values passed during execution time.

@ Real World Scenario
Finding the Current Sessions and Program Name

As a DBA, you may have to query the V$SESSION dictionary view to find the current sessions
in the database. This view has several columns that provide information about the session;
often the DBA is interested in finding out the username and which program is connecting to
the database. If the DBA wants to find out what SQL is executed in the session, the SID and
SERIAL# columns can be queried to enable tracing using the DBMS_TRACE package.

This example will review how to query the VSSESSION view using the simple SQL
statements you learned in this chapter.

The following query may return several rows depending on the activity and number of
users connected to the database:

SELECT username, sid, serial#, program
FROM v$session;

If you're using SQL*Plus, you may have to adjust the column width to fit the output in
one line:

COLUMN program FORMAT a20

COLUMN username FORMAT a20

SELECT username, sid, serial#, program
FROM v$session;

USERNAME SID SERIAL# PROGRAM
118 6246 ORACLE.EXE (W000)
BTHOMAS 121 963 sqlplus.exe
DBSNMP 124 23310 emagent.exe
DBSNMP 148 608 emagent.exe
150 1 ORACLE.EXE (FBDA)
152 7 ORACLE.EXE (SMCO)
155 1 ORACLE.EXE (MMNL)
156 1 ORACLE.EXE (DIA®)

72 Chapter 2 = Introducing SQL

158 1 ORACLE.EXE (MMON)
159 1 ORACLE.EXE (RECO)
164 1 ORACLE.EXE (MMAN)

......... (Output truncated)

As you can see, the background processes do not have usernames. To find out only the
user sessions in the database, you can filter out the rows that do not have valid usernames:

SELECT username, sid, serial#, program
FROM v$session
WHERE username is NOT NULL;

If you're looking for specific information, you may want to add more filter conditions such
as looking for a specific user or a specific program. The following SQL code returns the
rows in order of their session login time, with the most recent session on the top:

SELECT username, sid, serial#, program
FROM v$session

WHERE username is NOT NULL

ORDER BY logon_time;

USERNAME SID SERIAL# PROGRAM

DBSNMP 148 608 emagent.exe
DBSNMP 124 23310 emagent.exe
BTHOMAS 121 963 sqlplus.exe
SCOTT 132 23 TOAD.EXE
SJACOB 231 32 discoverer.exe

Accepting Values at Runtime

To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the user to supply values at runtime, further enhancing the ability to reuse the SQL
scripts. An ampersand (&) followed by a variable name prompts for and accepts values at
runtime. For example, the following SELECT statement queries the DEPARTMENTS table based
on the department number supplied at runtime:

SELECT department_name
FROM departments

WHERE department_id = &dept;

Enter value for dept: 10
old 3: WHERE DEPARTMENT_ID
new 3: WHERE DEPARTMENT_ID

&dept
10

DEPARTMENT_NAME

Administration

1 row selected.

Accepting Values at Runtime

Using Ampersand Substitution Variables

Suppose that you have defined DEPT as a variable in your script, but you want to avoid the

13

prompt for the value at runtime. SQL*Plus prompts you for a value only when the variable is
undefined. You can define a substitution variable in SQL*Plus using the DEFINE command to
provide a value. The variable will always have the CHAR datatype associated with it. Here

is an example of defining a substitution variable:

SQL> DEFINE DEPT = 20
SQL> DEFINE DEPT
DEFINE DEPT = "20" (CHAR)
SQL> LIST

1 SELECT department_name

2 FROM departments

3x WHERE department_id = &DEPT
SQL> /
old 3: WHERE DEPARTMENT_ID = &DEPT
new 3: WHERE DEPARTMENT_ID 20

DEPARTMENT_NAME

Marketing

1 row selected.
sqL>

a/ Using the DEFINE command without any arguments shows all the defined

P variables.

74 Chapter 2 = Introducing SQL

SQL> define

DEFINE _DATE = "13-JUL-13" (CHAR)

DEFINE _CONNECT_IDENTIFIER = "012c01" (CHAR)

DEFINE _USER = "HR" (CHAR)

DEFINE _PRIVILEGE = """ (CHAR)

DEFINE _SQLPLUS_RELEASE = "1201000100" (CHAR)

DEFINE _EDITOR = "Notepad" (CHAR)

DEFINE _O_VERSION = "Oracle Database 12c Enterprise Edition Release 12.1.0.

1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions" (CHAR)

DEFINE _O_RELEASE

""1201000100" (CHAR)

DEFINE _RC = "0" (CHAR)
DEFINE DEPT = "20" (CHAR)
SQL>

A dot (.) is used to append characters immediately after the substitution variable. The
dot separates the variable name and the literal that follows immediately. If you need a dot
to be part of the literal, provide two dots continuously. For example, the following query
appends _REP to the user input when seeking a value from the JOBS table:

SQL> SELECT job_id, job_title FROM jobs
2* WHERE job_id = '&JOB._REP'

SQL> /

Enter value for job: MK

old 2: WHERE JOB_ID = '&JOB._REP'

new 2: WHERE JOB_ID = 'MK_REP'

JOB_ID JOB_TITLE

MK_REP Marketing Representative

1 row selected.
SQL>

The following example shows the use of a dot as part of the literal.

SQL> SELECT file_name

2 FROM mytraces

3 WHERE file_name like '&DB.%&PROCID..trc';
Enter value for db: C12DB1

Accepting Values at Runtime

Enter value for procid: 25285
old 3: WHERE file_name like '&DB.%&PROCID..trc'
new 3: WHERE file_name like 'C12DB1%25285.trc'

FILE_NAME

C12DB1_aqgpc_25285.trc

The old line with the variable and the new line with the substitution are displayed. You
can turn off this display by using the command SET VERIFY OFF.

Saving a Variable for a Session

Consider the following SQL code, saved to a file named ex01.sql. When you execute this
script file, you will be prompted for the COL1 and COL2 values multiple times:

SQL> SELECT &COL1, &COL2

2 FROM &TABLE

3 WHERE &COL1 = '&VAL'

4 ORDER BY &COL2

5
SQL> SAVE ex01
Created file ex0l.sql
SQL> @ex01
Enter value for coll: FIRST_NAME
Enter value for col2: LAST_NAME
old 1: SELECT &COL1, &COL2
new 1: SELECT FIRST_NAME, LAST_NAME
Enter value for table: EMPLOYEES
old 2: FROM &TABLE
new 2: FROM EMPLOYEES
Enter value for coll: FIRST_NAME
Enter value for val: John
old 3: WHERE &COL1 = '&VAL'
new 3: WHERE FIRST_NAME = 'John'
Enter value for col2: LAST_NAME
old 4: ORDER BY &COL2
new 4: ORDER BY LAST_NAME

15

76 Chapter 2 = Introducing SQL

FIRST_NAME LAST_NAME
John Chen

John Russell
John Seo

3 rows selected.
SQL>

The user can enter different or wrong values for each prompt. To avoid multiple prompts,
use a double ampersand (&&), where the variable is saved for the session.

To clear a defined variable, you can use the UNDEFINE command. Let’s edit the ex01.sql
file to make it look like this:

SELECT &&COL1, &&COL2

FROM &TABLE

WHERE &COL1 = '&VAL'

ORDER BY &COL2

/

Enter value for coll: first_name

Enter value for col2: last_name

old 1: SELECT &&COL1, &&COL2

new 1: SELECT first_name, last_name

Enter value for table: employees

old 2: FROM &TABLE

new 2: FROM employees

Enter value for val: John

old 3: WHERE &COL1 = '&VAL'

new 3: WHERE first_name = 'John'

old 4: ORDER BY &COL1
4

new : ORDER BY first_name

FIRST_NAME LAST_NAME
John Chen

John Russell
John Seo

UNDEFINE COL1 COL2

Accepting Values at Runtime 17

Using Positional Notation for Variables

Instead of variable names, you can use positional notation, where each variable is identi-
fied by &1, &2, and so on. The values are assigned to the variables by position. Do this by
putting an ampersand (&), followed by a numeral, in place of a variable name. Consider
the following query:

SQL> SELECT department_name, department_id
2 FROM departments
3 WHERE &1 = &2;

Enter value for 1: DEPARTMENT_ID

Enter value for 2: 10

old 3: WHERE &1 = &2

new 3: WHERE DEPARTMENT_ID = 10

DEPARTMENT_NAME DEPARTMENT_ID

Administration 10

1 row selected.
SQL>

If you save the SQL as a script file, you can submit the substitution-variable values
while invoking the script (as command-line arguments). Each time you run this command
file, START replaces each &1 in the file with the first value (called an argument) after START
filename, then replaces each &2 with the second value, and so forth. Here is an example
of saving and running the previous query:

SQL> SAVE ex02

Created file ex02.sql

SQL> SET VERIFY OFF

SQL> @ex02 department_id 20

DEPARTMENT_NAME DEPARTMENT_ID

Marketing 20

1 row selected.
SQL>

Although we did not specify two ampersands for positional substitution variables,
SQL*Plus keeps the values of these variables for the session (because we passed the values
as parameters to a script file). The next time you run any script with positional substitution
variables, Oracle will use these values to execute the script.

78 Chapter 2 =« Introducing SQL

Summary

This chapter started off by reviewing the fundamentals of SQL. You got a quick introduc-
tion to the Oracle datatypes, operators, and literals. You learned to write simple queries
using the SELECT statement. You also learned to use the WHERE clause and the ORDER BY
clause in this chapter.

The CHAR and VARCHAR2 datatypes are used to store alphanumeric information.
The NUMBER datatype is used to store any numeric value. Date values can be stored using
the DATE or TIMESTAMP datatypes. Oracle has a wide range of operators: arithmetic,
concatenation, comparison, membership, logical, pattern matching, range, existence, and
NULL checking. The CASE expression is used to bring conditional logic to SQL.

Data in the Oracle database is managed and accessed using SQL. A SELECT statement
is the basic form of querying or reading records from the database table. You can limit the
rows using the FETCH clause and filter the rows using the WHERE clause. You can use the AND
and OR logical operators to join multiple filter conditions. The ORDER BY clause is used to sort
the result set in a particular order. You can use an ampersand (&) character to substitute a
value at runtime.

Exam Essentials

Understand the operators. Know the various operators that can be used in queries. The
parentheses around an expression change the precedence of the operators.

Understand the WHERE clause. The WHERE clause specifies a condition by which to filter the
rows returned. You cannot use column alias names in this clause.

Understand the ORDER BY clause. The ORDER BY clause is used to sort the result set from
a query. You can specify ascending order or descending order for the sort. Ascending order
is the default. Also know that column alias names can be used in the ORDER BY clause. You
can also specify columns by their position.

Know how to specify string literals using the Q/q operator. You can use the Q or q operator
to specify the quote delimiters in string literals. Understand the difference between using the
(, <, {, and [characters and other delimiters.

Know the order of clauses in the SELECT statement. The SELECT statement must have a
FROM clause. The WHERE clause, if it exists, should follow the FROM clause and precede the
ORDER BY clause. OFFSET and FETCH clauses should follow ORDER BY.

Know the use of the DUAL table. The DUAL table is a special table in Oracle with one col-
umn and one row. This table is commonly used to get the values of system variables such
as SYSDATE or USER.

Exam Essentials 19

Know the characters used for pattern matching. The % character is used to match zero or
more characters. The _ character is used to match one, and only one, character. The SQL
operator used with a pattern-matching character is LIKE.

Know the sort order of NULL values in queries with an ORDER BY clause. By default, in an
ascending-order sort, the NULL values appear at the bottom of the result set—that is, NULLs
are sorted higher. For descending-order sorts, NULL values appear at the top of the result
set—again, NULL values are sorted higher.

Understand the FETCH clause. The FETCH clause specifies a value to limit the number or
rows returned. The OFFSET clause may be used along with FETCH to skip a certain number
of rows before returning the result set.

80 Chapter 2 = Introducing SQL

Review Questions

1. You issue the following query:

SELECT salary "Employee Salary"
FROM employees;

How will the column heading appear in the result?
A. EMPLOYEE SALARY

B. EMPLOYEE_SALARY

C. Employee Salary

D. employee_salary

2. The EMP table is defined as follows:

Column Datatype Length
EMPNO NUMBER 4
ENAME VARCHAR2 30
SALARY NUMBER 14,2
COMM NUMBER 10,2
DEPTNO NUMBER 2

You perform the following two queries:

1. SELECT empno enumber, ename FROM emp ORDER BY 1;
2. SELECT empno, ename FROM emp ORDER BY empno ASC;
Which of the following is true?

A. Statements 1 and 2 will produce the same result in data.
B. Statement 1 will execute; statement 2 will return an error.
C. Statement 2 will execute; statement 1 will return an error.
D

. Statements 1 and 2 will execute but produce different results.

Review Questions 81

3. You issue the following SELECT statement on the EMP table shown in question 2.
SELECT (200+((salary*x0.1)/2)) FROM emp;

What will happen to the result if all the parentheses are removed?

A. No difference, because the answer will always be NULL.

B. No difference, because the result will be the same.

C. The result will be higher.

D. The result will be lower.

4. In the following SELECT statement, which component is a literal? (Choose all that apply.)

SELECT 'Employee Name: ' || ename
FROM emp WHERE deptno = 10;

A. 10

B. ename

C. Employee Name:
D. ||
5. What will happen if you query the EMP table shown in question 2 with the following?

SELECT empno, DISTINCT ename, salary

FROM emp;

A. EMPNO, unique values of ENAME, and then SALARY are displayed.

B. EMPNO and unique values of the two columns, ENAME and SALARY, are displayed.
C. DISTINCT is not a valid keyword in SQL.

D. No values will be displayed because the statement will return an error.

6. Which clause in a query restricts the rows selected?
A. ORDER BY

B. WHERE

C. SELECT

D. FROM

82 Chapter 2 = Introducing SQL

7. The following listing shows the records of the EMP table:

EMPNO ENAME SALARY COMM DEPTNO
7369 SMITH 800 20
7499 ALLEN 1600 300 30
7521 WARD 1250 500 30
7566 JONES 2975 20
7654 MARTIN 1250 1400 30
7698 BLAKE 2850 30
7782 CLARK 2450 24500 10
7788 SCOTT 3000 20
7839 KING 5000 50000 10
7844 TURNER 1500 0 30
7876 ADAMS 1100 20
7900 JAMES 950 30
7902 FORD 3000 20
7934 MILLER 1300 13000 10

When you issue the following query, which value will be displayed in the first row?

SELECT empno

FROM emp

WHERE deptno = 10
ORDER BY ename DESC;

A. MILLER

B. 7934

C. 7876

D. No rows will be returned because ename cannot be used in the ORDER BY clause.
8. Refer to the listing of records in the EMP table in question 9. How many rows will the

following query return?

SELECT * FROM emp WHERE ename BETWEEN 'A' AND 'C'

A. 4

.2

B
C. A character column cannot be used in the BETWEEN operator.
D. 3

Review Questions

9. Refer to the EMP table in question 2. When you issue the following query, which line
has an error?

1. SELECT empno "Enumber", ename "EmpName"
2. FROM emp
3. WHERE deptno = 10
4. AND "Enumber" = 7782
5. ORDER BY "Enumber";
A 1
B. §
C. 4

D. No error; the statement will finish successfully.
10. You issue the following query:

SELECT empno, ename
FROM emp

WHERE empno = 7782
OR empno = 7876;

Which other operator can replace the OR condition in the WHERE clause?
A. IN
BETWEEN ... AND ...

LIKE
<=

mOo o

>=

84 Chapter 2 = Introducing SQL

11. Which statement searches for PRODUCT_ID values that begin with DI_ from the
ORDERS table?

A. SELECT * FROM ORDERS

WHERE PRODUCT_ID = 'DI%';
B. SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_' ESCAPE '\';
C. SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_%' ESCAPE '\';
D. SELECT x FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_' ESCAPE '\';
E. SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_%' ESCAPE '\';

12. COUNTRY_NAME and REGION_ID are valid column names in the COUNTRIES table. Which
one of the following statements will execute without an error?

A. SELECT country_name, region_id,CASE region_id = 1 THEN 'Europe',
region_id = 2 THEN 'America', region_id = 3 THEN 'Asia', ELSE 'Other'
END ContinentFROM countries;

B. SELECT country_name, region_id,CASE (region_id WHEN 1 THEN 'Europe',
WHEN 2 THEN 'America', WHEN 3 THEN 'Asia', ELSE 'Other') ContinentFROM
countries;

C. SELECT country_name, region_id,CASE region_id WHEN 1 THEN 'Europe'
WHEN 2 THEN 'America' WHEN 3 THEN 'Asia' ELSE 'Other' END ContinentFROM
countries;

D. SELECT country_name, region_id,CASE region_id WHEN 1 THEN 'Europe'
WHEN 2 THEN 'America' WHEN 3 THEN 'Asia' ELSE 'Other' ContinentFROM
countries;

Review Questions 85

13. The EMPLOYEE table has the following data:

EMP_NAME HIRE_DATE SALARY
SMITH 17-DEC-90 800
ALLEN 20-FEB-91 1600
WARD 22-FEB-91 1250
JONES 02-APR-91 5975
WARDEN 28-SEP-91 1250
BLAKE 01-MAY-91 2850

What will be the value in the first row of the result set when the following query
is executed?
SELECT hire_date FROM employee ORDER BY salary, emp_name;
A. 02-APR-91
B. 17-DEC-90
C. 28-SEP-91
D. The query is invalid, because you cannot have a column in the ORDER BY clause
that is not part of the SELECT clause.
14. Which SQL statement will query the EMPLOYEES table for FIRST_NAME, LAST_NAME, and
SALARY of all employees in DEPARTMENT_ID 40 in the alphabetical order of last name?

A. SELECT first_name last_name salary FROM employees ORDER BY last_name
WHERE department_id = 40;

B. SELECT first_name, last_name, salaryFROM employees ORDER BY last_name
ASC WHERE department_id = 40;

C. SELECT first_name last_name salary FROM employees WHERE department_id
= 40 ORDER BY last_name ASC;

D. SELECT first_name, last_name, salary FROM employees WHERE
department_id = 40 ORDER BY last_name;

E. SELECT first_name, last_name, salary FROM TABLE employees WHERE
department_id IS 40 ORDER BY last_name ASC;
15. Column alias names cannot be used in which clause?
A. SELECT clause
B. WHERE clause
C. ORDER BY clause
D

. None of the above

86

Chapter 2 = Introducing SQL

16. What is wrong with the following statements submitted in SQL*Plus?

DEFINE V_DEPTNO = 20

SELECT LAST_NAME, SALARY

FROM EMPLOYEES

WHERE DEPARTMENT_ID = V_DeptNo;

A.

Nothing is wrong. The query lists the employee name and salary of the employees
who belong to department 20.

The DEFINE statement declaration is wrong.
The substitution variable is not preceded with the & character.

The substitution variable in the WHERE clause should be V_DEPTNO instead
of V_DeptNo.

17. Which two statements regarding substitution variables are true?

A.

&variable is defined by SQL*Plus, and its value will be available for the duration
of the session.

&&variable is defined by SQL*Plus, and its value will be available for the duration
of the session.

&n (where n is any integer) variables are defined by SQL*Plus when values are
passed in as arguments to the script, and their values will be available for the dura-
tion of the session.

&&variable is defined by SQL*Plus, and its value will be available only for every
reference to that variable in the current SQL.

Review Questions

18. Look at the data in table PRODUCTS. Which SQL statements will list the items on the
BL shelves? (Show the result with the most available quantity at the top row.)

PRODUCT_ID PRODUCT_NAME SHELF AVAILABLE_QTY
1001 CREST BL36 354
1002 COLGATE BL36 54
1003 AQUAFRESH BL37 43
2002 SUNNY-D LA21 53
2003 CAPRISUN LA22 45

A. SELECT * FROM products
WHERE shelf 1like '%BL'
ORDER BY available_qty SORT DESC;
B. SELECT x FROM products
WHERE shelf 1like 'BL%';
C. SELECT * FROM products
WHERE shelf = 'BL%'
ORDER BY available_qty DESC;
D. SELECT * FROM products
WHERE shelf like 'BL%'
ORDER BY available_qty DESC;
E. SELECT * FROM products
WHERE shelf like 'BL%'
ORDER BY available_qty SORT;

88 Chapter 2 = Introducing SQL

19. The EMP table has the following data:

EMPNO ENAME SAL COMM
7369 SMITH 800
7499 ALLEN 1600 300
7521 WARD 1250 500
7566 JONES 2975
7654 MARTIN 1250 1400
7698 BLAKE 2850
7782 CLARK 2450
7788 SCOTT 3000
7839 KING 5000
7844 TURNER 1500 0
7876 ADAMS 1100
7900 JAMES 950
7902 FORD 3000
7934 MILLER 1300

Consider the following two SQL statements:

1. SELECT empno, ename, sal, comm
FROM emp WHERE comm IN (0, NULL);
2. SELECT empno, ename, sal, comm
FROM emp WHERE comm = © OR comm IS NULL;
1 and 2 will produce the same result.

1 will error; 2 will work fine.

o w »

1 and 2 will produce different results.

D. 1 and 2 will work but will not return any rows.

20. Consider the EMP table in the previous question. Which SQL code will retrieve the
names of employees whose salary is at the fourth position from top?

A. SELECT ename, sal FROM emp ORDER BY 2 DESC OFFSET 3 ROWS FETCH NEXT 1
ROW WITH TIES;

B. SELECT ename, sal FROM emp ORDER BY 2 OFFSET 3 ROWS FETCH NEXT 1 ROW;

C. SELECT ename, sal FROM emp ORDER BY 2 DESC OFFSET 4 ROWS FETCH NEXT 1
ROW ONLY;

D. SELECT ename, sal FROM emp ORDER BY 2 FETCH FIRST 4 ROWS ONLY;

Using Single-Row
Functions

ORACLE DATABASE 12c: SQL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Using Single-Row Functions to Customize Output
= Describe various types of functions available in SQL.
= Use character, number, and date functions in SELECT

statements.

v Using Conversion Functions and Conditional Expressions

= Describe various types of conversion functions that are
available in SQL.

= Usethe TO_CHAR, TO_NUMBER, and TO_DATE conversion
functions.

= Apply conditional expressions in a SELECT statement.

Functions are programs that take zero or more arguments

and return a single value. Oracle has built a number of func-
- tions into SQL, and these functions can be called from SQL

statements. The functions can be classified into many groups:

Single-row functions

Aggregate functions (also known as group functions)
Analytical functions and regular expression functions
National-language functions

Object-reference functions

Programmer-defined functions

The certification exam focuses on single-row and aggregate functions, so only those
types are covered in this book. Single-row functions are covered in this chapter, and aggre-
gate functions are covered in Chapter 4, “Using Group Functions.”

Single-row functions operate on expressions derived from columns or literals, and they
are executed once for each row retrieved. In this chapter, we will cover which single-row
functions are available, the rules for how to use them, and what to expect on the exam
regarding them.

Single-row functions also include conversion functions. Conversion functions are used
to convert the datatype of the input value to a different datatype. The Oracle database has
conditional expressions and functions. We discussed the conditional expression CASE in
Chapter 2, “Introducing SQL.” In this chapter, we will also discuss the conditional func-
tion DECODE.

Single-Row Function Fundamentals

Many types of single-row functions are built into SQL. They include character, numeric,
date, conversion, and miscellaneous single-row functions, as well as programmer-written
stored functions.

All single-row functions can be incorporated into SQL (and PL/SQL). You can use these
single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT statements. For
example, the following query includes the TO_CHAR, UPPER, and SOUNDEX single-row functions:

SELECT first_name, TO_CHAR(hire_date,'Day, DD-Mon-YYYY'")
FROM employees

Single-Row Function Fundamentals 91

WHERE UPPER(first_name) LIKE 'AL%'
ORDER BY SOUNDEX(first_name);

Single-row functions also can appear in other types of statements, such as the SET clause
of an UPDATE statement, the VALUES clause of an INSERT statement, and the WHERE clause of a
DELETE statement. The certification exam tends to focus on using functions in SELECT state-
ments, so we will use examples of SELECT statements in this chapter. For completeness, many
functions are discussed in this chapter, but the certification exam tends to focus on NULL
functions, date functions, and conversion functions.

The built-in functions presented in this chapter are grouped by topic (character functions,
date functions, and so on), and within each topic they appear in alphabetical order. Before
we get into the different types of functions, let’s start with the functions that are used to
handle NULL values.

)’ Functions can be nested so that the output from one function is used as
A&TE input to another. Nested functions can include single-row functions nested
within group functions or group functions nested within either single-row
functions or other group functions.

Functions for NULL Handling

One area in which beginners frequently have difficulty and where even veterans sometimes
stumble is the treatment of NULLs. You can expect at least one question on the exam to
address the use of NULLs, but it probably won’t look like a question on the use of NULLs.

NULL values represent unknown data or a lack of data. Any operation on a NULL results in
a NULL. This NULL-in/NULL-out model is followed for most functions as well. Oracle Database
12¢ has six NULL-handling functions; we’ll give special attention to the NVL, NVL2, and
COALESCE functions because these are commonly used.

NVL

The NVL function is used to replace a NULL value with a literal value. NVL takes two
arguments, NVL(x1, x2), where xI and x2 are expressions. The NVL function returns x2
if xIis NULL. If xI is not NULL, then x1I is returned. The arguments xI and x2 can be of
any datatype. If xI1 and x2 are not of the same datatype, Oracle tries to convert them to
the same datatype before performing the comparison.

For example, suppose you need to calculate the total compensation in the EMPLOYEES
table, which contains SALARY and COMMISSION_PCT columns (NULL values are displayed with
a question mark (?) for readability using the SET NULL ? command of SQL*Plus):

SELECT first_name, salary, commission_pct,

salary + (salary * commission_pct) compensation
FROM employees
WHERE first_name LIKE 'T%';

92 Chapter 3 = Using Single-Row Functions

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION
Tayler 9600 .2 11520
Timothy 2900 ? ?
TJ 2100 ? ?
Trenna 3500 ? ?

As you can see in the table, the total compensation is being calculated only on Tayler; all
others have their total compensation as NULL. This is because any operation on NULL results
in a NULL.

You can use the NVL function to substitute a zero in place of any NULL you encounter,
like this:

SELECT first_name, salary, commission_pct,

salary + (salary * NVL(commission_pct,0)) compensation
FROM employees
WHERE first_name LIKE 'T%';

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION
Tayler 9600 .2 11520
Timothy 2900 ? 2900
TJ 2100 ? 2100
Trenna 3500 ? 3500

When you used the NVL function to substitute zero for NULL, the total compensation
was calculated correctly. For the employees who do not have a commission, the salary
and compensation are the same.

NVL2

The function NVL2 is a variation of NVL. NVL2 takes three arguments, NVL2 (x1, x2, x3),
where x1, x2, and x3 are expressions. NVL2 returns x3 if xI is NULL, and x2 if xI is not NULL.

For the example presented in the previous section, you could also use the NVL2 function
and write the code a bit differently:

SELECT first_name, salary, commission_pct, NVL2(commission_pct,
salary + salary * commission_pct, salary) compensation

FROM employees

WHERE first_name LIKE 'T%';

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION

Single-Row Function Fundamentals 93

Trenna 3500 3500
Tayler 9600 .2 11520
Timothy 2900 2900

Using the NVL2 function, if COMMISSION_PCT is not NULL, then salary + salary x
commission_pct is returned. If COMMISSION_PCT is NULL, then just SALARY is returned.

The NVL function allows you to perform some value substitution for NULLs. The NVL2
function, on the other hand, allows you to implement an IF..THEN..ELSE construct based
on the nullity of data. Both are useful tools to deal with NULL values.

when to use an NVL function in a calculation. Such a question probably
won't mention NVL and may not look like it is testing your knowledge
of NULLs. If sample data is given as an exhibit, be sure to look for data
columns with NULL values and whether they are used in the SQL code
presented to you.

é/ Be prepared for a possible exam question that tests your knowledge of
P

COALESCE

COALESCE is a generalization of the NVL function. COALESCE (exp_1list) takes more than
one argument, where exp_listis a list of arguments separated by commas. This function
returns the first non-NULL value in exp_17ist. If all expressions in exp_1list are NULL, then
NULL is returned. Each expression in exp_17st should be the same datatype, or else Oracle
tries to convert them implicitly.

For example, COALESCE (x1, x2, x3) would be evaluated as the following:

If x1 is not NULL, then
Return x1
Else
Check x2
If x2 is not NULL, then
Return x2
Else
Check x3
If x3 is not NULL, then
Return x3
Else
Return NULL
End If
End If
End If

Consider the following example. The objective is to find the total salary based on
COMMISSION_PCT. If COMMISSION_PCT is not NULL, calculate SALARY using COMMISSION_PCT.

9 Chapter 3 = Using Single-Row Functions

If COMMISSION_PCT is NULL, then give $100 as commission. If SALARY is not defined (NULL)
for an employee, give the minimum salary of $900.

SELECT last_name, salary, commission_pct AS comm,
COALESCE (salary+salaryxcommission_pct,
salary+100, 900) compensation
FROM employees
WHERE last_name like 'T%';

LAST_NAME SALARY COMM COMPENSATION
Taylor 8600 .2 10320
Taylor 3200 3300
Tobias 900
Tucker 10000 .3 13000
Tuvault 7000 .15 8050

As you can see in the example, using the COALESCE function helps you avoid writing several
IF..THEN conditions, as well as avoid writing several nested NVL functions. You could write the
same SQL using the CASE statement you learned about in Chapter 2 as follows:

SELECT last_name, salary, commission_pct AS comm,
(CASE WHEN salary IS NULL THEN 900
WHEN commission_pct IS NOT NULL
THEN salary+salary*commission_pct
WHEN commission_pct IS NULL THEN salary+100
ELSE @ END) AS compensation
FROM employees
WHERE last_name like 'T%';

LAST_NAME SALARY COMM COMPENSATION
Tayler 8600 .2 10320
Tayler 3200 3300
Tobias 900
Tucker 10000 .3 13000
Tuvault 7000 .15 8050

Try using WHEN salary IS NULL as the third condition in the CASE statement (instead of
the first condition), and find out whether you see any difference in the result.

Using Single-Row Character Functions 95

Using Single-Row Character Functions

Single-row character functions operate on character data. Most have one or more character
arguments, and most return character values. Character functions take the character input
value and return a character or numeric value. If the input to the function is a literal, be
sure to enclose it in single quotes. The exam focuses on many commonly used character
functions such as SUBSTR, INSTR, and LENGTH. When reading about these functions, pay par-
ticular attention to the commonly used functions. Even experienced programmers get con-
fused with the REPLACE and TRANSLATE functions. In the following sections, we will review
the single-row character functions in detail.

Character Function Overview

Table 3.1 summarizes the single-row character functions. We will cover each of these
functions in the “Character Function Descriptions” section.

TABLE 3.1 Character Function Summary

Function Description

ASCII Returns the ASCII decimal equivalent of a character

CHR Returns the character given the decimal equivalent

CONCAT Concatenates two strings; same as the operator | |

INITCAP Returns the string with the first letter of each word in uppercase
INSTR Finds the numeric starting position of a string within a string
INSTRB Same as INSTR but counts bytes instead of characters
LENGTH Returns the length of a string in characters

LENGTHB Returns the length of a string in bytes

LOWER Converts a string to all lowercase

LPAD Left-fills a string to a set length using a specified character
LTRIM Strips leading characters from a string

REPLACE Performs substring search and replace

96 Chapter 3 = Using Single-Row Functions

TABLE 3.1 Character Function Summary (continued)

Function Description

RPAD Right-fills a string to a set length using a specified character
RTRIM Strips trailing characters from a string

SOUNDEX Returns a phonetic representation of a string

SUBSTR Returns a section of the specified string, specified by numeric

character positions

SUBSTRB Returns a section of the specified string, specified by numeric
byte positions

TRANSLATE Performs character search and replace

TRIM Strips leading, trailing, or both leading and trailing characters
from a string

UPPER Converts a string to all uppercase

The functions ASCII, INSTR, LENGTH, and REGEXP_INSTR return number values, although
they take character datatype as the input.

Character Function Descriptions

Over the years, Oracle has added several functions to its library to make the lives of
developers easy so that they do not have to write built-in functions. Oracle has a func-
tion for most of the day-to-day programming needs. Before you write your own custom-
developed piece of code, it is always a good idea to scan the Oracle documentation on
built-in functions.

The character functions in the following sections are arranged in alphabetical order,
with descriptions and examples of each one.

ASCII

ASCII(cl) takes a single argument, where c1is a character string. This function returns
the ASCII decimal equivalent of the first character in c1.

See also CHR() for the inverse operation.

dﬁTE

Using Single-Row Character Functions 97

SELECT ASCII('A') Big_A, ASCII('z') Little_Z, ASCII('AMER')
FROM dual;

BIG_A LITTLE_Z ASCII('AMER')

CHR

CHR(7 [USING NCHAR_CS]) takes a single argument, where 7 is an integer. This function
returns the character equivalent of the decimal (binary) representation of the character. If
the optional USING NCHAR_CS is included, the character from the national character set is
returned. The default behavior is to return the character from the database character set.

SELECT CHR(65), CHR(122), CHR(223)
FROM dual;

CHAR6E5 CHAR122 CHAR233

CONCAT

CONCAT (c1,c2) takes two arguments, where cI and c2 are both character strings. This func-
tion returns c2 appended to cI. If cI is NULL, then c2 is returned. If c2 is NULL, then cI is
returned. If both cI and c2 are NULL, then NULL is returned. CONCAT returns the same results
as using the concatenation operator: c1//c2. In the following example, notice the use of the
nested function—a function inside a function—as an argument:

SELECT CONCAT(CONCAT(first_name, ' '), last_name) employee_name,
first_name || ' ' || last_name AS alternate_method

FROM employees

WHERE department_id = 30;

EMPLOYEE_NAME

Den Raphaely
Alexander Khoo
Shelli Baida
Sigal Tobias

Guy Himuro

Karen Colmenares

ALTERNATE_METHOD

Den Raphaely
Alexander Khoo
Shelli Baida
Sigal Tobias

Guy Himuro

Karen Colmenares

98 Chapter 3 = Using Single-Row Functions

INITCAP

INITCAP(c1) takes a single argument, where c1 is a character string. This function returns
c1 with the first character of each word in uppercase and all others in lowercase. Words are
delimited by white space or characters that are not alphanumeric.

SELECT data_value, INITCAP(data_value) initcap_example
FROM sample_data;

DATA_VALUE INITCAP_EXAMPLE

THE three muskETeers The Three Musketeers
ali andx41xthieves Ali And*41xThieves

mississippi Mississippi
mister INDIA Mister India
INSTR

INSTR(cl,c2[,17[,j]]) takes four arguments, where cI and c2 are character strings and 7
and j are integers. This function returns the numeric character position in c1 where the j
occurrence of ¢2 is found. The search begins at the 7 character position in c1. INSTR returns
a 0 when the requested string is not found. If 7 is negative, the search is performed backward,
from right to left, but the position is still counted from left to right. Both 7 and j default to 1,
and j cannot be negative.

The following example finds the first occurrence of 7 in the string starting from the
fourth position of the string:

SELECT data_value, INSTR(data_value,'i',4,1) instr_example
FROM sample_data;

DATA_VALUE INSTR_EXAMPLE Comment
THE three muskETeers 0 There is no "i" in the data value; so "0"
ali and*x41xthieves 14 The first "i" is skipped, since we start

at the 4th position. So the "i" in the 14th
position is picked
mississippi 5 the first "i" in 2nd position is skipped
mister INDIA © INDIA has an "I" (upper case); so no
match for "i"

Here is another example using a negative argument for the beginning character position.
The search for the is string will start at the fourth position from the end and move to the left.

SELECT data_value, INSTR(data_value,'is',-4,1) instr_example
FROM sample_data;

Using Single-Row Character Functions 99

DATA_VALUE INSTR_EXAMPLE

THE three muskETeers
ali and*4lxthieves
mississippi

mister INDIA

INSTRB

INSTRB(cl,c2[,7[,7]]) is the same as INSTR(), except it returns bytes instead of characters.
For single-byte character sets, INSTRB() is equivalent to INSTR().

LENGTH

LENGTH(c) takes a single argument, where c is a character string. This function returns the
numeric length in characters of c. If ¢is NULL, a NULL is returned.

SELECT data_value, LENGTH(data_value) length_example
FROM sample_data;

DATA_VALUE LENGTH_EXAMPLE
THE three muskETeers 20
ali and*41xthieves 18
mississippi 11
mister INDIA 12
LENGTHB

LENGTHB(c) is the same as LENGTH(), except it returns bytes instead of characters. For single-
byte character sets, LENGTHB() is equivalent to LENGTH().

LOWER

LOWER(c) takes a single argument, where c is a character string. This function returns the
character string ¢ with all characters in lowercase.

y See also UPPER for the inverse operation.

A ITE

SELECT data_value, LOWER(data_value) lower_example
FROM sample_data;

100 Chapter 3 = Using Single-Row Functions

DATA_VALUE LOWER_EXAMPLE

THE three muskETeers the three musketeers
ali andx41xthieves ali and*4lxthieves

mississippi mississippi
mister INDIA mister india
LPAD

LPAD(cl, 7 [,c2]) takes three arguments, where cI and c2 are character strings and 7 is
an integer. This function returns the character string cI expanded in length to 7 characters,
using c2 to fill in space as needed on the left side of c1. If c1is more than 7 characters, it is
truncated to 7 characters. c¢2 defaults to a single space.

See also RPAD.
A ITE

The following example adds x to the SALARY column toward the left side. Because it does
not specify a fill-in character when LPAD is applied to last_name, Oracle uses the default
space as the fill-in character.

SELECT LPAD(last_name,10) 1lpad_lname,
LPAD(salary,8,'x') 1lpad_salary

FROM employees

WHERE last_name like 'J%';

LPAD_LNAME LPAD_SAL

Johnson **xxx6200
Jones *xx%x2800

LTRIM

LTRIM(cl [,c2]) takes two arguments, where c1 and c2 are character strings. This func-
tion returns cI without any leading characters that appear in ¢2. If no ¢2 characters are
leading characters in c1, then c1 is returned unchanged. c2 defaults to a single space.

See also RTRIM and TRIM.
Ps ITE

Using Single-Row Character Functions 101

SELECT LTRIM('Mississippi','Mis') testl

,LTRIM('Rpadded ") test2
,LTRIM("' Lpadded') test3
,LTRIM("' Lpadded', 'Z') test4

FROM dual;

TES TEST2 TEST3 TEST4

ppi Rpadded Lpadded Lpadded

In the previous example, all occurrences of the trimmed characters M, 1, and s are
trimmed from the input string Mississippi, beginning on the left (with M) and continuing
until the first character that is not an M, 1, or s is encountered. Note that the trailing 7 is not
trimmed; only the leading characters are removed. In TEST4, there is no occurrence of Z, so
the input string is returned unchanged.

REPLACE

REPLACE (cI1, c2 [,c3]) takes three arguments, where c1, c2, and ¢3 are character strings.
This function returns cI with all occurrences of c2 replaced with ¢3. ¢3 defaults to NULL. If
c31is NULL, all occurrences of c2 are removed. If c2 is NULL, then c1 is returned unchanged.

If cIis NULL, then NULL is returned.

SELECT REPLACE('uptown','up','down') FROM dual;

REPLACE (

downtown

This function can come in handy when you need to perform some dynamic substitu-
tions. For example, suppose you have a number of indexes that were created in the _DATA
tablespace instead of in the _INDX tablespace:

SELECT 1index_name, tablespace_name
FROM user_indexes
WHERE tablespace_name like '%DATA%';

INDEX_NAME TABLESPACE_NAME
PK_DEPT HR_DATA
PK_PO_MASTER PO_DATA

You can generate the Data Definition Language (DDL) to rebuild these misplaced indexes
in the correct location. In this scenario, you know your tablespace naming convention has

102 Chapter 3 = Using Single-Row Functions

an INDX tablespace for every DATA tablespace. You use the REPLACE function to generate the
new tablespace name, replacing DATA with INDX. So, the HR index is rebuilt in the HR_INDX
tablespace, and the PO index is rebuilt in the PO_INDX tablespace.

SELECT 'ALTER INDEX '||index_name] |

" rebuild tablespace '||
REPLACE (tablespace_name, 'DATA', 'INDX')|| '; ' DDL
FROM user_indexes
WHERE tablespace_name LIKE '%DATA%';

ALTER INDEX PK_DEPT rebuild tablespace HR_INDX;
ALTER INDEX PK_PO_MASTER rebuild tablespace PO_INDX;

RPAD

RPAD(c1, 7 [, c2]) takes three arguments, where cI and c2 are character strings and 7 is
an integer. This function returns the character string c1 expanded in length to i characters,
using c2 to fill in space as needed on the right side of cI. If cI is more than 7 characters, it
is truncated to 7 characters. c2 defaults to a single space.

See also LPAD.

dﬁTE

SELECT RPAD(first_name,15,'.') rpad_fname, lpad(job_id,12,'.') lpad_jid
FROM employees
WHERE first_name like 'B%';

RPAD_FNAME LPAD_JID
Bruce.......... ..., IT_PROG
Britney........SH_CLERK
RTRIM

RTRIM(cI [,c2]) takes two arguments, where cI and c2 are character strings. This func-
tion returns cI without any trailing characters that appear in c2. If no ¢2 characters are
trailing characters in cI, then c1 is returned unchanged. c2 defaults to a single space.

Using Single-Row Character Functions 103

See also LTRIM and TRIM.

dﬁTE

SELECT RTRIM('Mississippi','ip') testl
,RTRIM('Rpadded ') test2
,RTRIM('Rpadded ', 'Z') test3
,RTRIM("' Lpadded') test4

FROM dual;

TEST1 TEST2 TEST3 TEST4

Mississ Rpadded Rpadded Lpadded

SOUNDEX

SOUNDEX (c1) takes a single argument, where c1 is a character string. This function returns the
Soundex phonetic representation of c1. The SOUNDEX function is usually used to locate names
that sound alike. The example returns the records with first names that sound like “Stevan.”

SELECT first_name, last_name
FROM employees
WHERE SOUNDEX(first_name) = SOUNDEX('Stevan');

FIRST_NAME LAST_NAME
Steven King
Steven Markle
Stephen Stiles
SUBSTR

SUBSTR(cI, x [, y]) takes three arguments, where c1 is a character string and both x and
y are integers. This function returns the portion of c1I that is y characters long, beginning
at position x. If x is negative, the position is counted backward (that is, right to left). This
function returns NULL if y is O or negative. y defaults to the remainder of string c1.

SELECT SUBSTR('The Three Musketeers',1,3) Partl
,SUBSTR('The Three Musketeers',5,5) Part2
,SUBSTR('The Three Musketeers',11) Part3
,SUBSTR('The Three Musketeers',-5) Part4

FROM dual;

104 Chapter 3 = Using Single-Row Functions

PAR PART2 PART3 PART4

The Three Musketeers teers

@ Real World Scenario
Parsing the Filename from the Whole Path

Let’s look at a real example from the life of a DBA. Suppose you want to extract only the
filename from dba_data_f1iles without the path name; you could use the following SQL
code. Here the INSTR function is nested inside a SUBSTR function. Single-row functions can
be nested to any level. When functions are nested, the innermost function is evaluated
first. The INSTR function is used to find the character position where the last backslash (\)
appears in the filename string (looking for the first occurrence from the end). This position
is passed into the SUBSTR function as the start position.

SELECT file_name,
SUBSTR(file_name, INSTR(file_name,'\', -1,1)+1) name
FROM dba_data_files;

FILE_NAME NAME
C:\ORACLE\ORADATA\W11GR1\USERS01.DBF USERSO1.DBF
C:\ORACLE\ORADATA\W11GR1\UNDOTBS01.DBF UNDOTBS01.DBF
C:\ORACLE\ORADATA\W11GR1\SYSAUX01.DBF SYSAUX01.DBF
C:\ORACLE\ORADATA\W11GR1\SYSTEMO1.DBF SYSTEMO1.DBF
C:\ORACLE\ORADATA\W11GR1\EXAMPLE@1.DBF = EXAMPLEO1.DBF

To perform the same operation on Unix or Linux databases, replace the backslash (\) in
the INSTR function with a regular slash (/), because a regular slash (/) is used on Linux/
Unix to separate directories.

Let’s review another example using the Linux or Unix platform. Suppose you want to
find all the file systems (mount points) used by your database; you could use the follow-
ing SQL:

SELECT DISTINCT
SUBSTR(file_name, 1, INSTR(file_name,'/', 1,2)-1) fs_name
FROM dba_data_files;

Using Single-Row Character Functions 105

FS_NAME
/u0l

/u@5
/ora_temp
/ora_undo

In this example, you started looking for the second occurrence of / using the INSTR func-
tion and used SUBSTR to extract only the characters from 1 through the location before
the second occurrence of / in the filename (hence the -1).

SUBSTRB

SUBSTRB(cl1, 7[, j]) takes three arguments, where cI is a character string and both 7
and j are integers. This function is the same as SUBSTR, except 7 and j are counted in bytes
instead of characters. For single-byte character sets, they are equivalent.

TRANSLATE

TRANSLATE(cl1, c¢2 ,c3) takes three arguments, where c1, ¢2, and ¢3 are character strings.
This function returns c1 with all occurrences of characters in ¢2 replaced with the position-
ally corresponding characters in ¢3. A NULL is returned if any of cI, ¢2, or c3is NULL. If ¢3
has fewer characters than c2, the unmatched characters in c2 are removed from c1. If c2 has
fewer characters than ¢3, the unmatched characters in ¢3 are ignored. TRANSLATE is similar
to the REPLACE function. REPLACE substitutes a single string from another string, whereas
TRANSLATE makes several single-character one-to-one substitutions.

The following example substitutes the asterisk (x) for a, pound sign (#) for e, and dollar
sign ($) for i; and it removes o and u from the last_name column:

SELECT last_name, TRANSLATE(last_name, 'aeiou', 'x#S$') no_vowel
FROM employees
WHERE last_name like 'S%';

LAST_NAME NO_VOWEL
Sarchand Sxrchxnd
Sciarra ScSxrrx
Seo S#

Smith Sm$th
Sullivan ST1Sv*n

Sully Slly

106 Chapter 3 = Using Single-Row Functions

Here is another example where the case is reversed; uppercase letters are converted to
lowercase, and lowercase letters are converted to uppercase:

SELECT data_value, TRANSLATE(data_value,
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' ,
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz')
FROM sample_data;

DATA_VALUE TRANSLATE (DATA_VALUE

THE three muskETeers the THREE MUSKetEERS
ali and*41lxthieves ALI AND*41*THIEVES

mississippi MISSISSIPPI
mister INDIA MISTER india
TRIM

TRIM([[c1] c2 FROM] c3) can take three arguments, where c2 and c3 are character
strings. If present, cI can be one of the following literals: LEADING, TRAILING, or BOTH. This
function returns ¢3 with all cI (leading, trailing, or both) occurrences of characters in c2
removed. A NULL is returned if any of c1, c2, or ¢3is NULL. cI defaults to BOTH. c2 defaults
to a space character. c¢3 is the only mandatory argument. If ¢2 or ¢3 is NULL, the function
returns a NULL. It is equivalent to applying both LTRIM and RTRIM on the string c3.

SELECT TRIM(' fully padded ') testl
,TRIM(! left padded') test2
,TRIM('right padded ') test3

FROM dual;

TEST1 TEST2 TEST3

fully padded left padded right padded

Another example of using the TRIM function is shown here. It removes (trims) character
“a” from the leading position and the trailing position. For the names Alana and Alyssa,

[P)

both the leading and the trailing “a” are removed; notice for the name Aalberto, both

€«

occurrences of the leading “a” are removed.

SELECT first_name, TRIM('a' FROM LOWER(first_name)) A_TRIMMED
FROM employees
WHERE first_name like 'A%';

FIRST_NAME

A_TRIMMED

Using Single-Row Character Functions

Amit
Alexis
Anthony
Aalberto
Adam
Alexander
Alyssa
Alexander
Allan
Alana

UPPER

UPPER(c) takes a single argument, where c is a character string. This function returns
the character string ¢ with all characters in uppercase. UPPER frequently appears in WHERE

mit
lexis
nthony
lberto
dam
lexander
lyss
lexander
1lan

lan

clauses when you’re not sure of the case of the data in the table.

A ITE

)’l See also LOWER.

SELECT first_name, last_name

FROM employees

WHERE UPPER(first_name) = 'JOHN';

FIRST_NAME

LAST_NAME

Chen
Russell
Seo

SELECT data_value, UPPER(data_value) upper_data

FROM sample_data;

DATA_VALUE

UPPER_DATA

THE three muskETeers THE THREE MUSKETEERS

ali and*41xthieves

ALI AND*41xTHIEVES

107

108 Chapter 3 = Using Single-Row Functions

mississippi MISSISSIPPI
mister INDIA MISTER INDIA

Using Single-Row Numeric Functions

When you think of numeric functions, the tasks that come to mind are finding a total, finding
the average, counting the number of records, and so on. These numeric functions are group
functions that operate on one or more rows. We’ll discuss group functions in Chapter 4.

In the following sections, we will review the numeric functions used on single rows.
Single-row numeric functions operate on numeric data and perform some kind of math-
ematical or arithmetic manipulation. When using a literal in a numeric function, do not
enclose it in single quotes. Literals in single quotes are treated as a character datatype.

Numeric Function Overview

Table 3.2 summarizes the single-row numeric functions in Oracle Database 12¢. We will
cover each of these functions in the “Numeric Function Descriptions” section.

TABLE 3.2 Numeric Function Summary

Function Description

ABS Returns the absolute value

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

ATAN2 Returns the arc tangent; takes two inputs
BITAND Returns the result of a bitwise AND on two inputs
CEIL Returns the next higher integer

COos Returns the cosine

COSH Returns the hyperbolic cosine

EXP Returns the base of natural logarithms raised to a power

Using Single-Row Numeric Functions 109

Function Description

FLOOR Returns the next smaller integer

LN Returns the natural logarithm

LOG Returns the logarithm

MOD Returns the modulo (remainder) of a division operation

NANVL Returns an alternative number if the value is Not a Number (NaN) for
BINARY_FLOAT and BINARY_DOUBLE numbers

POWER Returns a number raised to an arbitrary power

REMAINDER Returns the remainder in a division operation

ROUND Rounds a number

SIGN Returns an indicator of sign: negative, positive, or zero

SIN Returns the sine

SINH Returns the hyperbolic sine

SQRT Returns the square root of a number

TAN Returns the tangent

TANH Returns the hyperbolic tangent

TRUNC Truncates a number

WIDTH_BUCKET

Creates equal-width histograms

Numeric Function Descriptions

Numeric functions have numeric arguments and return numeric values. The trigonometric
functions all operate on radians, not degrees.
The numeric functions are arranged in alphabetical order, with descriptions and examples

of each one.

SIGN, ROUND, and TRUNC are most commonly used numeric functions—pay particular
attention to them. FLOOR, CEIL, MOD, and REMAINDER are also important functions that can
appear on the test. TRUNC and ROUND functions can take numeric input or datetime input.

110 Chapter 3 = Using Single-Row Functions

These two functions are discussed in the “Using Single-Row Date Functions™ section to
illustrate their behavior with a datetime datatype input.

ABS

ABS(n) takes a single argument, where nis a numeric datatype (NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE). This function returns the absolute value of n.

SELECT ABS(-52) negative, ABS(52) positive
FROM dual;

NEGATIVE POSITIVE

ACOS

ACOS(n) takes a single argument, where nis a numeric datatype between —1 and 1. This
function returns the arc cosine of n expressed in radians, accurate to 30 digits of precision.

SELECT ACOS(-1) PI, ACOS(0) ACOSZERO,
ACOS(.045) AC0OS045, ACOS(1) ZERO

FROM dual;

PI ACOSZERO AC0S045 ZERO
314159065 157079633 152sTeLIs 0
ASIN

ASIN(n) takes a single argument, where nis a numeric datatype between —1 and 1. This
function returns the arc sine of n expressed in radians, accurate to 30 digits of precision.

SELECT ASIN(1) high, ASIN(0) middle, ASIN(-1) low
FROM dual;

HIGH MIDDLE Low

1.57079633 0 -1.5707963

Using Single-Row Numeric Functions m

ATAN

ATAN(n) takes a single argument, where nis a numeric datatype. This function returns the
arc tangent of n expressed in radians, accurate to 30 digits of precision.

SELECT ATAN(9E99) high, ATAN(0) middle, ATAN(-9E99) low

FROM dual;

HIGH MIDDLE Low
e—— o -1.5707963
ATAN2

ATAN2 (n1, n2) takes two arguments, where nl and n2 are numbers. This function returns the
arc tangent of nl and n2 expressed in radians, accurate to 30 digits of precision. ATAN2 (n1,n2)
is equivalent to ATAN(n1/n2) if nl and n2 are positive integers.

SELECT ATAN2(9E99,1) high, ATAN2(0,3.1415) middle, ATAN2(-9E99,1) low
FROM dual;

HIGH MIDDLE Low
1.57079633 0 -1.5707963
BITAND

BITAND(n1, n2) takes two arguments, where nl and n2 are NUMBER datatypes. This func-
tion performs a bitwise AND operation on the two input values and returns the results, also
integers. It is used to examine bit fields.

Here are two examples of BITAND. The first one performs a bitwise AND operation on 6
(binary 0110) and 3 (binary 0011). The result is 2 (binary 0010). Similarly, the bitwise AND
between 8 (binary 1000) and 2 (binary 0010) is 0 (0000).

SELECT BITAND(6,3) T1, BITAND(8,2) T2
FROM dual;

112 Chapter 3 = Using Single-Row Functions

CEIL

CEIL(n) takes a single argument, where n is a numeric datatype. This function returns the
smallest integer that is greater than or equal to n. CEIL rounds up to a whole number.

)’. See also FLOOR.

A ITE

SELECT CEIL(9.8), CEIL(-32.85), CEIL(0), CEIL(5)
FROM dual;

CEIL(9.8) CEIL(-32.85) CEIL(0) CEIL(5)

CcOos

C0S(n) takes a single argument, where n is a numeric datatype in radians. This function
returns the cosine of n, accurate to 36 digits of precision.

SELECT COS(-3.14159) FROM dual;

COS(-3.14159)

COSH

COSH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic cosine of n, accurate to 36 digits of precision.

SELECT COSH(1.4) FROM dual;

COSH(1.4)

2.15089847

EXP

EXP(n) takes a single argument, where nis a numeric datatype. This function returns e (the
base of natural logarithms) raised to the n power, accurate to 36 digits of precision.

SELECT EXP(1) "e" FROM dual;

Using Single-Row Numeric Functions 13

2.71828183

FLOOR

FLOOR(n) takes a single argument, where nis a numeric datatype. This function returns the
largest integer that is less than or equal to n. FLOOR rounds down to a whole number.

See also CEIL.

&TE

SELECT FLOOR(9.8), FLOOR(-32.85), FLOOR(137)
FROM dual;

FLOOR(9.8) FLOOR(-32.85) FLOOR(137)

LN

LN(n) takes a single argument, where n is a numeric datatype greater than 0. This function
returns the natural logarithm of n, accurate to 36 digits of precision.

SELECT LN(2.7) FROM dual;

LN(2.7)

.993251773

LOG

LOG(nl, n2) takes two arguments, where nl and n2 are numeric datatypes. This function
returns the logarithm base n1 of n2, accurate to 36 digits of precision.

SELECT LOG(8,64), LOG(3,27), L0OG(2,1024), LOG(2,8)
FROM dual;

LOG(8,64) LOG(3,27) LOG(2,1024) LOG(2,8)

114 Chapter 3 = Using Single-Row Functions

MOD

MOD(nl1, n2) takes two arguments, where nl and n2 are any numeric datatype. This func-
tion returns nl modulo n2, or the remainder of n1 divided by n2. If n1 is negative, the result
is negative. The sign of n2 has no effect on the result. If n2 is zero, the result is n1.

See also REMAINDER.

SELECT MOD(14,5), MOD(8,2.5), MOD(-64,7), MOD(12,0)
FROM dual;

MOD(14,5) MOD(8,2.5) MOD(-64,7) MOD(12,0)

NANVL

This function is used with BINARY_FLOAT and BINARY_DOUBLE datatype numbers to return
an alternative value if the input is NaN.

The following example defines the NULL display as ? to show NULL value. The TO_BINARY_
FLOAT function (discussed later in the chapter) is used to convert input to a BINARY_FLOAT
datatype number.

SET NULL ?

SELECT NANVL(TO_BINARY_FLOAT('NaN'), @) T1,
NANVL (TO_BINARY_FLOAT('NaN'), NULL) T2

FROM dual;

POWER

POWER(n1, n2) takes two arguments, where nl and n2 are numeric datatypes. This function
returns nl to the n2 power (721"2).

SELECT POWER(2,10), POWER(3,3), POWER(5,3), POWER(2,-3)
FROM dual;

Using Single-Row Numeric Functions 115

POWER(2,10) POWER(3,3) POWER(5,3) POWER(2,-3)

REMAINDER

REMAINDER(nl1, n2) takes two arguments, where n1 and n2 are any numeric datatype. This
function returns the remainder of n1 divided by n2. If ni is negative, the result is negative.
The sign of n2 has no effect on the result. If n2 is zero and the datatype of nI is NUMBER, an
error is returned; if the datatype of n1is BINARY_FLOAT or BINARY_DOUBLE, NaN is returned.

See also MOD.

&TE

SELECT REMAINDER(13,5), REMAINDER(12,5), REMAINDER(12.5, 5)
FROM dual;

REMAINDER(13,5) REMAINDER(12,5) REMAINDER(12.5,5)

The difference between MOD and REMAINDER is that MOD uses the FLOOR function, whereas
REMAINDER uses the ROUND function in the formula. If you apply the MOD function to the pre-
vious example, the results are the same except for the first column:

SELECT MOD(13,5), MOD(12,5), MOD(12.5, 5)
FROM dual;

MOD(13,5) MOD(12,5) MOD(12.5,5)

Here is another example of using REMAINDER with a BINARY_FLOAT number, having n2
as zero:

SELECT REMAINDER(TO_BINARY_FLOAT('13.0'), 0) RBF
from dual;

116 Chapter 3 = Using Single-Row Functions

ROUND

ROUND(n1 [,n2]) takes two arguments, where nl is a numeric datatype and n2 is an inte-
ger. This function returns nl rounded to n2 digits of precision to the right of the decimal. If
n2 is negative, nl is rounded to the left of the decimal. If n2 is omitted, the default is zero.

This function is similar to TRUNC.

SELECT ROUND(123.489), ROUND(123.489, 2),
ROUND(123.489, -2), ROUND(1275, -2)
FROM dual;

ROUND(123.489) ROUND(123.489,2) ROUND(123.489,-2) ROUND(1275,-2)

SIGN

SIGN(n) takes a single argument, where n is a numeric datatype. This function returns —1
if nis negative, 1 if nis positive, and 0 if nis 0.

SELECT SIGN(-2.3), SIGN(0), SIGN(47)
FROM dual;

SIGN(-2.3) SIGN(0) SIGN(47)

SIN

SIN(n) takes a single argument, where n is a number in radians. This function returns the
sine of n, accurate to 36 digits of precision.

SELECT SIN(1.57079) FROM dual;

SIN(1.57079)

Using Single-Row Numeric Functions 17

SINH

SINH(n) takes a single argument, where n is a number. This function returns the hyperbolic
sine of n, accurate to 36 digits of precision.

SELECT SINH(1) FROM dual;

1.17520119

SQRT

SQRT(n) takes a single argument, where n is a numeric datatype. This function returns the
square root of n.

SELECT SQRT(64), SQRT(49), SQRT(5)
FROM dual;

SQRT(64) SQRT(49) SQRT(5)

8 7 2.23606798

TAN

TAN(n) takes a single argument, where nis a numeric datatype in radians. This function
returns the tangent of n, accurate to 36 digits of precision.

SELECT TAN(1.57079633/2) "45_degrees"
FROM dual;

45_Degrees

TANH

TANH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic tangent of n, accurate to 36 digits of precision.

SELECT TANH(ACOS(-1)) hyp_tan_of_pi
FROM dual;

118 Chapter 3 = Using Single-Row Functions

HYP_TAN_OF_PI

.996272076

TRUNC

TRUNC(nl1 [,n2]) takes two arguments, where nl is a numeric datatype and n2 is an inte-
ger. This function returns nl truncated to n2 digits of precision to the right of the decimal.
If n2 is negative, n1 is truncated to the left of the decimal.

See also ROUND.

&TE

SELECT TRUNC(123.489), TRUNC(123.489, 2),
TRUNC(123.489, -2), TRUNC(1275, -2)
FROM dual;

TRUNC(123.489) TRUNC(123.489,2) TRUNC(123.489,-2) TRUNC(1275,-2)

WIDTH_BUCKET

You can use WIDTH_BUCKET (11, min_val, max_val, buckets) to build histograms of equal
width. The first argument, nl, can be an expression of a numeric or datetime datatype. The
second and third arguments, min_val and max_val, indicate the end points for the histo-
gram’s range. The fourth argument, buckets, indicates the number of buckets.

The following example divides the salary into a 10-bucket histogram within the range
2,500 to 11,000. If the salary falls below 2,500, it will be in the underflow bucket (buckets 0),
and if the salary exceeds 11,000, it will be in the overflow bucket (buckets + 1).

SELECT first_name, salary,

WIDTH_BUCKET (salary, 2500, 11000, 10) hist
FROM employees
WHERE first_name like 'J%';

FIRST_NAME SALARY HIST
Jennifer 4400 3
John 8200 7
Jose Manuel 7800 7
Julia 3200 1

Using Single-Row Date Functions 119

James 2400 0
James 2500 1
Jason 3300 1
John 2700 1
Joshua 2500 1
John 14000 11
Janette 10000 9
Jonathon 8600 8
Jack 8400 7
Jean 3100 1
Julia 3400 2
Jennifer 3600 2

Using Single-Row Date Functions

Single-row date functions operate on datetime datatypes. A datetime is a coined word

to identify datatypes used to define dates and times. The datetime datatypes in Oracle
Database 12¢ are DATE, TIMESTAMP, and INTERVAL. Most have one or more date arguments,
and most return a datetime value. Date data is stored internally as numbers. The whole-
number portion is the number of days since January 1, 4712 B.cC., and the decimal portion
is the fraction of a day (for example, 0.5=12 hours).

Date Format Conversion

National-language support (NLS) parameters and arguments allow you to internationalize
your Oracle database system. NLS internationalizations include date representations, charac-
ter sets, alphabets, and alphabetical ordering.

Oracle will implicitly or automatically convert its numeric date data to and from char-
acter data using the format model specified with NLS_DATE_FORMAT. The default format is
DD-MON-RR (see Table 3.7). You can change this date format model for each session with
the ALTER SESSION SET NLS_DATE_FORMAT command. Here’s an example:

SQL> SELECT SYSDATE FROM dual;
SYSDATE

13-JUL-13

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD-Mon-YYYY HH24:MI:SS';

120 Chapter 3 = Using Single-Row Functions

Session altered.
SQL> SELECT SYSDATE FROM dual;

SYSDATE

13-Jul-2013 16:01:22

This ALTER SESSION command will set the implicit conversion mechanism to display
date data in the format specified, such as 12-Dec-2002 15:45:32. This conversion works
both ways. If the character string '30-Nov-2002 20:30:00"' were inserted, updated, or
assigned to a date column or variable, the correct date would be entered.

If the format model were DD/MM/YY or MM/DD/YY, there could be some ambiguity in the
conversion of some dates, such as 12 April 2000 (04/12/00 or 12/04/00). To avoid problems
with implicit conversions, Oracle provides explicit date/character-conversion functions:
TO_DATE, TO_CHAR, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_DSINTERVAL, and TO_YMINTERVAL.
These explicit conversion functions are covered in the “Using Single-Row Conversion
Functions” section later in this chapter.

Date Function Overview

Table 3.3 summarizes the single-row date functions. We will cover each of these functions
in the “Date Function Descriptions” section.

TABLE 3.3 Date Function Summary

Function Description
ADD_MONTHS Adds a number of months to a date
CURRENT_DATE Returns the current date and time in a DATE datatype

CURRENT_TIMESTAMP Returns the current date and time in a TIMESTAMP datatype

DBTIMEZONE Returns the database’s time zone

EXTRACT Returns a component of a date/time expression

FROM_TZ Returns a timestamp with time zone for a given timestamp
LAST_DAY Returns the last day of a month

LOCALTIMESTAMP Returns the current date and time in the session time zone

Using Single-Row Date Functions 121

Function Description

MONTHS_BETWEEN Returns the number of months between two dates
NEW_TIME Returns the date/time in a different time zone
NEXT_DAY Returns the next day of a week following a given date
ROUND Rounds a date/time

SESSIONTIMEZONE Returns the time zone for the current session
SYS_EXTRACT_UTC Returns the UTC (GMT) for a timestamp with a time zone
SYSDATE Returns the current date and time in the DATE datatype
SYSTIMESTAMP Returns the current timestamp in the TIMESTAMP datatype
TRUNC Truncates a date to a given granularity

TZ_OFFSET Returns the offset from UTC for a time zone name

Date Function Descriptions

The date functions are arranged in alphabetical order except the first three, with descrip-
tions and examples of each one. SYSDATE, SYSTIMESTAMP, and LOCALTIMESTAMP are used in
many examples, so we’ll discuss them first.

SYSDATE

SYSDATE takes no arguments and returns the current date and time to the second for the
operating-system host where the database resides. The value is returned in a DATE datatype.
The format that the value returned is based on NLS_DATE_FORMAT, which can be altered for
the session using the ALTER SESSION SET NLS_DATE_FORMAT command. The format mask
for dates and timestamps are discussed later in the chapter.

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH:MI:SS AM';
Session altered.

SELECT SYSDATE FROM dual;

SYSDATE

13-JUL-2013 04:01:22 PM

122 Chapter 3 = Using Single-Row Functions

SYSDATE is one of the most commonly used Oracle functions. There’s a good

P chance you'll see it on the exam. Because the SYSDATE value is returned
based on the time of the host server where the database resides, the result
will be the same for a user sitting in New York or one in Hong Kong.

SYSTIMESTAMP

SYSTIMESTAMP takes no arguments and returns a TIMESTAMP WITH TIME ZONE for the
current database date and time (the time of the host server where the database resides).
The fractional second is returned with six digits of precision. The format of the value
returned is based on NLS_TIMESTAMP_TZ_FORMAT, which can be altered for the session
using the ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT command.

SQL> SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE

SYSTIMESTAMP

13-JUL-13

13-JUL-13 04.01.22.362000 PM -05:00

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';
Session altered.

ALTER SESSION SET
NLS_TIMESTAMP_TZ_FORMAT='YYYY-MON-DD HH:MI:SS.FF TZR';
Session altered.

SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE

SYSTIMESTAMP

13-JUL-2013 16:01:22

2013-JUL-13 04:01:22.368000 -05:00

LOCALTIMESTAMP

LOCALTIMESTAMP([p]) returns the current date and time in the session’s time zone to p
digits of precision. p can be 0 to 9 and defaults to 6. This function returns the value in the
datatype TIMESTAMP. You can set the client time zone using the ALTER SESSION SET TIME_
ZONE command.

Using Single-Row Date Functions 123

The following example illustrates LOCALTIMESTAMP and how to change the time zone
for the session. The database is in the U.S./Central time zone, and the client is in the
U.S./Eastern time zone.

”/ See also CURRENT_TIMESTAMP.

A TE

SQL> SELECT SYSTIMESTAMP, LOCALTIMESTAMP FROM dual;

SYSTIMESTAMP

LOCALTIMESTAMP

12-0CT-13 01.30.44.605577 PM -05:00
12-0CT-13 02.30.44.605584 PM

SQL> ALTER SESSION SET TIME_ZONE = '-8:00';
Session altered.
SQL> SELECT SYSTIMESTAMP, LOCALTIMESTAMP FROM dualj;

SYSTIMESTAMP

LOCALTIMESTAMP

12-0CT-13 01.30.56.507508 PM -05:00
12-0CT-13 10.30.56.507516 AM

ADD_MONTHS

ADD_MONTHS (d, 7) takes two arguments, where d is a date and 7 is an integer. This func-
tion returns the date d plus 7 months. If 7 is a decimal number, the database will implicitly
convert it to an integer by truncating the decimal portion (for example, 3.9 becomes 3). If
<d> is the last day of the month or the resulting month has fewer days, then the result is the
last day of the resulting month.

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -1) PREV_MONTH,
ADD_MONTHS (SYSDATE, 12) NEXT_YEAR
FROM dual;

124 Chapter 3 = Using Single-Row Functions

SYSDATE PREV_MONTH NEXT_YEAR

13-JUL-2013 16:01:22 13-JUN-2013 16:01:22 13-JUL-2014 16:01:22

CURRENT_DATE

CURRENT_DATE takes no arguments and returns the current date in the Gregorian calendar
for the session’s (client) time zone. This function is similar to SYSDATE, whereas SYSDATE
returns the current date for the database’s (host’s) time zone. You can set the client time
zone using the ALTER SESSION SET TIME_ZONE command.

The following example illustrates CURRENT_DATE and how to change the time zone for
the session. The database is in the U.S./Central time zone, and the client is in the U.S./
Mountain time zone.

ALTER SESSION SET NLS_DATE_FORMAT='DD-Mon-YYYY HH24:MI:SS';
Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE

13-Jul-2013 16:01:22 13-Jul-2013 13:01:22

ALTER SESSION SET TIME_ZONE = 'US/Eastern';
Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE

13-Jul-2013 16:01:22 13-Jul-2013 17:01:22

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP([p]) returns the current date and time in the session’s time zone to p
digits of precision. p can be an integer 0 through 9 and defaults to 6.

See also LOCALTIMESTAMP.

dﬁTE

Using Single-Row Date Functions 125

This function is similar to CURRENT_DATE. CURRENT_DATE returns the result in the DATE
datatype, whereas CURRENT_TIMESTAMP returns the result in the TIMESTAMP WITH TIME
ZONE datatype.

SQL> SELECT CURRENT_DATE, CURRENT_TIMESTAMP FROM dual;

CURRENT_DATE

CURRENT_TIMESTAMP

13-Jul-2013 17:01:22

2013-JUL-13 05:01:22.386000 US/EASTERN

DBTIMEZONE

DBTIMEZONE returns the database’s time zone, as set by the latest CREATE DATABASE or ALTER
DATABASE SET TIME_ZONE statement. Note that after changing the database time zone with
the ALTER DATABASE statement, the database must be bounced (restarted) for the change to
take effect. The time zone is a character string specifying the hours and minutes offset from
UTC (Coordinated Universal Time, also known as GMT, or Greenwich mean time) or a
time zone region name. The valid time zone region names can be found in the TZNAME col-
umn of the view V$TIMEZONE_NAMES. The default time zone for the database is UTC (00:00)
if you do not explicitly set the time zone during database creation.

SQL> SELECT DBTIMEZONE FROM dual;

DBTIME

EXTRACT

EXTRACT (¢ FROM dt) extracts and returns the specified component c of date/time or
interval expression dt. The valid components are YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and TIMEZONE_ABBR. The specified
component must exist in the expression. So, to extract a TIMEZONE_HOUR, the date/time
expression must be a TIMESTAMP WITH TIME ZONE datatype.

Although HOUR, MINUTE, and SECOND exist in the DATE datatype, you can extract only
YEAR, MONTH, and DAY from the DATE datatype expressions.

SELECT SYSDATE, EXTRACT(YEAR FROM SYSDATE) year_d
FROM dual;

126 Chapter 3 = Using Single-Row Functions

SYSDATE YEAR_D

13-Jul-2013 16:01:22 2013

You can extract YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND from the TIMESTAMP
datatype expression. You can extract all the components from the TIMESTAMP WITH
TIMEZONE datatype expression.

SELECT LOCALTIMESTAMP,
EXTRACT (YEAR FROM LOCALTIMESTAMP) YEAR_TS,
EXTRACT (DAY FROM LOCALTIMESTAMP) DAY_TS,
EXTRACT (SECOND FROM LOCALTIMESTAMP) SECOND_TS

FROM dual;
LOCALTIMESTAMP YEAR_TS DAY_TS SECOND_TS
13-JUL-13 05.01.22.391000 PM 2013 13 22.391

You will be able to get the same result using the TO_CHAR function as well, as shown here.

SELECT LOCALTIMESTAMP,
TO_CHAR(LOCALTIMESTAMP, 'YYYY') YEAR_TS,
TO_CHAR(LOCALTIMESTAMP, 'DD') DAY_TS,
TO_CHAR(LOCALTIMESTAMP, 'SSXFF') SECOND_TS

FROM dual;

LOCALTIMESTAMP YEAR_TS DAY_TS SECOND_TS
139UL13 051154777801 P 2013 13 54.777891
FROM_TZ

FROM_TZ(ts, tz) returns a TIMESTAMP WITH TIME ZONE for the timestamp ts using time
zone value tz. The character string tz specifies the hours and minutes offset from UTC or
is a time zone region name. The valid time zone region names can be found in the TZNAME
column of the view VSTIMEZONE _NAMES.

SELECT LOCALTIMESTAMP, FROM_TZ(LOCALTIMESTAMP, 'Japan') Japan,
FROM_TZ (LOCALTIMESTAMP, '-5:00') Central
FROM dual;

LOCALTIMESTAMP
JAPAN

Using Single-Row Date Functions 121

CENTRAL

13-JUL-13 05.01.22.393000 PM
2013-JUL-13 05:01:22.393000 JAPAN
2013-JUL-13 05:01:22.393000 -05:00

LAST_DAY

LAST_DAY (d) takes a single argument, where d is a date. This function returns the last day
of the month for the date d. The return datatype is DATE.

SELECT SYSDATE,
LAST_DAY (SYSDATE) END_OF_MONTH,
LAST_DAY (SYSDATE)+1 NEXT_MONTH
FROM dual;

SYSDATE END_OF_MONTH NEXT_MONTH

13-Jul-2013 16:01:22 31-Jul-2013 16:01:22 01-Aug-2013 16:01:22

MONTHS_BETWEEN

MONTHS_BETWEEN(d1, d2) takes two arguments, where d1 and d2 are both dates. This func-
tion returns the number of months that d2 is later than di. A whole number is returned if
d1 and d2 are the same day of the month or if both dates are the last day of a month.

SELECT MONTHS_BETWEEN('31-MAR-08', '30-SEP-08') E1,
MONTHS_BETWEEN('11-MAR-08', '30-SEP-08') E2,
MONTHS_BETWEEN('01-MAR-08', '30-SEP-08') E3,
MONTHS_BETWEEN('31-MAR-08', '30-SEP-07') E4

FROM dual;

E1l E2 E3 E4
""""" 6 6.euem 69w 6
NEW_TIME

NEW_TIME(d>, tzl, tz2) takes three arguments, where dis a date and both tzI and tz2
are one of the time zone constants. This function returns the date in time zone tz2 for date
d in time zone tzl1.

SELECT SYSDATE Dallas, NEW_TIME(SYSDATE, 'CDT', 'HDT') Hawaii
FROM dual;

128 Chapter 3 = Using Single-Row Functions

DALLAS HAWAII

13-Jul-2013 16:01:22 13-Jul-2013 12:01:22

Table 3.4 lists the time zone constants.

TABLE 3.4 Time Zone Constants

Code Time Zone

GMT Greenwich mean time

NST Newfoundland standard time
AST Atlantic standard time

ADT Atlantic daylight time

BST Bering standard time

BDT Bering daylight time

CST Central standard time

CDT Central daylight time

EST Eastern standard time

EDT Eastern daylight time

MST Mountain standard time
MDT Mountain daylight time

PST Pacific standard time

PDT Pacific daylight time

YST Yukon standard time

YDT Yukon daylight time

HST Hawaii-Alaska standard time

HDT Hawaii-Alaska daylight time

Using Single-Row Date Functions 129

NEXT_DAY

NEXT_DAY(d, dow) takes two arguments, where d is a date and dow is a text string containing
the full or abbreviated day of the week in the session’s language. This function returns the
next dow following d. The time portion of the return date is the same as the time portion of d.

SELECT SYSDATE, NEXT_DAY(SYSDATE,'Thu') NEXT_THU,
NEXT_DAY('31-0CT-2014', 'Tue') Election_Day
FROM dual;

SYSDATE NEXT_THU ELECTION_DAY

13-JUL-13 16:48:04 18-JUL-13 16:48:04 04-NOV-14 00:00:00

ROUND

ROUND(<d> [, fmt]) takes two arguments, where d is a date and fmt is a character string
containing a date format string. This function returns d rounded to the granularity specified
in fmt. If fmt is omitted, d is rounded to the nearest day.

SELECT SYSDATE, ROUND(SYSDATE,'HH24') ROUND_HOUR,
ROUND (SYSDATE) ROUND_DATE, ROUND(SYSDATE,'MM') NEW_MONTH,
ROUND (SYSDATE, 'YY') NEW_YEAR

FROM dual;
SYSDATE ROUND_HOUR ROUND_DATE
NEW_MONTH NEW_YEAR

13-Jul-2013 16:01:22 13-Jul-2013 16:00:00 14-Jul-2013 00:00:00
01-Jul-2013 00:00:00 01-Jan-2014 00:00:00

SESSIONTIMEZONE

SESSIONTIMEZONE takes no arguments and returns the database’s time zone offset as per
the last ALTER SESSION statement. SESSIONTIMEZONE will default to DBTIMEZONE if it is not
changed with an ALTER SESSION statement.

SELECT DBTIMEZONE, SESSIONTIMEZONE
FROM dual;

DBTIMEZONE SESSIONTIMEZONE

-05:00 US/Eastern

130 Chapter 3 = Using Single-Row Functions

SYS_EXTRACT _UTC

SYS_EXTRACT_UTC(ts) takes a single argument, where tsis a TIMESTAMP WITH TIME ZONE.
This function returns the UTC (GMT) time for the timestamp ts.

SELECT CURRENT_TIMESTAMP local,
SYS_EXTRACT_UTC(CURRENT_TIMESTAMP) GMT
FROM dual;

LOCAL

GMT

2013-JUL-13 05:01:22.420000 US/EASTERN
13-JUL-13 09.01.22.420000 PM

TRUNC

TRUNC(d [, fmt]) takes two arguments, where d is a date and fmt is a character string
containing a date format string. This function returns d truncated to the granularity
specified in fmt.

A

)’ See also ROUND.
<

SELECT SYSDATE, TRUNC(SYSDATE, 'HH24') CURR_HOUR,
TRUNC(SYSDATE) CURR_DATE, TRUNC(SYSDATE,'MM') CURR_MONTH,
TRUNC(SYSDATE, 'YY') CURR_YEAR

FROM dual;
SYSDATE CURR_HOUR CURR_DATE
CURR_MONTH CURR_YEAR

13-Jul-2013 16:01:22 13-Jul-2013 16:00:00 13-Jul-2013 00:00:00
01-Jul-2013 00:00:00 01-Jan-2013 00:00:00

TZ_OFFSET

TZ_OFFSET(tz) takes a single argument, where tz is a time zone offset or time zone name.
This function returns the numeric time zone offset for a textual time zone name. The valid
time zone names can be obtained from the TZNAME column in the VSTIMEZONE _NAMES view.

SELECT TZ_OFFSET (SESSIONTIMEZONE) NEW_YORK,
TZ_OFFSET('US/Pacific') LOS_ANGELES,

Using Single-Row Conversion Functions 131

TZ_OFFSET('Europe/London') LONDON,
TZ_OFFSET('Asia/Singapore') SINGAPORE
FROM dual;

NEW_YOR LOS_ANG LONDON SINGAPO

-04:00 -07:00 +01:00 +08:00

Using Single-Row Conversion Functions

Single-row conversion functions operate on multiple datatypes. The TO_CHAR and TO_NUMBER
functions have a significant number of formatting codes that can be used to display date and
number data in a wide assortment of representations.

You can use the conversion functions to convert a numeric value to a character or a char-
acter value to a numeric or datetime value. Character datatypes in Oracle Database 12¢ are
CHAR, VARCHAR2, NCHAR, NVARCHAR2, and CLOB. Numeric datatypes in Oracle Database 12¢
are NUMBER, BINARY_DOUBLE, and BINARY_FLOAT. Datetime datatypes in Oracle Database
12c are DATE, TIMESTAMP, and INTERVAL.

Datatype conversions are required and used extensively in day-to-day SQL use. When a
user enters data, it may be in character format, which you may need to convert to a date or
number. Sometimes the data is in a specific format, and you have to tell Oracle how to treat
the data using conversion functions and format codes. In the following sections, you will
learn the various conversions and how to use them.

The exam may include a question that tests your recollection of some of

dﬂz the nuances of these formatting codes. General usage in a professional
setting would afford you the opportunity to look them up in a reference.
In the test setting, however, you must recall them on your own.

Conversion Function Overview

Table 3.5 summarizes the single-row conversion functions. We will cover each of these
functions in the “Conversion Function Descriptions” section.

132 Chapter 3 = Using Single-Row Functions

TABLE 3.5 Conversion Function Summary

Function Description

ASCIISTR Converts characters to ASCII

BIN_TO_NUM Converts a string of bits to a number

CAST Converts datatypes

CHARTOROWID Casts a character to the ROWID datatype

COMPOSE Converts to Unicode

CONVERT Converts from one character set to another

DECOMPOSE Decomposes a Unicode string

HEXTORAW Casts a hexadecimal to a raw

NUMTODSINTERVAL Converts a number value to an interval day to second literal
NUMTOYMINTERVAL Converts a number value to an interval year to month literal
RAWTOHEX Casts a raw to a hexadecimal

ROWIDTOCHAR Casts a ROWID to a character

SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR

TO_CLOB

TO_DATE

TO_DSINTERVAL

TO_LOB

Converts an SCN to corresponding timestamp of the change
Converts timestamp to an SCN

Converts input into a BINARY_DOUBLE number

Converts input into a BINARY_FLOAT number

Converts and formats a date into a string

Converts character input or NCLOB input to CLOB

Converts a string to a date, specifying the format

Converts a character string value to an interval day to
second literal

Converts LONG or LONG RAW values to CLOB or BLOB datatype

Using Single-Row Conversion Functions 133

Function Description

TO_MULTIBYTE Converts a single-byte character to its corresponding multibyte
equivalent

TO_NUMBER Converts a string to a number, specifying the format

TO_SINGLE_BYTE Converts a multibyte character to its corresponding single-byte
equivalent

TO_TIMESTAMP Converts a character string to a TIMESTAMP value

TO_TIMESTAMP_TZ Converts a character string to a TIMESTAMP WITH TIME
ZONE value

TO_YMINTERVAL Converts a character string value to an interval year to

month literal

UNISTR Converts UCS2 Unicode

Conversion Function Descriptions

The conversion functions are arranged in alphabetical order, with descriptions and examples
of each one. Oracle Database 12¢ includes functions to convert from one datatype to another
datatype. Most of the functions have only one argument. Many functions used to convert
to/from numeric or datetime datatypes have three arguments; the second argument will tell
Oracle what format the input given in the first argument should be. The third argument may
be to specify an NLS string. You can use NLS parameters to tell Oracle what character set or
language should be used when performing the conversion. The format mask and NLS param-
eters are always optional.

Pay particular attention to the TO_CHAR, TO_NUMBER, and TO_DATE functions. The format
codes associated with numbers and dates are always a favorite on OCP certification exams.

ASCIISTR

ASCIISTR(c1) takes a single argument, where c1 is a character string. T is function
returns the ASCII equivalent of all the characters in c1. This function leaves ASCII
characters unchanged, but non-ASCII characters are returned in the format |xxxx
where xxxx represents a UTF-16 code unit.

SELECT ASCIISTR('cafion') E1, ASCIISTR('fadl') E2
FROM dual;

134 Chapter 3 = Using Single-Row Functions

ca\00F1lon fa\OODF

BIN_TO_NUM

BIN_TO_NUM(b) takes a single argument, where b is a comma-delimited list of bits. This
function returns the numeric representation of all the bit-field set b. It essentially con-
verts a base 2 number into a base 10 number. Bit fields are the most efficient structure to
store simple yes/no and true/false data. You can combine numerous bit fields into a single
numeric column. Using bit fields departs from a normalized relational model, because one
column represents more than one value, but this encoding can enhance performance and/
or reduce disk-space usage.

See also BITAND.

&TE

To understand the number returned from the BIN_TO_NUM function, recall from base 2
(binary) counting that the rightmost digit counts the 1s, the next counts the 2s, the next
counts the 4s, then the 8s, and so on. Therefore, 13 is represented in binary as 1101. There
are one 1, zero 2s, one 4, and one 8, which add up to 13 in base 10.

SELECT BIN_TO_NUM(1,1,0,1) bitfieldl,
BIN_TO_NUM(0,0,0,1) bitfield2,
BIN_TO_NUM(1,1) bitfield3

FROM dual;

BITFIELD1 BITFIELD2 BITFIELD3

CAST

CAST(c AS t) takes two arguments, where c is an expression, subquery, or MULTISET
clause and tis a datatype. This function converts the expression ¢ into the datatype

t. The CAST function is most frequently used to convert data into programmer-defined
datatypes, but it can also be used to convert data to built-in datatypes. No translation
is performed; only the datatype is converted. Table 3.6 shows the datatypes that can be
converted using CAST.

TABLE 3.6 CAST Datatype Conversions

SOA ON ON ON ON SOA ON aimodn ‘aimod

ON SOA ON ON ON SOA ON MVH

ON ON SOA ON ON SOA SOA 439NN

TVAH3ALNI

ON ON ON SOA ON SOA ON dINV1S3IINIL ‘J1va

SOA SOA SOA SOA SOA ON SOA CHYHOHVAN ‘HVYHON

SOA SOA SOA SaA ON SOA SOA CHVHOHVA "dVHO

379noa

ON ON SOA ON SOA SOA S8A “AHVNIELVYO14d AHVNIG

daimodn Mvd HIGINNN TVAHILNI CHVHOHVAN ZHVHOHVA 319N0A AHVNIE 0] /wol4 }dAu0H
‘aimoy dINVLS3INIL ‘31va "HVHON ‘dVHO ‘LVO71d4 AHVNIE

136 Chapter 3 = Using Single-Row Functions

The following example shows datatype conversion using the CAST function.

SELECT CAST(SYSDATE AS TIMESTAMP WITH LOCAL TIME ZONE) DT_2_TS
FROM dual;

13-JUL-13 04.01.22.000000 PM

CHARTOROWID

CHARTOROWID(c) takes a single argument, where c is a character string. This function returns
¢ as a ROWID datatype. No translation is performed; only the datatype is converted.

SELECT rowid, first_name
FROM employees
WHERE first_name = 'Sarath';

ROWID FIRST_NAME

AAAWWGAAKAAAADNAAS Sarath

SELECT first_name, last_name
FROM employees
WHERE rowid = CHARTOROWID ('AAARAgAAFAAAABYAA9');

FIRST_NAME LAST_NAME

Each row in the database is uniquely identified by a ROWID. ROWID shows
doTE the physical location of the row stored in the database. The pseudocolumn
ROWID shows the address of the row.

COMPOSE

COMPOSE (¢) takes a single argument, where c is a character string. This function returns ¢
as a Unicode string in its fully normalized form, in the same character set as c. The COMPOSE
and DECOMPOSE functions support Unicode 3.0. The Unicode 3.0 standard allows you to
combine, or compose, a valid character from a base character and a modifier.

Using Single-Row Conversion Functions 137

CONVERT

CONVERT (¢, dset [,sset]) takes three arguments, where c is a character string and dset
and sset are character-set names. This function returns the character string ¢ converted
from the source character set sset to the destination character set dset. No translation is
performed. If the character does not exist in both character sets, the replacement character
for the character set is used. sset defaults to the database character set.

select convert ('vis-a-vis','AL16UTF16','AL32UTF8"')
from dual;

CONVERT('VIS-?-VIS','AL16UTF

vis-?22-vis

DECOMPOSE

DECOMPOSE (¢) takes a single argument, where c is a character string. This function returns ¢
as a Unicode string after canonical decomposition in the same character set as ¢. The COMPOSE
and DECOMPOSE functions support Unicode 3.0.

HEXTORAW

HEXTORAW(x) takes a single argument, where x is a hexadecimal string. This function
returns the hexadecimal string x converted to a RAW datatype. No translation is performed;
only the datatype is changed.

NUMTODSINTERVAL

NUMTODSINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL DAY
TO SECOND datatype. Valid units are DAY, HOUR, MINUTE, and SECOND. c can be uppercase,
lowercase, or mixed case.

SELECT SYSDATE,
SYSDATE+NUMTODSINTERVAL (2, '"HOUR') "2 hours later",
SYSDATE+NUMTODSINTERVAL (30, '"MINUTE') "30 minutes later"
FROM dual;

SYSDATE 2 hours later 30 minutes later

13-Jul-2013 16:01:22 13-Jul-2013 18:01:22 13-Jul-2013 16:31:22

138 Chapter 3 = Using Single-Row Functions

NUMTOYMINTERVAL

NUMTOYMINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL YEAR
TO MONTH datatype. Valid units are YEAR and MONTH. ¢ can be uppercase, lowercase, or
mixed case.

SELECT SYSDATE,
SYSDATE+NUMTOYMINTERVAL(2,'YEAR') "2 years later",
SYSDATE+NUMTOYMINTERVAL (5, 'MONTH') "5 months later"
FROM dual;

SYSDATE 2 years later 5 months later

13-Jul-2013 16:01:22 13-Jul-2015 16:01:22 13-Dec-2013 16:01:22

RAWTOHEX

RAWTOHEX (x) takes a single argument, where x is a raw string. This function returns the
raw string x converted to a hexadecimal. No translation is performed; only the datatype
is changed.

ROWIDTOCHAR

ROWIDTOCHAR(x) takes a single argument, where x is a character string in the ROWID datatype.
This function returns the ROWID string x converted to a VARCHAR2 datatype. No translation is
performed; only the datatype is changed. The resulting string is always 18 characters long.

SELECT ROWIDTOCHAR(ROWID) Char_RowID, first_name
FROM employees
WHERE first_name = 'Sarath';

CHAR_ROWID FIRST_NAME

AAAWWQAAKAAAADNAAY Sarath

SCN_TO_TIMESTAMP

SCN_TO_TIMESTAMP (1) takes a single argument, where 7 is a numeric datatype representing
a system change number (SCN) in the database. This function returns the timestamp asso-
ciated with the SCN. The return datatype is TIMESTAMP.

SELECT SCN_TO_TIMESTAMP(8569432113130) UPD_TIME
from dual;

Using Single-Row Conversion Functions 139

UPD_TIME

25-MAR-08 12.16.49.000000000 PM

An SCN is a number that gets incremented when a commit occurs in the database. The
SCN identifies the state of the database uniquely, is recorded in the redo log files, and will
be used in case instance recovery is needed. Please see Chapter 8, “Introducing Oracle
Database 12¢ Components and Architecture,” for more information.

Oracle provides the ORA_ROWSCN pseudocolumn to identify the SCN when the block con-
taining the row was last modified. Using the ORA_ROWSCN pseudocolumn, you can identify
the approximate time when the row was last modified. The time is approximate because
the SCN is associated with a block, and all the rows in the block will have the same SCN
associated with them. This is useful in identifying the last modified time of a table, because
a block can belong to only one table. Please see Chapter 10, “Understanding Storage and
Space Management,” for more information on blocks.

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) mod_time, last_name
FROM employees
WHERE first_name = 'Lex';

MOD_TIME LAST_NAME

28-JUN-13 11.30.39.000000000 AM De Haan

TIMESTAMP_TO_SCN

TIMESTAMP_TO_SCN (<ts>) is used to identify the SCN associated with a particular time-
stamp. The function takes one argument, ts, which is of datatype TIMESTAMP. The return
datatype is NUMBER.

SELECT TIMESTAMP_TO_SCN(SYSTIMESTAMP) DB_SCN
FROM dual;

8569432102308

TO_BINARY_DOUBLE

TO_BINARY_DOUBLE (<expr> [,<fmt> [,<nlsparm>] 1) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that ¢ appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns a
binary double-precision floating-point number of datatype BINARY_DOUBLE represented

140 Chapter 3 = Using Single-Row Functions

by expr. The fmt and nlsparmarguments are valid only if expr is a character expression.
You can also use 'INF', '-INF', and 'NaN' to represent positive infinity, negative infinity,
and NaN in expr.

The valid fmt numeric format conventions are listed in Table 3.9.

SELECT TO_BINARY_DOUBLE('1234.5678','999999.9999') CHR_FMT_DOUBLE,
TO_BINARY_DOUBLE('1234.5678"') CHR_DOUBLE,
TO_BINARY_DOUBLE(1234.5678) NUM_DOUBLE,
TO_BINARY_DOUBLE('INF') INF_DOUBLE

FROM dual;
CHR_FMT_DOUBLE CHR_DOUBLE NUM_DOUBLE INF_DOUBLE
1.2345678E+003 1.2345678E+003 1.2345678E+003 Inf

TO_BINARY_FLOAT

TO_BINARY_FLOAT (<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that c appears in,
and nlsparmspecifies language- or location-formatting conventions. This function returns
a binary single-precision floating-point number of datatype BINARY_FLOAT represented
by expr. The fmt and nlsparmarguments are valid only if expr is a character expression.
You can also use "INF', '-INF' and 'NaN' to represent positive infinity, negative infinity,
and NaN in expr.

SELECT TO_BINARY_FLOAT('1234.5678"','999999.9999') CHR_FMT_FLOAT,
TO_BINARY_FLOAT('1234.5678"') CHR_FLOAT,
TO_BINARY_FLOAT(1234.5678) NUM_FLOAT,
TO_BINARY_FLOAT('"INF') INF_FLOAT

FROM dual;
CHR_FMT_FLOAT CHR_FLOAT NUM_FLOAT INF_FLOAT
1.23456775E+003 1.23456775E+003 1.23456775E+003 Inf

Converting from a character or NUMBER to BINARY_FLOAT and BINARY_

A ITE DOUBLE may not be exact because BINARY_FLOAT and BINARY_DOUBLE
use binary precision, whereas NUMBER uses decimal precision. Convert-
ing from BINARY_FLOAT to BINARY_DOUBLE is always exact; converting
BINARY_DOUBLE to BINARY_FLOAT may lose precision if BINARY_DOUBLE
uses more bits of precision.

Using Single-Row Conversion Functions 141

TO_CHAR

TO_CHAR(<expr> [,<fmt >[,<nlsparm>]]) takes three arguments, where expr is a date
or a number or a character datatype, fmt is a format model specifying the format that expr
will appear in, and nlsparm specifies language- or location-formatting conventions. This
function returns expr converted into a character string (the VARCHAR2 datatype).

You can use the TO_CHAR function to convert a datetime or numeric datatype value to
character. When the input is not in the default format expected by the database, you have
to provide the format of the input data as the second argument. In this section, we’ll dem-
onstrate how a datetime datatype value and a numeric datatype value can be converted to
a character datatype.

Date Conversion

If expr is a date or timestamp value, fmt is a date format code, and nlsparmis an NLS_
DATE_LANGUAGE specification, if included. Note that the spelled-out numbers always appear
in English, while the day or month may appear in the NLS language.

SELECT TO_CHAR(SYSDATE, 'Day Ddspth,Month YYYY'
, 'NLS_DATE_LANGUAGE=German') Today_Heute
FROM dual;

TODAY_HEUTE

Samstag Thirteenth,Juli 2013

SELECT TO_CHAR(SYSDATE
,'"On the "Ddspth" day of "Month, YYYY') Today
FROM dual;

On the Thirteenth day of July , 2013

Table 3.7 lists the date format codes.

TABLE 3.7 Date Format Codes

Date Code Format Code Description
AD Or BC Epoch indicator.
A.D. Or B.C. Epoch indicator with periods.

AM or PM Meridian indicator.

142 Chapter 3 = Using Single-Row Functions

TABLE 3.7 Date Format Codes (continued)

Date Code Format Code Description

A.M. or P.M. Meridian indicator with periods.
DY Day of week abbreviated.

DAY Day of week spelled out.

D Day of week (1-7).

DD Day of month (1-31).

DDD Day of year (1-366).

DL Long date format.

DS Short date format.

TS Time in short format.

FF Fractional seconds.

J Julian day (days since 4712 8.c.).
W Week of the month (1-5).

Ww, IW Week of the year, ISO week of the year.
MM Two-digit month.

MON Month name abbreviated.

MONTH Month name spelled out.

Q Quarter.

RM Roman numeral month (I1-XII).

YYYY, YYY, YY, Y Four-digityear; last 3, 2, 1 digits in the year.
YEAR Year spelled out.

SYYYY IfB.c., year is shown as negative.

Using Single-Row Conversion Functions 143

Date Code Format Code Description

RR Used for data input with only two digits for the year to store twenti-
eth-century dates in the twenty-first century.

RRRR Used for data input. If a two-digit year is entered, this works like RR.
If a four-digit year is entered, it works like YYYY.

CcC, SsccC Century.

HH, HH12 Hour of the half-day (1-12).

HH24 Hour of the day (0-23).

MI Minutes of the hour (0-59).

SS Seconds of the minute (0-59).

SSSSS Seconds of the day (0-86399).

TZD Time zone daylight savings; must correspond to TZR.

TZH Time zone hour, together with TZM, is time zone offset.

TZM Time zone minute, together with TZH, is time zone offset.

TZR Time zone region.

A Punctuation.

'text' Quoted text.

FM Returns value with no leading or trailing blanks (fill mode).

FX Requires exact match for the format model.

The RR code is used for data input with only two digits for the year. It is intended to deal
with two-digit years before and after 2000. It rounds the century based on the current year
and the two-digit year, entered as follows:

If the current year is greater than or equal to 50 and the two-digit year is less than 50,
the century is rounded up to the next century.

If the current year is greater than or equal to 50 and the two-digit year is greater than
or equal to 50, the century is unchanged.

144 Chapter 3 = Using Single-Row Functions

If the current year is less than 50 and the two-digit year is less than 50, the century is
unchanged.

If the current year is less than 50 and the two-digit year is greater than or equal to 50,
the century is rounded down to the previous century.
So, if the current year is 2009 (less than 50) and the two-digit year is entered as 62
(greater than or equal to 50), the year is interpreted as 1962.
For any of the numeric codes, the ordinal and/or spelled-out representation can be dis-
played with the modifier codes th (for ordinal) and sp (for spelled out). Here is an example:

SELECT SYSDATE,
TO_CHAR(SYSDATE, 'Mmspth') Month,
TO_CHAR(SYSDATE, 'DDth') Day,
TO_CHAR(SYSDATE, 'Yyyysp') Year
FROM dual;

SYSDATE MONTH DAY YEAR

13-Jul-2013 16:01:22 Seventh 13TH Two Thousand Thirteen

For any of the spelled-out words or ordinals, case follows the pattern of the first two
characters in the code. If the first two characters are uppercase, the spelled-out words are all
uppercase. If the first two characters are lowercase, the spelled-out words are all lowercase.
If the first two characters are uppercase and then lowercase, the spelled-out words have the
first letter in uppercase and the remaining characters in lowercase.

SELECT TO_CHAR(SYSDATE, 'MONTH') upperCase,
TO_CHAR(SYSDATE, 'Month') mixedCase,
TO_CHAR(SYSDATE, 'month') lowerCase

FROM dual;

UPPERCASE MIXEDCASE LOWERCASE

APRIL April april

Table 3.8 shows several examples of using the different date format models with the
TO_CHAR function. Please pay close attention to the format model and result to understand the
format-model characteristics. The format model is applied to the date Tuesday 01-APR-2008.

Using Single-Row Conversion Functions 145

TABLE 3.8 Date Format Examples for Tuesday 01-APR-2008

Format Model

Result

'CCth "Century" BC'

""On the "DDSpth" Day of "MONTH", "YYYY'
'"On the "DdSpth" Day of "FMMonth", "YYYY'
'DS TS'

'""Today 1is week" WW "and day" DDD'

'Year'

'W WW Ww D DD DDD Y YY YYY YYVYY'

21ST Century AD

On the FIRST Day of APRIL, 2008
On the First Day of April, 2008
4/1/2008 01:41:32 PM

Today is week 14 and day 092
Two Thousand Eight

114 14 3 01 092 8 08 008 2008

Number Conversion

If expris a number, fmt is a numeric format code. Table 3.9 lists these codes.

TABLE 3.9 Numeric Format Codes

Numeric Code Format-Code Description

9 Numeric digits with a leading space if positive and a leading — (minus) if
negative.

0 Leading and/or trailing zeros.

, Comma, for use as a group separator. It cannot appear after a period or

decimal code.

G Local group separator; could be comma (,) or period (.).

Period, for use as the decimal character. It cannot appear more than
once or to the left of a group separator.

D Local decimal character; could be comma (,) or period (.). Only one D is

allowed in the format model.

$ Dollar-sign currency symbol.

146 Chapter 3 = Using Single-Row Functions

TABLE 3.9 Numeric Format Codes (continued)

Numeric Code Format-Code Description

C ISO currency symbol (USD for $).

L Local currency symbol.

FM No leading or trailing blanks.

EEEE Scientific notation.

MI Negative as a trailing minus. Can appear only in the last position of the

format model.

PR Negative in angle brackets (< >). Can appear only in the last position of
the format model.

S Negative as a leading minus. Can appear only in the first or last position
of the format model.

RN Uppercase Roman numeral.

rn Lowercase Roman numeral.

X Hexadecimal.

v Returns value multiplied by 107, where nis the number of 9s after the V.
B Returns blanks for a fixed-point number if the integer part is zero.

nlsparmcan include NLS_NUMERIC_CHARACTERS for specifying decimal and grouping sym-
bols (format symbols D and G, respectively), NLS_CURRENCY for specifying the currency symbol
(format symbol L), and NLS_ISO_CURRENCY for specifying the ISO international currency
symbol (format symbol C). The NLS_CURRENCY symbol and the NLS_ISO_CURRENCY mnemonic
are frequently different. For example, the NLS_CURRENCY symbol for U.S. dollars is $, but this
symbol is not uniquely American, so the ISO symbol for U.S. dollars is USD.

SELECT TO_CHAR(-1234.56,'L099G999D99MI",
"NLS_NUMERIC_CHARACTERS='',."'
NLS_CURRENCY="'DM"'
NLS_ISO_CURRENCY="'GERMANY"'
') Balance

FROM dual;

Using Single-Row Conversion Functions 147

BALANCE

DM0O1.234,56-

Table 3.10 shows several examples of using the different numeric format models. To under-
stand the format-model characteristics, pay close attention to the format model and result.

TABLE 3.10 Numeric Format Examples

Numeric Format Source Value Result Value
'C099G999D99"' -1234.56 -USD001,234.56
'099.99' 1234.56 HiH#HH#H
'09G999V99' 1234.56 01,23456
'09G999D99' 1234.56 01,234.56
'09G999D99PR' -1234.56 <01,234.56>
'999.99EEEE" -1234.56 -1.23E+03
'$9999.999S" -1234.56 $1234.560-
1$9999.999S' 1234.56 $1234.560+
'RN' 141 CXLI
'L99G999D99MI " 1234 $1,234.00
TO_CLOB

TO_CLOB ('<x>') converts input value to a CLOB datatype value. The argument x can be
of type CHAR, VARCHAR2, NCLOB, NCHAR, NVARCHAR2, or CLOB. CLOB datatypes are discussed in
Chapter 7, “Creating Tables and Constraints.”

TO_DATE

TO_DATE(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that ¢ appears in (refer to Table 3.7,
“Date Format Codes”), and nlsparm specifies language- or location-formatting conven-
tions. This function returns c converted into the DATE datatype.

148 Chapter 3 = Using Single-Row Functions

If you omit fmt, ¢ should be in the default date format (as defined in NLS_DATE_FORMAT
or derived from NLS_TERRITORY). It is always a good practice to specify the format mask
when using the TO_DATE function.

alter session set nls_date_format = 'DD-MON-RR HH24:MI:SS';
Session altered.

SELECT TO_DATE('30-SEP-2007', 'DD/MON/YY') DateExample
FROM dual;

DATEEXAMPLE

30-SEP-07 00:00:00

SELECT TO_DATE('SEP-2007 13', 'MON/YYYY HH24') DateExample
FROM dual;

DATEEXAMPLE

01-SEP-07 13:00:00

When you use the TO_DATE function and specify a format mask, Oracle will try some
additional formats if the data in the input string does not match the original format. For
the MM format, Oracle will try the MON and MONTH formats. The MON or MONTH formats can
be used interchangeably. For the YY and RR formats, Oracle will try YYYY and RRRR.

Adding the FX format model to the TO_DATE function will require the input be given in
the exact format, including spaces and punctuation characters.

Table 3.11 shows examples of the TO_DATE function and their resulting dates.

TABLE 3.11 Date Conversion Examples

Function Resulting Date
TO_DATE('01-01-08"','DD-MM-RR"') 01-JAN-2008
TO_DATE('01-01-1908"', 'DD-MM-RR") 01-JAN-1908
TO_DATE('01-MAR-1998"', 'DD-MONTH-YVY") 01-MAR-1998
TO_DATE('01-01-98"','DD-MM-YY"') 01-JAN-2098

TO_DATE('01-01-98", 'DD-MM-YYYY") 01-JAN-0098

Using Single-Row Conversion Functions

149

Function Resulting Date
TO_DATE('01-01-98', 'DD-MM-RRRR") 01-JAN-1998
TO_DATE('01-MARCH-98"', 'DD-MM-RRRR') 01-MAR-1998
TO_DATE('01-MAR-08', 'DD-MONTH-RRRR') 01-MAR-2008
TO_DATE('01-MAR-1998"','fxDD/MON/YYYY") ORA-01861 error
TO_DATE('13 MAY 2003','fxDD MON YYYY') ORA-01841 error

@ Real World Scenario
Converting Numbers to Words

Once we had to debug a PL/SQL function developed by a programmer to convert numeric
input to words. His program unit was very lengthy; basically, it defined the numbers from
one through twenty, tens, hundreds, thousands, and millions in words. He used a compli-
cated logic to split each digit from the input and assigned a word for each digit. We told him
there is a neat, single-line SQL function that could replace his tens of lines of PL/SQL code.
When he saw the SQL code, he was amazed by the power of simple SQL functions.

Using the J format along with the TO_CHAR and TO_DATE functions, you can display any
number between 1 and 5,373,484 in words. The limit is because Oracle supports dates
between January 1, 4712 B.c., and A.D. December 31, 9999.

The J format is used to display the date in Julian numbers.

SELECT SYSDATE, TO_CHAR(SYSDATE, 'J') Julian
FROM dual;

SYSDATE JULIAN

13-JUL-13 16:01:22 2456487

150 Chapter 3 = Using Single-Row Functions

The SP format will spell the date. By combining the J and JSP formats, you can spell a
number. Notice the use of & in the SQL code. You run the SQL multiple times to input
different values. Negative numbers cannot be converted to Julian dates.

SQL> SET VERIFY OFF

SQL> SELECT TO_CHAR(TO_DATE(&NUM, 'J'), 'jsp') num_to_spell
FROM dual;

Enter value for num: 3456

NUM_TO_SPELL

three thousand four hundred fifty-six

SQL> /
Enter value for num: 5023456

NUM_TO_SPELL

five million twenty-three thousand four hundred fifty-six

sQL> /

Enter value for num: -456

SELECT TO_CHAR(TO_DATE(-456, 'J'), 'jsp') num_to_spell
*

ERROR at line 1:

ORA-01854: julian date must be between 1 and 5373484

TO_DSINTERVAL

TO_DSINTERVAL(<c> [,<nlsparm>]) takes two arguments, where c is a character string
and nlsparmspecifies the decimal and group separator characters. This function returns
¢ converted into an INTERVAL DAY TO SECOND datatype.

SELECT SYSDATE,
SYSDATE+TO_DSINTERVAL('007 12:00:00') "+7 1/2 days",
SYSDATE+TO_DSINTERVAL('Q30 00:00:00"') "+30 days"
FROM dual;

Using Single-Row Conversion Functions 151

SYSDATE +7 1/2 days +30 days

13-JUL-13 16:01:32 21-JUL-13 04:01:32 12-AUG-13 16:01:32

TO_LOB

TO_LOB (<long>) converts a LONG or LONG RAW datatype to a CLOB or BLOB datatype. LONG val-
ues are converted to a CLOB datatype, and LONG RAW values are converted to a BLOB datatype.

To learn more about CLOB and BLOB datatypes, see Chapter 7.

&TE

TO_MULTI_BYTE

TO_MULTI_BYTE(<c>) takes a single argument, where c is a character string. This function
returns a character string containing ¢, with all single-byte characters converted to their
multibyte counterparts. This function is useful only in databases using character sets with
both single-byte and multibyte characters.

)/ See also TO_SINGLE_BYTE.
<~

A

TO_NUMBER

TO_NUMBER (<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is a char-
acter or numeric string, fmt is a format string specifying the format that expr appears in, and
nlsparmspecifies language- or location-formatting conventions. This function returns the
numeric value represented by expr. Table 3.9 lists all the format models that can be used with
the TO_NUMBER function. The return datatype is NUMBER.

SELECT TO_NUMBER('234.89'), TO_NUMBER(1E-3) FROM dual;

TO_NUMBER('234.89') TO_NUMBER(1E-3)

TO_SINGLE_BYTE

TO_SINGLE_BYTE(<c>) takes a single argument, where c is a character string. This function
returns a character string containing ¢ with all multibyte characters converted to their single-
byte counterparts. This function is useful only in databases using character sets with both
single-byte and multibyte characters.

152 Chapter 3 = Using Single-Row Functions

See also TO_MULTI_BYTE.

dﬁTE

TO_TIMESTAMP

TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>] 1) takes three arguments, where c is a character
string, fmt is a format string specifying the format that ¢ appears in, and nlsparm specifies
language- or location-formatting conventions. If ¢ is in default timestamp format (as defined
in NLS_TIMESTAMP_FORMAT or derived from NLS_TERRITORY), then fmt need not be specified.
The return value is of the TIMESTAMP datatype.

SELECT TO_TIMESTAMP('30-SEP-2007 08:51:23.456',
'"DD-MON-YYYY HH24:MI:SS.FF')
FROM dual;

TO_TIMESTAMP('30-SEP-200708:51:23.456"', 'DD-MON-YYYYHH24:MI:SS.FF')

30-SEP-07 08.51.23.456000000 AM

TO_TIMESTAMP_TZ

TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that ¢ appears in, and nlsparm specifies
language- or location-formatting conventions. This function has the same behavior as the TO_
TIMESTAMP function, except you can specify a time zone. The return datatype is TIMESTAMP
WITH TIME ZONE

SELECT TO_TIMESTAMP_TZ('30-SEP-2007 08:51:23.456"',
'DD-MON-YYYY HH24:MI:SS.FF') TS_TZ_Example
FROM dual;

TS_TZ_EXAMPLE

2007-SEP-30 08:51:23.456000000 US/EASTERN

TO_YMINTERVAL

TO_YMINTERVAL(<c>) takes a single argument, where c is a character string. This function
returns ¢ converted into an INTERVAL YEAR TO MONTH datatype.

SELECT SYSDATE,
SYSDATE+TO_YMINTERVAL('01-03") "+15 months",

Using Single-Row Conversion Functions 153

SYSDATE-TO_YMINTERVAL('00-03') "-3 months"
FROM dual;

SYSDATE +15 months -3 months

13-JUL-13 16:01:32 13-0CT-14 16:01:32 13-APR-13 16:01:32

Table 3.12 shows examples to demonstrate the difference between using the ADD_MONTHS
function and the TO_YMINTERVAL function.

TABLE 3.12 Compare ADD_MONTHS and TO_YMINTERVAL

Expression Result
TO_DATE('28-FEB-2007')+ TO_YMINTERVAL('01-00"') 28-FEB-2008
ADD_MONTHS ('28-FEB-2007"',12) 29-FEB-2008
TO_DATE('29-FEB-2008"')+ TO_YMINTERVAL('01-00") Error: ORA-01839
ADD_MONTHS ('29-FEB-2008",12) 28-FEB-2009
TO_DATE('30-APR-2008"')+ TO_YMINTERVAL('00-04") 30-AUG-2008
ADD_MONTHS ('30-APR-2008"',04) 31-AUG-2008
TO_DATE('31-JAN-2008"')+ TO_YMINTERVAL('00-03") Error: ORA-01839
UNISTR

UNISTR(<c>) takes a single argument, where c is a character string. This function returns
¢ in Unicode in the database Unicode character set. Include UCS2 characters by prepend-
ing a backslash (\) to the character’s numeric code. Include the backslash character by
specifying two backslashes (\\).

SELECT UNISTR('\0OA3'), UNISTR('\@OF1'), UNISTR('ca\0@0Flon')
FROM dual;

UN UN UNISTR('CA

154

Chapter 3 = Using Single-Row Functions

Using Other Single-Row Functions

This is the catchall category to include all the single-row functions that don’t fit into the other
categories. Some are incredibly useful, such as DECODE. DECODE is a very special function and
the most widely used function. Most likely, you’ll see a question on the certification exam
about the DECODE function.

The NULLIF function is included in this category and not with other NULL-related func-
tions. The NULLIF function returns a NULL value, whereas the NULL-related functions we
discussed earlier take NULL as one of the inputs and give a value as a result.

Miscellaneous Function Overview

Table 3.13 summarizes the single-row miscellaneous functions. We will cover each of these
functions in the “Miscellaneous Function Descriptions” section.

TABLE 3.13 Miscellaneous Function Summary

Function Description

BFILENAME Returns the BFILE locator for the specified file and directory

DECODE Acts as an inline CASE statement (emulating IF..THEN..ELSE logic)

DUMP Returns a raw substring in the specified encoding (octal/hex/character/
decimal)

EMPTY_BLOB Returns an empty BLOB locator

EMPTY_CLOB Returns an empty CLOB locator

GREATEST Sorts the arguments and returns the largest

LEAST Sorts the arguments and returns the smallest

NULLIF Returns NULL if two expressions are equal

ORA_HASH Returns the hash value for an expression

SYS_CONTEXT

SYS_GUID

UID

Returns various session attributes, such as IP address, terminal, and
current user

Generates a globally unique identifier as a RAW value

Returns the numeric user ID for the current session

Using Other Single-Row Functions 155

Function Description

USER Returns the username for the current session
USERENV Returns information about the current session
VSIZE Returns the internal size in bytes for an expression

Miscellaneous Function Descriptions

These miscellaneous functions are arranged in alphabetical order, with descriptions and
examples of each one.

BFILENAME

BFILENAME (dir, file) takes two arguments, where d7ir is a directory and fileis a file-
name. This function returns an empty BFILE locator. This function is used to initialize a
BFILE variable or BFILE column in a table. When this function is used, the BFILE is instan-
tiated. Neither dir nor file needs to exist at the time BFILENAME is called, but both must
exist when the locator is used. We’ll discuss the BFILE datatype in Chapter 7.

DECODE

DECODE is a conditional function. We discussed the CASE conditional expression in
Chapter 2.
DECODE(x ,m1, rl [,m2 ,r2]..[,d]) can use multiple arguments. x is an expression.
ml is a matching expression to compare with x. If mI is equivalent to x, then r1 is returned;
otherwise, additional matching expressions (m2, m3, m4, and so on) are compared, if they
are included, and the corresponding result (r2, r3, r4, and so on) is returned. If no match is
found and the default expression d is included, then d is returned. This function acts like a
case statement in C, Pascal, or Ada. DECODE is a powerful tool that can make SQL very effi-
cient—or very dense and nonintuitive. Let’s look at some examples to help clarify its use.
The following example queries the COUNTRIES table and displays a region name based
on the region_id column value. If the region_id column value does not match the values
in the list, you want to display Other. To limit the rows in the output, you use the SUBSTR
function to identify the country codes that begin with I or end with R.

SELECT country_id, country_name, region_id,
DECODE(region_id, 1, 'Europe',
2, 'Americas',
3, 'Asia',
'Other') Region

156 Chapter 3 = Using Single-Row Functions

FROM countries
WHERE SUBSTR(country_id,1,1) 'T!
OR SUBSTR(country_id,2,1) = 'R';

CO COUNTRY_NA REGION_ID REGION
AR Argentina 2 Americas
BR Brazil 2 Americas
FR France 1 Europe
IL Israel 4 Other
IN India 3 Asia

IT Italy 1 Europe

DECODE does not have to return a value; it can return NULL if the optional d argument is
not provided. In the previous example, if Other is omitted, the region name for Israel will
be NULL.

SELECT country_id, country_name, region_id,
DECODE(region_id, 1, 'Europe',
2, 'Americas',
3, 'Asia') Region
FROM countries
WHERE SUBSTR(country_id,1,1) 'T!
OR SUBSTR(country_id,2,1) = 'R';

y In the DECODE function, Oracle treats two NULL values as equal. Hence,
Aéﬂi you can represent the NVL function using DECODE, as in DECODE (<string>,
NULL, <new_value>, <string>).

DUMP

DUMP(x [, fmt [,nl [,n2] 1 1) can take four arguments, where x is an expression. fmt
is a format specification for octal (8), decimal (10), hexadecimal (16), or single characters
(17). Decimal is the default. If you add 1000 to the format specification, the character set
name is also returned (for example, 1008 for octal). n1 is the starting byte offset within

x, and n2 is the length in bytes to dump. This function returns a character string contain-
ing the datatype of x in numeric notation (for example, 2=number, 12=date), the length in
bytes of x, and the internal representation of x. This function is mainly used for trouble-
shooting data problems.

SELECT last_name, DUMP(last_name) DUMP_EX
FROM employees
WHERE last_name like 'J%';

Using Other Single-Row Functions 157

LAST_NAME DUMP_EX

Johnson Typ=1 Len=7: 74,111,104,110,115,111,110
Jones Typ=1 Len=5: 74,111,110,101,115

SELECT last_name, DUMP(last_name, 1017, 3, 3) DUMP_EX
FROM employees
WHERE last_name like 'J%';

LAST_NAME DUMP_EX

Johnson Typ=1 Len=7 CharacterSet=WESMSWIN1252: h,n,s
Jones Typ=1 Len=5 CharacterSet=WESMSWIN1252: n,e,s
EMPTY_BLOB

EMPTY_BLOB() takes no arguments. This function returns an empty BLOB locator. This
function is used to initialize a BLOB variable or BLOB column in a table. When used, the
BLOB is instantiated but not populated.

EMPTY_CLOB

EMPTY_CLOB() takes no arguments. This function returns an empty CLOB locator. This
function is used to initialize a CLOB variable or CLOB column in a table. When used, the
CLOB is instantiated but not populated.

GREATEST

GREATEST (exp_1list) takes one argument, where exp_l7ist is a list of expressions. This
function returns the expression that sorts highest in the datatype of the first expression. If
the first expression is any of the character datatypes, a VARCHAR2 is returned, and the com-
parison rules for VARCHAR2 are used for character-literal strings. A NULL in the expression
list results in a NULL being returned.

The following example shows you that the list was treated as a character list and not a
date, even though you had all date values as input:

SELECT GREATEST('O1-ARP-08','30-DEC-01','12-SEP-09')
FROM dual;

GREATEST(

30-DEC-01

158 Chapter 3 = Using Single-Row Functions

In the following example, because the first argument is numeric, Oracle tries to convert
the rest of the list to numeric and encounters an error:

SELECT GREATEST(345, 'XYZ', 2354) FROM dual;
ERROR at line 1:
ORA-01722: dnvalid number

In the next example, we changed the order to have the character string as the first entry
in the list; hence, Oracle considers the rest of the list to be characters and does not produce
an error:

SELECT GREATEST('XYZ', 345, 2354) FROM dual;

GRE

XYz

LEAST

LEAST (exp_list) takes one argument, where exp_list is a list of expressions. This func-
tion returns the expression that sorts lowest in the datatype of the first expression. If the
first expression is any of the character datatypes, a VARCHAR2 is returned.

SELECT LEAST(SYSDATE,'15-MAR-2002','17-JUN-2002") oldest
FROM dual;

OLDEST

15-MAR-02

The following SQL is used to calculate a bonus of 15 percent of salary to employees,
with a maximum bonus at 500 and a minimum bonus at 400:

SELECT last_name, salary,
GREATEST (LEAST (salary*0.15, 500), 400) bonus

FROM employees

WHERE department_id IN (30, 10)

ORDER BY last_name;

LAST_NAME SALARY BONUS
Baida 2900 435
Colmenares 2500 400

Himuro 2600 400

Using Other Single-Row Functions 159

Khoo 3100 465
Raphaely 11000 500
Whalen 4400 500

The comparison rules used by GREATEST and LEAST on character literals order trailing
spaces higher than no spaces. This behavior follows the nonpadded comparison rules of the
VARCHAR2 datatype. Note the ordering of the leading and trailing spaces: trailing spaces are
greatest and leading spaces are least.

SELECT GREATEST(' VYes','Yes','Yes ')
,LEAST(' Yes','Yes','Yes ')

FROM dual;
GREA LEAST
Yes Yes
To remember the comparison rules for trailing and leading space in
P character literals, think “leading equals least.”
NULLIF

NULLIF(xI , x2) takes two arguments, where xI and x2 are expressions. This function
returns NULL if xI equals x2; otherwise, it returns xI. If xI is NULL, NULLIF returns NULL.

To facilitate visualizing a NULL, the following example has the NULL indicator set to ?.
So, a ? in the query results that follow represents a NULL:

SET NULL ?

SELECT ename, mgr, comm,
NULLIF(comm,0) testl,
NULLIF(O,comm) test2,
NULLIF(mgr,comm) test3

FROM scott.emp

WHERE empno IN (7844,7839,7654,7369);

ENAME MGR COMM TEST1 TEST2 TEST3
SMITH 7902 ? ? 0 7902
MARTIN 7698 1400 1400 0 7698
KING ? ? ? 0 ?
TURNER 7698 0 ? 7?7698

160 Chapter 3 = Using Single-Row Functions

ORA_HASH

ORA_HASH (expr [,max_bucket [,seed]]) can take three arguments. The first argument,
expr, is an expression whose hash value will be calculated and assigned to a bucket. The
maximum bucket value is determined by the second argument, max_bucket; the default
and maximum is 4,294,967,295. The seed argument enables Oracle to generate many dif-
ferent results for the same sets of data. The hash function is applied to expr and seed. The
seed can be between 0 and 4,294,967,295.

This function is useful for getting a random sample of rows from a table. In the follow-
ing example, you can get a few random rows from the EMPLOYEES table. Notice the differ-
ence in result for each run and with different seed values. The rows in the table are divided
into 20 buckets (0 through 19) based on the hash value, and you are selecting the rows
from bucket 0.

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19, 2) = 0;

DEPARTMENT_ID LAST_NAME SALARY
100 Greenberg 12008

30 Himuro 2600

50 Nayer 3200

80 Banda 6200

80 Fox 9600

? Grant 7000
10 Whalen 4400

110 Gietz 8300

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19, 5) = 0;

DEPARTMENT_ID LAST_NAME SALARY

30 Tobias 2800

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19)

1l
(o]

Using Other Single-Row Functions 161

DEPARTMENT_ID LAST_NAME SALARY
60 Austin 4800
100 Greenberg 12008
80 Vishney 10500
? Grant 7000
50 Geoni 2800

SYS_CONTEXT

SYS_CONTEXT(n , p [, length]) can take three arguments, where nis a namespace, p is
a parameter associated with namespace n, and length is the length of the return value in
bytes. length defaults to 256. The built-in namespace in Oracle is called USERENV, which
describes the current session. The return datatype is VARCHAR2.

SELECT SYS_CONTEXT('USERENV','IP_ADDRESS')
FROM dual;

SYS_CONTEXT ('USERENV', "IP_ADDRESS'")

192.168.1.100

Table 3.14 lists the parameters available in the USERENV namespace for the SYS_CONTEXT
function.

TABLE 3.14 Parametersinthe USERENV Namespace

Parameter Description

ACTION Returns the position in the module (application).

AUDITED_CURSORID Returns the cursor ID of the SQL code that triggered the
auditing.

AUTHENTICATED_IDENTITY Returns the identity used in the authentication.

AUTHENTICATION_DATA Returns the data used to authenticate a logged-in user.

AUTHENTICATION_METHOD Returns the method used to authenticate a user. The

return value can be DATABASE for database-authenticated
accounts, 0S for externally identified accounts, NETWORK for
globally identified accounts, and so on.

162 Chapter 3 = Using Single-Row Functions

TABLE 3.14 Parametersinthe USERENV Namespace (continued)

Parameter

Description

BG_JOB_ID

CLIENT_IDENTIFIER

CLIENT_INFO

CURRENT_BIND

CURRENT_SCHEMA

CURRENT_SCHEMAID

CURRENT_SQL

CURRENT_SQL_LENGTH

DB_DOMAIN
DB_NAME

DB_UNIQUE_NAME

ENTRYID

ENTERPRISE_IDENTITY

FG_JOB_ID

GLOBAL_CONTEXT_MEMORY

GLOBAL_UID

Returns the job ID (that is, DBA_JOBS) if the session was cre-
ated by a background process. Returns NULL if the session
is a foreground session. See also FG_JOB_ID.

Returns the client session identifier in the global context. It
can be set with the DBMS_SESSION built-in package.

Returns the 64 bytes of user session information stored by
DBMS_APPLICATION_INFO.

Returns bind variables for fine-grained auditing.

Returns the current schema as set by ALTER SESSION SET
CURRENT_SCHEMA or, by default, the login schema/ID.

Returns the numeric ID for CURRENT_SCHEMA.

Returns the SQL that triggered fine-grained auditing (use
only within scope inside the event handler for fine-grained
auditing).

Returns the length of the current SQL that triggered fine-
grained auditing.

Returns the contents of the DB_DOMAIN init.ora parameter.
Returns the contents of the DB_NAME init.ora parameter.

Returns the contents of the DB_UNIQUE_NAME init.ora
parameter.

Returns the auditing entry identifier.
Returns OID DN for enterprise users, for local users NULL.

Returns the job ID of the current session if a foreground
process created it. Returns NULL if the session is a back-
ground session. See also BG_JOB_ID.

Returns the number in the SGA by the globally accessible
context.

Returns the global user ID from OID.

Using Other Single-Row Functions 163

Parameter

Description

HOST

IDENTIFICATION_TYPE

INSTANCE

INSTANCE_NAME

IP_ADDRESS

ISDBA
LANG

LANGUAGE

MODULE

NETWORK_PROTOCOL

NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_SORT
NLS_TERRITORY

0S_USER

Returns the hostname of the machine from where the client
connected. This is not the same terminal in VSSESSION.

Returns how the user is set to authenticate in the database:
LOCAL, EXTERNAL, or GLOBAL.

Returns the instance number for the instance to which
the session is connected. This is always 1 unless you are
running Oracle Real Application Clusters.

Returns the name of the instance.

Returns the IP address of the machine from where the
client connected.

Returns TRUE if the user connected AS SYSDBA.
Returns the ISO abbreviation for the language name.

Returns a character string containing the language and ter-
ritory used by the session and the database character set
in the form language_territory.characterset.

Returns the application name set through
DBMS_APPLICATION_INFO.

Returns the network protocol being used as specified
in the PROTOCOL= section of the connect string or
tnsnames.ora definition.

Returns the calendar for the current session.
Returns the currency for the current session.
Returns the date format for the current session.
Returns the language used for displaying dates.
Returns the binary or linguistic sort basis.
Returns the territory for the current session.

Returns the operating-system username for the
current session.

164 Chapter 3 = Using Single-Row Functions

TABLE 3.14 Parametersinthe USERENV Namespace (continued)

Parameter

Description

POLICY_INVOKER

Returns the invoker of row-level security-policy functions.

PROXY_ENTERPRISE_IDENTITY Returns OID DN when the proxy user is an enterprise user.

PROXY_GOLBAL_UID

PROXY_USER

PROXY_USERID

SERVER_HOST

SERVICE_NAME

SESSION_USER

SESSION_USERID

SESSIONID

SID

STATEMENT_ID

TERMINAL

Returns the global user ID from OID for Enterprise User
Security proxy users.

Returns the name of the database user who opened the
current session for the session user.

Returns the numeric ID for the database user who opened
the current session for the session user.

Returns the hostname of the machine where the instance
is running.

Returns the name of the service where the session is con-
nected.

Returns the database username for the current session.

Returns the numeric database user ID for the current
session.

Returns the auditing session identifier AUDSID. This param-
eter is out of scope for distributed queries.

Returns the session number (same as the SID from
VSSESSION).

Returns the auditing statement identifier.

Returns the terminal identifier for the current session. This
is the same as the terminal in VSSESSION.

Here are few more examples of SYS_CONTEXT in the USERENV namespace:

SELECT SYS_CONTEXT('USERENV', 'OS_USER'),
SYS_CONTEXT ('USERENV', 'CURRENT_SCHEMA'),
SYS_CONTEXT ('USERENV', 'HOST'),
SYS_CONTEXT('USERENV', 'NLS_TERRITORY')

FROM dual;

Using Other Single-Row Functions 165

SYS_CONTEXT ('USERENV', 'OS_USER")
SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA")
SYS_CONTEXT('USERENV', 'HOST'")
SYS_CONTEXT ('USERENV', "NLS_TERRITORY')

HR
1inux04.mycompany.corp
AMERICA

SYS_GUID

SYS_GUID() generates a globally unique identifier as a RAW value. This function is useful
for creating a unique identifier to identify a row. SYS_GUID() returns a 32-bit hexadecimal
representation of the 16-byte RAW value.

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

CDA7T8A020D6E43A6AB743A5CE8CBBCS55
SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

DC7C19A3AD264CE184C64194E65F83E5

UID

UID takes no parameters and returns the integer user ID for the current user connected
to the session. The user ID uniquely identifies each user in a database and can be selected
from the DBA_USERS view.

SQL> SHOW USER
USER is "BTHOMAS"

SELECT username, account_status
FROM dba_users
WHERE user_id = UID;

166 Chapter 3 = Using Single-Row Functions

USERNAME ACCOUNT_STATUS
BTHOMAS OPEN
USER

USER takes no parameters and returns a character string containing the username for the
current user.

SELECT default_tablespace, temporary_tablespace
FROM dba_users
WHERE username = USER;

DEFAULT_TABLESPACE TEMPORARY _TABLESPACE
USERS TEMP
USERENV

USERENV(opt) takes a single argument, where opt is one of the following options:
ISDBA returns TRUE if the SYSDBA role is enabled in the current session.
SESSIONID returns the AUDSID auditing session identifier.

ENTRYID returns the auditing entry identifier if auditing is enabled for the instance (the
init.ora parameter AUDIT_TRAIL is set to TRUE).

INSTANCE returns the instance identifier to which the session is connected. This option
is useful only if you are running the Oracle Parallel Server and have multiple instances.

LANGUAGE returns the language, territory, and database character set. The delimiters are
an underscore (_) between language and territory and a period (.) between the territory
and character set.

LANG returns the ISO abbreviation of the session’s language.

TERMINAL returns a VARCHAR2 string containing information corresponding to the oper-
ating system identifier for the current session’s terminal.

The option can appear in uppercase, lowercase, or mixed case. The USERENV function
has been deprecated since Oracle 9i. It is recommended to use the SYS_CONTEXT function
with the built-in USERENV namespace instead.

VSIZE

VSIZE(x) takes a single argument, where x is an expression. This function returns the size
in bytes of the internal representation of the x.

SELECT last_name, first_name,
VSIZE(last_name) ln_size, VSIZE(first_name) fn_size

Summary 167

FROM employees
WHERE last_name like 'K%';

LAST_NAME FIRST_NAME LN_SIZE FN_SIZE
Kaufling Payam 8 5
Khoo Alexander 4 9
King Janette 4 7
King Steven 4 6
Kochhar Neena 7 5
Kumar Sundita 5 7

Because the database character set is single-byte, the byte used for each character is 1;
hence, the size shown here is actually the number of characters in the input. For multibyte
characters, this would be different.

Summary

This chapter introduced single-row functions. It started by discussing the functions avail-
able in Oracle Database 12¢ to handle NULLs. Then it discussed the single-row functions
available in Oracle Database 12¢ by grouping them into character, numeric, date, and
conversion functions.

You learned that single-row functions return a value for each row as it is retrieved from
the table. You can use single-row functions to interpret NULL values, format output, convert
datatypes, transform data, perform date arithmetic, give environment information, and
perform trigonometric calculations.

You can use single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT
statements. We covered the rich assortment of functions available in each datatype category
and some functions that work on any datatype.

The NVL, NVL2, and COALESCE functions interpret NULL values.

The single-row character functions operate on character input. The INSTR function
returns the position of a substring within the string. The SUBSTR function returns a portion
of the string. INSTR and SUBSTR are great for extracting part of the input string. REPLACE
and TRANSLATE transform the input.

Single-row numeric functions operate on numeric input. FLOOR, CEIL, ROUND, and TRUNC get
the nearest number. FLOOR, CEIL, and ROUND return the nearest integer, whereas ROUND returns
a value rounded to certain digits of precision. REMAINDER and MOD are similar functions.

Date functions operate on datetime values. SYSDATE and SYSTIMESTAMP values return
the current date and time. MONTHS_BETWEEN finds the number of months between two date
values. ADD_MONTHS is a commonly used function and can add months to or subtract months
from a date. You can use ROUND and TRUNC on datetime values to find the nearest date,
month, or year.

168 Chapter 3 = Using Single-Row Functions

Of the conversion functions, TO_CHAR and TO_DATE are the most commonly used. We
also reviewed the format codes that can be used with numeric and datetime values.

The DECODE function evaluates a condition, and you can easily build IF..THEN..ELSE logic
into SQL using the DECODE function.

Exam Essentials

Understand where single-row functions can be used. Single-row functions can be used in
the SELECT, WHERE, and ORDER BY clauses of SELECT statements.

Know the effects that NULL values can have on arithmetic and other functions. Any
arithmetic operation on a NULL results in a NULL. This is true of most functions as well.
Use the NVL, NVL2, and COALESCE functions to deal with NULLs.

Review the character-manipulation functions. Understand the arguments and the results
of using character-manipulation functions such as INSTR, SUBSTR, REPLACE, and TRANSLATE.

Understand the numeric functions. Know the effects of using TRUNC and ROUND with -n as
the second argument. Also practice using LENGTH and INSTR, which return numeric results,
inside SUBSTR and other character functions.

Know how date arithmetic works. When adding or subtracting numeric values from

a DATE datatype, whole numbers represent days. Also, the date/time intervals INTERVAL
YEAR TO MONTH and INTERVAL DAY TO SECOND can be added or subtracted from date/time
datatypes. You need to know how to interpret and create expressions that add intervals to
or subtract intervals from dates.

Know the datatypes for the various date/time functions. Oracle has many date/time
functions to support the date/time datatypes. You need to know the return datatypes for
these functions. SYSDATE and CURRENT_DATE return a DATE datatype. CURRENT_TIMESTAMP
and SYSTIMESTAMP return a TIMESTAMP WITH TIME ZONE datatype. LOCALTIMESTAMP returns
a TIMESTAMP datatype.

Know the format models for converting dates to/from character strings. In practice, you
can simply look up format codes in a reference. For the certification exam, you must have
them memorized.

Understand the use of the DECODE function. DECODE acts like a case statement in C, Pascal,
or Ada. Learn how this function works and how to use it.

Learn the COALESCE and the NVL2 functions. All the NULL-related functions are important.
Pay particular attention to COALESCE and NVL2. Try out various examples.

Review Questions 169

Review Questions

1. You want to display each project’s start date as the day, week, number, and year.
Which statement will give output like the following?

Tuesday Week 23, 2008

A.

D.
E.

SELECT proj_id, TO_CHAR(start_date, 'DOW Week WOY YYYY')
FROM projects;

SELECT proj_id, TO_CHAR(start_date,'Day'||' Week'||' WOY, YYYY')
FROM projects;

SELECT proj_id, TO_CHAR(start_date, 'Day" Week" Ww, YYYY')
FROM projects;

SELECT proj_id, TO_CHAR(start_date, 'Day Week# , YYYY') FROM projects;

You can’t calculate week numbers with Oracle.

2. What will the following statement return?

SELECT last_name, first_name, start_date
FROM employees
WHERE hire_date < TRUNC(SYSDATE) - 5;

A.
B.
C.
D.

Employees hired within the past five hours
Employees hired within the past five days
Employees hired more than five hours ago

Employees hired more than five days ago

3. Which assertion about the following statements is most true?

SELECT name, region_code| |phone_number

FROM customers;

SELECT name, CONCAT(region_code,phone_number)

FROM customers;

A.

If REGION_CODE is NULL, the first statement will not include that customer’s
PHONE_NUMBER.

If REGION_CODE is NULL, the second statement will not include that customer’s
PHONE _NUMBER.

Both statements will return the same data.

The second statement will raise an error if REGION_CODE is NULL for any customer.

170

Chapter 3 = Using Single-Row Functions

4. Which single-row function could you use to return a specific portion of a character
string?

A.
B.
C.
D.

INSTR
SUBSTR
LPAD
LEAST

5. The data in the PRODUCT table is as described here. The bonus amount is calculated as
the lesser of 5 percent of the base price or 20 percent of the surcharge.

sku name division base_price surcharge
1001 PROD-1001 A 200 50

1002 PROD-1002 C 250

1003 PROD-1003 C 240 20

1004 PROD-1004 A 320

1005 PROD-1005 C 225 40

Which of the following statements will achieve the desired results?

A.

SELECT sku, name, LEAST(base_price * 1.05, surcharge * 1.2)FROM
products;

SELECT sku, name, LEAST(NVL(base_price,0) % 1.05, surcharge * 1.2)FROM
products;

SELECT sku, name, COALESCE(LEAST(base_pricex1.05, surcharge * 1.2),
base_price * 1.05)FROM products;

D. A, B, and C will all achieve the desired results.

E.

None of these statements will achieve the desired results.

6. Which function(s) accept arguments of any datatype? (Choose all that apply.)

>

B
C
D
E
7. W
A
B
C
D
E

SUBSTR

. NVL

. ROUND
. DECODE
. SIGN

hat will be returned by SIGN(ABS(NVL(-32,0)))?
.1

. 32

. -1

. 0

. NULL

8. The SALARY table has the following data:

Review Questions

LAST_NAME FIRST_NAME SALARY
Mavris Susan 6500
Higgins Shelley 12000
Tobias Sigal

Colmenares Karen 2500
Weiss Matthew 8000
Mourgos Kevin 5800
Rogers Michael 2900
Stiles Stephen 3200

Consider the following SQL instructions, and choose the best option:

SELECT last_name, NVL2(salary, salary, 0) N1,
NVL(salary,0) N2
FROM salary;

A. Column N1 and N2 will have different results.

B. Column N1 will show zero for all rows, and column N2 will show the correct salary
values, and zero for Tobias.

C. The SQL will error out because the number of arguments in the NVL2 function is
incorrect.

D. Columns N1 and N2 will show the same result.
9. Which two functions could you use to strip leading characters from a character string?
(Choose two.)
A. LTRIM
SUBSTR
RTRIM
INSTR
STRIP

mOOow

10. What is the result of MOD(x1, 4) if x1is 11?
A -1

B. 3

C.1

D. REMAINDER(11,4)

172 Chapter 3 = Using Single-Row Functions

11. Which SQL statement will replace the last two characters of last_name with 'XX' in
the employees table when executed?

A. SELECT RTRIM(last_name, SUBSTR(last_name, LENGTH(last_name)-1)) || 'XX'
new_col FROM employees;

B. SELECT REPLACE(last_name, SUBSTR(last_name, LENGTH(last_name)-1), 'XX'")
new_col FROM employees;

C. SELECT REPLACE(SUBSTR(last_name, LENGTH(last_name)-1), 'XX') new_col
FROM employees;

D. SELECT CONCAT(SUBSTR(last_name, 1,LENGTH(last_name)-2), 'XX') new_col
FROM employees;
12. Which date components does the CURRENT_TIMESTAMP function display?
A. Session date, session time, and session time zone offset
B. Session date and session time
C. Session date and session time zone offset
D. Session time zone offset

13. Using the SALESPERSON_REVENUE table described here, which statements will properly
display the TOTAL_REVENUE (CAR_SALES + WARRANTY_SALES) of each salesperson?

Column Name salesperson_id car_sales warranty_sales
Key Type Pk

NULLs/Unique NN NN

FK Table

Datatype NUMBER NUMBER NUMBER
Length 10 11,2 11,2

A. SELECT salesperson_id, car_sales, warranty_sales, car_sales + warranty_
sales total_salesFROM salesperson_revenue;

B. SELECT salesperson_id, car_sales, warranty_sales, car_sales +
NVL2(warranty_sales,0) total_salesFROM salesperson_revenue;

C. SELECT salesperson_id, car_sales, warranty_sales, NVL2(warranty_sales,
car_sales + warranty_sales, car_sales) total_salesFROM salesperson_
revenue;

D. SELECT salesperson_id, car_sales, warranty_sales, car_sales +
COALESCE(car_sales, warranty_sales, car_sales + warranty_sales) total_
salesFROM salesperson_revenue;

Review Questions 173

14. What would be the result of executing the following SQL, if today’s date were
February 28, 2009?
SELECT ADD_MONTHS('28-FEB-09', -12) from dual;
A. 28-FEB-10
B. 28-FEB-08
C. 29-FEB-08
D. 28-JAN-08
15. Consider the following two SQL statements, and choose the best option:
1. SELECT TO_DATE('30-SEP-07','DD-MM-YYYY') from dual;
2. SELECT TO_DATE('30-SEP-07','DD-MON-RRRR') from dual;
Statement 1 will error; 2 will produce results.
The resulting date value from the two statements will be the same.

The resulting date value from the two statements will be different.

S0 w >

Both statements will generate an error.
16. What will the following SQL statement return?

SELECT COALESCE(NULL,'Oracle ','Certified') FROM dual;
A. NULL

B. Oracle

C. Certified

D. Oracle Certified

17. Which expression will always return the date one year later than the current date?
SYSDATE + 365

SYSDATE + TO_YMINTERVAL('01-00')

CURRENT_DATE + 1

NEW_TIME (CURRENT_DATE,1,'YEAR')

None of the above

18. Which function will return a TIMESTAMP WITH TIME ZONE datatype?
CURRENT_TIMESTAMP

LOCALTIMESTAMP

CURRENT_DATE

SYSDATE

SowP>»E moowp

174 Chapter 3 = Using Single-Row Functions

19. Which statement would change all occurrences of the string 'IBM' to the string 'SUN'
in the DESCRIPTION column of the VENDOR table?

A. SELECT TRANSLATE(description, 'IBM', 'SUN') FROM vendor
B. SELECT CONVERT(description, 'IBM', 'SUN') FROM vendor
C. SELECT EXTRACT(description, 'IBM', 'SUN') FROM vendor
D. SELECT REPLACE(description, 'IBM', 'SUN') FROM vendor

20. Which function implements IF..THEN..ELSE logic?
A. INITCAP
B. REPLACE
C. DECODE
D. IFELSE

Using Group
Functions

ORACLE DATABASE 12¢c: SOL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Reporting Aggregated Data Using the Group Functions
= |dentify the available group functions.
= Describe the use of group functions.
= Group data by using the GROUP BY clause.

® Include or exclude the grouped rows by using the
HAVING clause.

As explained in the previous chapter, functions are programs
that take zero or more arguments and return a single value. The
certification exam focuses on two types of functions: single-row
and aggregate (group) functions. Single-row functions were covered in Chapter 3, “Using
Single-Row Functions.” Group functions are covered in this chapter.

Group functions differ from single-row functions in how they are evaluated. Single-row
functions are evaluated once for each row retrieved. Group functions are evaluated on
groups of one or more rows at a time.

In this chapter, you will explore which group functions are available in SQL, the rules
for how to use them, and what to expect on the exam about aggregating data and group
functions. You will also explore nesting function calls together. SQL allows you to nest
group functions within calls to single-row functions, as well as nest single-row functions
within calls to group functions.

Group Function Fundamentals

Group functions are sometimes called aggregate functions and return a value based on a
number of inputs. The exact number of inputs is not determined until the query is executed
and all rows are fetched. This differs from single-row functions, in which the number of
inputs is known at parse time before the query is executed. Because of this difference, group
functions have slightly different requirements and behavior than single-row functions.

Group functions do not consider NULL values, except the COUNT (x) and GROUPING functions.
You may apply the NVL function to the argument of the group function to substitute a value
for NULL and hence be included in the processing of the group function. If the dataset contains
all NULL values or there are no rows in the dataset, the group function returns NULL (the only
exception to this rule is COUNT—it returns zero).

Most of the group functions can be applied either to ALL values or to only the DISTINCT
values for the specified expression. When ALL is specified, all non-NULL values are applied to
the group function. When DISTINCT is specified, only one of each non-NULL value is applied
to the function. If you do not specify ALL or DISTINCT, the default is ALL.

To better understand the difference between ALL and DISTINCT, let’s look at a few rows
from the EMPLOYEES table:

SELECT first_name, salary
FROM employees
WHERE first_name LIKE 'D%'

Utilizing Aggregate Functions 177

ORDER BY salary;

FIRST_NAME SALARY
Donald 2600
Douglas 2600
Diana 4200
David 4800
David 6800
Daniel 9000
David 9500
Danielle 9500
Den 11000

The SALARY column contains nine values. Two employees have $2,600 and $9,500 each.
When you count unique entries in the SALARY column, there are seven, because two are dupli-
cates. The following SQL code shows a few examples. The COUNT function is used to get a
count, and the SUM function is used to find the total. (We’ll discuss these functions later in the
chapter.) When the UNIQUE keyword is used, the 2,600 and 9,500 are included in the result
only once.

SELECT COUNT(salary) cnt_nu, COUNT(DISTINCT salary) cnt_ugq,
SUM(salary) sum_nu, SUM(DISTINCT salary) sum_uq

FROM employees

WHERE first_name LIKE 'D%';

CNT_NU CNT_UQ SUM_NU SUM_UQ
9 7 60000 47900
)’ Unlike with single-row functions, you cannot use programmer-written
AdﬁTE functions on grouped data.

Utilizing Aggregate Functions

As with single-row functions, Oracle offers a rich variety of aggregate functions. These func-
tions can appear in the SELECT, ORDER BY, or HAVING clauses of SELECT statements. When used
in the SELECT clause, they usually require a GROUP BY clause as well. If no GROUP BY clause is

178 Chapter 4 = Using Group Functions

specified, the default grouping is for the entire result set. Group functions cannot appear in
the WHERE clause of a SELECT statement. The GROUP BY and HAVING clauses of SELECT state-
ments are associated with grouping data. We’ll discuss the GROUP BY clause before you learn
about the various group functions.

e You almost certainly will encounter a certification exam question that tests
P whether you will incorrectly put a group function in the WHERE clause.

Grouping Data with GROUP BY

As the name implies, group functions work on data that is grouped. You tell the database
how to group or categorize the data with a GROUP BY clause. Whenever you use a group func-
tion in the SELECT clause of a SELECT statement, you must place all nongrouping/nonconstant
columns in the GROUP BY clause. If no GROUP BY clause is specified (only group functions and
constants appear in the SELECT clause), the default grouping becomes the entire result set.
When the query executes and the data is fetched, it is grouped based on the GROUP BY clause,
and the group function is applied.

The basic syntax of using a group function in the SELECT statement is as follows:

SELECT [column names], group_function (column_name),
FROM table

[WHERE condition]

[GROUP BY column names]

[ORDER BY column names]

In the following example, you find the total number of employees from the EMPLOYEES
table:

SELECT COUNT(*) FROM employees;

COUNT (%)

Because you did not have any other column in the SELECT clause, you did not need to
specify the GROUP BY clause. Suppose you want to find out the number of employees in each
department; you can include department_id in the SELECT clause:

SELECT department_id, COUNT(x) "#Employees"

FROM employees;

SELECT department_id, COUNT(*) "#Employees"
*

Utilizing Aggregate Functions 179

ERROR at line 1:
ORA-00937: not a single-group group function

Because you used an aggregate function and nonaggregated column, Oracle generated an
error and is telling you to group the data. Here you have to use the GROUP BY clause. If you
include a group function in the SELECT clause, you cannot select individual results unless
you use the GROUP BY clause. Make sure all the columns in the SELECT clause that are not
part of a group function are included in the GROUP BY clause. The following SQL code lists
the number of employees by their department:

SELECT department_id, COUNT(*x) "#Employees"
FROM employees
GROUP BY department_id;

DEPARTMENT_ID #Employees
100
30

70
90

110
50 45
40 1
80 34
10
60

6
6
1
20 2
1
3
2

Notice that the rows are returned in no specific order. If you want the rows to be
arranged in the order of the number of employees, you can either specify the aggregate
function in the ORDER BY clause or use the position of the column, like so:

SELECT department_id, COUNT(x) "#Employees"
FROM employees

GROUP BY department_id

ORDER BY count(*) DESC, department_id;

SELECT department_id, COUNT(x) "#Employees"
FROM employees

GROUP BY department_id

ORDER BY 2 DESC, department_id;

180 Chapter 4 = Using Group Functions

DEPARTMENT_ID #Employees
50 45
80 34
30

100
60
90
20

110
10
40
70

H B R B NN W oo o

You cannot use a column alias name or column position in the GROUP BY clause (as you
can in the ORDER BY clause). The following SQL instructions use the column position in the
GROUP BY clause and hence generate an error:

SELECT department_id, COUNT(*x) "#Employees"

FROM employees

GROUP BY 1;

SELECT department_id, COUNT(*) "#Employees"
*

ERROR at line 1:

ORA-00979: not a GROUP BY expression

The following is another invalid SQL statement. In this example, the GROUP BY clause
uses a column alias, which is not supported. Pay particular attention to GROUP BY ques-
tions on the certification exam, because you might see one with a column alias or column
position used.

SELECT department_id di, COUNT(*) emp_cnt
FROM employees
GROUP BY di;
GROUP BY di
*
ERROR at line 3:
ORA-00904: "DI": 1dnvalid identifier

The GROUP BY column does not have to be in the SELECT clause. In most cases, the
result may not make much sense, but you might need it. In the following example, you
are calculating the average salary of employees in each department; you do not want to

Utilizing Aggregate Functions 181

share which department the average salary belongs to, and you are only interested in
knowing the average salaries in the company by department:

SELECT AVG(salary) average_salary
FROM employees
GROUP BY department_id;

AVERAGE_SALARY
8601.33333
4150

7000
19333.3333
9500

10000
10154
3475.55556
8955.88235
6500

5760

4400

If you have more than one column in the GROUP BY clause, Oracle creates groups within
groups. The order of columns in the GROUP BY clause determines the grouping. Multiple col-
umns in the GROUP BY clause are required when you have more than one nonaggregate column
in the SELECT clause. In the following example, the rows are grouped by the department_id,
and within each department they are grouped by the job_1id. The SQL shows the number of
different jobs within each department:

SELECT department_id, job_id, COUNT(x)
FROM employees

GROUP BY department_id, job_id

ORDER BY 1, 2;

DEPARTMENT_ID JOB_ID COUNT ()
10 AD_ASST 1
20 MK_MAN 1
20 MK_REP 1
30 PU_CLERK 5
30 PU_MAN 1
40 HR_REP 1

182 Chapter 4 = Using Group Functions

50
50
50
60
70
80
80
90
90
100
100
110
110

2

SH_CLERK
ST_CLERK
ST_MAN
IT_PROG
PR_REP
SA_MAN
SA_REP
AD_PRES
AD_VP
FI_ACCOUNT
FI_MGR
AC_ACCOUNT
AC_MGR
SA_REP

20
20

(20

29

R R R 0N

The GROUP BY clause groups data, but Oracle does not guarantee the order
of the result set by the grouping order. To order the data in any specific
order, you must use the ORDER BY clause. ORDER BY clause follows the
GROUP BY clause and if the ORDER BY clause is used, it is the last clause

in the SELECT statement.

Group Function Overview

Tables 4.1 and 4.2 summarize the group functions discussed in this chapter. We will cover
each of these functions in the “Group Function Descriptions” sections. Table 4.1 summa-
rizes the group functions that are most likely to appear on the OCP certification exam.

TABLE 4.1 Group Function Summary: Part 1

Function Description

AVG Returns the statistical mean

COUNT Returns the number of non-NULL rows
MAX Returns the largest value

MEDIAN Returns a middle value

MIN Returns the smallest value

Utilizing Aggregate Functions 183

Function Description

STDDEV Returns the standard deviation

SUM Adds all values and returns the result

VARIANCE Returns the sample variance, or 1 for sample size 1
LISTAGG Returns multiple rows of data in a single row based for

each group

Table 4.2 summarizes the group functions available in Oracle Database 12¢ that are not
included in Table 4.1. Although they are less likely to appear on the certification exam, they

are still important to review.

TABLE 4.2 Group Function Summary: Part 2

Function Description

CORR Returns the coefficient of correlation of number pairs

COVAR_POP Returns the population covariance of number pairs

COVAR_SAMP Returns the sample covariance of number pairs

CUME_DIST Returns the cumulative distribution of values within
groupings

DENSE_RANK Returns the ranking of rows within an ordered group,
without skipping ranks on ties

FIRST Modifies other aggregate functions to return expres-
sions based on the ordering of the second-column
expression

GROUP_ID Returns a group identifier used to uniquely identify
duplicate groups

GROUPING Returns 0 for nonsummary rows or 1 for summary rows

GROUPING_ID

KEEP

Helps determine group by levels when CUBE or ROLLUP
is used

Modifies other aggregate functions to return the first or
last value in a grouping

184 Chapter 4 = Using Group Functions

TABLE 4.2 Group Function Summary: Part 2 (continued)

Function Description

LAST Modifies other aggregate functions to return expressions
based on ordering of the second-column expression

PERCENTILE_CONT Returns the interpolated value that would fall in the
specified percentile position using a continuous model

PERCENTILE_DISC Returns the interpolated value that would fall in the
specified percentile position using a discrete model

PERCENT_RANK Returns the percentile ranking of the specified value

RANK Returns the ranking of rows within an ordered group,
skipping ranks when ties occur

STDDEV_POP Returns the population standard deviation
STDDEV_SAMP Returns the sample standard deviation
VAR_POP Returns the population variance

VAR_SAMP Returns the sample variance

Group Function Descriptions: Part 1

We divided the group functions into two sections. The group functions included in the
following sections are commonly used in everyday SQL and are most likely to appear on
the OCP certification exam. We discuss each of these functions and include descriptions
and examples of each.

For the certification exam, concentrate more on the group functions covered
P in the Part 1 discussion than those in the Part 2 discussion.

AVG

AVG function has the syntax AVG([{DISTINCT | ALL}] n), where nis a numeric expression.
The AVG function returns the average of the expression n. The following example finds the
average salary of employees by job, whose job name begins with AC:

SELECT job_id, AVG(salary)
FROM employees

Utilizing Aggregate Functions 185

WHERE job_id like 'AC%'
GROUP BY job_id;

JOB_ID AVG (SALARY)
AC_ACCOUNT 8300
AC_MGR 12000

You can use an expression or formula in the group functions. In the following example,
the average compensation including commission is calculated for department 30 from the
SCOTT.EMP table. The expression will be evaluated first, and its result will be used to calculate
the mean. To help you better understand the example, the data in department 30 is listed.

SELECT deptno, sal, comm
FROM scott.emp
WHERE deptno = 30;

DEPTNO SAL COMM
30 1600 300
30 1250 500
30 1250 1400
30 2850
30 1500 0
30 950

SELECT deptno, AVG(sal + NVL(comm,0)) avg_comp
FROM scott.emp

WHERE deptno = 30

GROUP BY deptno;

DEPTNO AVG_COMP

30 1933.33333

Remember that group functions ignore NULL values. If the NVL function is not used,
the employees with no commission are not included in the mean calculation. See the
result difference in the following example without the NVL use:

SELECT deptno, AVG(sal + comm) avg_comp
FROM scott.emp

WHERE deptno = 30

GROUP BY deptno;

186 Chapter 4 = Using Group Functions

DEPTNO AVG_COMP

COUNT

The COUNT function has the syntax COUNT ({* | [DISTINCT | ALL] <x>}), where xis an
expression. The COUNT function returns the number of rows in the query. If an expression is
given and neither DISTINCT nor ALL is specified, the default is ALL. The asterisk (x) is a special
quantity; it counts all rows in the result set, regardless of NULLs.

In the example that follows, you can count the number of rows in the EMPLOYEES table
(the number of employees), the number of departments that have employees in them (DEPT_
COUNT), and the number of employees that have a department (NON_NULL_DEPT_COUNT). You
can see from the results that one employee is not assigned to a department, and the other
106 are assigned to one of 11 departments.

SELECT COUNT(*) emp_count,
COUNT (DISTINCT department_id) dept_count,
COUNT(ALL department_id) non_null_dept_count
FROM hr.employees;

EMP_COUNT DEPT_COUNT NON_NULL_DEPT_COUNT

This next example looks at the number of employees drawing a commission, as well as
the distinct number of commissions drawn. You can see that 35 out of 107 employees draw
a commission and that seven different commission levels are in use.

SELECT COUNT (%),
COUNT (commission_pct) comm_count,
COUNT(DISTINCT commission_pct) distinct_comm
FROM hr.employees;

COUNT(*) COMM_COUNT DISTINCT_COMM

MAX

The MAX function has the syntax MAX([{DISTINCT | ALL}] <x>), where x is an expres-
sion. This function returns the highest value in the expression x. x can be a datetime,

Utilizing Aggregate Functions 187

numeric, or character value. The results of the MAX operation on the three groups of
datatypes are as follows:
If the expression x is a datetime datatype, it returns a DATE. For dates, the maximum is
the latest date.
If the expression x is a numeric datatype, it returns a NUMBER. For numbers, the maxi-
mum is the largest number.
If the expression is a character datatype, it returns a VARCHAR2. For character strings,
the maximum is the one that sorts highest based on the database character set.
Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use does
not affect the calculation of a MAX function; the largest distinct value is the same as the largest

of all values. The following example finds information from the employees table: the latest hire
date, highest salary, and employee whose last name is last when sorted in ascending order:

SELECT MAX(hire_date),
MAX (salary),
MAX (last_name)

FROM hr.employees;

MAX (HIRE_ MAX (SALARY) MAX(LAST_NAME)

21-APR-08 24000 Zlotkey

MIN

The MIN function has the syntax MIN([{DISTINCT | ALL}] <x>), where x is an expression.
This function returns the lowest value in the expression x. Similar to the MAX function, the
x in MIN can also be a numeric, datetime, or character datatype.

If the expression x is a datetime datatype, it returns a DATE. For dates, the minimum is
the earliest date.
If the expression x is a numeric datatype, it returns a NUMBER. For numbers, the minimum
is the smallest number.
If the expression is a character datatype, it returns a VARCHAR2. For character strings,
the minimum is the one that sorts lowest based on the database character set.
Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use
does not affect the calculation of a MIN function; the smallest distinct value is the same as the

smallest value. The following example finds the oldest hired employee, and the lowest salary
and highest salary for each job category. The rows are filtered for jobs ending with CLERK:

SELECT job_id, MIN(hire_date) oldest, MIN(salary) low_sal,
MAX(salary) high_sal
FROM hr.employees

188 Chapter 4 = Using Group Functions

WHERE job_id like '%CLERK'
GROUP BY job_id;

JOB_ID OLDEST LOW_SAL HIGH_SAL
PU_CLERK 18-MAY-03 2500 3100
SH_CLERK 27-JAN-04 2500 4200
ST_CLERK 14-3JUL-03 2100 3600
SUM

The SUM function has the syntax SUM([{DISTINCT | ALL}] <x>), where x is a numeric
expression. This function returns the sum of the expression x. The following example finds
the total salary and average salary of employees by their phone number area code. Notice the
use of group functions and a single-row function in the same SQL instructions:

SELECT SUBSTR(phone_number, 1,3) area_code,

SUM(salary) total_sal, ROUND(AVG(salary)) avg_sal
FROM employees
GROUP BY SUBSTR(phone_number, 1,3);

AREA_CODE TOTAL_SAL AVG_SAL
515 188716 8986
590 28800 5760
603 6000 6000
011 311500 8900
650 156400 3476
MEDIAN

MEDIAN (<x>) is an inverse distribution function that returns a middle value after the values in
the expression are sorted. The argument x is an expression of numeric or datetime value. The
following example finds the median, average, low, and high salary of employees by job cat-
egory. To limit the rows returned, a filter condition is used:

SELECT job_id, MEDIAN(Salary) median, AVG(salary) average,
MIN(salary) low_sal, MAX(salary) high_sal

FROM hr.employees

WHERE job_id like '%CLERK'

GROUP BY job_id;

Utilizing Aggregate Functions 189

JOB_ID MEDIAN AVERAGE LOW_SAL HIGH_SAL
PU_CLERK 2800 2780 2500 3100
SH_CLERK 3100 3215 2500 4200
ST_CLERK 2700 2785 2100 3600
STDDEV

This function has the syntax STDDEV ([{DISTINCT | ALL}] <x>), where x is a numeric
expression. The STDDEV function returns the numeric standard deviation of the expression x.
The standard deviation is calculated as the square root of the variance:

SELECT department_id,
COUNT (salary) emp_cnt,
MIN(salary) minimum,
MAX(salary) maximum,
AVG(salary) mean,
STDDEV (salary) deviation

FROM employees

GROUP BY department_id

ORDER BY department_id;

DEPARTMENT_ID EMP_CNT MINIMUM MAXIMUM MEAN DEVIATION
10 1 4400 4400 4400 0
20 2 6000 13000 9500 4949.74747
30 6 2500 11000 4150 3362.58829
40 1 6500 6500 6500 0
50 45 2100 8200 3475.55556 1488.00592
60 5 4200 9000 5760 1925.61678
70 1 10000 10000 10000 0
80 34 6100 14000 8955.88235 2033.6847
90 3 17000 24000 19333.3333 4041.45188
100 6 6900 12008 8601.33333 1804.13155
110 2 8300 12008 10154 2621.95194
1 7000 7000 7000 0
VARIANCE

This function has the syntax VARIANCE ([{DISTINCT | ALL}] <x>), where x is a numeric
expression. This function returns the variance of the expression x. The following example

190 Chapter 4 = Using Group Functions

finds the total number of employees in each department and their variance in salary by
department:

SELECT department_id,
COUNT (%),
VARIANCE (salary)

FROM hr.employees

GROUP BY department_id

ORDER BY department_id;

DEPARTMENT_ID COUNT(x) VARIANCE(SALARY)

10 1 0
20 2 24500000
30 6 11307000
40 1 0
50 45 2214161.62
60 5 3708000
70 1 0
80 34 4135873.44
90 3 16333333.3
100 6 3254890.67
110 2 6874632

1 0

LISTAGG

The LISTAGG function aggregates data from multiple rows into one row per group. LISTAGG
can be used as an aggregate function or analytic function. The aggregate function syntax is

LISTAGG (<expression> [, '<delimiter>']) WITHIN GROUP (ORDER BY <columns>)

where expression is a numeric expression or string expression, usually the column you want
to concatenate. The delimiter is optional, with default value NULL. If a delimiter is provided,
the values returned in the expression are separated by this delimiter. The WITHIN GROUP clause
is mandatory and it tells Oracle to produce one row per each distinct value of the GROUP BY
columns, and within that group to sort the results according to the ORDER BY clause. The
ORDER BY clause determines the order in which the aggregated values are ordered. The ORDER
BY clause is mandatory; if you do not want to specify any column order, specify ORDER BY
NULL. Let’s review with an example to help you understand the LISTAGG function.

The following SQL code displays the first names of employees in each department
concatenated and delimited with a comma.

SQL> col employee_names format a60 word
SQL> SELECT LISTAGG(first_name, ', ') WITHIN GROUP (

Utilizing Aggregate Functions

2 ORDER BY first_name) Employee_Names,
3 department_id

4 FROM employees

5 WHERE department_id > 75

6x GROUP BY department_id;

EMPLOYEE_NAMES

Alberto, Allan, Alyssa, Amit, Charles, Christopher, Clara,
Danielle, David, David, Eleni, Elizabeth, Ellen, Gerald,
Harrison, Jack, Janette, John, Jonathon, Karen, Lindsey,
Lisa, Louise, Mattea, Nanette, Oliver, Patrick, Peter,
Peter, Sarath, Sundar, Sundita, Tayler, William

Lex, Neena, Steven

Daniel, Ismael, John, Jose Manuel, Luis, Nancy

Shelley, William

sQL>

DEPARTMENT_ID

90
100
110

191

If the GROUP BY clause is not used, one row result will be returned, similar to any other
group function. The following example shows employee names and their hire date, in the
order of hire date concatenated for department ID over 85. The filtering for this SQL is done

only to restrict the number of rows. This example also shows using an expression as the

first parameter for the LISTAGG function.

SQL> col employee_hire_dates format a60 word

SQL> SELECT LISTAGG(first_name || '('||hire_date||")', '; ")

2 WITHIN GROUP (ORDER BY hire_date) Employee_Hire_Dates

3 FROM employees
4x WHERE department_id > 85;

EMPLOYEE_HIRE_DATES

Lex(13-JAN-01); Shelley(07-JUN-02); William(07-JUN-02);
Daniel(16-AUG-02); Nancy(17-AUG-02); Steven(17-JUN-03);
Neena(21-SEP-05); John(28-SEP-05); Ismael(30-SEP-05); Jose
Manuel(07-MAR-06); Luis(07-DEC-07)

sQL>

192 Chapter 4 = Using Group Functions

@ Real World Scenario
Exploring DBA Queries Using Aggregate Functions

As a DBA, you often need to find out how much space is allocated for a schema and

how much is free. You might not be interested in seeing the space used by all the tables
or indexes in the schema, but it would be nice to have the summary broken down into
tablespace-wise schema storage space. Let’s write a few SQL statements using the group
functions that you can use to calculate space usage in a database.

The DBA_SEGMENTS dictionary view shows the segments allocated in the database—each
table or index created in the database must have at least one segment created. The columns
you are interested in for the query are tablespace_name, owner (or the schema name), and
bytes (allocated space in bytes).

This first SQL code just gives the total space used by all the objects in the database. This
is a simple SQL statement on all the rows in the view:

SELECT SUM(bytes) /1048576 size_mb
FROM dba_segments;

SIZE_MB

1564.8125

Now, let’s break down this space into the next level to see the space used in each
tablespace. Because you are not interested in any aggregate function over the entire
database but want to break it down by tablespaces, you must have the GROUP BY clause:

SELECT tablespace_name, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY tablespace_name;

TABLESPACE_NAME SIZE_MB
SYSAUX 716.375
UNDOTBS1 48.25
USERS 21.25
SYSTEM 701.625

EXAMPLE 77.3125

Utilizing Aggregate Functions 193

To find the amount of space allocated to each schema owner within the tablespaces, all
you have to do is add the owner column to the query. Remember, because you are not per-
forming an aggregate function on owner, that column also should be part of the GROUP BY
clause. You also need to include an ORDER BY clause so that the rows returned are in the
order of tablespace name.

SELECT tablespace_name, owner, SUM(bytes) /1048576 size_mb
FROM dba_segments

GROUP BY tablespace_name, owner

ORDER BY 1, 2;

TABLESPACE_NAME OWNER SIZE_MB
EXAMPLE HR 1.5625
EXAMPLE IX 1.625
EXAMPLE OE 6.25
EXAMPLE PM 11.875
EXAMPLE SH 56
SYSAUX CTXSYS 5.4375
USERS HR .1875
USERS OE 2.625
USERS SCOTT .375
USERS SH 2

If you want to know the amount of space allocated to the objects owned by each schema,
you can run the following query:

SELECT owner, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY owner

ORDER BY 1;

OWNER SIZE_MB
BTHOMAS 16.0625
CTXSYS 5.4375
DBSNMP 1.5

EXFSYS 3.875

194 Chapter 4 = Using Group Functions

FLOWS_030000 100.6875
FLOWS_FILES L4375
HR 1.75

Group Function Descriptions: Part 2

The group functions discussed in the following sections are included in this chapter for
completeness of the group functions discussion. The likelihood of these appearing in the
OCP certification exam is minimal, but knowing these functions will help you write better
SQL queries.

Many group functions discussed in this group (and AVG, COUNT, MAX, MIN, STDDEV, SUM,
and VARIANCE) can be used as analytic functions. Analytic functions are commonly used in
data warehouse environments. They compute an aggregate based on a group of rows, called
a window. Because the OCP certification exam does not include analytic functions, we
won’t discuss them in this chapter.

CORR

CORR(y, x) takes two arguments, where y and x are numeric expressions representing the
dependent and independent variables, respectively. This function returns the coefficient of
the correlation of a set of number pairs.

The coefficient of correlation is a measure of the strength of the relationship between
the two numbers. CORR can return a NULL. The coefficient of the correlation is calculated
from those x, y pairs that are both not NULL using the formula COVAR_POP(y, x) / (STDDEV_
POP(y) * STDDEV_POP(X)).

SELECT CORR(list_price,min_price) correlation,
COVAR_POP(1list_price,min_price) covariance,
STDDEV_POP(list_price) stddev_popy,
STDDEV_POP(min_price) stddev_popx

FROM oe.product_information

WHERE 1list_price IS NOT NULL

AND min_price IS NOT NULL;

CORRELATION COVARIANCE STDDEV_POPY STDDEV_POPX

.99947495 206065.903 496.712198 415.077696

The previous output shows that there is a 99.947 percent chance that the list price depends
on the minimum price. So, when the minimum price moves by x percent, there is a 99.947
percent chance that the list price will also move by x percent.

Utilizing Aggregate Functions 195

COVAR_POP

COVAR_POP(y, x) takes two arguments, where y and x are numeric expressions. This function
returns the population covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The popula-
tion covariance is calculated from those y, x pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(X) / COUNT(x)) / COUNT(X).

SELECT category_id,
COVAR_POP(1list_price,min_price) population,
COVAR_SAMP(list_price,min_price) sample

FROM oe.product_information

GROUP BY category_id;

CATEGORY_ID POPULATION SAMPLE
25 27670.25 31623.1429
22 45 67.5
11 92804.9883 98991.9875
13 25142.125 26465.3947
29 3446.75 3574.40741
14 17982.9924 18800.4012
31 1424679.17 1709615
21 21.5306122 25.1190476
24 109428.285 114639.156
32 4575.06 4815.85263
17 5466.14286 5739.45

33 945 1134
15 7650.84375 8160.9
16 431.38 479.311111

19 417343.887 426038.551
12 26472.3333 29781.375
39 1035.14059 1086.89762

COVAR_SAMP

COVAR_SAMP(y, x) takes two arguments, where y and x are numeric expressions represent-
ing the dependent and independent variables, respectively. This function returns the sample
covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The sample
covariance is calculated from those x, y pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(X) / COUNT(x)) / (COUNT(x)-1).

196 Chapter 4 = Using Group Functions

SELECT SUM(list_price*min_price) sum_xy,
SUM(list_price) sum_y,
SUM(min_price) sum_x,
COVAR_SAMP(list_price,min_price) COVARIANCE
FROM oe.product_information;

SUM_XY SUM_Y SUM_X COVARIANCE
73803559 71407 60280 206791.488
CUME_DIST

This function has the syntax

CUME_DIST(<val_list>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of expressions that evaluate to numeric constant
values and col_list is the comma-delimited list of column expressions. CUME_DIST returns
the cumulative distribution of a value in val_list within a distribution in col_list.

The cumulative distribution is a measure of ranking within the ordered group and will
be in the range 0 < CUME_DIST <= 1. See also PERCENT_RANK.

SELECT department_id,
COUNT(*) emp_count,
AVG(salary) mean,
PERCENTILE_CONT(0.5) WITHIN GROUP
(ORDER BY salary DESC) Median,
CUME_DIST(10000) WITHIN GROUP
(ORDER BY salary DESC) Cume_Dist_10K
FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID EMP_COUNT MEAN MEDIAN CUME_DIST_10K
10 1 4400 4400 5
20 2 9500 9500 .666666667
30 6 4150 2850 .285714286
40 1 6500 6500 .5
50 45 3475.55556 3100 .02173913
60 5 5760 4800 .166666667
70 1 10000 10000 1

80 34 8955.88235 8900 .342857143

Utilizing Aggregate Functions 197

90 3 19333.3333 17000 1
100 6 8601.33333 8000 .285714286
110 2 10154 10154 .666666667
1 7000 7000 .5
DENSE_RANK

This function has the syntax

DENSE_RANK(val_l7ist) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first]|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_l7ist is the comma-delimited list of column
expressions. DENSE_RANK returns the row’s rank within an ordered group. The ranks are con-
secutive integers starting with 1. The rank values are the number of unique values returned
by the query. When there are ties, ranks are not skipped. For example, if three items are

tied for first, then the second and third will not be skipped. See also RANK. The following
example finds the number of employees in each department along with their low and high
salary. Use the DENSE_RANK function to figure out the ranking of a $10,000 salary within each
department:

SELECT department_id,

COUNT (x) emp_count,

MAX(salary) highsal,

MIN(salary) lowsal,

DENSE_RANK(10000) WITHIN GROUP

(ORDER BY salary DESC) dense_rank_10K

FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID EMP_COUNT HIGHSAL LOWSAL DENSE_RANK_10K
10 1 4400 4400 1
20 2 13000 6000 2
30 6 11000 2500 2
40 1 6500 6500 1
50 45 8200 2100 1
60 5 9000 4200 1
70 1 10000 10000 1
80 34 14000 6100 7
90 3 24000 17000 3

100 6 12008 6900 2
110 2 12008 8300 2

198 Chapter 4 = Using Group Functions

To understand this ranking, let’s look closer at department 80. You can see that $10,000
is the seventh-highest salary in department 80. Even though there are 11 employees that
make $10,000 or more, the duplicates are not counted for ranking purposes.

SELECT salary, COUNT(x)
FROM hr.employees
WHERE department_id=80
GROUP BY salary

ORDER BY salary DESC;

SALARY COUNT(*)

9600 1

- See also RANK.
AdTE

FIRST
See KEEP.

GROUP_ID

GROUP_ID() takes no arguments and requires a GROUP BY clause. GROUP_ID returns a
numeric identifier that can be used to uniquely identify duplicate groups. For 7 duplicate
groups, GROUP_ID will return values O through i-1.

GROUPING

GROUPING(x) takes a single argument, where x is an expression in the GROUP BY clause of the
query. The GROUPING function is applicable only for queries that have a GROUP BY clause and
a ROLLUP or CUBE clause. The ROLLUP and CUBE clauses create summary rows (sometimes
called superaggregates) containing NULL in the grouped expressions. The GROUPING function
returns a 1 for these summary rows and a 0 for the nonsummary rows, and it is used to
distinguish the summary rows from the nonsummary rows.

Utilizing Aggregate Functions 199

GROUPING is discussed in detail in the “Creating Superaggregates with CUBE and
ROLLUP?” section later in this chapter.

GROUPING_ID

This function has the syntax GROUPING_ID (<col_list>) and is applicable only in SELECT
statements with a GROUP BY clause with CUBE or ROLLUP. If the query contains many expres-
sions in the GROUP BY clause, determining the GROUP BY level will require many GROUPING
functions. The GROUPING_ID eliminates such a need. For a more detailed discussion on
GROUPING_ID, see the section “Creating Superaggregates with CUBE and ROLLUP” later
in this chapter.

KEEP

The KEEP function has the syntax

agg_function KEEP(DENSE_RANK {FIRST|LAST}
ORDER BY col_list [ASC|DESC] [NULLS {first|last}]))

where agg_function is an aggregate function (COUNT, SUM, AVG, MIN, MAX, VARIANCE, or
STDDEV) and col_list s a list of columns to be ordered for the grouping.

This function is sometimes referred to as either the FIRST or LAST function, and it is
actually a modifier for one of the other group functions, such as COUNT or MIN. The KEEP
function returns the first or last row of a sorted group. It is used to avoid the need for a
self-join, looking for the minimum or maximum

SELECT department_id,
MIN(hire_date) earliest,
MAX (hire_date) latest,
COUNT (salary) KEEP
(DENSE_RANK FIRST ORDER BY hire_date) FIRST,
COUNT (salary) KEEP
(DENSE_RANK LAST ORDER BY hire_date) LAST
FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID EARLIEST LATEST FIRST LAST
10 17-SEP-03 17-SEP-03 1 1
20 17-FEB-04 17-AUG-05 1 1
30 07-DEC-02 10-AUG-07 1 1
40 07-JUN-02 07-JUN-02 1 1
50 01-MAY-03 08-MAR-08 1 1
60 25-JUN-05 21-MAY-07 1 1
70 07-JUN-02 07-JUN-02 1 1

200 Chapter 4 = Using Group Functions

80 30-JAN-04 21-APR-08
90 13-JAN-01 21-SEP-05
100 16-AUG-02 07-DEC-07
110 07-JUN-02 07-JUN-02

24-MAY-07 24-MAY-07

[N =
N R RN

You can see from the previous query that department 80’s earliest and latest anniversary
dates are 30-Jan-2004 and 21-Apr-2008. The FIRST and LAST columns show us that one
employee was hired on the earliest anniversary date (30-Jan-2004) and two were hired on the
latest anniversary date (21-Apr-2008). Likewise, you can see that department 110 has two
employees hired on the earliest anniversary date (07-Jun-2002) and two on the latest anniver-
sary date (07-Jun-2002). If you look at the following detailed data, this becomes clearer:

SELECT department_id,hire_date
FROM hr.employees

WHERE department_id IN (80,110)
ORDER BY 1,2;

DEPARTMENT_ID HIRE_DATE
80 30-JAN-04
80 04-MAR-04
80 11-MAY-04
80 01-AUG-04
80 01-0CT-04
80 05-JAN-05
80 30-JAN-05
.e w . (output truncated)
80 21-APR-08
80 21-APR-08
110 07-JUN-02
110 07-JUN-02

LAST
See KEEP.

PERCENT_RANK
The PERCENT_RANK function has the syntax

PERCENT_RANK (<val_1l7st>) WITHIN GROUP (ORDER BY col_l1ist
[ASC|DESC] [NULLS {first|last}])

Utilizing Aggregate Functions

201

where val_list is a comma-delimited list of expressions that evaluate to numeric constant

values and col_list is the comma-delimited list of column expressions. PERCENT_RANK
returns the percent ranking of a value in val_list within a distribution in col_l7ist. The

percent rank x will be in the range 0 <= x <= 1.

The main difference between PERCENT_RANK and CUME_DIST is that PERCENT_RANK will

always return a 0 for the first row in any set, while the CUME_DIST function cannot return

a 0. You can use the PERCENT_RANK and CUME_DIST functions to examine the rankings of

employees with salaries of more than $10,000 in the HR.EMPLOYEES table. Notice the differ-

ent results for departments 40 and 70.

SELECT DEPARTMENT_ID DID,
COUNT(*) emp_count,
AVG(salary) mean,
PERCENTILE_CONT(0.5) WITHIN GROUP
(ORDER BY salary DESC) median,
PERCENT_RANK(10000) WITHIN GROUP
(ORDER BY salary DESC)*100 pct_rank_10K,
CUME_DIST(10000) WITHIN GROUP
(ORDER BY salary DESC)*100 cume_dist_10K
FROM hr.employees
GROUP BY department_id;

DID EMP_COUNT MEAN MEDIAN PCT_RANK_10K CUME_DIST_10K
10 1 4400 4400 0 50
20 2 9500 9500 50 66.6666667
30 6 4150 2850 16.6666667 28.5714286
40 1 6500 6500 0 50
50 45 3475.55556 3100 0 2.17391304
60 5 5760 4800 0 16.6666667
70 1 10000 10000 0 100
80 34 8955.88235 8900 23.5294118 34.2857143
90 3 19333.3333 17000 100 100

100 6 8601.33333 8000 16.6666667 28.5714286

110 2 10154 10154 50 66.6666667

1 7000 7000 0 50

PERCENTILE_CONT
PERCENTILE_CONT has the syntax

PERCENTILE_CONT(<x>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC])

202 Chapter 4 = Using Group Functions

where x is a percentile value in the range 0 < x < 1 and col_l7st is the sort specification.
PERCENTILE_CONT returns the interpolated value that would fall in percentile position x
within the sorted group col_list.

This function assumes a continuous distribution and is most useful for obtaining the
median value of an ordered group. The median value is defined to be the midpoint in a group
of ordered numbers—half of the values are greater than the median, and half of the values
are less than the median.

The median together with the mean or average are the two most common
A&TE measures of a central tendency used to analyze data. See the AVG function
for more information on calculating the mean.

For this example, you will use the SCOTT.EMP table, ordered by department number:

SELECT ename ,deptno ,sal
FROM scott.emp
ORDER BY deptno ,sal;

ENAME DEPTNO SAL
MILLER 10 1300
CLARK 10 2450
KING 10 5000
SMITH 20 800
ADAMS 20 1100
JONES 20 2975
SCOTT 20 3000
FORD 20 3000
JAMES 30 950
WARD 30 1250
MARTIN 30 1250
TURNER 30 1500
ALLEN 30 1600
BLAKE 30 2850

You can see that for department 10, there are three SAL values: 1300, 2450, and 5000. The
median would be 2450, because there is one value greater than this number and one value less
than this number. The median for department 30 is not so straightforward, because there are
six values and the middle value is actually between the two data points 1250 and 1500. To
get the median for department 30, you need to interpolate the midpoint.

Two common techniques are used to interpolate this median value: one technique uses a
continuous model, and one uses a discrete model. In the continuous model, the midpoint is

Utilizing Aggregate Functions 203

assumed to be the value halfway between the 1250 and 1500, which is 1375. Using the dis-
crete model, the median must be an actual data point, and depending on whether the data
is ordered ascending or descending, the median would be 1250 or 1500.

SELECT deptno,
PERCENTILE_CONT(0.5) WITHIN GROUP
(ORDER BY sal DESC) "CONTINUOUS",
PERCENTILE_DISC(0.5) WITHIN GROUP
(ORDER BY sal DESC) "DISCRETE DESC",
PERCENTILE_DISC(0.5) WITHIN GROUP
(ORDER BY sal ASC) "DISCRETE ASC",
AVG(sal) mean
FROM scott.emp
GROUP BY deptno;

DEPTNO CONTINUOUS DISCRETE DESC DISCRETE ASC MEAN
10 2450 2450 2450 2916.66667
20 2975 2975 2975 2175
30 1375 1500 1250 1566.66667

PERCENTILE_DISC
PERCENTILE_DISC has the syntax

PERCENTILE_DISC(<x>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC])

where x is a percentile value in the range 0 < x < 1 and col_l7ist is the sort specification.
PERCENTILE_DISC returns the smallest cumulative distribution value from the col_list set
that is greater than or equal to value x.

This function assumes a discrete distribution. Sometimes data cannot be averaged in
a meaningful way. Date data, for example, cannot be averaged, but you can calculate the
median date in a group of dates. For example, to calculate the median hire date for employ-
ees in each department, you could run the following query:

SELECT department_id did,
COUNT(*) emp_count,
MIN(HIRE_DATE) first,
MAX(HIRE_DATE) last,
PERCENTILE_DISC(0.5) WITHIN GROUP

(ORDER BY HIRE_DATE) median
FROM hr.employees
GROUP BY department_id;

204 Chapter 4 = Using Group Functions

DID EMP_COUNT FIRST LAST MEDIAN
10 1 17-SEP-03 17-SEP-03 17-SEP-03
20 2 17-FEB-04 17-AUG-05 17-FEB-04
30 6 07-DEC-02 10-AUG-07 24-JUL-05
40 1 07-JUN-02 07-JUN-02 07-JUN-02
50 45 01-MAY-03 08-MAR-08 15-MAR-06
60 5 25-JUN-05 21-MAY-07 05-FEB-06
70 1 07-JUN-02 07-JUN-02 07-JUN-02
80 34 30-JAN-04 21-APR-08 23-MAR-06
90 3 13-JAN-01 21-SEP-05 17-JUN-03
100 6 16-AUG-02 07-DEC-07 28-SEP-05
110 2 07-JUN-02 07-JUN-02 07-JUN-02
1 24-MAY-07 24-MAY-07 24-MAY-07
RANK

RANK function is similar to DENSE_RANK and has the syntax

RANK(<val_list>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_l7st is the comma-delimited list of column
expressions. RANK returns the row’s rank within an ordered group.

When there are ties, ranks of equal value are assigned equal rank, and the number of
tied rows is skipped before the next rank is assigned. For example, if three items are tied for
first, the second and third items will be skipped, and the next will be the fourth. Whereas
when DENSE_RANK is used, ranks are not skipped and only unique values are considered
for ranking. The following example shows the same example we used for DENSE_RANK, but
includes RANK function as well to show the difference in behavior for these functions.

SELECT department_id,
MAX (salary) highsal,
MIN(salary) lowsal,
DENSE_RANK(10000) WITHIN GROUP
(ORDER BY salary DESC) dense_rank_10K,
RANK(10000) WITHIN GROUP
(ORDER BY salary DESC) rank_10K
FROM hr.employees
GROUP BY department_id;

Utilizing Aggregate Functions 205

DEPARTMENT_ID HIGHSAL LOWSAL DENSE_RANK_10K RANK_10K
10 4400 4400 1 1
20 13000 6000 2 2
30 11000 2500 2 2
40 6500 6500 1 1
50 8200 2100 1 1
60 9000 4200 1 1
70 10000 10000 1 1
80 14000 6100 7 9
90 24000 17000 3 4

100 12008 6900 2 2
110 12008 8300 2 2

To help you understand this ranking, let’s look again at department 80. You can see that
10,000 is the seventh-highest salary in department 80. But because there are eight employ-
ees who make more than $10,000, the rank of 10,000 is 9. The duplicates are counted for
ranking purposes when using RANK, but not for DENSE_RANK. Refer to the “DENSE_RANK?”
section to see the distinct salaries in department 80.

STDDEV_POP

STDDEV_POP (<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population standard deviation of the expression x. The population
standard deviation is calculated as the square root of the population variance VAR_POP.

SET NULL ?

SELECT department_id DID,
STDDEV (salary) STD,
STDDEV_POP(salary) STDPOP,
STDDEV_SAMP (salary) STDSAMP

FROM hr.employees

GROUP BY department_id;

DID STD STDPOP STDSAMP

100 1804.13155 1646.93925 1804.13155

30 3362.58829 3069.6091 3362.58829
? 0 0 7?

90 4041.45188 3299.83165 4041.45188

206 Chapter 4 = Using Group Functions

20 4949.74747 3500 4949.74747
70 0 0 ?
110 2621.95194 1854 2621.95194

50 1488.00592 1471.37963 1488.00592
80 2033.6847 2003.55437 2033.6847

40 0 07
60 1925.61678 1722.32401 1925.61678
10 0 0 ?

STDDEV_SAMP

STDDEV_SAMP (<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample standard deviation of the expression x.

The sample standard deviation is calculated as the square root of the sample variance
VAR_SAMP. STDDEYV is similar to the STDDEV_SAMP function, except STDDEV will return 1
when there is only one row of input, while STDDEV_SAMP will return NULL.

See the description of STDDEV_POP for an example.

VAR_POP

VAR_POP (<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population variance of x. The population variance is calculated with
the formula (SUM(xxx) - SUM(x) * SUM(x) / COUNT(x)) / COUNT(x).

SELECT department_id,
VARIANCE (salary),
VAR_POP (salary),
VAR_SAMP (salary)

FROM hr.employees

GROUP BY department_id;

DEPARTMENT_ID VARIANCE (SALARY) VAR_POP(SALARY) VAR_SAMP (SALARY)

100 3254890.67 2712408.89 3254890.67

30 11307000 9422500 11307000
? 0 07

90 16333333.3 10888888.9 16333333.3

20 24500000 12250000 24500000

70 0 07

110 6874632 3437316 6874632

50 2214161.62 2164958.02 2214161.62

80 4135873.44 4014230.1 4135873.44

Utilizing Aggregate Functions 207

40 0 072
60 3708000 2966400 3708000
10 0 07

VAR_SAMP

VAR_SAMP (<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample variance of x. The sample variance is calculated with the for-
mula (SUM(x*x) - SUM(x) * SUM(x) / COUNT(x)) / (COUNT(x)-1). When the number of
expressions (COUNT(x)) = 1, VARIANCE returns a 0, whereas VAR_SAMP returns NULL. When
(COUNT(x)) = 0, they both return NULL. See the description of VAR_POP for an example.

Limiting Grouped Data with HAVING

A SELECT statement includes a HAVING clause to filter the grouped data. We discussed the
GROUP BY clause and various group functions earlier in this chapter. The group functions
cannot be used in the WHERE clause. For example, if you wanted to query the total salary by
department, excluding department 50, and return only those rows with more than $10,000
in the total salary column, you would have trouble with the following query:

SELECT department_id, sum(salary) total_sal
FROM employees

WHERE department_id != 50

AND SUM(salary) > 10000

GROUP BY department_id;

The database doesn’t know what the sum is when extracting the rows from the table—
remember that the grouping is done after all the rows have been fetched. You get an exception
when you try to use SUM in the WHERE clause. The correct way to get the requested information
is to instruct the database to group all the rows and then limit the output of those grouped
rows. You can do this by using the HAVING clause. The HAVING clause is used to restrict the
groups of returned rows to those groups where the specified condition is satisfied.

SELECT department_id, sum(salary) total_sal
FROM employees

WHERE department_id != 50

GROUP BY department_id

HAVING SUM(salary) > 10000;

DEPARTMENT_ID TOTAL_SAL

208 Chapter 4 = Using Group Functions

90 58000
20 19000
110 20308
80 304500
60 28800

As you can see in the previous query, a SQL statement can have both a WHERE clause and
a HAVING clause. WHERE filters data before grouping; HAVING filters data after grouping.

)’ If the SELECT statement includes a WHERE clause and a GROUP BY clause, the
AdﬁTE GROUP BY (and HAVING) clause should come after the WHERE clause. HAVING
and GROUP BY clauses can appear in any order.

Creating Superaggregates with CUBE and ROLLUP

The CUBE and ROLLUP modifiers to the GROUP BY clause allow you to create aggregations of
aggregates, or superaggregates. These superaggregates, or summary rows, are included with
the result set in a way similar to using the COMPUTE statement on control breaks in SQL*Plus—
that is, they are included in the data and contain NULL values in the aggregated columns:
ROLLUP creates hierarchical aggregates.
CUBE creates aggregates for all combinations of columns specified.
The key advantages of CUBE and ROLLUP are that they will allow more robust aggrega-
tions than COMPUTE and they work with any SQL-enabled tool.
These superaggregations can be visualized with a simple example using the OE.CUSTOMERS
table. For this example, say you are interested in two columns—MARITAL_STATUS, which has

the value single or married, and GENDER, which has the value M or F. Let’s write some SQL
instructions to find the total number of rows by GENDER and MARITAL_STATUS:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY gender, marital_status;

G MARITAL_STATUS NUM_REC
M married 117
M single 92
F single 47
F married 63

But suppose you want subtotals for each gender—a count of all female customers
regardless of marital status and a count of all male customers regardless of marital status.

Utilizing Aggregate Functions 209

You could remove the MARITAL_STATUS column from the previous query, which would give
you the desired result, but what if you want to display the subtotals along with the original
query? Oracle introduced the ROLLUP modifier to accomplish this task.

Using ROLLUP

ROLLUP is used in SELECT statements with GROUP BY clauses to calculate multiple levels of
subtotals. It also provides a grand total. The ROLLUP extension adds only minimal overhead
to the overall query performance. ROLLUP creates subtotals from the most detailed level to a
grand total based on the grouping list provided with the ROLLUP modifier. It creates subto-
tals moving left to right using the columns provided in ROLLUP. The grand total is provided
only if the ROLLUP modifier includes all the columns in the GROUP BY clause.

Using the previous example, you could use the ROLLUP modifier to roll up the MARITAL_
STATUS column, leaving subtotals on the grouped column GENDER. Here we have not
included GENDER in the ROLLUP; hence, the grand total is not provided:

SELECT gender, marital_status, count(x) num_rec
FROM oe.customers
GROUP BY gender, ROLLUP(marital_status);

G MARITAL_STATUS NUM_REC
F single 47
F married 63
F 110 <- Subtotal
M single 92
M married 117
M 209 <- Subtotal

In the previous example, you do not have any NULL values in the MARITAL_STATUS
column. If you added another record with GENDER = 'F' and a NULL value for MARITAL _
STATUS, the result would be as follows:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY gender, ROLLUP(marital_status);

G MARITAL_STATUS NUM_REC
F single 47
F married 63
F 1 <= Null Marital_Status

F 111 <- Subtotal

210 Chapter 4 = Using Group Functions

M single 92
M married 117
M 209 <- Subtotal

On the OCA certification exam, this can appear as a trick question to confuse you
about which line is the subtotal. You may use an NVL function to display meaningful data
in the result.

Now, if you want to add an aggregation for all genders as well, you put the GENDER
column into the ROLLUP modifier, as follows:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY ROLLUP(gender, marital_status);

G MARITAL_STATUS NUM_REC
F single 47
F married 63
F 110 <- Subtotal
M single 92
M married 117
M 209 <- Subtotal

319 <- Grand total

The order of the columns in the ROLLUP modifier is significant, because this order deter-
mines where Oracle produces subtotals. ROLLUP creates hierarchical aggregations, so the
order of the expressions in the ROLLUP clause is significant. The ordering follows the same
conventions used in the GROUP BY clause—most general to most specific. When you reverse
the order in the example, you get different subtotals:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY ROLLUP(marital_status, gender);

G MARITAL_STATUS NUM_REC
F single 47
M single 92
single 139 <- Subtotal
F married 63
M married 117
married 180 <- Subtotal

319 <- Grand total

Utilizing Aggregate Functions 21

Suppose you want all these subtotals, both by GENDER and by MARITAL_STATUS. This
requirement calls for the CUBE modifier, which will produce all possible aggregations, not
just those in the hierarchy of columns specified.

Using CUBE

The CUBE modifier in the GROUP BY clause creates subtotals for all possible combinations of
grouping columns. Let’s try the previous example using the CUBE modifier:

SELECT gender, marital_status, count(x) num_rec
FROM oe.customers
GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC

319 <- Grand total

single 139 <- Subtotal Marital_Status
married 180 <- Subtotal Marital_Status

F 110 <- Subtotal Gender

F single 47

F married 63

M 209 <~ Subtotal Gender

M single 92

M married 117

The number of aggregations created by the CUBE modifier is the number of distinct
combinations of data values in all the columns that appear in the CUBE clause. CUBE creates
aggregations for all combinations of columns, so unlike ROLLUP, the order of expressions
in a CUBE is not significant. As you can see, the result set is the same, but the order of rows
(grouping) is different (Note: a question mark in the result indicates a NULL value, due to
the SET NULL ? setting):

SELECT gender, marital_status, count(x) num_rec
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC
2?2 319
F? 110
M ? 209
? single 139

47

-n
(%]
.
=}

(4}
—
(0]

212 Chapter 4 = Using Group Functions

M single 92
? married 180
F married 63
M married 117

@ Real World Scenario
More DBA Queries

In the “Exploring DBA Queries Using Aggregate Functions” sidebar, you saw some
queries written to determine the space allocated by tablespace, the space allocated by
schema, and the space allocated by tablespace and schema. The queries were written
using three different SQL statements. In the following SQL instructions, you can see the
power of CUBE. The results from all three of the SQL statements you tried before are in
this summary report, showing the different levels of aggregation.

SELECT tablespace_name, owner, SUM(bytes) /1048576 size_mb
FROM dba_segments
GROUP BY CUBE (tablespace_name, owner);

TABLESPACE_NAME ~ OWNER SIZE_MB

1564.8125 <- Grand Total

HR 1.75 <- Subtotal HR schema

IX 1.625 <- Subtotal IX schema

OE 8.875

FLOWS 100.6875 <- Subtotal FLOWS schema
USERS 21.25 <- Subtotal USERS tablespace
USERS HR .1875 <= HR schema 1in USERS tablespace
USERS OE 2.625 <- OE schema in USERS tablespace
USERS SH 2
USERS SCOTT .375
USERS BTHOMAS 16.0625
SYSAUX 716.375 <- Subtotal SYSAUX tablespace
SYSAUX FLOWS 100.6875
SYSTEM 701.625 <- Subtotal SYSTEM tablespace

SYSTEM SYS 685.1875

Utilizing Aggregate Functions 213

SYSTEM OUTLN .5625
SYSTEM SYSTEM 15.875
EXAMPLE 77.3125
EXAMPLE HR 1.5625

As you can see in the result, the space used by each schema in each tablespace is
shown as well as the total space used in each tablespace and the total space used by
each schema. The total space used in the database (including all tablespaces) is also
shown in the very first line.

Three functions (GROUPING, GROUP_ID, and GROUPING_ID) can come in very handy when
you’re using the ROLLUP and CUBE modifiers of the GROUP BY clause.

In the examples you have seen using the ROLLUP and CUBE modifiers, there was no way
of telling which row was a subtotal and which row was a grand total. You can use the
GROUPING function to overcome this problem. Review the following SQL example:

SELECT gender, marital_status, count(*) num_rec,

GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP
319 1 1

110 0 1

209 0 1

single 139 1 0

F single 47 0 0
M single 92 0 0
married 180 1 0

F married 63 0 0
M married 117 0 0

The G_GRP column has a 1 for NULL values generated by the CUBE or ROLLUP modifier for
GENDER column. Similarly, the MS_GRP column has a 1 when NULL values are generated in the
MARITAL_STATUS column. By using a DECODE function on the result of the GROUPING function,
you can produce a more meaningful result set, as in the following example:

SELECT DECODE(GROUPING (gender), 1, 'Multi-Gender',
gender) gender,
DECODE (GROUPING (marital_status), 1,

214 Chapter 4 = Using Group Functions

'"Multi-MaritalStatus', marital_status) marital_status,
count(*x) num_rec
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

GENDER MARITAL_STATUS NUM_REC
Multi-Gender Multi-MaritalStatus 319
F Multi-MaritalStatus 110
M Multi-MaritalStatus 209
Multi-Gender single 139
F single 47
M single 92
Multi-Gender married 180
F married 63
M married 117
é/ You can use the GROUPING function in the HAVING clause to filter out
P rows. You can display only the summary results using the GROUPING

function in the HAVING clause.

The GROUPING_ID function returns the exact level of the group. It is derived from the
GROUPING function by concatenating the GROUPING levels together as bits, and it gives the
GROUPING_ID. To help you understand this, closely review the following example:

SELECT gender, marital_status, count(*) num_rec,
GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp,
GROUPING_ID (gender, marital_status) groupingid

FROM oe.customers

GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP GROUPINGID
319 1 1 3

single 139 1 0 2
married 180 1 0 2
F 110 0 1 1
F single 47 0 0 0
F married 63 0 0 0
M 209 0 1 1
M single 92 0 0 0
M married 117 0 0 0

Utilizing Aggregate Functions 215

In this example, you can clearly identify the level of grouping using the GROUPING_ID
function. The GROUP_ID function is used to distinguish the duplicate groups. In the follow-
ing example, the GROUP_ID() value is 1 for duplicate groups. When writing complex aggre-
gates, you can filter out the duplicate rows by using the HAVING GROUP_ID = 0 clause in the
SELECT statement.

SELECT gender, marital_status, count(*) num_rec,
GROUPING_ID (gender, marital_status) groupingid,
GROUP_ID() groupid

FROM oe.customers

GROUP BY gender, CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC GROUPINGID GROUPID
F single 47 0 0
F married 63 0 0
M single 92 0 0
M married 117 0 0
F single 47 0 1
F married 63 0 1
M single 92 0 1
M married 117 0 1
F 110 1 0
M 209 1 0
F 110 1 1
M 209 1 1

Nesting Functions

Functions can be nested so that the output from one function is used as input to another.
Operators have an inherent precedence of execution such as * before +, but function pre-
cedence is based on position only. Functions are evaluated innermost to outermost and
left to right. This nesting technique is common with some functions, such as DECODE (cov-
ered in Chapter 3), where it can be used to implement limited IF..THEN..ELSE logic within
a SQL statement.

For example, the V$SYSSTAT view contains one row for each of three interesting sort
statistics. If you want to report all three statistics on a single line, you can use DECODE com-
bined with SUM to filter out data in the SELECT clause. This filtering operation is usually
done in the WHERE or HAVING clause, but if you want all three statistics on one line, you can
issue this command:

SELECT SUM (DECODE
(name, 'sorts (memory)',value,0)) 1in_memory,

216 Chapter 4 = Using Group Functions

SUM (DECODE

(name, 'sorts (disk)', value,0)) on_disk,
SUM (DECODE
(name, 'sorts (rows)', value,0)) rows_sorted

FROM vS$sysstat;

IN_MEMORY ON_DISK ROWS_SORTED

728 12 326714

What happens in the previous statement is a single pass through the V$SYSSTAT table.
The presummary result set would have the same number of rows as V$SYSSTAT (232, for
instance). Of these 232 rows, all rows and columns have zeros, except for one row in each
column that has the data of interest. Table 4.3 shows the data that was used in this example.
The summation operation then adds all the zeros to your interesting data and gives you the
results you want.

TABLE 4.3 Presummarized Result Set

in_memory on_disk rows_sorted
0 0 0

0 12 0

0 0 0

0 0 326714

728 0 0

0 0 0

Nesting Single-Row Functions with Group Functions

Nested functions can include single-row functions nested within group functions, as you’ve
just seen, or group functions nested within either single-row functions or other group func-
tions. For example, suppose you need to report on the departments in the EMP table, show-
ing either the number of jobs or the number of managers, whichever is greater. You would
enter the following:

SELECT deptno, GREATEST(
COUNT (DISTINCT job),

Utilizing Aggregate Functions 217

COUNT(DISTINCT mgr)) cnt,
COUNT (DISTINCT job) jobs,
COUNT (DISTINCT mgr) mgrs
FROM scott.emp
GROUP BY deptno;

DEPTNO CNT JOBS MGRS
10 3 2
20
30 3 2

Nesting Group Functions

You can also nest group functions within group functions. Only one level of nesting is
allowed when nesting a group function within a group function. To report the maximum
number of jobs in a single department, you would query the following;:

SELECT MAX(COUNT (DISTINCT job_id))
FROM employees
GROUP BY department_id;

MAX (COUNT (DISTINCTJOB_ID))

Group functions can be nested only one level. If you try to nest more than one level of
group functions, you will encounter an error. Also, there is no reason to do so. Here is an
example to show the error, though the SQL does not mean much:

SELECT MIN (MAX (COUNT (DISTINCT job_id)))
FROM employees
GROUP BY department_id;

SELECT MIN (MAX (COUNT (DISTINCT job_id)))
*

ERROR at line 1:
ORA-00935: group function is nested too deeply

218 Chapter 4 = Using Group Functions

Summary

Although this is a small chapter in terms of OCA certification exam content, this chapter

is very important for the test. It is important to understand the concept of grouping data,
where GROUP BY and HAVING clauses can be used, and the rules associated with using these
clauses. We began this chapter by discussing the group function fundamentals and reviewed
the group functions by concentrating on the functions that are important for the test.

We also discussed how group functions can be used in the SELECT, HAVING, and ORDER
BY clauses of SELECT statements. Most group functions can be applied to all data values
or only to the distinct data values. Except for COUNT (%), group functions ignore NULLs.
Programmer-written functions cannot be used as group functions. COUNT, SUM, and AVG
are the most commonly used group functions.

When group functions or aggregate functions are being used in a query, the columns
that do not have any aggregate function applied to them must appear in the GROUP BY
clause of the query. The HAVING clause is used to filter out data after the aggregates are
calculated. Group functions cannot be used in the WHERE clause.

You can create superaggregates using the CUBE and ROLLUP modifiers in the GROUP BY clause.

Exam Essentials

Understand the usage of DISTINCT in group functions. When DISTINCT is specified, only
one of each non-NULL value is applied to the function. To apply all non-NULL values, the
keyword ALL should be used.

Know where group functions can be used. Group functions can be used in GROUP BY,
ORDER BY, and HAVING clauses. They cannot be used in WHERE clauses.

Know how MIN and MAX sort date and character data. Older dates evaluate to lower
values, while newer dates evaluate to higher values. Character data, even if it contains
numbers, is sorted according to the NLS_SORT specification.

Know which expressions in a SELECT list must appear in a GROUP BY clause. If any grouping
is performed, all nongroup function expressions and nonconstant expressions must appear in
the GROUP BY clause.

Know the order of precedence for evaluating nested functions. You may need to evaluate
an expression containing nested functions. Make sure you understand the left-to-right order
of precedence used to evaluate these expressions.

Review Questions 219

Review Questions

1. How will the results of the following two statements differ?

Statement 1:
SELECT MAX(longitude), MAX(latitude)
FROM zip_state_city;

Statement 2:

SELECT MAX(longitude), MAX(latitude)
FROM zip_state_city

GROUP BY state;

A. Statement 1 will fail because it is missing a GROUP BY clause.

w

Statement 2 will return one row, and statement 1 may return more than one row.

C. Statement 2 will fail because it does not have the columns used in the GROUP BY
clause in the SELECT clause.

D. Statement 1 will display one row, and statement 2 will display two columns for
each state.
2. Using the SALES table described here, you need to report the following:
Gross, net, and earned revenue for the second and third quarters of 1999

Gross, net, and earned revenue for sales in the states of Illinois, California, and
Texas (codes IL, CA, and TX)

Column Name state_code sales_date gross net earned
Key Type PK PK

Nulls/Unique NN NN NN NN NN

FK Table

Datatype VARCHAR2 DATE NUMBER NUMBER NUMBER
Length 2 11,2 11,2 11,2

Will all the requirements be met with the following SQL statement?

SELECT state_code, SUM(ALL gross), SUM(net), SUM(earned)
FROM sales_detail
WHERE TRUNC(sales_date,'Q') BETWEEN

220 Chapter 4 = Using Group Functions

TO_DATE('01-Apr-1999', 'DD-Mon-YYYY")
AND TO_DATE('Q1-Sep-1999','DD-Mon-YYYY')
AND state_code IN ('IL','CA','TX")
GROUP BY state_code;

A. The statement meets all three requirements.
. The statement meets two of the three requirements.
. The statement meets one of the three requirements.

B

C

D. The statement meets none of the three requirements.
E. The statement will raise an exception.

W

hich line in the following SQL has an error?

1 SELECT department_id, SUM(salary)
2 FROM employees

3 WHERE department_id <> 40

4 ORDER BY department_id;

A 1

B. 3

C. 4

D. No errors in SQL

4. John is trying to determine the average salary of employees in each department. He
noticed that the SALARY column can have NULL values, and he does not want the NULLs

included when the average is calculated. Identify the correct SQL statements that will
produce the desired results.

A. SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id;
B. SELECT department_id, AVG(NVL(salary,0))
FROM employees
GROUP BY department_id;
C. SELECT department_id, NVL(AVG(salary), 0)
FROM employees
GROUP BY department_id;
D. SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id
HAVING salary IS NOT NULL;

Review Questions 221

5. Review the following two SQL statements, and choose the appropriate option.

1. SELECT department_id, COUNT(x)
FROM employees

HAVING COUNT(x) > 10

GROUP BY department_-id;

2. SELECT department_id, COUNT(x)
FROM employees

WHERE COUNT (%) > 10

GROUP BY department_-id;

Statement 1 and statement 2 will produce the same results.

Statement 1 will succeed, and statement 2 will fail.

o w »

Statement 2 will succeed, and statement 1 will fail.
D. Both statements fail.

6. Carefully read the following SQL instructions, and choose the appropriate option. The
JOB_ID column shows the various jobs.

SELECT MAX(COUNT (%))
FROM employees
GROUP BY job_id, department_id;

A. Aggregate functions cannot be nested.

B. The columns in the GROUP BY clause must appear in the SELECT clause for the query
to work.

C. The GROUP BY clause is not required in this query.
D. The SQL code will produce the highest number of jobs within a department.

222 Chapter 4 = Using Group Functions

7. Choose the SQL statement that has no syntax error and is valid.
A. SELECT department_id, SUM(salary)
FROM employees
WHERE department_id <> 50
GROUP BY department_id
HAVING COUNT(*) > 30;
B. SELECT department_id, SUM(salary) sum_sal
FROM employees
WHERE department_id <> 50
GROUP BY department_id
HAVING sum_sal > 3000;
C. SELECT department_id, SUM(salary) sum_sal
FROM employees
WHERE department_id <> 50
AND sum_sal > 3000
GROUP BY department_id;
D. SELECT department_id, SUM(salary)
FROM employees
WHERE department_id <> 50
AND SUM(salary) > 3000
GROUP BY department_id;

8. Consider the following SQL code, and choose the most appropriate option.

SELECT COUNT(DISTINCT SUBSTR(first_name, 1,1))
FROM employees;

A. A single-row function nested inside a group function is not allowed.
B. The GROUP BY clause is required to successfully run this query.

C. Removing the DISTINCT qualifier will fix the error in the query.
D

. The query will execute successfully without any modifications.

Review Questions 223

9. The sales order number (ORDER_NO) is the primary key in the table SALES_ORDERS.
Which query will return the total number of orders in the SALES_ORDERS table?

moowP»

F.

SELECT COUNT(ALL order_no) FROM sales_orders;
SELECT COUNT(DISTINCT order_no) FROM sales_orders;
SELECT COUNT (order_no) FROM sales_orders;

SELECT COUNT(NVL(order_no,®) FROM sales_orders;
All of the above

Aand C

10. Sheila wants to find the highest salary within each department of the EMPLOYEES table.
Which query will help her get what she wants?

S 0w >

E.

SELECT MAX(salary) FROM employees;

SELECT MAX(salary BY department_id) FROM employees;

SELECT department_id, MAX(salary) max_sal FROM employees;

SELECT department_id, MAX(salary) FROM employees GROUP BY department_id;
SELECT department_id, MAX(salary) FROM employees USING department_id

11. Which assertion about the following queries is true?

SELECT COUNT(DISTINCT mgr), MAX(DISTINCT salary)
FROM emp;

SELECT COUNT(ALL mgr), MAX(ALL salary)
FROM emp;

A.
B.

C.
D.

They will always return the same numbers in columns 1 and 2.

They may return different numbers in column 1 but will always return the same
number in column 2.

They may return different numbers in both columns 1 and 2.

They will always return the same number in column 1 but may return different
numbers in column 2.

12. Which clauses in the SELECT statement can use single-row functions nested in aggregate
functions? (Choose all that apply.)

A.

B
C.
D

SELECT

. ORDER BY

WHERE

. GROUP BY

224 Chapter 4 = Using Group Functions

13. Consider the following two SQL statements. Choose the most appropriate option.

1. select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
first_name;

2. select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
substr(first_name, 1,1);

Statement 1 and 2 will produce the same result.

Statement 1 and 2 will produce different results.

o w »

Statement 1 will fail.

D. Statement 2 will fail, but statement 1 will succeed.
14. How will the results of the following two SQL statements differ?

Statement 1:
SELECT COUNT(*), SUM(salary)
FROM hr.employees;

Statement 2:
SELECT COUNT(salary), SUM(salary)
FROM hr.employees;

A. Statement 1 will return one row, and statement 2 may return more than one row.
B. Both statements will fail because they are missing a GROUP BY clause.
C. Both statements will return the same results.

D. Statement 2 might return a smaller COUNT value than statement 1.
15. Why does the following SELECT statement fail?

SELECT colorname Colour, MAX(cost)
FROM ditemdetail

WHERE UPPER(colorname) LIKE '%WHITE%'
GROUP BY colour

HAVING COUNT(*) > 20;

A GROUP BY clause cannot contain a column alias.
The condition COUNT () > 20 should be in the WHERE clause.
The GROUP BY clause must contain the group functions used in the SELECT list.

S0 w >

The HAVING clause can contain only the group functions used in the SELECT list.

Review Questions 225

16. What will the following SQL statement return?

select max(prod_pack_size)
from sh.products
where min(prod_weight_class) = 5;
A. An exception will be raised.
B. The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5 or higher.
C. The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5.
D. The largest PROD_PACK_SIZE in the SH.PRODUCTS table.

17. Why will the following query raise an exception?

select dept_no, avg(distinct salary),
count(job) job_count
from emp
where mgr like 'J%'
or abs(salary) > 10
having count(job) > 5
order by 2 desc;

A. The HAVING clause cannot contain a group function.
B. The GROUP BY clause is missing.
C. ABS() is not an Oracle function.

D. The query will not raise an exception.
18. Which clause will generate an error when the following query is executed?

SELECT department_id, AVG(salary) avg_sal

FROM employees
GROUP BY department_id
HAVING TRUNC(department_id) > 50;

A. The GROUP BY clause, because it is missing the group function.

B. The HAVING clause, because single-row functions cannot be used.

C. The HAVING clause, because the AVG function used in the SELECT clause is not used
in the HAVING clause.

D. None of the above. The SQL statement will not return an error.

226 Chapter 4 = Using Group Functions

19. Which statements are true? (Choose all that apply.)
A. A group function can be used only if the GROUP BY clause is present.

B. Group functions along with nonaggregated columns can appear in the SELECT
clause as long as a GROUP BY clause and a HAVING clause are present.

C. The HAVING clause is optional when the GROUP BY clause is used.
D. The HAVING clause and the GROUP BY clause are mutually exclusive; you can use
only one clause in a SELECT statement.
20. Read the following two statements, and choose the best option.
1. A HAVING clause should always appear after the GROUP BY clause.
A GROUP BY clause should always appear after the WHERE clause.
Statement 1 and 2 are false.
Statement 1 is true, and statement 2 is false.

Statement 1 is false, and statement 2 is true.

S0 w>nN

Statements 1 and 2 are true.

Using Joins and
Subqueries

ORACLE DATABASE 12c: SQOL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Displaying Data from Multiple Tables Using Joins

Write SELECT statements to access data from more than one
table using equijoins and nonequijoins.

Join a table to itself by using a self-join.

View data that generally does not meet a join condition by
using outer joins.

Generate a Cartesian product of all rows from two or
more tables.

v Using Subqueries to Solve Queries

Define subqueries.

Describe the types of problems that the subqueries can solve.
List the types of subqueries.

Write single-row and multiple-row subqueries.

Use the set operators.

Describe set operators.

Use a set operator to combine multiple queries into a
single query.

Control the order of rows returned.

A database has many tables that store data. In Chapter 2,
“Introducing SQL,” you learned how to write simple queries
that select data from one table. Although this information is
essential to passing the certification exam, the ability to join two or more related tables and
access information is the core strength of relational databases. Using the SELECT statement,
you can write advanced queries that satisfy end-user requirements.

This chapter focuses on querying data from more than one table using table joins and
subqueries. When you use two or more tables or views in a single query, it is a join query.
You’ll need to understand how the various types of joins and subqueries work, as well as
the proper syntax, for the certification exam.

Set operators in Oracle let you combine results from two or more SELECT statements. The
results of each SELECT statement are considered a set, and Oracle provides UNION, INTERSECT,
and MINUS operators to get the desired results. You will learn how these operators work in
this chapter.

Writing Multiple-Table Queries

In relational database management systems (RDBMSs), related data can be stored in multiple
tables. You use the power of SQL to relate the information and query data. A SELECT state-
ment has a mandatory SELECT clause and FROM clause. The SELECT clause can have a list of
columns, expressions, functions, and so on. The FROM clause tells you in which table(s) to look
for the required information. In Chapter 2, you learned to query data using simple SELECT
statements from a single table. In this chapter, you will learn how to retrieve data from more
than one table.

To query data from more than one table, you need to identify common columns that
relate the two tables. Here’s how you do it:

1. In the SELECT clause, you list the columns you are interested in from all the related tables.
If the same column name exist in more than one table, such columns must be qualified
with the table name or table alias.

2. In the FROM clause, you include all the table names separated by commas.

3. In the WHERE clause, you define the relationship between the tables listed in the FROM
clause using comparison operators.

You can also specify the relationship using a JOIN clause instead of the WHERE clause.
The JOIN clause introduced by Oracle in Oracle 9 was added to conform to the ANSI/ISO
SQL1999 standard. Throughout this section, you’ll see examples of queries using the Oracle

Writing Multiple-Table Queries 229

native syntax as well as the ANSI/ISO SQL1999 standard. A query from multiple tables
without a relationship or common column is known as a Cartesian join or cross join and is
discussed later in this chapter.

A join is a query that combines rows from two or more tables or views. Oracle performs
a join whenever multiple tables appear in the query’s FROM clause. The query’s SELECT clause
can have the columns or expressions from any or all of these tables.

y If multiple tables have the same column names, the duplicate column names
A&TE should be qualified in the queries with their table name or table alias.

Inner Joins

Inner joins return only the rows that satisfy the join condition. The most common operator
used to relate two tables is the equality operator (=). If you relate two tables using an equality
operator, it is an equality join, also known as an equijoin. This type of join combines rows
from two tables that have equivalent values for the specified columns.

Simple Inner Joins

A simple inner join has only the join condition specified, without any other filtering conditions.
For example, let’s consider a simple join between the DEPARTMENTS and LOCATIONS tables of the
HR schema. The common column in these tables is LOCATION_ID. You will query these tables to
get the location ID, city name, and department names in that city:

SELECT locations.location_id, city, department_name
FROM locations, departments
WHERE locations.location_id = departments.location_id;

Here, you are retrieving data from two tables—two columns from the LOCATIONS table
and one column from the DEPARTMENTS table. These two tables are joined in the WHERE clause
using an equality operator on the LOCATION_ID column. It is not necessary for the column
names in both tables to have the same name to have a join. Notice that the LOCATION_ID
column is qualified with its table name for every occurrence. This is to avoid ambiguity; it is
not necessary to qualify each column, but it increases the readability of the query. If the same
column name appears in more than one table used in the query, you must qualify the column
name with the table name or table alias.

To execute a join of three or more tables, Oracle takes these steps:

1. Oracle joins two of the tables based on the join conditions, comparing their columns.
2. Oracle joins the result to another table, based on join conditions.

3. Oracle continues this process until all tables are joined into the result.

230 Chapter 5 = Using Joins and Subqueries

Complex Inner Joins

Apart from specifying the join condition in the WHERE clause, you may have another condition
to limit the rows retrieved. Such joins are known as complex joins. For example, to continue
with the example in the previous section, if you are interested only in the departments that
are outside the United States, use this query:

SELECT locations.location_id, city, department_name
FROM locations, departments
WHERE locations.location_id = departments.location_id

AND country_id != 'US';

LOCATION_ID CITY DEPARTMENT_NAME
1800 Toronto Marketing
2400 London Human Resources
2700 Munich Public Relations
2500 Oxford Sales

Using Table Aliases

Like columns, tables can have alias names. Table aliases increase the readability of the
query. You can also use them to shorten long table names with shorter alias names. Specify
the table alias name next to the table, separated with a space. You can rewrite the query

in the previous section using alias names, as follows:

SELECT 1.location_id, city, department_name
FROM locations 1, departments d

WHERE 1.location_id = d.location_id

AND country_id != 'US';

When tables (or views or materialized views) are specified in the FROM clause, Oracle
looks for the object in the schema (or user) connected to the database. If the table belongs
to another schema, you must qualify it with the schema name. (You can avoid this by using
synonyms, which are discussed in Chapter 7, “Creating Tables and Constraints.”) You can
use the schema owner to qualify a table; you can also use the table owner and schema owner
to qualify a column. Here is an example:

SELECT locations.location_id, hr.locations.city,
department_name

FROM hr.locations, hr.departments

WHERE locations.location_id = departments.location_id;

Writing Multiple-Table Queries 231

Keep in mind that you can qualify a column name with its schema and table only when
the table name is qualified with the schema. In the previous SQL, you qualified the column
CITY with the schema HR. This is possible only if you qualify the LOCATIONS table with the
schema. The following SQL will produce an error:

SELECT locations.location_id, hr.locations.city
,department_name

FROM locations, hr.departments

WHERE locations.location_id = departments.location_id;

SELECT locations.location_id, hr.locations.city
*

ERROR at line 1:
ORA-00904: "HR"."LOCATIONS"."CITY": invalid identifier

When you use table alias names, you must qualify the column names with the alias name
only; qualifying the columns with the table name will produce an error, as in this example:

SELECT locations.location_id, city, department_name
FROM locations 1, hr.departments d
WHERE locations.location_id = d.location_id;

WHERE locations.location_id = d.location_id
*

ERROR at line 3:
ORA-00904: "LOCATIONS"."LOCATION_ID": invalid identifier

The correct syntax is to replace locations.location_id with 1.location_id in the
SELECT and WHERE clauses.

If there are no common column names between the two tables used in the join (the FROM
clause), you don’t need to qualify the columns. However, if you qualify the columns, you
are telling the Oracle database engine where exactly to find the column; hence, you are
improving the performance of the query.

If there are column names common to multiple tables used in a join query, you must qualify
the column name with a table name or table alias. This is true for column names appearing
in SELECT, WHERE, ORDER BY, GROUP BY, and HAVING clauses. When using the ANSI syntax, the
rule is different. The ANSI syntax is discussed in the next section.

)’ When joining columns using the traditional syntax or ANSI syntax, if
AdﬁTE the column datatypes are different, Oracle tries to perform an implicit
datatype conversion. This may affect your query performance. It is better
if the columns used in the join condition have the same datatype or if you
use the explicit conversion functions you learned in Chapter 3, “Using
Single-Row Functions.”

232 Chapter 5 = Using Joins and Subqueries

Using the ANSI Syntax

The difference between traditional Oracle join syntax and the ANSI/ISO SQL1999 syntax is
that in ANSI, the join type is specified explicitly in the FROM clause. Using the ANSI syntax
is clearer and is recommended over the traditional Oracle syntax. Simple joins can have the
following forms:

<table name> NATURAL [INNER] JOIN <table name>
<table name> [INNER] JOIN <table name> USING (<columns>)

<table name> [INNER] JOIN <table name> ON <condition>

The following sections discuss each of the syntax forms in detail. In all three syntaxes,
the keyword INNER is optional and is the default.

NATURAL JOIN

The NATURAL keyword indicates a natural join, where the join is based on all columns that

have the same name in both tables. In this type of join, you should not qualify the column

names with the table name or table alias name. Let’s return to the example of querying the
DEPARTMENTS and LOCATIONS tables using LOCATION_ID as the join column. The new Oracle
syntax is as follows:

SELECT location_id, city, department_name
FROM locations NATURAL JOIN departments;

The common column in these two tables is LOCATION_ID, and that column is used to join
the tables. When specifying NATURAL JOIN, the columns with the same name in both tables
should also have the same datatype. The following query will return the same results:

SELECT location_id, city, department_name
FROM departments NATURAL JOIN locations;

Notice that even though the LOCATION_ID column is in both tables, you did not qualify
this column in the SELECT clause. You cannot qualify the column names used for the join
when using the NATURAL JOIN clause. The following query will result in an error:

SELECT 1.location_id, city, department_name
FROM departments NATURAL JOIN locations 1;
SELECT 1.location_id, city, department_name
*
ERROR at line 1:
ORA-25155: column used in NATURAL join cannot have qualifier

Writing Multiple-Table Queries 233

The following query will not return an error because the qualifier is used on a column
that’s not part of the join condition:

SELECT location_id, city, d.department_name
FROM departments d NATURAL JOIN locations 1;

If you use SELECT *x, common columns are listed only once in the result set. The follow-
ing example demonstrates this. The common column in the COUNTRIES table and the REGIONS
table is the REGION_ID.

SQL> DESCRIBE regions

Name Null? Type
REGION_ID NOT NULL NUMBER
REGION_NAME VARCHAR2 (25)

SQL> DESCRIBE countries

Name Null? Type

COUNTRY_ID NOT NULL CHAR(2)

COUNTRY_NAME VARCHAR2 (40)

REGION_ID NUMBER
SELECT *

FROM regions NATURAL JOIN countries;

REGION_ID REGION_NAME CO COUNTRY_NAME
2 Americas AR Argentina
3 Asia AU Australia
1 Europe BE Belgium
2 Americas BR Brazil
2 Americas CA Canada

Here is another example, which joins three tables:

SELECT region_id, region_name, country_id, country_name,
location_id, city

FROM regions

NATURAL JOIN countries

NATURAL JOIN locations;

234 Chapter 5 = Using Joins and Subqueries

When you’re specifying more than two tables using NATURAL JOIN syntax, it is a good idea
to use parentheses to increase readability. The previous SQL can be interpreted in two ways:

Join the REGIONS table and the COUNTRIES table, and join the result to the LOCATIONS table.
Join the COUNTRIES table to the LOCATIONS table, and join the result to the REGIONS table.

If you do not use parentheses, Oracle uses left associativity by pairing the tables from
left to right (as in the first scenario). By using parentheses, you can make the query less
ambiguous, as shown here:

SELECT region_id, region_name, country_id, country_name,
location_id, city

FROM locations

NATURAL JOIN (regions

NATURAL JOIN countries);

The same query written in traditional Oracle syntax is as follows:

SELECT regions.region_id, region_name, countries.country_id, country_name,
location_id, city

FROM regions, countries, locations

WHERE regions.region_id = countries.region_id

AND countries.country_id = locations.country_id;

NATURAL JOIN syntax is easy to read and use; however, its usage should

A&TE be discouraged in good coding practice. Because NATURAL JOIN joins the
tables by all the identical column names, you could end up having a wrong
join condition if you're not careful. It is always better to explicitly specify
the join condition using the syntaxes available.

JOIN...USING

If the tables you are joining have columns with the same name but not all are used in the
join condition between tables or if they do not have the same datatype, you can specify
the columns that should be considered for an equijoin using the JOIN..USING syntax. The
USING clause specifies the column names that should be used to join the tables. Here is
an example:

SELECT location_id, city, department_name
FROM locations JOIN departments USING (location_id);

The column names used in the USING clause should not be qualified with a table name
or table alias. The column names not appearing in the USING clause can be qualified. If
there are other common column names in the tables and if those column names are used
in the query, they must be qualified.

Writing Multiple-Table Queries 235

Let’s consider this syntax with joining more than two tables:

SELECT region_name, country_name, city
FROM regions

JOIN countries USING (region_id)
JOIN locations USING (country_id);

Here, the REGIONS table is joined with the COUNTRIES table using the REGION_ID column,
and its result is joined with the LOCATIONS table using the COUNTRY_ID column.

The following query will result in an error because there is no common column between
the REGIONS and LOCATIONS tables:

SELECT region_name, country_name, city
FROM regions

JOIN locations USING (country_id)
JOIN countries USING (region_id);

JOIN locations USING (country_id)
*
ERROR at line 3:
ORA-00904: "REGIONS"."COUNTRY_ID": invalid identifier

You can add a WHERE clause to limit the number of rows and an ORDER BY clause to sort
the rows retrieved along with any type of join operation:

SELECT region_name, country_name, city
FROM regions

JOIN countries USING (region_id)
JOIN locations USING (country_id)
WHERE country_id = 'US'

ORDER BY 1;
e When you’'re using the NATURAL JOIN or JOIN USING syntax, you can’t use
P alias or table names to qualify the column names on the columns used in
the join operation anywhere in the query. You may see questions in the
certification exam testing this rule.
JOIN...ON

When you do not have common column names between tables to make a join or if you
want to specify arbitrary join conditions, you can use the JOIN..ON syntax. This syntax
specifically defines the join condition using the column names. You can qualify column
names with a table name or an alias name. If the column name is common to multiple

tables involved in the query, those column names must be qualified.

236 Chapter 5 = Using Joins and Subqueries

Using the JOIN ON syntax over the traditional join method separates the table joins from the
other conditions. Because this syntax explicitly states the join condition, it is easier to read and
understand. Here is the three-table example you used in the previous section, written using
the JOIN..ON syntax. Notice the use of a qualifier on the COUNTRY_ID column; this is required
because COUNTRY_ID appears in COUNTRIES and LOCATIONS tables.

SELECT region_name, country_name, city

FROM regions r

JOIN countries ¢ ON r.region_id = c.region_id
JOIN locations 1 ON c.country_id = l.country_id
WHERE c.country_id = 'US';

Multitable Joins

A multitable join is a join of more than two tables. In the ANSI syntax, joins are performed
from left to right. The first join condition can reference columns from only the first and second
tables; the second join condition can reference columns from the first, second, and third tables;
and so on. Consider the following example:

SELECT first_name, department_name, city
FROM employees e

JOIN departments d

ON (e.department_id = d.department_id)
JOIN locations 1

ON (d.location_id = 1.location_id);

The first join to be performed is EMPLOYEES and DEPARTMENTS. The first join condition can
reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns in LOCATIONS.
The second join condition can reference columns from all three tables.

@ Real World Scenario

How Do You Specify Join Conditions When You Have More Than
One Column to Join?

Company XYZ keeps detailed information about customer geography in its purchase-
orders database. Consider the tables and data shown here. For simplicity, only the inter-
esting columns in the tables are used for this example. For this demonstration, you are
interested in three tables: COUNTRY, STATE, and CITY.

SQL> SELECT * FROM country;

Writing Multiple-Table Queries

2317

CNT_CODE CNT_NAME

1 UNITED STATES
91 INDIA
65 SINGAPORE

SQL> SELECT * FROM state;

CNT_CODE ST ST_NAME

1 TX TEXAS

1 CA CALIFORNIA

1 TN TENNESSE
91 TN TAMIL NADU
91 KL KERALA

SQL> SELECT * FROM city;

CNT_CODE ST CTY_CODE
1 TX 1001

1 CA 8099

91 TN 2243

sQL>

CONTINENT
N.AMERICA
ASIA
ASIA

CTY_NAME
DALLAS

LOS ANGELES
CHENNAI

The CNT_CODE column relates the COUNTRY table and the STATE table. The ST_CODE and
CNT_CODE columns relate the STATE table and CITY table. The following examples show
how to join the STATE and CITY tables to get information on the country code, state name,

and city name.

Traditional Oracle Join

SQL> SELECT s.cnt_code, st_name, cty_name

FROM state s, city
WHERE s.cnt_code =
AND s.st_code =
AND s.cnt_code

c
c.cnt_code
c.st_code
1;

238 Chapter 5 = Using Joins and Subqueries

CNT_CODE ST_NAME CTY_NAME
1 CALIFORNIA LOS ANGELES
1 TEXAS DALLAS

sQL>

ANSI Natural Join

SQL> SELECT cnt_code, st_name, cty_name
FROM state NATURAL JOIN city
WHERE cnt_code = 1;

CNT_CODE ST_NAME CTY_NAME
1 TEXAS DALLAS
1 CALIFORNIA LOS ANGELES
sQL>

ANSI Using JOIN...USING

SQL> SELECT cnt_code, st_name, cty_name
FROM state JOIN city USING (cnt_code, st_code)
WHERE cnt_code = 1;

CNT_CODE ST_NAME CTY_NAME
1 TEXAS DALLAS
1 CALIFORNIA LOS ANGELES
SQL>

ANSI Using JOIN...ON

SQL> SELECT s.cnt_code, s.st_name, c.cty_name
FROM state s
JOIN city c ON s.cnt_code = c.cnt_code
AND s.st_code = c.st_code
WHERE s.cnt_code = 1;

CNT_CODE ST_NAME CTY_NAME
1 CALIFORNIA LOS ANGELES
1 TEXAS DALLAS

SQL>

Writing Multiple-Table Queries 239

Cartesian Joins

A Cartesian product occurs when data is selected from two or more tables and no common
relationship is specified in the WHERE clause. If you do not specify a join condition for the
tables listed in the FROM clause, Oracle joins each row from the first table to every row in
the second table. If the first table has 3 rows and the second table has 4 rows, the result will
have 12 rows. If you add another table with 2 rows without specifying a join condition, the
result will have 24 rows.

For the most part, Cartesian joins happen when there are many tables in the FROM clause
and developers forget to include the join condition or they specify a wrong join condition.
You should, therefore, avoid them. To avoid a Cartesian join, there should be at least 7—1
join conditions when joining 7 tables. Sometimes you intentionally use Cartesian joins to
generate large amounts of data, especially when testing applications.

Consider the following example:

SELECT region_name, country_name
FROM regions, countries
WHERE countries.country_id LIKE 'I%';

REGION_NAME COUNTRY_NAME
Europe Israel
Americas Israel
Asia Israel
Middle East and Africa Israel
Europe India
Americas India
Asia India
Middle East and Africa India
Europe Italy
Americas Italy
Asia Italy

Middle East and Africa Italy

Although there is a WHERE clause, you did not specify a join condition between the
COUNTRIES and REGIONS tables. The query returns all the matching rows from the COUNTRIES
table based on the WHERE clause and retrieves one row from the REGIONS table for every row
from the COUNTRIES table. There are four rows in the REGIONS table and three rows in the
COUNTRIES table with a country name beginning with I.

)’ If a Cartesian join is made between a table having m rows and another
AdﬁTE table having n rows, the resulting query will have m X n rows.

240 Chapter 5 = Using Joins and Subqueries

Using the ANSI Syntax
A Cartesian join in ANSI syntax is known as a cross join. A cross join is represented in

ANSI/ISO SQL1999 syntax using the CROSS JOIN keywords. You can code the previous
example using the ANSI syntax as follows:

SELECT region_name, country_name

FROM countries

CROSS JOIN regions

WHERE countries.country_id LIKE 'I%';

REGION_NAME COUNTRY_NAME
Europe Israel
Americas Israel
Asia Israel
Middle East and Africa Israel
Europe India
Americas India
Asia India
Middle East and Africa India
Europe Italy
Americas Italy
Asia Italy

Middle East and Africa Italy

Outer Joins

So far, you have seen only inner joins, which return just the matched rows. Sometimes,
however, you might want to see the data from one table, even if there is no corresponding
row in the joining table. Oracle provides the outer join mechanism for this. An outer join
returns results based on the inner join condition, as well as the unmatched rows from one
or both of the tables.

In traditional Oracle syntax, the plus symbol surrounded by parentheses, (+), denotes
an outer join in the query. Enter (+) beside the column name of the table in the WHERE clause
where there may not be a corresponding row. For example, to write a query that performs
an outer join of tables A and B and returns all rows from A, apply the outer join operator
(+) to all columns of B in the join condition. For all rows in A that have no matching rows
in B, the query returns NULL values for the columns in B.

Consider an example using the COUNTRIES and LOCATIONS tables. Say you want to list the
country name and location city, and you also want to see all the countries in the COUNTRIES

Writing Multiple-Table Queries M

table. To perform this outer join, place an outer join operator beside all columns referencing
LOCATIONS in the WHERE clause:

SELECT c.country_name, l.city
FROM countries c, locations 1
WHERE c.country_id = l.country_id (+);

COUNTRY_NAME CITY
Australia Sydney
Brazil Sao Paulo
Canada Toronto
Canada Whitehorse
Switzerland Geneva
Switzerland Bern
China Beijing
Germany Munich
India Bombay
Italy Rome
Italy Venice
Japan Tokyo
Japan Hiroshima
Mexico Mexico City
Netherlands Utrecht
Singapore Singapore
United Kingdom London
United Kingdom Oxford
United Kingdom Stretford
United States of America Southlake

United States of America
United States of America
United States of America
Argentina

Israel

Nigeria

Egypt

Kuwait

France

Hong Kong

Belgium

Zimbabwe

Zambia

Denmark

South San Francisco
South Brunswick
Seattle

242 Chapter 5 = Using Joins and Subqueries

The order of tables in the query’s FROM clause determines whether the join is a left outer
join or a right outer join. In the previous example, you are selecting all the rows from the
table appearing on the left (COUNTRIES); therefore, this query is using a left outer join.

If tables A and B are outer-joined (FROM A, B) and you need all rows from B, the outer
join operator is placed beside all columns of A. This is a right outer join, because you are
retrieving all rows from the table on the right side (table B). In outer-join syntax using the
(+) operator, the placement of the outer join operator, (+), is what determines the table
from where all the rows are retrieved, not the order of tables; the order of tables determines
whether it is a left or right outer join. When using the ANSI syntax, the left outer join and
right outer join syntaxes depend on the table order.

The outer join operator, (+), can appear only in the WHERE clause. If there are multiple
join conditions between the tables, the outer join operator should be used against all the
conditions. Consider the following query:

SELECT c.country_name, l.city

FROM countries c, locations 1

WHERE c.country_id = l.country_id (+)
AND l.city LIKE 'B%';

COUNTRY_NAME CITY
China Beijing
India Bombay
Switzerland Bern

Even though you included the outer join operator, Oracle just ignored it, and did not
provide unmatched rows in the query result. This is because you did not place the outer
join operator beside all the columns from the LOCATIONS table. The following query will
return the desired result:

SELECT c.country_name, l.city

FROM countries c, locations 1

WHERE c.country_id = l.country_id (+)
AND l.city (+) LIKE 'B%';

An outer join (containing the (+) operator) cannot be combined with another condition
using the OR or IN logical operators. For example, the following query is not valid:

SELECT c.country_name, l.city

FROM countries c, locations 1

WHERE c.country_id = l.country_id (+)
OR l.city (+) LIKE 'B%';

Writing Multiple-Table Queries 243

OR l.city (+) LIKE 'B%'
*
ERROR at line 4:
ORA-01719: outer join operator (+) not allowed 1in operand of OR or IN

The following query works because the outer join operator is used on the LOCATIONS
table and the IN condition is used on the column from the COUNTRIES table:

SELECT c.country_name, Ll.city
FROM countries c, locations 1
WHERE c.country_id = l.country_id (+)

AND c.country_name IN ('India','Israel');
COUNTRY_NAME CITY
Israel

India Bombay

Using the ANSI Syntax

The ANSI syntax allows you to specify three types of outer joins:
Left outer join
Right outer join

Full outer join

Left Outer Joins

A left outer join is a join between two tables that returns rows based on the matching con-
dition, as well as unmatched rows from the table to the left of the JOIN clause. For example,
the following query returns the country name and city name from the COUNTRIES and
LOCATIONS tables, as well as the entire country name from the COUNTRIES table.

SELECT c.country_name, l.city
FROM countries ¢ LEFT OUTER JOIN locations 1
ON c.country_id = l.country_id;

The keyword OUTER between LEFT and JOIN is optional. LEFT JOIN will return the same
result, as in the following example:

SELECT country_name, city
FROM countries LEFT JOIN locations
USING (country_id);

244 Chapter 5 = Using Joins and Subqueries

The same query can be written using a NATURAL JOIN, because COUNTRY_ID is the only
column common to both tables.

SELECT country_name, city
FROM countries NATURAL LEFT JOIN locations;

In traditional Oracle outer join syntax, the query is written as follows:

SELECT c.country_name, l.city
FROM countries c, locations 1
WHERE 1.country_id (+) = c.country_id;

Right Outer Joins
A right outer join is a join between two tables that returns rows based on the matching

condition, as well as unmatched rows from the table to the right of the JOIN clause. Let’s
rewrite the previous example using RIGHT OUTER JOIN:

SELECT country_name, city
FROM locations NATURAL RIGHT OUTER JOIN countries;

or:

SELECT c.country_name, l.city
FROM locations 1 RIGHT JOIN countries c
ON c.country_id = l.country_id;

o You cannot specify the traditional outer join operator, (+), in a query when
ING the ANSI JOIN syntax is used.

Full Outer Joins

A full outer join is possible when using the ANSI syntax. It is not available using the (+)
operator. This is a join between two tables that returns rows based on the matching con-
dition, as well as unmatched rows from the table on the right and left of the JOIN clause.
Suppose you want to list all the employees’ last names with their department names. You
want to include all the employees, even if they have not been assigned a department. You
also want to include all the departments, even if no employees are working for that depart-
ment. Here’s the query:

SELECT e.employee_id, e.last_name,
d.department_id, d.department_name

FROM employees e FULL OUTER JOIN departments d

ON e.department_id = d.department_id;

Writing Multiple-Table Queries 245

Trying to perform a similar query with the outer join operator will produce an error:

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id (+) = d.department_id (+);

WHERE e.department_id (+) = d.department_id (+)
*
ERROR at line 3:
ORA-01468: a predicate may reference only one outer-joined table

You can achieve the full outer join using the UNION operator and the outer join operator,
as in the following query:

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d

WHERE e.department_id (+) = d.department_id

UNION

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d

WHERE e.department_id = d.department_id (+);

y If you do not specify a join type before the JOIN keyword, Oracle assumes
A&TE the default value of INNER. To specify an outer join, you must use the LEFT,
RIGHT, or FULL keyword.

Other Multiple-Table Queries

In this section, you will consider other methods used to retrieve data from more than
one table. These methods include using self-joins and using nonequality joins. Using set
operators in queries can also retrieve rows from multiple tables. Set operators are dis-
cussed in the next section.

Self-Joins

A self-join joins a table to itself. The table name appears in the FROM clause twice, with dif-
ferent alias names. The two aliases are treated as two different tables, and they are joined as
you would join any other tables, using one or more related columns. The following example
lists the employees’ names and their manager names from the EMPLOYEES table:

SELECT e.last_name Employee, m.last_name Manager
FROM employees e, employees m
WHERE m.employee_id = e.manager_id;

246 Chapter 5 = Using Joins and Subqueries

When performing self-joins in the ANSI syntax, you must always use the JOIN..ON
syntax. You cannot use NATURAL JOIN and JOIN..USING. In the following example, the
keyword INNER is optional. The certification example also includes an additional WHERE
clause to filter the records.

SELECT e.last_name Employee, m.last_name Manager
FROM employees e INNER JOIN employees m

ON m.employee_id = e.manager_id

WHERE e.last_name like 'R%';

EMPLOYEE MANAGER
Russell King
Raphaely King
Rogers Kaufling
Rajs Mourgos

Nonequality Joins

If the query is relating two tables using an equality operator (=), it is an equality join, also
known as an inner join or an equijoin, as discussed earlier in this chapter. If any other opera-
tor is used to join the tables in the query, it is a nonequality join. Let’s consider an example
of a nonequality join. The EMPLOYEES table has a column named SALARY; the GRADES table has
the range of salary values that correspond to each grade.

SELECT * FROM grades;

GRADE LOW_SALARY HIGH_SALARY

P5 0 3000
P4 3001 5000
P3 5001 7000
P2 7001 10000
P1 10001

To find out which grade each employee belongs to, use the following query. You limit the
rows returned by using last_name LIKE 'R%'.

SELECT last_name, salary, grade

FROM employees, grades

WHERE Tlast_name LIKE 'R%'

AND salary >= low_salary

AND salary <= NVL(high_salary, salary);

LAST_NAME SALARY GR
Russell 14000 P1
Raphaely 11000 P1
Rajs 3500 P4
Rogers 2900 P5

Using Set Operators

You can write the same query using the ANSI syntax as follows:

SELECT last_name, salary, grade
FROM employees JOIN grades
ON salary >= low_salary

AND salary <= NVL(high_salary, salary)

WHERE last_name LIKE 'R%';

Using Set Operators

247

You can use set operators to select data from multiple tables. Set operators basically combine

the results of two queries into one. These queries are known as compound queries. All set

operators have equal precedence. When multiple set operators are present in the same query,

they are evaluated from left to right, unless another order is specified by using parentheses.
The datatypes of the resulting columns, as well as the number of columns, should match in

both queries. Oracle has four set operators, which are listed in Table 5.1.

TABLE 5.1 Oracle Set Operators

Operator Description
UNION Returns all unique rows selected by either query
UNION ALL Returns all rows, including duplicates selected by

either query

INTERSECT Returns rows selected from both queries

MINUS Returns unique rows selected by the first query but not
the rows selected from the second query

248 Chapter 5 = Using Joins and Subqueries

We’ll discuss all of these in a bit, but let’s first consider the EMPLOYEE table and the
following two queries to illustrate the use of set operators:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90;

LAST_NAME HIRE_DATE
King 17-JUN-03
Kochhar 21-SEP-05
De Haan 13-JAN-01

SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
Kaufling 01-MAY-03
Khoo 18-MAY-03
King 30-JAN-04
King 17-JUN-03
Kochhar 21-SEP-05
Kumar 21-APR-08

The UNION Operator

The UNION operator is used to return rows from either query, without any duplicate rows.

SELECT last_name, hire_date
FROM employees

WHERE department_id = 90
UNION

SELECT last_name, hire_date
FROM employees

WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE

De Haan 13-JAN-01

Using Set Operators 249

Kaufling 01-MAY-03
Khoo 18-MAY-03
King 17-JUN-03
King 30-JAN-04
Kochhar 21-SEP-05
Kumar 21-APR-08

Notice that even though there is a total of nine rows in both queries, the UNION query
returned only unique values. The employees with the last name King appear twice, but
their hire dates are different.

The UNION ALL Operator

The UNION ALL operator does not sort or filter the result set; it returns all rows from both
queries. Let’s consider this SQL code:

SELECT last_name, hire_date
FROM employees

WHERE department_id = 90
UNION ALL

SELECT last_name, hire_date
FROM employees

WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
King 17-JUN-03
Kochhar 21-SEP-05
De Haan 13-JAN-01
Kaufling 01-MAY-03
Khoo 18-MAY-03
King 30-JAN-04
King 17-JUN-03
Kochhar 21-SEP-05
Kumar 21-APR-08
)’ UNION Operator reads data from both queries and sorts them to get unique
AdﬁTE rows. If you are joining queries that produce unique results, using UNION

ALL instead of UNION operator avoids unnecessary sort operation and thus
improves the performance of the query.

250 Chapter 5 = Using Joins and Subqueries

The INTERSECT Operator

The INTERSECT operator is used to return the rows returned by both queries. Let’s find the
employees common to both queries:

SELECT last_name, hire_date
FROM employees

WHERE department_id = 90
INTERSECT

SELECT last_name, hire_date
FROM employees

WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
King 17-JUN-03
Kochhar 21-SEP-05

The MINUS Operator

Now, let’s find the employees from the first query but not in the second query. You can use
the MINUS operator here:

SELECT last_name, hire_date
FROM employees

WHERE department_id = 90
MINUS

SELECT last_name, hire_date
FROM employees

WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE

De Haan 13-JAN-01

Putting It All Together

Each query appearing with the set operators is an independent query and will work by itself.
You can have join conditions and all the SQL options and functions in these independent que-
ries. There can be only one ORDER BY clause in the query at the very end; you cannot specify an

Using Set Operators 251

ORDER BY clause for each query appearing with the set operators. For example, the following
query will produce an error:

SELECT last_name, hire_date
FROM employees

WHERE department_id = 90
ORDER BY last_name

UNION ALL

SELECT first_name, hire_date
FROM employees

WHERE first_name LIKE 'K%'
ORDER BY first_name;

UNION ALL

*

ERROR at line 5:

ORA-00933: SQL command not properly ended

You can use the column name or alias name used in the first query or positional notation
in the ORDER BY clause. Here are two examples (the result is the same for both queries):

SELECT last_name, hire_date "Join Date"
FROM employees

WHERE department_id = 90

UNION ALL

SELECT first_name, hire_date

FROM employees

WHERE first_name LIKE 'K%'

ORDER BY last_name, "Join Date";

SELECT last_name, hire_date "Join Date"
FROM employees

WHERE department_id = 90

UNION ALL

SELECT first_name, hire_date

FROM employees

WHERE first_name LIKE 'K%'

ORDER BY 1, 2;

LAST_NAME Join Date

De Haan 13-JAN-01
Karen 05-JAN-05

252 Chapter 5 = Using Joins and Subqueries

Karen 10-AUG-07
Kelly 14-JUN-05
Kevin 23-MAY-06
Kevin 16-NOV-07
Ki 12-DEC-07
Kimberely 24-MAY-07
King 17-JUN-03
Kochhar 21-SEP-05

When using set operators, the number of columns in the SELECT clause

&TE of the queries appearing on either side of the set operator should be the
same. The column datatypes should be compatible. If the datatypes are
different, Oracle tries to do an implicit conversion of data.

Using Subqueries

A subquery is a query within a query. A subquery answers the queries that have multiple

parts; the subquery answers one part of the question, and the parent query answers the other

part. When you nest several subqueries, the innermost query is evaluated first. Subqueries
can be used with all Data Manipulation Language (DML) statements.

Using subqueries in the FROM clause of a top-level query is known as an inline view. You
can nest any number of such queries; Oracle does not have a limit. Using the inline view,
you can write queries to find top-#z values. This is possible because Oracle allows an ORDER
BY clause in the inline view.

There are three types of subqueries:

A subquery in the WHERE clause of a query is called a nested subquery. You can have
255 levels of nested subqueries.

When a column from the table used in the parent query is referenced in the subquery,
it is known as a correlated subquery. For each row processed in the parent query, the
correlated subquery is evaluated once.

A scalar subquery returns a single row and a single column value. Scalar subqueries
can be used anywhere a column name or expression can be used.

If the columns in the subquery have the same name as the columns in the containing SQL
statement, it is a good idea to qualify the column names with table names or table aliases to

avoid ambiguity. A subquery must be enclosed in parentheses and must be placed on the right

side of the comparison operator when used in the WHERE clause.

Using Subqueries 253

Single-Row Subqueries

Single-row subqueries return only one row of results. A single-row subquery uses a single-
row operator; the common operator is the equality operator (=). Consider an example using
the tables from the HR schema. To find the name of the employee with the highest salary,
you first need to find the highest salary using a subquery. Then you can execute the parent
query with the result from the subquery.

SELECT last_name, first_name, salary
FROM employees
WHERE salary = (SELECT MAX(salary) FROM employees);

LAST_NAME FIRST_NAME SALARY

King Steven 24000

The parent query of a single-row subquery can return more than one row. For example,
to find the names and salaries of employees who work in the accounting department, you
need to find the department number for accounting in a subquery and then execute the
parent query:

SELECT last_name, first_name, salary

FROM employees

WHERE department_id = (SELECT department_id
FROM departments
WHERE department_name = 'Accounting');

LAST_NAME FIRST_NAME SALARY
Higgins Shelley 12008
Gietz William 8300

All single-row comparison operators can be used in the single-row subquery (=, >, >=, <,
<=, or <>). The following example uses two subqueries. So, there are three query blocks in
total. The two inner query blocks (subqueries) are executed first, and their result is passed
on to the outer query (parent query) to complete its processing.

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id < (SELECT MAX(department_id)
FROM departments
WHERE location_id = 1500)
AND hire_date >= (SELECT MIN(hire_date)
FROM employees
WHERE department_id = 30);

254 Chapter 5 = Using Joins and Subqueries

Similar to the WHERE clause, a subquery can be used in the HAVING clause. The following
query lists the latest hire dates by departments that have hired an employee after the first
employee was hired in department 80:

SELECT department_id, MAX(hire_date)
FROM employees
GROUP BY department_-id
HAVING MAX(hire_date) > (SELECT MIN(hire_date)
FROM employees
WHERE department_id = 80);

DEPARTMENT_ID MAX(HIRE_
100 07-DEC-07

30 10-AUG-07

24-MAY-07

90 21-SEP-05

20 17-AUG-05

50 08-MAR-08

80 21-APR-08

60 21-MAY-07

Multiple-Row Subqueries

Multiple-row subqueries return more than one row of results from the subquery. It is safer
to provide the multiple-row operators in the subqueries if you are not sure of the results. In
the previous query, if there is more than one department ID with the name accounting, the
query will fail.

The following query returns three rows from the subquery. It lists all the employees who
work for the same department as John does.

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id = (SELECT department_id
FROM employees
WHERE first_name = 'John');

WHERE department_id = (SELECT department_id
*
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

Using Subqueries 255

The query failed because you used a single-row operator with a multiple-row subquery.
Change the = to a multiple-row operator to make the query work:

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id IN (SELECT department_id
FROM employees
WHERE first_name = 'John');

IN is the most commonly used multiple-row subquery operator. Other operators are
EXISTS, ANY, SOME, and ALL. You may use NOT with the IN and EXISTS operators.

ANY and SOME are synonymous operators. ANY, SOME, and ALL operators must always be
preceded by any of the single-row conditional operators (=, >, >=, <, <=, or <>) and are used
to compare a value to each value returned by the subquery. Table 5.2 lists the meanings of
the ANY and ALL operators when used with different conditional operators.

TABLE 5.2 ANY andALL Operator Meanings

Operation Meaning

<ANY Less than the maximum

<=ANY Less than or equal to the maximum
>ANY More than the minimum

=ANY Equivalent to the IN operator

<ALL Less than the minimum

>ALL More than the maximum

<>ALL Equivalent to the NOT IN operator

Let’s review the ANY and ALL operators using examples. The following query will be used
in the next subquery using the ANY operator. The subquery returns the 12000 and 8300 values.
The minimum is 8300. The second query returns salaries equal to or above 8300 that do not
belong to department 80.

SELECT salary FROM employees WHERE department_id = 110;

SALARY

256 Chapter 5 = Using Joins and Subqueries

SELECT last_name, salary, department_id

FROM employees

WHERE salary >= ANY (SELECT salary FROM employees
WHERE department_id = 110)

AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID
King 24000 90
De Haan 17000 90
Kochhar 17000 90
Hartstein 13000 20
Higgins 12008 110
Greenberg 12008 100
Raphaely 11000 30
Baer 10000 70
Faviet 9000 100
Hunold 9000 60
Gietz 8300 110

The following example lists only the salaries that are more than the maximum (12008)
returned from the subquery:

SELECT last_name, salary, department_id

FROM employees

WHERE salary > ALL (SELECT salary FROM employees
WHERE department_id = 110)

AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID
Hartstein 13000 20
De Haan 17000 90
Kochhar 17000 90
King 24000 90

You can use the DISTINCT keyword in the subquery when using ANY or ALL operators to
prevent rows from being selected multiple times.

Subquery Returns No Rows

If the subquery returns no rows, a NULL value is returned to the parent query. Because
NULL is not equal to another NULL, the parent query may not return any row even if there
are NULL values in the column used in the WHERE clause of the subquery.

Using Subqueries 257

As shown in the following SQL, there is one record in the EMPLOYEES table where you
have a NULL DEPARTMENT_ID:

SQL> SELECT last_name, first_name, salary
FROM employees
WHERE department_id IS NULL;

LAST_NAME FIRST_NAME SALARY

Grant Kimberely 7000
Let’s use this column in the subquery and see what happens:

SQL> SELECT last_name, first_name, salary
FROM employees
WHERE department_id = (SELECT department_id
FROM departments
WHERE department_name = 'JustDummy');

no rows selected

SQL>

In the previous example, the outer query will return a value only if the DEPARTMENT_ID
column matches some value. Although the inner query returned NULL, the outer query will
not match for NULL, since NULL # NULL. Let’s review another example. In the following query,
only Tobias has a NULL salary value:

SQL> SELECT last_name, salary
FROM employees
WHERE department_id = 30;

LAST_NAME SALARY
Raphaely 11000
Khoo 3100
Baida 2900
Tobias

Himuro 2600
Colmenares 2500

When you use this subquery, you expect to see some results, because you know the
EMPLOYEES table has more than five different salary values:

SQL> SELECT first_name, last_name, salary
FROM employees

258 Chapter 5 = Using Joins and Subqueries

WHERE salary NOT IN (
SELECT salary
FROM employees
WHERE department_id = 30);

no rows selected

SQL>

The SQL code does not return any rows because one of the rows returned by the inner
query is NULL. So, be careful when using NOT IN conditions with subqueries that could have a
NULL value. This is not a problem when you use the IN operator. The IN operator is equivalent
to =ANY, and the NOT IN operator is equivalent to <> ALL. If you include one more condition in
the WHERE clause of the inner query, the SQL would work as expected:

SELECT first_name, last_name, salary
FROM employees
WHERE salary NOT IN (

SELECT salary

FROM employees

WHERE department_id = 30

AND salary is NOT NULL);

)’ If the subquery used with the ANY operator returns no rows, the condition
AdﬁTE evaluates to False. If the query used with the ALL operator returns no rows,
the condition evaluates to True.

Correlated Subqueries

Oracle performs a correlated subquery when the subquery references a column from a
table referred to in the parent statement. A correlated subquery is evaluated once for each
row processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement. In the following example, the highest-paid employee of each department
is selected. The subquery is executed for each row returned in the parent query. Notice that
the parent table column is used inside the subquery.

SELECT department_id, last_name, salary
FROM employees el
WHERE salary = (SELECT MAX(salary)
FROM employees e2
WHERE el.department_id = e2.department_id)
ORDER BY 1, 2, 3;

Using Subqueries 259

DEPARTMENT_ID LAST_NAME SALARY
10 Whalen 4400
20 Hartstein 13000
30 Raphaely 11000
40 Mavris 6500
50 Fripp 8200
60 Hunold 9000
70 Baer 10000
80 Russell 14000
90 King 24000

100 Greenberg 12008
110 Higgins 12008

The following example shows a correlated subquery using the EXISTS operator. The
EXISTS operator checks for the existence of a row in the subquery based on the condition.
The column results of the SELECT clause in the subquery are ignored when using the EXISTS
operator. The query lists the names of employees who work with John (in the same depart-
ment). The subquery selects a dummy value of 'x', which is ignored.

SELECT last_name, first_name, department_id
FROM employees el
WHERE EXISTS (SELECT 'x'
FROM employees e2
WHERE first_name = 'John'
AND el.department_id = e2.department_id);

)’ The column names in the parent queries are available for reference in
A&TE subqueries. The column names from the tables in the subquery cannot be
used in the parent queries. The scope is only the current query level and
its subqueries.

Scalar Subqueries

A scalar subquery returns exactly one column value from one row. You can use scalar sub-
queries in most places where you would use a column name or expression, such as in a single-
row function as an argument, in the VALUES clause of an INSERT statement, in an ORDER BY
clause, in a WHERE clause, and in a SELECT clause. You can also use scalar subqueries in CASE
expressions. Scalar subqueries cannot be used in GROUP BY or HAVING clauses. The following
sections review a few examples of using scalar subqueries.

260 Chapter 5 = Using Joins and Subqueries

A Scalar Subquery in a CASE Expression

To list the city name, the country code, and whether the city is in India, you use a CASE
expression with a subquery to return the country code for India from the COUNTRIES table.
To limit the rows, let’s select only the cities that begin with B:

SELECT city, country_id, (CASE
WHEN country_id IN (SELECT country_id
FROM countries
WHERE country_name = 'India')
THEN 'Indian'
ELSE 'Non-Indian'
END) "INDIA?"
FROM locations
WHERE city LIKE 'B%';

CITY CO INDIA?
Beijing CN Non-Indian
Bombay IN Indian
Bern CH Non-Indian

A Scalar Subquery in a SELECT Clause

To report the employee name, the department, and the highest salary in that department,
you use a subquery in the SELECT clause. This is also a correlated subquery.

SELECT last_name, department_id,

(SELECT MAX(salary)

FROM employees sq

WHERE sq.department_id = e.department_id) HSAL
FROM employees e
WHERE last_name like 'R%';

LAST_NAME DEPARTMENT_ID HSAL
Raphaely 30 11000
Rogers 50 8200
Rajs 50 8200

Russell 80 14000

Using Subqueries 261

A Scalar Subquery in SELECT and WHERE Clauses

The following query may be confusing, but pay close attention to the flexibility of using sub-
queries to solve your queries. A scalar subquery is used in the SELECT clause as well as in the
WHERE clause. A multiple-row subquery is also used in the WHERE clause, after the IN operator.
The purpose of the query is to find the department names and their manager names for all
departments that are in the United States or Canada. Because the country information is not
available in the DEPARTMENTS table, you need to get this information from the LOCATIONS table.
Also, you do not know the country IDs of the United States and Canada, so you use a sub-
query to get them. The query also limits the number of rows retrieved by checking whether

a manager is assigned to the department (d.manager_id IS NOT NULL).

SELECT department_name, manager_id, (SELECT last_name
FROM employees e
WHERE e.employee_id = d.manager_id) MGR_NAME

FROM departments d

WHERE ((SELECT country_id FROM locations 1
WHERE d.location_id = 1l.location_id)
IN (SELECT country_id FROM countries c
WHERE c.country_name = 'United States of America'
OR c.country_name = 'Canada'))

AND d.manager_id IS NOT NULL;

DEPARTMENT _NAME MANAGER_ID MGR_NAME
Administration 200 Whalen
Marketing 201 Hartstein
Purchasing 114 Raphaely
Shipping 121 Fripp

IT 103 Hunold
Executive 100 King
Finance 108 Greenberg
Accounting 205 Higgins

A Scalar Subquery in an ORDER BY Clause

You can also use scalar subqueries in the ORDER BY clause. The following example sorts
the city names by their country name order. Notice that the country name is not included
in the SELECT clause.

SELECT country_id, city, state_province
FROM locations 1

262 Chapter 5 = Using Joins and Subqueries

ORDER BY (SELECT country_name
FROM countries c
WHERE 1.country_id = c.country_id);

If the scalar subquery returns more than one row, the query will fail. If the scalar subquery
returns no rows, the value is NULL.

Finding Total Space and Free Space Using Dictionary Views

The following dictionary views are best friends of a DBA. They show the most critical aspect
of the database from the user perspective—the space allocated and free. If the DBA is not
monitoring the growth and free space available in the database, they will probably get calls
from the user community saying they ran out of space in the tablespace. Let's build a query
using four dictionary views (you may need the SELECT_CATALOG_ROLE privilege to query
these views).

DBA_TABLESPACES: Shows the tablespace name, type, and so on.

DBA_DATA_FILES: Shows the data files associated with a permanent or undo
tablespace and the size of the data file. The total size of all data files associated
with a tablespace gives the total size of the tablespace.

DBA_TEMP_FILES: Shows the temporary files associated with a temporary tablespace
and their sizes.

DBA_FREE_SPACE: Shows the unallocated space (free space) in each tablespace.

The query to get the tablespace names and type of tablespace would be as follows:

column tablespace_name format al8
SELECT tablespace_name, contents
FROM dba_tablespaces;

TABLESPACE_NAME CONTENTS

SYSTEM PERMANENT
SYSAUX PERMANENT
UNDOTBS1 UNDO

TEMP TEMPORARY
USERS PERMANENT

EXAMPLE PERMANENT

Using Subqueries

263

To find the total space allocated to each tablespace, you need to query DBA_DATA_FILES
and DBA_TEMP_FILES. Because you are using a group function (SUM) along with a nonag-
gregated column (tablespace_name), the GROUP BY clause is a must. Notice the use of an
arithmetic operation on the aggregated result to display the bytes in megabytes.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_data_files
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES
UNDOTBS1 730
SYSAUX 800.1875
USERS 201.75
SYSTEM 710
EXAMPLE 100

SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_temp_files
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES

TEMP 50.0625

You can find the total amount of free space in each tablespace using the DBA_FREE_SPACE
view. Notice that the free space from temporary tablespace is not shown in this query.

SELECT tablespace_name, SUM(bytes)/1048576 MBytesFree
FROM dba_free_space
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTESFREE

SYSAUX 85.25
UNDOTBS1 718.6875
USERS 180.4375
SYSTEM 8.3125

EXAMPLE 22.625

264 Chapter 5 = Using Joins and Subqueries

Let's try to display the total size of the tablespaces and their free space side-by-side using a
UNION ALL query. UNION ALL is used to avoid sorting. UNION will produce the same result.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes, O MBytesFree
FROM dba_data_files

GROUP BY tablespace_name

UNION ALL

SELECT tablespace_name, SUM(bytes)/1048576 MBytes, O
FROM dba_temp_files

GROUP BY tablespace_name

UNION ALL

SELECT tablespace_name, 0, SUM(bytes)/1048576

FROM dba_free_space

GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES MBYTESFREE
UNDOTBS1 730 0
SYSAUX 800.1875 0
USERS 201.75 0
SYSTEM 710 0
EXAMPLE 100 0
TEMP 50.0625 0
SYSAUX 0 85.25
UNDOTBS1 © 718.6875
USERS 0 180.4375
SYSTEM 0 8.3125
EXAMPLE 0 22.625

The result is not exactly what you expected. You want to see the free-space information
beside each tablespace. Let’s join the results of the total space with the free space and
see what happens. Here you are creating two subqueries (inline views totalspace

and freespace) and joining them together using the tablespace_name column.

SELECT tablespace_name, MBytes, MBytesFree

FROM
(SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_data_files
GROUP BY tablespace_name

Using Subqueries

265

UNION ALL
SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_temp_files
GROUP BY tablespace_name) totalspace
JOIN
(SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree
FROM dba_free_space
GROUP BY tablespace_name) freespace
USING (tablespace_name);

TABLESPACE_NAME MBYTES MBYTESFREE
SYSAUX 800.1875 85.25
UNDOTBS1 730 718.6875
USERS 201.75 180.4375
SYSTEM 710 8.3125
EXAMPLE 100 22.625

You are almost there; the only item missing is information about the temporary
tablespace. Because the temporary-tablespace free-space information is not included
in the freespace subquery and you used an INNER join condition, the result set did not
include temporary tablespaces. Now if you change the INNER JOIN to an OUTER JOIN,
you'll get the desired result

SELECT tablespace_name, MBytes, MBytesFree
FROM
(SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_data_files
GROUP BY tablespace_name
UNION ALL
SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_temp_files
GROUP BY tablespace_name) totalspace
LEFT OUTER JOIN
(SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree
FROM dba_free_space
GROUP BY tablespace_name) freespace
USING (tablespace_name)
ORDER BY 1;

266 Chapter 5 = Using Joins and Subqueries

TABLESPACE_NAME MBYTES MBYTESFREE

EXAMPLE 100 22.625
SYSAUX 800.1875 85.0625
SYSTEM 710 8.3125
TEMP 50.0625

UNDOTBS1 730 718.6875
USERS 201.75 180.4375

Another method to write the same query would be to use the query you built earlier and
aggregate its result using an outer query, as shown here:

SELECT tsname, sum(MBytes) MBytes, sum(MBytesFree) MBytesFree
FROM (
SELECT tablespace_name tsname, SUM(bytes)/1048576 MBytes, 0 MBytesFree
FROM dba_data_f1iles
GROUP BY tablespace_name
UNION ALL
SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0O
FROM dba_temp_files
GROUP BY tablespace_name
UNION ALL
SELECT tablespace_name, 0, SUM(bytes)/1048576
FROM dba_free_space
GROUP BY tablespace_name)
GROUP BY tsname

ORDER BY 1;

TSNAME MBYTES MBYTESFREE
EXAMPLE 100 22.625
SYSAUX 800.1875 85.0625
SYSTEM 710 8.3125
TEMP 50.0625 0
UNDOTBS1 730 718.6875
USERS 201.75 180.4375

Using Subqueries 267

Multiple-Column Subqueries

A subquery is multiple-column when you have more than one column in the SELECT clause of
the subquery. Multiple-column subqueries are generally used to compare column conditions
or in an UPDATE statement. Let’s consider a simple example using the STATE and CITY tables
shown here:

SQL> SELECT * FROM state;

CNT_CODE ST_CODE ST_NAME

X TEXAS

CA CALIFORNIA
91 TN TAMIL NADU
1 TN TENNESSE
91 KL KERALA

SQL> SELECT % FROM city;

CNT_CODE ST_CODE CTY_CODE CTY_NAME

1 TX 1001 DALLAS
91 TN 2243 MADRAS
1 CA 8099 LOS ANGELES

List the cities in Texas using a subquery on the STATE table:

SELECT cty_name

FROM city

WHERE (cnt_code, st_code) IN
(SELECT cnt_code, st_code
FROM state
WHERE st_name = 'TEXAS');

CTY_NAME

DALLAS

268 Chapter 5 = Using Joins and Subqueries

Subqueries in Other DML Statements

You can use subqueries in DML statements such as INSERT, UPDATE, DELETE, and MERGE.
DML statements and their syntax are discussed in Chapter 6, “Manipulating Data.” The
following are some examples of subqueries in DML statements:

To update the salary of all employees to the maximum salary in the corresponding
department (correlated subquery), use this:

UPDATE employees el
SET salary = (SELECT MAX(salary)
FROM employees e2
WHERE el.department_id = e2.department_id);

To delete the records of employees whose salary is less than the average salary in the
department (using a correlated subquery), use this:

DELETE FROM employees e
WHERE salary < (SELECT AVG(salary) FROM employees
WHERE department_id = e.department_id);

To insert records to a table using a subquery, use this:

INSERT INTO employee_archive
SELECT * FROM employees;

To specify a subquery in the VALUES clause of the INSERT statement, use this:

INSERT INTO departments
(department_id, department_name)
VALUES ((SELECT MAX(department_id)
+10 FROM departments), 'EDP');

You can also have a subquery in the INSERT, UPDATE, and DELETE statements in place of
the table name. Here is an example:

DELETE FROM

(SELECT * FROM departments
WHERE department_id > 200)
WHERE department_id = 280;

The subquery can have an optional WITH clause. WITH READ ONLY specifies that the subquery
cannot be updated. WITH CHECK OPTION specifies that if the subquery is used in place of a table
in an INSERT, UPDATE, or DELETE statement, Oracle will not allow any changes to the table that
would produce rows that are not included in the subquery. Let’s look at an example:

INSERT INTO (SELECT department_id, department_name
FROM departments

Summary 269

WHERE department_id < 20)
VALUES (35, 'MARKETING');

1 row created.

INSERT INTO (SELECT department_id, department_name
FROM departments
WHERE department_id < 20 WITH CHECK OPTION)
VALUES (45, 'EDP'")
sSQL> /
FROM departments
*

ERROR at line 2:
ORA-01402: view WITH CHECK OPTION where-clause violation
SQL>

Summary

In this chapter, you learned to retrieve data from multiple tables. We began by discussing
table joins. You also learned how to use subqueries and set operators.

Joins are used to relate two or more tables (or views). In a relational database, it is com-
mon to have a requirement to join data. The tables are joined by using a common column in
the tables in the WHERE clause of the query. Oracle supports ANSI/ISO SQL1999 syntax for
joins. Using this syntax, the tables are joined using the JOIN keyword, and a condition can
be specified using the ON clause.

If the join condition uses the equality operator (= or IN), it is known as an equality join.
If any other operator is used to join the tables, it is a nonequality join. If you do not specify
any join condition between the tables, the result will be a Cartesian product: each row from
the first table joined to every row in the second table. To avoid Cartesian joins, there should
be at least 72-1 join conditions in the WHERE clause when there are 7 tables in the FROM clause.
A table can be joined to itself. If you want to select the results from a table, even if there are
no corresponding rows in the joined table, you can use the outer join operator: (+). In the
ANSI syntax, you can use the NATURAL JOIN, CROSS JOIN, LEFT JOIN, RIGHT JOIN, and FULL
JOIN keywords to specify the type of join.

A subquery is a query within a query. Writing subqueries is a powerful way to manipulate
data. You can write single-row and multiple-row subqueries. Single-row subqueries must
return zero or one row; multiple-row subqueries return zero or more rows. IN and EXISTS are
the most commonly used subquery operators. Subqueries can appear in the WHERE clause or
in the FROM clause. They can also replace table names in SELECT, DELETE, INSERT, and UPDATE
statements. Subqueries that return one row and one column result are known as scalar sub-
queries. Scalar subqueries can be used in most places where you would use an expression.

2170 Chapter 5 = Using Joins and Subqueries

Set operators are used to combine the results of more than one query into one. Each
query is separate and will work on its own. Four set operators are available in Oracle:
UNION, UNION ALL, MINUS, and INTERSECT.

Exam Essentials

Understand joins. Make sure you know the different types of joins. Understand the
difference between natural, cross, simple, complex, and outer joins.

Know the different outer join clauses. You can specify outer joins using LEFT, RIGHT, or
FULL. Know the syntax of each type of join.

Be sure of the join syntax. Spend time practicing each type of join using the ANSI syntax.
Understand the restrictions of using each ANSI keyword in the JOIN and their implied
column-naming conventions.

Know how to write subqueries. Understand the use and flexibility of subqueries. Practice
using scalar subqueries and correlated subqueries.

Understand the use of the ORDER BY clause in the subqueries. You can use the ORDER BY
clause in all subqueries, except the subqueries appearing in the WHERE clause of the query.
You can use the GROUP BY clause in the subqueries.

Know the set operators. Understand the set operators that can be used in compound queries.
Know the difference between the UNION and UNION ALL operators.

Understand where you can specify the ORDER BY clause when using set operators. When
using set operators to join two or more queries, the ORDER BY clause can appear only at the
very end of the query. You can specify the column names as they appear in the top query or
use positional notation.

Review Questions 21

Review Questions

1. Which line of code has an error?
A. SELECT dname, ename
B. FROM emp e, dept d
C. WHERE emp.deptno = dept.deptno
D. ORDER BY 1, 2;

2. What will be the result of the following query?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id
FROM customers c, orders o
WHERE c.cust_id = o.cust_id (+);

A. List all the customer names in the CUSTOMERS table and the orders they made from

the ORDERS table, even if the customer has not placed an order.

B. List only the names of customers from the CUSTOMERS table who have placed an
order in the ORDERS table.

C. List all orders from the ORDERS table, even if there is no valid customer record in
the CUSTOMERS table.

D. For each record in the CUSTOMERS table, list the information from the ORDERS table.
3. The CUSTOMERS and ORDERS tables have the following data:

SQL> SELECT * FROM customers;

CUST_ CUST_NAME PHONE CITY

A0101 Abraham Taylor Jr. Fort Worth
B0134 Betty Baylor 972-555-5555 Dallas
B0135 Brian King Chicago

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ID QUANTITY PRICE
20-FEB-00 1741 B0O134 5 65.5
02-FEB-00 1001 B0O134 25 2065.85

02-FEB-00 1001 BO135 3 247.9

272 Chapter 5 = Using Joins and Subqueries

When the following query is executed, what will be the value of PROD_ID and ORD_DATE
for the customer Abraham Taylor, Jr.?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id
FROM customers c, orders o
WHERE c.cust_id = o.cust_id (+);

A. NULL, 61-JAN-01
B. NULL, NULL
C. 1001, 02-FEB-00

D. The query will not return customer Abraham Taylor, Jr.

4. When using ANSI join syntax, which clause is used to specify a join condition?
A. JOIN
B. USING
C. ON
D. WHERE

5. The EMPLOYEES table has EMPLOYEE_ID, DEPARTMENT_ID, and FULL_NAME columns. The
DEPARTMENTS table has DEPARTMENT_ID and DEPARTMENT_NAME columns. Which two of the
following queries return the department ID, name, and employee name, listing depart-
ment names even if there is no employee assigned to that department? (Choose two.)

A. SELECT d.department_id, d.department_name, e.full_name FROM
departments d NATURAL LEFT OUTER JOIN employees e;

B. SELECT department_id, department_name, full_name FROM departments
NATURAL LEFT JOIN employees;

C. SELECT d.department_id, d.department_name, e.full_name FROM
departments d LEFT OUTER JOIN employees eUSING (d.department_id);

D. SELECT d.department_id, d.department_name, e.full_name FROM
departments d LEFT OUTER JOIN employees eON (d.department_id =
e.department_id);

6. Which two operators are not allowed when using an outer join operator in the query?
(Choose two.)
A. OR
B. AND
C. IN
D

Review Questions

7. Which SQL statements do not give an error? (Choose all that apply.)

A.

SELECT last_name, e.hire_date, department_id

FROM employees e

JOIN (SELECT max(hire_date) max_hire_date
FROM employees ORDER BY 1) me

ON (e.hire_date = me.max_hire_date)

SELECT last_name, e.hire_date, department_id
FROM employees e
WHERE hire_date =
(SELECT max(hire_date) max_hire_date
FROM employees ORDER BY 1)

SELECT last_name, e.hire_date, department_id

FROM employees e

WHERE (department_id, hire_date) IN

(SELECT department_id, max(hire_date) hire_date
FROM employees GROUP BY department_id)

SELECT last_name, e.hire_date, department_id
FROM employees e JOIN

(SELECT department_id, max(hire_date) hire_date
FROM employees GROUP BY department_id) me

USING (hire_date)

213

274

8. The columns of the EMPLOYEES, DEPARTMENTS, and JOBS tables are shown here:

Chapter 5 = Using Joins and Subqueries

Table Column Names Datatype
EMPLOYEES EMPLOYEE_ID NUMBER (6)
FIRST_NAME VARCHAR2 (25)
LAST_NAME VARCHAR2 (25)
SALARY NUMBER (8,2)
JOB_ID VARCHAR2 (10)
MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (2)
DEPARTMENTS DEPARTMENT_ID NUMBER (2)
DEPARTMENT_NAME VARCHAR2 (30)
MANAGER_ID NUMBER (6)
LOCATION_ID NUMBER (4)
JOBS JOB_ID VARCHAR2 (10)

JOB_TITLE VARCAHR2 (30)

Which assertion about the following query is correct?

mOOow

SELECT e.last_name, d.department_name, j.job_title
FROM jobs j

INNER JOIN employees e

ON (e.department_id = d.department_id)

JOIN departments d

ON (j.job_id = e.job_id);

O b~ WN B

The query returns all the rows from the EMPLOYEE table, where there is a
corresponding record in the JOBS table and the DEPARTMENTS table.

The query fails with an invalid column name error.
The query fails because line 3 specifies INNER JOIN, which is not a valid syntax.
The query fails because line 5 does not specify the keyword INNER.

The query fails because the column names are qualified with the table alias.

Review Questions 275

9. The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Consider
the following three queries using those tables.

1. SELECT last_name, department_name

FROM employees e, departments d

WHERE e.department_id = d.department_-id;
2. SELECT last_name, department_name

FROM employees NATURAL JOIN departments;
3. SELECT last_name, department_name

FROM employees JOIN departments

USING (department_id);

Which of the following assertions best describes the results?

A. Queries 1, 2, and 3 produce the same results.

B. Queries 2 and 3 produce the same result; query 1 produces a different result.
C. Queries 1, 2, and 3 produce different results.

D. Queries 1 and 3 produce the same result; query 2 produces a different result.
10. The data in the STATE table is shown here:

SQL> SELECT * FROM state;

CNT_CODE ST_CODE ST_NAME

17X TEXAS

1 CA CALIFORNIA
91 TN TAMIL NADU
1 TN TENNESSE
91 KL KERALA

Consider the following query.

SELECT cnt_code

FROM state

WHERE st_name = (SELECT st_name FROM state
WHERE st_code = 'TN');

Which of the following assertions best describes the results?

A. The query will return the CNT_CODE for the ST_CODE value 'TN'.
B. The query will fail and will not return any rows.

C. The query will display 1 and 91 as CNT_CODE values.

D

. The query will fail because an alias name is not used.

276 Chapter 5 = Using Joins and Subqueries

11. The data in the STATE table is shown in question 10. The data in the CITY table is as
shown here:

SQL> SELECT * FROM city;

CNT_CODE ST_CODE CTY_CODE CTY_NAME

1 TX 1001 DALLAS
91 TN 2243 MADRAS
1 CA 8099 LOS ANGELES

What is the result of the following query?

SELECT st_name "State Name"

FROM state

WHERE (cnt_code, st_code) =
(SELECT cnt_code, st_code
FROM city
WHERE cty_name = 'DALLAS');

A. TEXAS

B. The query will fail because CNT_CODE and ST_CODE are not in the WHERE clause of
the subquery.

C. The query will fail because more than one column appears in the WHERE clause.

D. TX
12. Which line of the code has an error?

1 SELECT department_id, count(x)

2 FROM employees

3 GROUP BY department_id

4 HAVING COUNT (department_id) =

5 (SELECT max(count(department_id))
6 FROM employees
7 GROUP BY department_-id);

Line 3
Line 4
Line §
Line 7

No error

m©oowP»

Review Questions

13. Which of the following is a correlated subquery?

211

A. select cty_name from city where st_code in (select st_code from state

where st_name = 'TENNESSEE' and city.cnt_code = state.cnt_code);

B. select cty_name from city where st_code in (select st_code from state

where st_name = 'TENNESSEE');

C. select cty_name from city, state where city.st_code = state.st_code and

city.cnt_code = state.cnt_code and st_name = 'TENNESSEE';

D. select cty_name from city, state where city.st_code = state.st_code
(+) and city.cnt_code = state.cnt_code (+) and st_name = 'TENNESSEE';

14. The COUNTRY table has the following data:

SQL> SELECT * FROM country;

CNT_CODE CNT_NAME CONTINENT
1 UNITED STATES N.AMERICA

91 INDIA ASIA

65 SINGAPORE ASIA

What value is returned from the subquery when you execute the following?

SELECT CNT_NAME

FROM country

WHERE CNT_CODE =

(SELECT MAX(cnt_code) FROM country);

A. INDIA

B. 65

C. 91

D. SINGAPORE

15. Which line in the following query contains an error?

1 SELECT deptno, ename, sal

2 FROM emp el

3 WHERE sal = (SELECT MAX(sal) FROM emp
4 WHERE deptno = el.deptno
5 ORDER BY deptno);

Line 2
Line 3
Line 4
Line 5§

S0 w >

278 Chapter 5 = Using Joins and Subqueries

16. Consider the following query:

SELECT deptno, ename, salary salary, average,
salary-average difference

FROM emp,

(SELECT deptno dno, AVG(salary) average FROM emp

GROUP BY deptno)

WHERE deptno = dno

ORDER BY 1, 2;

Which of the following statements is correct?
A. The query will fail because no alias name is provided for the subquery.

B. The query will fail because a column selected in the subquery is referenced outside
the scope of the subquery.

C. The query will work without errors.

D. GROUP BY cannot be used inside a subquery.
17. The COUNTRY table has the following data:

SQL> SELECT * FROM country;

CNT_CODE CNT_NAME CONTINENT
1 UNITED STATES N. AMERICA
91 INDIA ASIA
65 SINGAPORE ASIA

What will be result of the following query?

INSERT INTO (SELECT cnt_code FROM country
WHERE continent = 'ASIA')
VALUES (971, 'SAUDI ARABIA', 'ASIA');

One row will be inserted into the COUNTRY table.
WITH CHECK OPTION is missing in the subquery.
The query will fail because the VALUES clause is invalid.

S0 w >

The WHERE clause cannot appear in the subqueries used in INSERT statements.

Review Questions

18. Review the SQL code, and choose the line number that has an error.

SELECT DISTINCT department_-id
FROM employees

ORDER BY department_id

UNION ALL

SELECT department_id

FROM departments

ORDER BY department_id

~No b wWw N R

S0 w >

1
3
6
7
E. No error

19. Consider the following queries:

1. SELECT last_name, salary,
(SELECT (MAX(sq.salary) - e.salary)
FROM employees sq
WHERE sq.department_id = e.department_id) DSAL
FROM employees e
WHERE department_id = 20;
2. SELECT last_name, salary, msalary - salary dsal
FROM employees e,
(SELECT department_id, MAX(salary) msalary
FROM employees
GROUP BY department_id) sq
WHERE e.department_id = sq.department_id
AND e.department_id = 20;
3. SELECT last_name, salary, msalary - salary dsal
FROM employees e INNER JOIN
(SELECT department_id, MAX(salary) msalary
FROM employees
GROUP BY department_id) sq
ON e.department_id = sq.department_id
WHERE e.department_id = 20;
4, SELECT last_name, salary, msalary - salary dsal
FROM employees INNER JOIN
(SELECT department_id, MAX(salary) msalary
FROM employees
GROUP BY department_id) sq
USING (department_-id)
WHERE department_id = 20;

219

280

Chapter 5 = Using Joins and Subqueries

Which of the following assertions best describes the results?

A.

mOOow

F.

Queries 1 and 2 produce identical results, and queries 3 and 4 produce identical
results, but queries 1 and 3 produce different results.

Queries 1, 2, 3, and 4 produce identical results.

Queries 1, 2, and 3 produce identical results; query 4 will produce errors.
Queries 1 and 3 produce identical results; queries 2 and 4 will produce errors.
Queries 1, 2, 3, and 4 produce different results.

Queries 1 and 2 are valid SQL; queries 3 and 4 are not valid.

20. The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Which
query will show you the top five highest-paid employees in the company?

A.

SELECT last_name, salaryFROM employeesWHERE ROWNUM <= 50RDER BY
salary DESC;

SELECT last_name, salaryFROM (SELECT *FROM employeesWHERE ROWNUM <=
50RDER BY salary DESC)WHERE ROWNUM <= 5;

SELECT * FROM(SELECT last_name, salaryFROM employeesORDER BY salary)
WHERE ROWNUM <= 5;

SELECT * FROM(SELECT last_name, salaryFROM employeesORDER BY salary
DESC)WHERE ROWNUM <= 5;

Manipulating Data

ORACLE DATABASE 12c: SQL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Managing Tables Using DML Statements

Truncate data.

Insert rows into a table.
Update rows in a table.
Delete rows from a table.

Control transactions.

In this chapter, we will cover how to manipulate data in the
Oracle 12¢ database; this means we’ll be using SQL Data
Manipulation Language (DML) statements. You will also learn
how to coordinate multiple changes using transactions. We will discuss how to insert new
data into a table, update existing data, and delete existing data from a table.

Because Oracle is a multiuser database and more than one user or session can change data
at the same time, we will cover locks and how they are used to control this concurrency. We
will also cover another effect of a multiuser database, which is that data can change during
the execution of statements. You can exercise some control over the consistency or visibility of
these changes within a transaction, which is covered later in the chapter.

The certification exam will assess your knowledge of how to change data and control
these changes. This chapter will solidify your understanding of these concepts in preparation
for the certification exam.

Using DML Statements

DML is a subset of SQL that is employed to change data in a database table. Because SQL
is English-like, meaning it’s not cryptic like C or Perl, the statements used to perform data
manipulation are easy to remember. The INSERT statement is used to add new rows to a
table. The UPDATE statement is used to modify existing rows in a table, and the DELETE
statement is used to remove rows from a table.

Oracle also has the MERGE statement to perform an insert or update on the table
from an existing source of data (table or view). MERGE also can include an optional clause
to delete rows when certain conditions are met. Table 6.1 summarizes the DML state-
ments that Oracle supports.

TABLE 6.1 DML Statements Supported by Oracle

Statement Purpose

INSERT Adds rows to a table

UPDATE Changes the value stored in a table
DELETE Removes rows from a table

MERGE Updates or inserts rows from one table into another

Using DML Statements 283

Table 6.1 lists the SQL statements that alter data in the database. LOCK
doTE TABLE, CALL, and EXPLAIN PLAN statements are also classified as DML
statements.

Inserting Rows into a Table

The INSERT statement is used to add rows to one or more tables. The syntax for a simple
INSERT statement is as follows:

INSERT INTO [schema.]table_name [(column_11ist)]
VALUES (data_values)

In the syntax, table_name is the name of the table where you want to add new rows.
table_name may be qualified with the schema name. column_17ist is the name of the columns
in the table, separated by commas, that you want to populate. data_values represents the
corresponding values separated by commas. Using this syntax, you can add only one row at
a time.

column_1list is optional. If column_17st is not included, Oracle includes all columns
in the order specified when the table was created. data_values in the VALUES clause must
match the number of columns and datatype in column_1ist (or the number of columns and
datatype in the table if column_117st is omitted). For clarity, it is a good practice to include
column_1ist when using the INSERT statement.

If you omit columns in column_11st, those columns will have NULL values if no default
value is defined for the column. If a default value is defined for the column, the column will
get the default value. You can insert the default value using the DEFAULT keyword. The SQL
statements in the following example show two methods to insert the default value into the
MYACCOUNTS table if a default value of C is defined on the DR_CR column:

DESCRIBE MYACCOUNTS

Name Null? Type

ACC_NO NOT NULL NUMBER(5)
ACC_DT NOT NULL DATE

DR_CR CHAR

AMOUNT NUMBER (15,2)

INSERT INTO myaccounts (acc_no, acc_dt, amount)
VALUES (120003, TRUNC(SYSDATE), 400);

INSERT INTO myaccounts (acc_no, acc_dt, dr_cr, amount)
VALUES (120003, TRUNC(SYSDATE), DEFAULT, 400);

284 Chapter 6 = Manipulating Data

When you’re specifying data_values, enclose character and datetime values in single
quotes. For date values, if the value is not in the default date format, you may have to use the
TO_DATE function. When you enclose a value in single quotes, Oracle considers it character
data and performs an implicit conversion if the column datatype is not a character; therefore,
do not enclose numeric values in single quotes.

P COLUMNS view. The COLUMN_ID column shows the order of columns in the
table. When you use the DESCRIBE command to list the table columns,
the columns are listed in that order.

é/ You can determine the order of columns in a table by using the USER_TAB_

We’ll use the ACCOUNTS table to demonstrate the INSERT statements. The column names,
their order, and their datatype can be displayed using the DESCRIBE statement, as shown here:

SQL> DESCRIBE accounts

Name Null? Type
CUST_NAME VARCHAR2 (20)
ACC_OPEN_DATE DATE
BALANCE NUMBER(15,2)

To insert rows into the ACCOUNTS table, you can use the INSERT statement in its simplest
form, as shown here:

SQL> INSERT INTO accounts VALUES ('John', '13-MAY-68', 2300.45);
1 row created.

The following are some more examples of using INSERT statements. When you use the
column list, they can appear in any order. If the DATE value is not in the default date format
specified by the NLS_DATE_FORMAT parameter, you should use the TO_DATE function with the
format mask. To help you understand the statement rules, the examples also include some
errors generated from INSERT. Notice that you can explicitly insert a NULL value, or if you
omit a column in the column list, a NULL value is inserted into that column, provided the
column is nullable—in other words, a NOT NULL constraint is not defined on the column.

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
2 VALUES (Shine, 'April-23-2001');
VALUES (Shine, 'April-23-2001")
*
ERROR at line 2:
ORA-00984: column not allowed here

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
2 VALUES ('Shine', 'April-23-2001');

Using DML Statements 285

VALUES ('Shine', 'April-23-2001"')
*
ERROR at line 2:
ORA-01858: a non-numeric character was found where a numeric was expected

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
2 VALUES ('Shine', TO_DATE('April-23-2001','Month-DD-YYYY'));
1 row created.

SQL> INSERT INTO accounts VALUES ('Jishi', '4-AUG-72');
INSERT INTO accounts VALUES ('Jishi', '4-AUG-72'")
*
ERROR at line 1:
ORA-00947: not enough values

You can also use functions like SYSDATE or USER in the INSERT statement. See these
examples:

SQL> SHOW USER

USER 1is "HR"

SQL> INSERT INTO accounts VALUES (USER, SYSDATE, 345);
1 row created.

SQL> SELECT * FROM accounts;

CUST_NAME ACC_OPEN_ BALANCE
John 13-MAY-68 2300.45
Shine 23-APR-01
Jishi 12-SEP-99
HR 23-APR-08 345

You can add rows with specific data values, as you have seen in the examples, or you can
create rows from existing data using a subquery.

Inserting Rows from a Subquery

You can insert data into a table from an existing table or view using a subquery. To perform
the subquery insert, replace the VALUES clause with the subquery. You cannot have both a
VALUES clause and a subquery. The columns in the column list should match the number of
columns selected in the subquery as well as their datatype. Here are a few examples:

SQL> INSERT INTO accounts
2 SELECT first_name, hire_date, salary
3 FROM hr.employees

286 Chapter 6 = Manipulating Data

4 WHERE first_name like 'R%';
3 rows created.

SQL> INSERT INTO accounts (cust_name, balance)
2 SELECT first_name, hire_date, salary
3 FROM hr.employees
4 WHERE first_name like 'T%';
INSERT INTO accounts (cust_name, balance)
*
ERROR at line 1:
ORA-00913: too many values

SQL> INSERT INTO accounts (cust_name, acc_open_date)
2 SELECT UPPER(first_name), ADD_MONTHS(hire_date,2)
3 FROM hr.employees
4 WHERE first_name like 'T%';

4 rows created.

SQL> SELECT x FROM accounts;

CUST_NAME ACC_OPEN_ BALANCE
John 13-MAY-68 2300.45
Shine 23-APR-01
Jishi 04-AUG-T72
Renske 14-JUL-95 3600
Randall 15-MAR-98 2600
Randall 19-DEC-99 2500
TJ 10-JUN-99
TRENNA 17-DEC-95
TAYLER 24-MAR-98
TIMOTHY 11-SEP-98

10 rows selected.

You can use SELECT * FROM if the source and destination table have the same structure,
as shown in the following example:

INSERT INTO old_employees
SELECT * FROM employees;

107 rows created.

Using DML Statements 287

Inserting Rows into Multiple Tables

You can also use the INSERT statement to add rows to more than one table at a time.
This multiple-table insert is useful for efficiently loading data, because you can add the
data to multiple target tables via a single pass through the source table, with a minimum
of database calls. The syntax for the multiple-table INSERT statement is shown here:

INSERT [ALL | FIRST] {WHEN <condition> THEN INTO <insert_clause> } [ELSE
<insert_clause>}

The keyword ALL tells Oracle to evaluate each and every WHEN clause, whether or not any
evaluate to TRUE. In contrast, the FIRST keyword tells Oracle to stop evaluating WHEN clauses
after encountering the first one that evaluates to TRUE. The WHEN clause and the INTO clause
can be repeated.

Suppose that your company, Sales Inc., sells books, videos, and audio CDs. You have a
SALES_DETAIL table that contains information about all the sales and is used by the selling
system. You need to load this information into three other tables that focus specifically on the
three product categories: Book, Audio, and Video. These category-specific tables are used by
the analysis systems. Here are the structure and contents of the source SALES_DETAIL table:

Name Null? Type

TXN_ID NOT NULL NUMBER
PRODUCT_ID NUMBER
PROD_CATEGORY VARCHAR2 (2)
CUSTOMER_ID VARCHAR2(10)
SALE_DATE DATE
SALE_QTY NUMBER
SALE_PRICE NUMBER

SELECT * FROM sales_detail;

TXN_ID PRODUCT_ID PR CUST SALE_DATE SALE_QTY SALE_PRICE

1 304329743 B 43 17-JUN-02 2 19.1
2 304943209 B 22 17-JUN-02 1 8.95
3 211524098 A 16 17-JUN-02 1 11.4
4 413354981 V 41 17-JUN-02 1 12.95
5 304957315 B 48 17-JUN-02 1 38.5
6 304183648 B 32 17-JUN-02 2 17.9
7 211681559 A 32 18-JUN-02 1 11.4
8 211944553 A 21 18-JUN-02 1 11.4
9 304155687 B 26 18-JUN-02 1 8.95

288

10 304776352
11 413753861
12 413159654
13 304357689
14 211153246
15 304852369

o< <

18
30
29
11
14
44

18-JUN-02
18-JUN-02
18-JUN-02
18-JUN-02
18-JUN-02
18-JUN-02

Chapter 6 = Manipulating Data

48.45
12.95
19.99
72.3
26.4
15.95

NN P2 EWw

The target table structures are described in the following output:

DESC book_sales

SALE_DATE
PROD_ID
CUST_ID
QTY_SOLD
AMT_SOLD
ISBN

DESC video_sales
Name

NOT_NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

DATE
NUMBER
VARCHAR2 (10)
NUMBER
NUMBER
VARCHAR2 (24)

SALE_DATE
PROD_ID
CUST_ID
QTY_SOLD
AMT_SOLD
RATING
YEAR_RELEASED

DESC audio_sales
Name

NOT_NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

DATE
NUMBER
VARCHAR2 (10)
NUMBER
NUMBER
VARCHAR2 (5)
NUMBER

SALE_DATE
PROD_ID
CUST_ID
QTY_SOLD
AMT_SOLD
ARTIST

NOT_NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

DATE
NUMBER
VARCHAR2 (10)
NUMBER
NUMBER
VARCHAR2 (64)

Using DML Statements 289

The following multiple-table insert selects from the SALES_DETAIL table and, based on
the value of PROD_CATEGORY, inserts a row into the BOOK_SALES, VIDEO_SALES or AUDIO_
SALES table:

INSERT ALL
WHEN prod_category='B' THEN
INTO book_sales(prod_id,cust_id,qty_sold,amt_sold)
VALUES (product_id,customer_id,sale_qty,sale_price)
WHEN prod_category="V"' THEN
INTO video_sales(prod_id,cust_id,qty_sold,amt_sold)
VALUES (product_id,customer_id,sale_qty,sale_price)
WHEN prod_category='A' THEN
INTO audio_sales(prod_id,cust_id,qty_sold,amt_sold)
VALUES (product_id,customer_id,sale_qty,sale_price)
SELECT prod_category ,product_id ,customer_id ,sale_qty
,sale_price
FROM sales_detail;

This multiple-table insert will create a total of 15 rows: eight rows in the BOOK_SALES
table, four rows in the AUDIO_SALES table, and three rows in the VIDEO_SALES table.

7 In most SQL statements, you can prefix column names with a table alias.
ING In fact, this aids readability even if it's not strictly required for parsing. If

you try to use an alias for the table name and then prefix the column names
with either this alias or the schema-qualified table name in a multiple-table
insert, you may raise an exception.

Updating Rows in a Table

The UPDATE statement is used to modify existing rows in a table. The basic syntax for the
UPDATE statement is as follows:

UPDATE <table_name>

SET <column> = <value>
[,<column> = <value>]

[WHERE <condition>]

You can update more than one row at a time. If the WHERE clause is omitted, all the rows
in the table are updated.

If an employee named Jennifer was transferred to another department, you can
change the department_id column in the employees table for that employee. Because

290 Chapter 6 = Manipulating Data

you know the employee ID for Jennifer, you can use the employee ID to identify
Jennifer’s row in the table.

SELECT first_name, last_name, department_id
FROM employees
WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID

Jennifer Wha'len 10

UPDATE employees
SET department_id = 20
WHERE employee_id = 200;

1 row updated.

SELECT first_name, last_name, department_id
FROM employees
WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID

Jennifer Whalen 20

You can update more than one column in the same row by including the columns and
values in the SET clause separated by commas. To remove a value from the column, you
can update the column as NULL. The following example demonstrates how to update more
than one column of the same row as well as update using NULL. Because no WHERE clause is
included, all rows in the table are updated.

UPDATE book_sales
SET gty_sold = NULL,
amt_sold = 0;

8 rows updated.

Updating Rows Using a Subquery

When a column is updated in the table, the value can be derived using a subquery. In the
following example, the job_1id values of all employees in department 30 are changed to
match the job_1id of employee 114:

SELECT first_name, last_name, job_id
FROM employees

Using DML Statements 291

WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID

Den Raphaely PU_MAN

Alexander Khoo PU_CLERK
Shelli Baida PU_CLERK
Sigal Tobias PU_CLERK
Guy Himuro PU_CLERK
Karen Colmenares PU_CLERK

6 rows selected.

UPDATE employees
SET job_id = (SELECT job_id

FROM employees

WHERE employee_id = 114)
WHERE department_id = 30;

6 rows updated.
SELECT first_name, last_name, job_id

FROM employees
WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID
Den Raphaely PU_MAN
Alexander Khoo PU_MAN
Shelli Baida PU_MAN
Sigal Tobias PU_MAN
Guy Himuro PU_MAN
Karen Colmenares PU_MAN

6 rows selected.

You may have more than one column in the SET clause to update more than one column of
the same row using a subquery. If you specify more than one column, they must be enclosed in
parentheses, and the subquery should have the same number of columns in the SELECT clause.

UPDATE book_sales a
SET (qty_sold, amt_sold) = (SELECT SUM(sale_qty), SUM(sale_price)

292 Chapter 6 = Manipulating Data

FROM sales_detail b
WHERE b.prod_category = 'B'

AND b.product_id = a.prod_id AND b.customer_id = a.cust_id
AND b.sale_date = a.sale_date

GROUP BY sale_date, prod_category, product_id, customer_id)
WHERE sale_date = TO_DATE('18-JUN-02','DD-MON-YY');

4 rows updated

@ Real World Scenario
Using a Correct WHERE Clause in UPDATE

The developer had a problem. He was trying to update one row in a table, and it was tak-
ing forever. He was sure he was using the primary key of the table in the WHERE clause and
expected the result to come back in seconds.

The table he was updating had the following columns (some columns have been omitted):

ORDER_HEADER

ORDER# VARCHAR2 (20) - Primary Key
ORDER_DT DATE

CUSTOMER# VARCHAR2 (12)
TOTAL_AMOUNT NUMBER

The update was performed using the value derived from another table named ORDER_
TRANSACTIONS. It had the following structure:

ORDER_TRANSACTIONS

ORDER# VARCHAR2 (20) - Primary Key
ITEM# VARCHAR2 (20) - Primary Key
SHIP_DATE DATE

ITEM_AMOUNT NUMBER

The developer was trying to update the TOTAL_AMOUNT column in the ORDER_HEADER table
with the sum of all the order items from the ORDER_TRANSACTIONS table using a subquery.
This was the SQL code he used:

UPDATE order_header oh
SET total_amount = (SELECT SUM(item_amount)

Using DML Statements 293

FROM order_transactions ot
WHERE oh.order# = ot.order#
AND oh.order# = 'W2H3004FU');

Can you see what is wrong with this statement? By the way, the table had about two
million rows.

Although the developer thought he was updating only one row in the ORDER_HEADER table
and querying only three rows from the ORDER_TRANSACTIONS table, Oracle was in fact
updating all two million rows in the table. Why?

Look carefully at the UPDATE statement; it is missing a WHERE clause for the UPDATE state-
ment. The WHERE clause is present as part of the correlated subquery. So, the result of this
update would have been the TOTAL_AMOUNT column updated to NULL for all rows except for
order W2H3004FU. When executing the correct SQL statement, the update completed in less
than one second.

UPDATE order_header oh

SET total_amount = (SELECT SUM(item_amount)
FROM order_transactions ot
WHERE oh.order# = ot.order#
AND ot.order# = 'W2H3004FU')

WHERE oh.order# = 'W2H3004FU';

Because we are updating a specific ORDER# in the table and we are using the order num-
ber in the WHERE clause, it is safe to remove the join condition inside the subquery as in
the following code.

UPDATE order_header oh
SET total_amount = (SELECT SUM(item_amount)
FROM order_transactions ot
WHERE ot.order# = 'W2H3004FU')
WHERE oh.order# = 'W2H3004FU';

The moral of this story is to be careful when you're updating tables using subqueries.
Always make sure you have the correct WHERE clause for the UPDATE statement.

294 Chapter 6 = Manipulating Data

Deleting Rows from a Table

The DELETE statement is used to remove rows from a table. The syntax for a basic DELETE
statement is as follows:

DELETE [FROM] <table>
[WHERE <condition>]

The FROM keyword is optional; it is included to add readability to the statement. Similar to
the UPDATE statement, if the WHERE clause is omitted, all the rows in the table will be deleted.
Here are some examples of the DELETE statement. The two hyphens (--) are used to

indicate comments.

-- Remove records from job history for start date in 2001
SELECT * FROM job_history
WHERE start_date BETWEEN TO_DATE('01JANOL','DDMONYY')
and TO_DATE('31DEC012359', 'DDMONYYHH24MI'")
/
DELETE FROM job_history
WHERE start_date BETWEEN TO_DATE('©1JANO1','DDMONYY')
and TO_DATE('31DEC012359"', 'DDMONYYHH24MI');

-- Remove employee with first name Alana
-- Note FROM keyword is optional

DELETE employees

WHERE first_name = 'Alana';

If foreign keys are enabled in the table and child records exist for the row, you will not
be able to delete rows. See the following example, where the employees table has a foreign
key to itself and employee John (ID 145) is a manager with employees reporting to him.

SQL> SELECT employee_id, first_name, job_id, manager_id
2 FROM employees
3x WHERE employee_id = 145

sqL> /

EMPLOYEE_ID FIRST_NAME JOB_ID MANAGER_ID

The following are the employees reporting to John.

SQL> SELECT employee_id, first_name, job_id, manager_id

Using DML Statements 295

2 FROM employees
3x WHERE manager_id = 145

SQL> /

EMPLOYEE_ID FIRST_NAME JOB_ID MANAGER_ID
150 Peter SA_REP 145
151 David SA_REP 145
152 Peter SA_REP 145
153 Christopher SA_REP 145
154 Nanette SA_REP 145
155 Oliver SA_REP 145

6 rows selected.

sQL>

If you try to delete employee John without deleting all the employees reporting to him,
you will get an error. However, you can delete an employee who does not have any other
employee reporting to him. See the following examples.

SQL> DELETE FROM employees
2 WHERE employee_id = 145;
DELETE FROM employees
*
ERROR at line 1:
ORA-02292: dntegrity constraint (HR.DEPT_MGR_FK) violated - child record found

SQL> DELETE FROM employees
2 WHERE employee_id = 153;

1 row deleted.

SQL>

Subqueries can be used in DELETE statements to identify the rows to delete. Following
is a generic example to remove duplicate rows from the ALL_SALES table, where a unique
row is supposed to be uniquely identified by the combination of txn_7id and customer_id
(imaginative primary key for this example). Here only one row of the combination (arbi-
trary pick) and other rows are deleted (MIN or MAX functions may be used).

SQL> DELETE sales_detail
2 WHERE rowid NOT IN (SELECT MAX(rowid)

296 Chapter 6 = Manipulating Data

3 FROM sales_detail
4 GROUP BY txn_id, customer_id);

Sometimes it is required to delete all the rows from a table. You can do this by not
providing any WHERE clause conditions. The following example deletes all records from
the VIDEO_SALES table.

SQL> DELETE video_sales;

Removing all the rows from a large table can take a long time and can require significant
rollback segment space. If you are deleting all rows from a table, consider using the TRUNCATE
statement, as described in the next section.

Truncating a Table

If you’re deleting all the rows from a table, truncating a table can accomplish the same task
as deleting, although deleting is sometimes a better choice. If you want to empty a table of
all rows, consider using the Data Definition Language (DDL) statement TRUNCATE. Like
a DELETE statement without a WHERE clause, TRUNCATE will remove all rows from a table.
However, TRUNCATE is not DML; it is DDL. Therefore, it has different characteristics from the
DELETE statement. DDL is the subset of SQL that is employed to define database objects. One
of the key differences between DML and DDL is that DDL statements will implicitly perform
a commit, not only affecting the change in object definition but also committing any pending
DML. A DDL statement cannot be rolled back; only DML statements can be rolled back.

For example, to remove all rows from the SALES_DETAIL table, truncate the table as follows:

SQL> TRUNCATE TABLE sales_detail;

TRUNCATE vs. DELETE

The TRUNCATE statement is similar to a DELETE statement without a WHERE clause, except
for the following:

TRUNCATE is very fast on both large and small tables. DELETE will generate undo infor-
mation if a rollback is issued, but TRUNCATE will not generate undo information.

TRUNCATE is DDL and, like all DDL, performs an implicit commit.

You cannot roll back a TRUNCATE. Any uncommitted DML changes within the session
will also be committed with the TRUNCATE operation.

TRUNCATE resets the high-water mark in the table and all indexes. Because full-table
scans and index fast-full scans read all data blocks up to the high-water mark, full-scan
performance will not improve after a DELETE; after a TRUNCATE, it will be very fast.

TRUNCATE does not fire any DELETE triggers.
There is no object privilege that can be granted to allow a user to truncate another
user’s table. The DROP ANY TABLE system privilege is required to truncate a table in

another schema. See Chapter 13, “Implementing Security and Auditing,” for more
information about getting around this limitation.

Using DML Statements 297

When a table is truncated, the storage for the table and all indexes can be reset to the
initial size. A DELETE will never shrink the size of a table or its indexes.

By default you cannot truncate the parent table with an enabled referential integrity
constraint. You must first disable the foreign key constraints that reference the parent
table, and then you can truncate the parent table. If the constraint is defined with the
ON DELETE CASCADE option (discussed in Chapter 7 “Creating Tables and Constraints”),
then you can use CASCADE option in TRUNCATE to truncate the child tables as well.

Merging Rows

To complete the DML discussion, we will introduce you to the MERGE statement even
though it is not part of the test objectives.

Available in Oracle since its 97 version, MERGE is a very powerful statement that can insert
or update rows based on a condition. The statement also has an option to delete rows when
certain conditions are met. The MERGE statement has a join specification that describes how to
determine whether an update or insert should be executed. MERGE is a convenient way to com-
bine multiple operations in one statement instead of writing a complex PL/SQL program.

The basic syntax of the MERGE statement is as follows:

MERGE INTO <table_or_view>

USING <table_or_view_or_subquery>

ON <join_condition>

WHEN MATCHED THEN UPDATE SET <update_clause> [<where clause>] [DELETE where_
clause]

WHEN NOT MATCHED THEN INSERT <insert_columns> VALUES <insert_columns>

The INTO clause specifies the target table where the update/insert/delete operation
will be performed. The USING clause specifies the data source. The ON clause has the join
condition between the source and target tables. The WHEN MATCHED THEN UPDATE SET
clause specifies which columns to update when the ON condition is matched. You can
also include an optional WHERE clause. The optional DELETE clause can delete the row if
the WHERE condition specified in the DELETE clause is met. The WHEN NOT MATCHED THEN
INSERT clause is used to add rows to the target table from the source table.

Let’s look at a few examples. Consider two tables, ORDERS1 and ORDERS2. The rows in
the tables are listed using the following SQL statements:

SQL> SELECT * FROM ordersl;

ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL

2414 channel 102 10794.6
2397 direct 102 42283.2
2432 channel 102 10523

2431 direct 102 5610.6

298 Chapter 6 = Manipulating Data

2454 direct 103 6653.4
2415 direct 103 310
2433 channel 103 78
2437 direct 103 13550

8 rows selected.

SQL> SELECT * FROM orders2;

ORDER_ID CUSTOMER_ID ORDER_TOTAL

2414 102 35982
2397 102 140944
2432 102 35076.67
2431 102 0
2450 147 1636
2425 147 1500.8
2385 147 295892
2451 148 10474.6
2386 148 21116.9

9 rows selected.

sQL>

The task before you is to merge the rows in ORDERS2 into ORDERS1. If ORDER_ID and
CUSTOMER_ID match between the two tables, you need to update the ORDER_TOTAL value
with the value from the ORDERS2 table and update the ORDER_MODE value to modified. For
the rows in ORDERS2 where ORDER_ID and CUSTOMER_ID do not match with existing rows
in ORDERS1, you need to insert the values from ORDERS2 to ORDERS1. For such rows, the
ORDER_MODE value should be merged. You also want to delete the row from ORDERS1 if
the new order’s total value is zero. The following SQL code can accomplish all these
tasks using the MERGE statement:

MERGE INTO ordersl ol
USING orders2 o2
ON (ol.order_id = o2.order_id
AND ol.customer_id = o2.customer_id)
WHEN MATCHED THEN UPDATE SET ol.order_total = o2.order_total,
ol.order_mode = 'modified'

DELETE WHERE o02.order_total = 0
WHEN NOT MATCHED THEN INSERT

VALUES (o02.order_id, 'merged', o2.customer_id, o2.order_total);

Understanding Transaction Control 299

9 rows merged.

select * from ordersl;

ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL

2414 modified 102 35982
2397 modified 102 140944
2432 modified 102 35076.67
2454 direct 103 6653.4
2415 direct 103 310
2433 channel 103 78
2437 direct 103 13550
2450 merged 147 1636
2385 merged 147 295892
2386 merged 148 21116.9
2451 merged 148 10474.6
2425 merged 147 1500.8

12 rows selected.

As you can see from the result, Oracle updated four rows that matched the ON condition
and inserted five new rows that did not match the ON condition, which is why you get the
“9 rows merged” feedback. Because you had the DELETE clause to delete any rows that had
order total zero (of the four rows that matched the ON condition), one of them matched the
DELETE condition and hence was removed from the table.

Understanding Transaction Control

Transaction control involves coordinating multiple concurrent accesses to the same data.
When one session is changing data that another session is accessing, Oracle uses transactions
to control which users have visibility to changing data and when they can see the changed
data. Transactions represent an atomic unit of work. All changes to data in a transaction are
applied together or rolled back (undone) together. Transactions provide data consistency in
the event of a user-process failure or system failure.

A transaction can include one or more DML statements. A transaction ends when you
save the transaction (COMMIT) or undo the changes (ROLLBACK). When DDL statements are
executed, Oracle implicitly ends the previous transaction by saving the changes. It also
begins a new transaction for the DDL and ends the transaction after the DDL is completed.
Therefore, DDL statements cannot be undone.

300 Chapter 6 = Manipulating Data

A number of statements in SQL let the programmer control transactions. Using transaction-
control statements, the programmer can do the following:

Explicitly begin a transaction, choosing statement-level consistency or transaction-level
consistency

Set undo savepoints and undo changes back to a savepoint
End a transaction by making the changes permanent or undoing the changes

Table 6.2 summarizes the transaction-control statements.

TABLE 6.2 Transaction-Control Statements

Statement Purpose

COMMIT Ends the current transaction, making data changes per-
manent and visible to other sessions.

ROLLBACK Undoes all data changes in the current transaction.
ROLLBACK TO SAVEPOINT Undoes all data changes in the current transactions
going chronologically backward to the optionally

named savepoint.

SAVEPOINT Sets an optional marker within the transaction to be
able to go back to this position if needed.

SET TRANSACTION Enables transaction or statement consistency.

SET CONSTRAINT Controls when deferrable constraint checking is per-
formed for a transaction. Constraints are discussed in
Chapter 7.

Throughout this section, we will use a banking example to clarify transactional concepts
and the control statements used to ensure that data is changed as designed. In this example,
say you have a banking customer named Sara, who has a checking account and a brokerage
account with her bank.

When Sara transfers $5,000 from her checking account to her brokerage account, the
balance in her checking account is reduced by $5,000, and the cash balance in her broker-
age account is increased by $5,000. You cannot allow only one account to change—either
both must change or neither must change.

Consider the following statements to complete the transaction. All the statements in the
group must be completed, or no changes should be recorded in the database. The INSERT
statements are used to log the transaction in the log table.

UPDATE checking
SET balance = balance - 5000
WHERE account = 'SARA1001';

Understanding Transaction Control 301

INSERT INTO checking_log (action_date, action, amount)
VALUES (SYSDATE, 'Withdrawal', 5000);

UPDATE brokerage
SET balance = balance + 5000
WHERE account = 'SARA1001';

INSERT INTO brokerage_log (action_date, action, amount)
VALUES (SYSDATE, 'Deposit', 5000);

You issued the two UPDATE statements and the two INSERT statements in a single transac-
tion. If there is any failure in one of these four statements (say, perhaps, the CHECKING_LOG
table ran out of room in the tablespace), then none of the changes should go through. When
all the previous statements are successful, you can issue a COMMIT statement to save the work to
the database. The changes will be committed and made permanent only if all four statements
succeed. If only part of the SQL statements were successful, you can issue a ROLLBACK state-
ment to undo the changes.

A transaction will implicitly begin with a DML statement. The transaction will always
end with either an implicit or explicit commit or rollback. A ROLLBACK TO SAVEPOINT state-
ment will not end a transaction. The scenarios for commit or rollback of transaction are
described here.

An implicit commit is issued when:

You issue a DDL command.

You exit out of the SQL*Plus session (with the default setting of SET EXITCOMMIT ON).
An implicit rollback is issued when:

Your program is abnormally terminated.

The database crashes.

You exit out of the SQL*Plus session (with the setting of SET EXITCOMMIT OFF).

To roll back any failed DML statement, an implicit savepoint is marked before executing
an INSERT, UPDATE, or DELETE statement. If the statement fails, a rollback to this implicit
savepoint is performed.

An explicit commit is issued when:
You issue the COMMIT command.
An explicit rollback is issued when:

You issue the ROLLBACK command.

If a DML statement fails, the transaction is not rolled back. The changes

doTE made from the successful DML statements before the failed statement
are still valid. To undo those changes, you have to explicitly execute a
ROLLBACK statement.

302 Chapter 6 = Manipulating Data

Savepoints and Partial Rollbacks

A ROLLBACK statement will undo all the changes made in the transaction. If you have
to undo part of the changes in a transaction, you can set up savepoints or markers in the
transaction and go back to a savepoint when needed. Savepoints are intermediate fallback
positions in SQL code. The ROLLBACK TO SAVEPOINT statement is used to undo changes
chronologically back to the last savepoint or to the named savepoint. Savepoints are not
labels for goto statements, and ROLLBACK TO SAVEPOINT is not a goto. The code after a
savepoint does not get re-executed after a ROLLBACK TO SAVEPOINT; only the data changes
made since that savepoint are undone.

)’ Savepoints are not used extensively by programmers. However, you must
AdTE understand them because there will likely be a question related to savepoints
on the certification exam.

Consider a transaction with various DML statements and savepoints, as in Figure 6.1.

FIGURE 6.1 Transaction control

COMMIT;

INSERT INTO EMPLOYEES...;
UPDATE SALARIES SET...;
SAVEPOINT At;

UPDATE SALARIES...;
DELETE FROM...;
SAVEPOINT A2;

INSERT INTO JOBS...;

L - - -->» COMMIT;

L - - - - > ROLLBACK TO SAVEPOINT A2;

o > ROLLBACK TO SAVEPOINT Af;

Lmmm oo o - > ROLLBACK;

A new transaction begins after a COMMIT statement. Various DML statements are exe-
cuted in the transaction. You have also set savepoints in between. After all the statements

Understanding Transaction Control 303

are successfully executed, the user has the option to issue the ROLLBACK TO SAVEPOINT,
ROLLBACK, or COMMIT statement. The arrows in the figure show the effects of issuing the
transaction-control statements.

e If you create a second savepoint with the same name as an earlier savepoint,
P the earlier savepoint is deleted. Oracle keeps only the latest savepoint.

Again, an example will help clarify. Sara tries to withdraw $100 from her checking
account. You want to log her request in the ATM activity log, but if she has insufficient
funds, you don’t want to change her balance and will deny her request (part of a PL/SQL
block is shown here; the IF statement is PL/SQL).

INSERT INTO ATM_LOG(who, when, what, where)
VALUES('Kiesha', SYSDATE, 'Withdrawal of $100','ATM54');
SAVEPOINT ATM_logged;

UPDATE checking
SET balance = balance - 100
WHERE account = 'SARA1001';

SELECT balance INTO new_balance
FROM checking

WHERE account = 'SARA1001';

IF new_balance < 0

THEN
ROLLBACK TO ATM_logged; -- undo update
COMMIT; -- keep changes prior to savepoint (insert)
RAISE dinsufficient_funds; -- Raise error/deny request
END IF;
COMMIT; -- keep insert and update

The keyword SAVEPOINT is optional, so the following two statements are equivalent:

ROLLBACK TO ATM_logged;
ROLLBACK TO SAVEPOINT ATM_logged;

SAVEPOINT in any ROLLBACK TO SAVEPOINT statement. That way, anyone
reading the code will be reminded of the keyword SAVEPOINT, making it
easier to recognize that a partial rollback has occurred.

é/ Because savepoints are not frequently used, always include the keyword
P

304 Chapter 6 = Manipulating Data

Data Visibility

When DML operations are performed in a transaction, the changes are visible only to the
session performing the DML operations. The changes are visible to other users in the data-
base only when a COMMIT is issued (or a DDL statement causes an implicit commit).

All data changes made in a transaction are temporary until the transaction is committed.
Oracle Database 12¢ has a read-consistency mechanism to ensure that each user sees the
data as it existed at the last commit.

When DML operations are performed on existing rows (through UPDATE, DELETE, or
MERGE operations), the affected rows are locked by Oracle; therefore, no other user can
perform a DML operation on those rows. The rows updated or deleted by a transaction
can be queried by another session.

When changes are committed, they are made permanent to the database. All locks on
the affected rows are released, and all savepoints are removed. The previous state of the
data is lost (the undo segments may be overwritten). All users can view the changed data.

When changes are rolled back, data changes are undone and the previous state of data is
restored. All locks on the affected rows are released.

Oracle uses read consistency to make sure you do not see the changes made to data after
your query is started. Also, Oracle uses a locking mechanism to make sure that two different
user sessions can’t modify data in the same row at the same time. Data consistency and the
locking mechanism are discussed in the next sections.

Consistency and Transactions

Data consistency is one of the key concepts underlying the use of transaction-control
statements. Understanding Oracle’s consistency model will enable you to employ transac-
tion control appropriately and answer exam questions about transaction control correctly.
Oracle implements consistency to guarantee that the data seen by a statement or transac-
tion does not change until that statement or transaction completes. This support is germane
only to multiuser databases, where one database session can change (and commit) data that
is being read by another session.

Oracle always uses statement-level consistency, which ensures that the data visible to
a statement does not change during the life of that statement. Transactions can consist of
one or more statements. When used, transaction-level consistency will ensure that the data
visible to all statements in a transaction does not change for the life of the transaction. The
banking example will help clarify.

Matt starts running a total-balance report against the checking account table at 10:00 A.m.;
this report takes five minutes. During those five minutes, the data he is reporting on changes
when Sara transfers $5,000 from her checking account to her brokerage account. When Matt’s
session gets to Sara’s checking-account record, it will need to reconstruct what the record
looked like at 10:00 A.m. Matt’s session will examine the undo segment that Sara used during
her account-transfer transaction and will re-create the image of what the checking-account
table looked like at 10:00 A.m.

Understanding Transaction Control 305

Next, at 10:05 A.m., Matt runs a total balance report on the cash in the brokerage
account table. If he is using transaction-level consistency, his session will re-create what
the brokerage account table looked like at 10:00 aA.M. (and exclude Sara’s transfer). If
Matt’s session is using the default statement-level consistency, his session will report on
what the brokerage account table looked like at 10:05 A.M. (and include Sara’s transfer).

Oracle never uses locks for reading operations, because reading operations will never
block writing operations. Instead, the undo segments (also known as rollback segments) are
used to re-create the image needed. Undo segments are released for reuse when the transac-
tion writing to them commits or if undo_management is set to auto and the undo_retention
period is exceeded, so sometimes a consistent image cannot be re-created. When this hap-
pens, Oracle raises a “snapshot too old” exception. Using this example, if Matt’s transaction
can’t locate Sara’s transaction in the rollback segments because it was overwritten, Matt’s
transaction will not be able to re-create the 10:00 A.m. image of the table and will fail.

Oracle implements consistency internally through the use of system change numbers
(SCNs). An SCN is a time-oriented, database-internal key. The SCN only increases, never
decreases, and represents a point in time for comparison purposes. So, in the previous
example, Oracle internally assigns Matt’s first statement the current SCN when it starts
reading the checking-account table. This starting SCN is compared to each data block’s
SCN. If the data-block SCN is higher (newer), the rollback segments are examined to find
the older version of the data.

Undo segments, concurrency, and SCN are discussed in detail in Chapter 11, “Managing
Data and Undo.”

Locking Mechanism

Locks are implemented by Oracle Database 12¢ to prevent destructive interaction
between concurrent transactions. Locks are acquired automatically by Oracle when a
DML statement is executed; no user intervention or action is needed. Oracle uses the
lowest level of restrictiveness when locking data for DML statements—only the rows
affected by the DML operation are locked.

Locks are held for the duration of the transaction. A commit or rollback will release all
the locks. There are two types of locks: explicit and implicit.

The locks acquired by Oracle automatically when DML operations are performed are
called implicit locks. There is no implicit lock for SELECT statements.

If the user locks data manually, it is called explicit locking. The LOCK TABLE statement
and SELECT..FOR UPDATE statements are used for explicitly locking the data.

The SELECT..FOR UPDATE statement is used to lock specific rows, preventing other sessions
from changing or deleting those locked rows. When the rows are locked, other sessions can
select these rows, but they cannot change or lock these rows. The syntax for this statement
is identical to a SELECT statement, except you append the keywords FOR UPDATE to the state-
ment. The locks acquired for a SELECT FOR UPDATE will not be released until the transaction
ends with a COMMIT or ROLLBACK, even if no data changes.

SELECT product_id, warehouse_id, quantity_on_hand
FROM oe.inventories

306 Chapter 6 = Manipulating Data

WHERE quantity_on_hand < 5
FOR UPDATE;

Optional WAIT clause can be included along with FOR UPDATE clause to tell Oracle to wait
a certain number of seconds if the rows in the table are locked by another session before it
gives the unable to lock error.

The LOCK statement is used to lock an entire table, preventing other sessions from perform-
ing most or all DML on it. Locking can be in either shared or exclusive mode. Shared mode
prevents other sessions from acquiring an exclusive lock but allows other sessions to acquire a
shared lock. Exclusive mode prevents other sessions from acquiring either a shared lock or an
exclusive lock. The following is an example of using the LOCK statement:

LOCK TABLE inventories IN EXCLUSIVE MODE;

Oracle employs both table and row locks. Table locks can be obtained in either share or
exclusive mode. Share locks prevent other exclusive locks but allow other share locks on the
resource. As the name indicates, this mode allows the affected resource to be shared, depend-
ing on the operation involved. Multiple sessions can perform DML operations on the same
table, but on different rows. Each such session will hold a share lock on the table, to prevent
someone from changing the table structure by performing a DDL on the table (DDL requires
exclusive lock). Several transactions can acquire share locks on the same resource. Exclusive
locks prevent other share locks and other exclusive locks from being used on the resource.

The first transaction to lock a resource exclusively is the only transaction that can modify the
resource until the exclusive lock is released through a commit or rollback. However, no DML
locks prevent read access. To change data, Oracle must acquire an exclusive row-level lock on
the rows that are changed. INSERT, UPDATE, DELETE, MERGE, and SELECT FOR UPDATE statements
implicitly acquire the necessary exclusive locks. The LOCK TABLE x IN SHARE MODE state-
ment acquires a share lock. Even if the DML operation affects all the rows in a table, Oracle
Database 12c¢ never escalates the row-level lock to a table-level lock; furthermore, neither users
nor developers should explicitly lock unless there is a very good reason—Oracle handles it
automatically 99.9% of the time.

Summary

We started this chapter discussing DML statements in Oracle. Then we reviewed the
INSERT, UPDATE, DELETE, and MERGE statements to add, modify, and delete data in tables.
You also learned how transactions and locking work in Oracle.

The INSERT statement is used to add new rows to a table. The VALUES clause in the INSERT
statement is used to add a single row at a time. Subqueries can be used to add rows to a table
from an existing row source.

The UPDATE statement is used to change existing data in a table. The DELETE statement is
used to remove rows from a table. Both the UPDATE and DELETE statements can have WHERE
clauses to limit the data changes to specific rows. The MERGE statement allows you to insert
or update rows based on a condition.

Exam Essentials 307

When an update or delete operation is performed on a table, the previous state of data
is written to undo segments to build a read-consistent image of data. Oracle shows only
committed data to users.

DML operations lock the affected rows of the table. The locks are held until the transac-
tion is either committed or rolled back. Until the changes are committed, data changes are
not visible to other users in the database.

Exam Essentials

Know the syntax for the INSERT statement. When a subquery is used to add rows to a
table, the VALUES clause should not be used.

Practice UPDATE statements. The UPDATE statement can update multiple columns in the
same row using a subquery. Multiple subqueries can also be used to update columns in a
single row.

Understand what will begin and end a transaction. A transaction will begin with an
INSERT, UPDATE, DELETE, MERGE, or SELECT FOR UPDATE statement. A COMMIT or ROLLBACK
will end a transaction. A DDL statement can also end a transaction.

Know how to set and roll back to savepoints. Savepoints are set with the SAVEPOINT
statement. Data changes made after a savepoint are undone when a ROLLBACK TO
SAVEPOINT statement is executed. ROLLBACK TO SAVEPOINT is a partial undo operation.

Understand the scope of data changes and consistency. Statement-level consistency is
automatic and will ensure that each SELECT will see an image of the database consistent
with the beginning of the statement’s execution. Transaction-level consistency will ensure
that all SELECT statements within a transaction will see an image of the database consistent
with the beginning of the transaction.

308 Chapter 6 = Manipulating Data

Review Questions

1. Jim is trying to add records from the ORDER_DETAILS table to ORDER_DETAIL_HISTORY
for orders placed before the current year. Which INSERT statement would accomplish
his task?

A. INSERT INTO ORDER_DETAIL_HISTORY

VALUES (SELECT * FROM ORDER_DETAIL

WHERE ORDER_DATE < TRUNC(SYSDATE,'YY'));
B. INSERT FROM ORDER_DETAIL

INTO ORDER_DETAIL_HISTORY

WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');
C. INSERT INTO ORDER_DETAIL_HISTORY

FROM ORDER_DETAIL

WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');
D. INSERT INTO ORDER_DETAIL_HISTORY

SELECT * FROM ORDER_DETAIL

WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');

2. Which of the following statements will not implicitly begin a transaction?
A. INSERT

UPDATE

DELETE

SELECT FOR UPDATE

mOOow

None of the above; they all implicitly begin a transaction, if not started already.

Review Questions 309

3. Consider the following UPDATE statement. Which UPDATE statements from the following
options will accomplish the same task? (Choose two.)

UPDATE ACCOUNTS
SET LAST_UPDATED = SYSDATE,
UPDATE_USER = USER;

A. UPDATE ACCOUNTS

SET (LAST_UPDATED, UPDATE_USER) =

(SYSDATE, USER);

B. UPDATE ACCOUNTS

SET LAST_UPDATED =

(SELECT SYSDATE FROM DUAL),

UPDATE_USER = (SELECT USER FROM DUAL);
C. UPDATE ACCOUNTS

SET (LAST_UPDATED, UPDATE_USER) =

(SELECT SYSDATE, USER FROM DUAL);
D. UPDATE ACCOUNTS

SET LAST_UPDATED = SYSDATE

AND UPDATE_USER = USER;

4. Which of the following statements do not end a transaction? (Choose two.)
A. SELECT
B. COMMIT
C. TRUNCATE TABLE
D. UPDATE

310

Chapter 6 = Manipulating Data

5. Sara wants to update the SALARY column in the OLD_EMPLOYEES table with the value
from the EMPLOYEES table for employees in department 90. Which SQL code will
accomplish the task?

A

. UPDATE old_employees a
SET salary = (SELECT salary FROM employees b
WHERE a.employee_id = b.employee_id)
WHERE department_id = 90;
. UPDATE old_employees
SET salary = (SELECT salary FROM employees)
WHERE department_id = 90;

UPDATE old_employees a

FROM employees b

SET a.salary = b.salary

WHERE department_id = 90;

UPDATE old_employees a

SET salary = (SELECT salary FROM employees b
WHERE a.employee_id = b.employee_id

AND department_id = 90);

6. Review the following code snippet. Which line has an error?

AW N R

A
B.
C
D

UPDATE EMPLOYEES

WHERE EMPLOYEE_ID = 127
SET SALARY = SALARY % 1.25,
COMMISSION_PCT = 0

.1
2
. 4

. There is no error.

7. Jim executes the following SQL statement. What will be the result?

DE

LETE salary, commission_pct

FROM employees

WH

A.

ERE department_id = 30;

The salary and commission_pct columns for all records with department_id 30
will be deleted (changed to NULL).

All the rows belonging to department_id 30 will be deleted from the table.
The salary and commission_pct columns will be deleted from the employees table.

The statement will produce an error.

8. Consider the following three SQL statements. Choose the most appropriate option.

C.
D.

Review Questions

DELETE FROM CITY WHERE CNT_CODE = 1;
DELETE CITY WHERE CNT_CODE = 1;
DELETE (SELECT * FROM CITY WHERE CNT_CODE = 1);

Statements 1 and 2 will produce the same result; statement 3 will error out.

Statements 1 and 2 will produce the same result; statement 3 will produce a
different result.

Statements 1, 2, and 3 will produce the same result.

Statements 1, 2, and 3 will produce different results.

3N

9. Consider the following code segment. How many rows will be in the CARS table after
all these statements are executed?

S0 w >

SELECT COUNT(%*) FROM CARS;
COUNT (%)

DELETE FROM CARS WHERE MAKE = 'TOYOTA';
2 rows deleted.

SAVEPOINT A;
Savepoint created.

INSERT INTO CARS VALUES ('TOYOTA','CAMRY',4,220);
1 row created.

SAVEPOINT A;

INSERT INTO CARS VALUES ('TOYOTA','COROLLA',4,180);
1 row created.

ROLLBACK TO SAVEPOINT A;
Rollback complete.

30
29
28
32

312 Chapter 6 = Manipulating Data

10. Jim noticed that the HIRE_DATE and START_DATE columns in the EMPLOYEES table had date
and time values. When he tries to find employees hired on a certain date, he does not get
the desired results. Which SQL statement will update all the rows in the EMPLOYEES table
with no time portion in the HIRE_DATE and START_DATE columns (00:00:00)?

A. UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE) AND START_DATE =
TRUNC (START_DATE) ;
B. UPDATE TABLE EMPLOYEES SET TRUNC(HIRE_DATE) AND TRUNC(START_DATE);

C. UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE), START_DATE =
TRUNC (START_DATE) ;

D. UPDATE HIRE_DATE = TRUNC(HIRE_DATE), START_DATE = TRUNC(START_DATE) IN
EMPLOYEES;

11. Sara wants to update the SALARY column in the EMPLOYEE table from the SALARIES
table, based on the JOB_ID value for all employees in department 22. The SALARIES
table and the EMPLOYEE table have the following structure. Which of the following
options is the correct UPDATE statement?

DESC EMPLOYEE
EMPLOYEE_ID NUMBER (3),

EMP_NAME VARCHAR2 (40),
JOB_ID VARCHAR2 (4),
DEPT_ID NUMBER

SALARY NUMBER

DESC SALARIES
JOB_ID VARCHAR2 (4),
SALARY NUMBER

A. UPDATE SALARIES A SET SALARY = (SELECT SALARY FROM EMPLOYEES B WHERE
A.JOB_ID = B.JOB_ID WHERE DEPT_ID = 22);

B. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB AND DEPT_ID = 22);

C. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) AND DEPT_ID = 22;

D. UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) WHERE DEPT_ID = 22;

Review Questions 313

12. The FIRED_EMPLOYEE table has the following structure:

EMPLOYEE_ID NUMBER (4)
FIRE_DATE DATE

How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(*) FROM FIRED_EMPLOYEES;
COUNT (*)

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);
SAVEPOINT A;

INSERT INTO FIRED_EMPLOYEE VALUES (106, TRUNC(SYSDATE);
SAVEPOINT B;

INSERT INTO FIRED_EMPLOYEE VALUES (108, TRUNC(SYSDATE);
ROLLBACK TO A;

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);
COMMIT;

SELECT COUNT(*) FROM FIRED_EMPLOYEES;

109
106
105
107

S0 w >

314 Chapter 6 = Manipulating Data

13. The following table describes the DEPARTMENTS table:

Column Name dept_id dept_name mgr_id location_id
Key Type pk

Nulls/Unique NN

FK Table

Datatype NUMBER VARCHAR2 NUMBER NUMBER
Length 4 30 6 4
Default Value None None None 99

Which of the following INSERT statements will raise an exception?

A. INSERT INTO departments (dept_id, dept_name, location_id)
VALUES (280, 'Security',1700);

B. INSERT INTO departments VALUES(280,'Security',1700);
C. INSERT INTO departments VALUES(280,'Corporate Giving',266,1700);
D. None of these statements will raise an exception.

14. Refer to the DEPARTMENTS table structure in question 13. Two SQL statements are
shown here. Choose the option that best describes the SQL statements.

1. INSERT INTO departments (dept_id, dept_name, mgr_id)
VALUES (280, 'Security',1700);
2. INSERT INTO departments (dept_id, dept_name, mgr_id, location_1id)

VALUES (280, 'Security',1700, NULL);

Statements 1 and 2 insert the same values to all columns in the table.
Statements 1 and 2 insert different values to at least one column in the table.

The location_id column must be included in the column list of statement 1.

S0 w >

A NULL value cannot be inserted explicitly in statement 2.

Review Questions 315

15. The SALES table contains the following data:

SELECT channel_id, COUNT(*)
FROM sales
GROUP BY channel_1id;

C COUNT (*)

T 12000
I 24000

How many rows will be inserted into the NEW_CHANNEL_SALES table with the following
SQL statement?

INSERT FIRST
WHEN channel_id ='C' THEN
INTO catalog_sales (prod_id,time_id,promo_id
,;amount_sold)
VALUES (prod_id,time_id,promo_id,amount_sold)
WHEN channel_id ='I' THEN
INTO 1internet_sales (prod_id,time_id,promo_id
,amount_sold)
VALUES (prod_id,time_id,promo_id,amount_sold)
WHEN channel_id IN ('I','T') THEN
INTO new_channel_sales (prod_id,time_id,promo_-id
s;amount_sold)
VALUES (prod_id,time_id,promo_id,amount_sold)
SELECT channel_id,prod_id,time_id,promo_id,amount_sold
FROM sales;

. 24,000

A
B. 12,000
c

D. 36,000

316 Chapter 6 = Manipulating Data

16. In the following SQL code, how many rows will be counted in the last statement?

SELECT COUNT(x) FROM emp;
120 returned

INSERT INTO emp (emp_id)
VALUES (140);
SAVEPOINT empl40;

INSERT INTO emp (emp_-id)
VALUES (141);

INSERT INTO emp (emp_-id)
VALUES (142);

INSERT INTO emp (emp_-id)
VALUES (143);

TRUNCATE TABLE employees;

INSERT INTO emp (emp_id)
VALUES (144);

ROLLBACK;

SELECT COUNT(*) FROM emp;

121
0

124
D. 143

o w »

17. Which of the following options best describes the following SQL statement?

1. UPDATE countries
2. CNT_NAME = UPPER(CNT_NAME)
3. WHERE country_code BETWEEN 1 and 99;

A. The statement is missing the keyword SET, but the statement will work just fine
because SET is an optional keyword.

B. The BETWEEN operator cannot be used in the WHERE clause used in an UPDATE state-
ment.

C. The function UPPER(CNT_NAME) should be changed to UPPER('CNT_NAME').

D. The statement is missing keyword SET; therefore, the statement will fail.

Review Questions 317

18. The ORDERS table has 35 rows. The following UPDATE statement updates all 35 rows.
Which option best describes what will happen?

UPDATE orders
SET ship_date = TRUNC(ship_date)
WHERE ship_date != TRUNC(ship_date)

A.

B.
C.

D.

When all rows in a table are updated, the LOCK TABLE orders IN EXCLUSIVE MODE
statement must be executed before the UPDATE statement.

No other session can query from the table until the transaction ends.

Because all rows are updated, there is no need for any locking; therefore, Oracle
does not lock the records.

The statement locks all the rows until the transaction ends.

19. Which of the following INSERT statements will raise an exception?

A.
B.

INSERT INTO EMP SELECT * FROM NEW_EMP;

INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INSERT INTO EMP SELECT * FROM
NEW_EMP;

INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT % FROM
NEW_EMP;

INSERT ALL WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT % FROM NEW_EMP;

318 Chapter 6 = Manipulating Data

20. After the following SQL statements are executed, what will be the salary of
employee Arsinoe?

UPDATE emp
SET salary = 1000
WHERE name = 'Arsinoe';

SAVEPOINT Point_A;

UPDATE emp
SET salary = salary * 1.1
WHERE name = 'Arsinoe';

SAVEPOINT Point_B;

UPDATE emp
SET salary = salary * 1.1
WHERE name = 'Berenike';

SAVEPOINT point_C;

ROLLBACK TO SAVEPOINT point_b;

COMMIT;

UPDATE emp
SET salary = 1500
WHERE name = 'Arsinoe';

SAVEPOINT point_d;
ROLLBACK TO point_d;

COMMIT;

1000
1100
1111

1500

S0 w >

Creating Tables and
Constraints

ORACLE DATABASE 12c: SQL
FUNDAMENTALS EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

v Introduction to Data Definition Language
= Categorize the main database objects.
= Explain the table structure.
= Describe the data types that are available for columns.
= Create a simple table.

= Explain how constraints are created at the time of
table creation.

= Describe how schema objects work.

An Oracle database has many different types of objects.
Related objects are logically grouped together in a schema,
which consists of various types of objects. The basic types of
objects in an Oracle database are tables, indexes, constraints, sequences, and synonyms.
Although this chapter discusses tables and constraints, we will begin it with an overview
of the main database objects in Oracle.

The table is the basic structure of data storage in Oracle. A table has columns as part
of the definition and stores rows of data. In a relational database, the data in various tables
may be related. A constraint can be considered as a rule or policy defined in the database to
enforce data integrity and business rules. In this chapter, we will discuss creating tables and
using constraints. Because the table is the most important type of object in an Oracle data-
base, knowing how to create tables and constraints on tables is important.

Database Objects Overview

Data in an Oracle database is stored in tables. A table is the main database object. Many
other database objects, whether or not they store data, are generally based on the tables.
Figure 7.1 shows a screenshot from SQL Developer. The left side shows the various

object types available in Oracle Database 12c.
Let’s review the main database objects in Oracle that are relevant for this
certification exam:

Table A table is defined with columns, and it stores rows of data. A table should have
at least one column. In Oracle, a table normally refers to a relational table. You can also
create object tables. Object tables are created with user-defined datatypes. Temporary
tables (called global temporary tables in Oracle) are used to hold temporary data specific
to a transaction or session. A table can store a wide variety of data. Apart from storing
text and numeric information, you can store date, timestamp, binary, or raw data (such
as images, documents, and information about external files). A table can have virtual
columns. As the name indicates, these types of columns do not consume storage space on
disk; the database derives values in virtual columns from normal columns. Tables are dis-
cussed in the next sections of this chapter.

View A view is a customized representation of data from one or more tables and/or views.
Views are used as windows to show information from tables in a certain way or to restrict
the information. Views are queries stored in the database that select data from one or more
tables. Unlike tables, views do not store data—they can be considered as stored queries.

Database Objects Overview 321

They also provide a way to restrict data from certain users, thereby providing an additional
level of security.

Sequence A sequence is a way to generate continuous sequential numbers. Sequences are
useful for generating unique serial numbers or key values. The sequence definition is stored
in the data dictionary. Sequence numbers are generated independently of other database
objects. Because a sequence can be used as part of table definition, we will discuss sequence
briefly before you learn to create a table.

Synonym A synonym is an alias for any table, view, sequence, or other accessible database
object. Because a synonym is simply an alias, it requires no storage other than its definition
in the data dictionary. Synonyms are useful because they hide the identity of the underlying
object. The object can even be part of another database. A public synonym is accessible to
all users of the database, and a private synonym is accessible only to its owner.

Index An index is a structure associated with tables used to speed up the queries. An index is
an access path to reach the desired row faster. Oracle has B-tree and bitmap indexes. Creating/
dropping indexes does not affect the storage of data in the underlying tables. You can create
unique or nonunique indexes. Unique indexes are created automatically by Oracle when you
create a primary key or a unique key constraint in a table. A composite index has more than
one column in the index.

FIGURE 7.1 SQL Developer screen showing database objects

Oracle SQL Developer - Databases.jws : IdeConnections%23C12DB1-SYSDBA.jpr

Eile Edit View Navigate ERun Team Tools Window Help

Goag 90 Q0 ©- & @S

Connections (2) start Page &% c120B1-svspeA | £ HeLe (2]
- W T R Columns| Data | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details | Partitions |indes{_[*]
=

4 o) # 7 @ = Actions..

| ¢ =BVi='j5 . k {} CoLUMN_NAME |{} DATA_TYPE | nuLLaBLE [DATA_DERAULT | coLum_ID [comments |

{1 iy () Fltioning Vicwes 1 TOPIC VARCHAR2(50 BYTE) No 1) 1 (nul)

+ E-of Indexes

| di-G Packages 2 SEQ NUMBER No (1) 2 (a1

| @ LF) Procedures 3 INFO VARCHAR2(80 BYTE) Yes (nu11) 3 (nul)

| @3 Functions

F: ! E Queues

@ @ queues Tables

i @8 Triggers

| @ [@ Crossedition Triggers

| e-lgd Types

| @[sequences

| w0 L Marerialized Views

i @-[F materialized ViewLags

P :@ Synonyms

+ @ (53 Public Synonyms

@14 Database Links

| @ Igf Public Database Links

| @-{Z Directories

| #® E Editions

| EApplicaucn Express

R

i @8] XML schemas

i [-lgg XML DB Repository

. @53 Analytic Workspaces

| @& Cube Dimensions

| @63 cubes

| @ £ cube Measure Folders

| @@ Analvtic Workspace Build lobs U_.
Messages - Log

322 Chapter 7 = Creating Tables and Constraints

Oracle Database 12¢ has a wide array of database objects to suit various application
requirements. These objects are not discussed in this book because they are not part of
the certification exam at this time. Some of the other database objects that may be used
in application development are clusters, dimensions, directories, functions, Java sources/
classes, libraries, materialized views, and types.

Schema Objects

A schema is a collection of database objects owned by a single user. For example, a schema
can have tables, views, triggers, synonyms, and PL/SQL programs such as procedures. A
schema is owned by a database user and has the same name as the user. If the database user
does not own any database objects, then no schema is associated with the user. A schema is
a logical grouping of database objects.

There can be only one schema associated with a database user, and a schema is created
when you create any database object under the user. A schema may include any or all of the
basic database objects discussed earlier. Oracle Database 12¢ may also include the following
types of structures in the schema. These objects are listed here only to give you an overview
of schemas; creating and managing these objects are not part of the certification exam at this
time. For the certification exam, prepare to know the schema objects discussed in this chapter.

Materialized View Materialized views are objects used to summarize and replicate
data. They are similar to views but occupy storage space. Materialized views are mainly
used in data-warehouse environments where data needs to be aggregated and stored so
that queries and reports run faster. Materialized views can also be used to replicate data
from another database.

Dimension A dimension is a logical structure to define the relationship between columns in
a table. Dimensions are defined in the data dictionary and do not occupy any storage space.
The columns in a dimension can be from a single table or from multiple tables. An example
of a dimension would be the relationship between country, state, and city in a table that
stores address information.

Cluster A cluster is a method of storing data from related tables at a common physical loca-
tion. The tables in the cluster share one or more common columns. The rows of the tables in

a cluster are stored together with just one copy of the common clustered columns. You can
share the storage of rows in related tables for performance reasons if the access to the rows in
the tables always involves join operations on the tables. For example, if you have an ORDERS
table and a CUSTOMERS table in the schema, you can query the ORDERS table always joining the
CUSTOMERS table, because that’s where you get the customer name associated with the customer
ID. A cluster may be created for the ORDERS and CUSTOMERS tables so that the rows associated
with the same customer are stored in the same physical storage area (block).

Database Links A database link is a schema object that enables you to access an object
from a different database. SQL queries can reference tables and views belonging to the remote
database by appending @db_11ink_name to the table or view. For example, to access the

Database Objects Overview 323

CUSTOMER_ORDERS table using a database link named LONDON_SALES, you would use CUSTOMER_
ORDERS@LONDON_SALES.

Triggers A trigger is a stored PL/SQL program that is executed when a specified condition
occurs. A trigger can be defined on a table to “fire” when an insert, update, or delete opera-
tion occurs on the table. A trigger may also be defined on the database to “fire” when certain
database conditions occur, such as starting the database, or when a database error occurs.

Java Objects Oracle Database 12¢ includes Java objects such as Java classes, Java sources,
and Java resources. Java stored programs can be created using the different Java object types.

PL/SQL Programs PL/SQL stored programs include procedures, functions, and packages.
A procedure is a PL/SQL programmatic construct. A function is similar to a procedure but
always returns a value. A package is a grouping of related PL/SQL objects.

Understanding Namespaces

A namespace is an important concept to understand when talking about schema objects.
A namespace defines a group of object types, within which all names must be uniquely
identified within a schema. Objects in different namespaces can share the same name.

When you refer an object in the SQL statement, Oracle locates the object in the appropri-
ate namespace. A table can have the same name as an index or a constraint. The namespace is
simply the domain of allowable names for the set of schema objects that it serves. The follow-
ing are some of the namespaces available in Oracle Database 12¢:

Tables, views, private synonyms, sequences, PL/SQL procedures, PL/SQL functions,
PL/SQL packages, materialized views

Constraints

Indexes

Clusters

Database triggers
Private database links
Dimensions

Roles

Public synonyms
Public database links
Tablespaces

Profiles

For example, if you have a view named BOOKS, you cannot name a table BOOKS (tables
and views share a namespace), although you can create an index named BOOKS (indexes and
tables have separate namespaces) and a constraint named BOOKS (constraints and tables have
separate namespaces).

324 Chapter 7 = Creating Tables and Constraints

To help you understand which object types belong to the same namespace, you can use
the following query in your database.

SQL> SELECT DISTINCT namespace, object_type
FROM DBA_OBJECTS
ORDER BY namespace;

Although it is not explicitly specified as an exam objective, we will discuss the schema
object sequence in the next section, as it is possible to use the sequence values in table defi-
nition for default values of columns.

Using Sequences

An Oracle sequence is a named sequential-number generator. Sequence numbers are serial
numbers incremented with a specific interval. Sequences are often used for artificial keys
or to order rows that otherwise have no order. Sequences exist only in the data dictionary,
and they do not take up any special storage space as tables. Sequences can be configured to
increase or decrease without bounds or to repeat (cycle) upon reaching a boundary value.

Sequences are created with the CREATE SEQUENCE statement. The following statement
creates a sequence in the HR schema:

CREATE SEQUENCE hr.employee_identity START WITH 2001;

To access the next number in the sequence, you simply select from it, using the pseudo-
column NEXTVAL. To get the last sequence number your session has generated, you select
from it using the pseudocolumn CURRVAL. If your session has not yet generated a new
sequence number, CURRVAL will be undefined.

The syntax for accessing the next sequence number is as follows:

sequence_name.nextval
Here is the syntax for accessing the last-used sequence number:

sequence_name.currval

Sequence Initialization

The sequence is initialized in the session when you select the NEXTVAL from the sequence.
One problem that you may encounter using sequences involves selecting CURRVAL from the
sequence before initializing it within your session by selecting NEXTVAL from it. Here is an
example:

CREATE SEQUENCE emp_seq NOMAXVALUE NOCYCLE;

Sequence created.

Built-in Datatypes 325

SELECT emp_seq.currval FROM dual;

ERROR at line 1:
ORA-08002: sequence POLICY_SEQ.CURRVAL is not yet defined
in this session

Make sure your code initializes a sequence within your session by selecting its NEXTVAL
before you try to reference CURRVAL:

SELECT emp_seq.nextval FROM dual;

NEXTVAL

SELECT emp_seq.currval FROM dual;

CURRVAL

Sequences can be used in the SET clause of the UPDATE statement to assign a value to a col-
umn in an existing row. They can be used in the VALUES clause of the INSERT statement also.

Built-in Datatypes

When creating tables, you must specify a datatype for each column you define. Oracle
Database 12c¢ is rich with various datatypes to store different kinds of information. By
choosing the appropriate datatype, you will be able to store and retrieve data without com-
promising its integrity. A datatype associates a predefined set of properties with the column.

The built-in datatypes in Oracle Database 12¢ can be classified into five major categories.
Figure 7.2 shows the categories and the datatype names.

Chapter 2, “Introducing SQL,” introduced four basic datatypes: CHAR, VARCHAR2,
NUMBER, and DATE. Here, we will review those datatypes and describe the other datatypes
that you can specify while creating a table.

Character Datatypes

Seven character datatypes can be used to define columns in a table:
CHAR
NCHAR

326 Chapter 7 = Creating Tables and Constraints

VARCHAR?2
NVARCHAR?2
CLOB

NCLOB
LONG

FIGURE 7.2 Oracle built-in datatypes

Character Numeric Row ID

CHAR NUMBER ROWID

VARCHAR2 BINARY_FLOAT UROWID

CLOB BINARY_DOUBLE

LONG FLOAT

NCHAR

NVARCHAR2

NCLOB

Binary Date and Time

RAW DATE

LONG RAW TIMESTAMP

BLOB TIMESTAMP WITH TIME ZONE

BFILE TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Character datatypes store alphanumeric data in the database character set or in the
Unicode character set. You define the database character set when you create the database.

The character set determines which languages can be represented in the database. For
example, USTASCII is a 7-bit ASCII character set that can represent the English language and
any other language that uses the English alphabet set. WESIS08859P1 is an 8-bit character set
that can support multiple European languages such as English, German, French, Albanian,
Spanish, Portuguese, Irish, and so on, because they all use a similar writing script. Unicode,
the Universal Character Set, allows you to store any language character using a single char-
acter set. The Unicode character set supported by Oracle is either 16-bit encoding (UTF-16) or
8-bit encoding (UTF-8). You can choose the Unicode datatypes to be used in the database while
creating the database. The CHAR, VARCHAR2, CLOB datatype values are stored in the
database default character set.

You can also define an alternative character set in the database, known as the National
Character Set. This is useful when the database character set cannot accommodate multi-
byte languages and you need to store multibyte language in the database. The NCHAR,
NVARCHAR2, and NCLOB datatype values use the National Character Set.

Built-in Datatypes 327

CHAR
The syntax for the CHAR datatype is as follows:

CHAR [(<size> [BYTE | CHAR])]

The CHAR datatype is fixed-length, with the maximum size of the column specified in
parentheses. You can also include the optional keyword BYTE or CHAR inside the parentheses
along with the size to indicate whether the size is in bytes or in characters. BYTE is the default.

For single-byte-database character sets (such as USTASCII), the size specified in bytes
and the size specified in characters are the same. If the column value is shorter than the
size defined, trailing spaces are added to the column value. Specifying the size is optional,
and the default size is 1 byte. The maximum allowed size in a CHAR datatype column is
2,000 bytes. Here are few examples of specifying a CHAR datatype column:

employee_id CHAR (5)
employee_name CHAR (100 CHAR)
employee_sex CHAR

NCHAR
The syntax for the NCHAR datatype is as follows:
NCHAR [(<size>)]

The NCHAR datatype is similar to CHAR, but it is used to store Unicode character-set
data. The NCHAR datatype is fixed-length, with a maximum size of 2,000 bytes and a
default size of a character.

The size in the NCHAR datatype definition is always specified in characters. Trailing
spaces are added if the value inserted into the column is shorter than the column’s maximum
length. Here is an example of specifying an NCHAR datatype column:

emp_name NCHAR (100)

Several built-in Oracle Database 12¢ functions have options to represent NCHAR data.
An NCHAR string may be represented by prefixing the string with N, as in this example:

SELECT emp_name FROM employee_records
WHERE emp_name = N'John Smith';

VARCHAR2
The syntax for the VARCHAR?2 datatype is as follows:
VARCHAR2 (<size> [BYTE | CHAR])

VARCHAR2 and VARCHAR are synonymous datatypes. VARCHAR2 specifies variable-
length character data. A maximum size for the column should be defined; Oracle Database

328 Chapter 7 = Creating Tables and Constraints

12¢ will not assume any default value. Unlike CHAR columns, VARCHAR2 columns are not
blank-padded with trailing spaces if the column value is shorter than its maximum specified
length. You can specify the size in bytes or characters; by default, the size is in bytes. The
range of values allowed for size is from 1 to 4,000 bytes by default. If the database parameter
MAX_STRING_SIZE is set to EXTENDED, the VARCHAR2 column can store up to 32,767 bytes.

NVARCHAR2
The syntax for the NVARCHAR?2 datatype is as follows:

NVARCHAR2 (<size>)

The NVARCHAR2 datatype is used to store Unicode variable-length data. The
size is specified in characters, and the maximum size allowed is 4,000 bytes. Similar to
VARCHAR?2, if the database parameter MAX_STRING_SIZE is set to EXTENDED, then the
NVARCHAR2 column can store up to 32,767 bytes.

s If you try to insert a value into a character datatype column that is larger
ING than its maximum specified size, Oracle will return an error. Oracle will not
chop or truncate the inserted value to store it in the database column.

CLOB
The syntax for the CLOB datatype is as follows:

CLOB

CLOB is one of the Large Object datatypes provided to store variable-length character
data. The maximum amount of data you can store in a CLOB column is based on the block
size of the database. CLOB can store up to (4GB-1)*(database block size). You do not specify
a maximum size with this datatype definition.

NCLOB
The syntax for the NCLOB datatype is as follows:
NCLOB

NCLOB is one of the Large Object datatypes and stores variable-length Unicode character
data. The maximum amount of data you can store in a NCLOB column is (4GB-1)*(database
block size). You do not specify the size with this datatype definition.

LONG
The syntax for the LONG datatype is as follows:

LONG

Built-in Datatypes 329

Using the LONG datatype is discouraged in Oracle Database 12¢. It is provided only for
backward compatibility. You should use the CLOB datatype instead of LONG. LONG columns
can store up to 2GB-1 of character data. There can be only one LONG column in the table def-
inition. A LONG datatype column can be used in the SELECT clause of a query, the SET clause
of the UPDATE statement, and the VALUES clause of the INSERT statement. You can also create
a NOT NULL constraint on a LONG column.

LONG datatype columns cannot appear in the following;:

The WHERE, GROUP BY, or ORDER BY clauses

A SELECT clause if the DISTINCT operator is used

A SELECT list of subqueries used in INSERT statements

A SELECT list of subqueries used with the UNION, INTERSECT, or MINUS operator
A SELECT list of queries with the GROUP BY clause

Numeric Datatypes

Four built-in numeric datatypes can be used for defining numeric columns in a table:
NUMBER
BINARY_FLOAT
BINARY_DOUBLE
FLOAT

Numeric datatypes are used to store integer and floating-point numbers. The NUMBER
datatype can store all types of numeric data, but BINARY_FLOAT and BINARY_DOUBLE
give better performance with floating-point numbers. FLOAT is a subtype of NUMBER.

NUMBER
The syntax for the NUMBER datatype is as follows:
NUMBER [(<precision> [, <scale>])]

You can represent all non-Oracle numeric datatypes such as FLOAT, INTEGER,
DECIMAL, DOUBLE, and so on, using the NUMBER datatype. The NUMBER
datatype can store both fixed-point and floating-point numbers. Oracle Database
12¢ introduced two new datatypes to support floating-point numbers—specifically,
BINARY_FLOAT and BINARY_DOUBLE.

BINARY_FLOAT
The syntax for the BINARY_FLOAT datatype is as follows:

BINARY_FLOAT

330 Chapter 7 = Creating Tables and Constraints

The BINARY_FLOAT datatype represents a 32-bit floating-point number. No precision is
defined in the definition of this datatype because it uses binary precision. BINARY_FLOAT
uses 5 bytes for storage.

A floating-point number can have a decimal point anywhere or can have no decimal point.
Oracle stores NUMBER datatype values using decimal precision, whereas floating-point
numbers (BINARY_FLOAT and BINARY_DOUBLE) are stored using binary precision.
Oracle has three special values that can be used with floating-point numbers:

INF: Positive infinity
-INF: Negative infinity
NaN: Not a Number (NaN is not the same as NULL)

BINARY_DOUBLE
The syntax for the BINARY_DOUBLE datatype is as follows:

BINARY_DOUBLE

The BINARY_DOUBLE datatype represents a 64-bit floating-point number. BINARY_
DOUBLE uses 9 bytes for storage. All the characteristics of BINARY_FLOAT are applicable
to BINARY_DOUBLE.

FLOAT
The syntax for the FLOAT datatype is as follows:

FLOAT [(precision)]

The FLOAT datatype is a subtype of NUMBER and is internally represented as NUMBER.
There is no scale for FLOAT numbers, only the precision can be optionally included. The pre-
cision can range from 1 to default binary digits. In the NUMBER datatype, the precision
and scale are represented in decimal digits; whereas in FLOAT, the precision is represented
in binary digits. In Oracle Database 12¢, you should use BINARY_FLOAT or BINARY_
DOUBLE instead of the FLOAT datatype.

Date and Time Datatypes

In pre—Oracle9i databases, the only datetime datatype available was DATE, which stores the
date and time. Oracle9i Database introduced the TIMESTAMP and INTERVAL datatypes
to enhance the storage and manipulation of date and time data. Six datetime datatypes in
Oracle Database 12¢ can be used for defining columns in a table:

DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE

Built-in Datatypes kR |

TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
The interval datatypes are used to represent a measure of time. They store the number

of months or number of days/hours between two time points. All interval components are
integers except the seconds, which may have fractional seconds represented.

DATE
The syntax for the DATE datatype is as follows:

DATE

The DATE datatype stores date and time information. You can store the dates from
January 1, 4712 B.C., to A.D. December 31, 9999. If you specify a date value without the
time component, the default time is 12:00 a.M. (midnight, 00:00:00 hours). If you specify
a date value without the date component, the default value is the first day of the current
month. The DATE datatype stores century, year, month, date, hour, minute, and seconds
internally. You can display the dates in various formats using the NLS_DATE_FORMAT param-
eter or by specifying a format mask with the TO_CHAR function. The various date-format
masks are discussed in Chapter 3, “Using Single-Row Functions.”

TIMESTAMP
The syntax for the TIMESTAMP datatype is as follows:
TIMESTAMP [(<precision>)]

The TIMSTAMP datatype stores date and time information with fractional-seconds preci-
sion. The only difference between the DATE and TIMESTAMP datatypes is the ability to
store fractional seconds up to a precision of nine digits. The default precision is 6 and can
range from 0 to 9.

TIMESTAMP WITH TIME ZONE
The syntax for the TIMESTAMP WITH TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE datatype is similar to the TIMESTAMP
datatype, but it stores the time-zone displacement. Displacement is the difference between
the local time and the Coordinated Universal Time (UTC, also known as Greenwich mean
time). The displacement is represented in hours and minutes. Two TIMESTAMP WITH
TIME ZONE values are considered identical if they represent the same time in UTC. For
example, 5 .M. CST is equal to 6 p.m. EST or 3 p.m. PST.

332 Chapter 7 = Creating Tables and Constraints

TIMESTAMP WITH LOCAL TIME ZONE
The syntax for the TIMESTAMP WITH LOCAL TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE datatype is similar to the TIMESTAMP
datatype; but like the TIMESTAMP WITH TIME ZONE datatype, it also includes the time-
zone displacement. TIMESTAMP WITH LOCAL TIME ZONE does not store the displace-
ment information in the database but stores the time as a normalized form of the database
time zone. The data is always stored in the database time zone, but when the user retrieves
data, it is shown in the user’s local-session time zone.

The following example demonstrates how the DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE datatypes store
data. The NLS_xx_FORMAT parameter is explicitly set to display the values in the nondefault
format. The data is inserted at Central Daylight Time (CDT), which is seven hours behind
UTC. (The output shown in the example was reformatted for better readability.)

CREATE TABLE date_time_demo (

r_no NUMBER (2),

c_date DATE DEFAULT SYSDATE,

c_timezone TIMESTAMP DEFAULT SYSTIMESTAMP,

c_timezone2 TIMESTAMP (2) DEFAULT SYSTIMESTAMP,

c_ts_wtz TIMESTAMP (0) WITH TIME ZONE
DEFAULT SYSTIMESTAMP,

c_ts_wltz TIMESTAMP (9) WITH LOCAL TIME ZONE
DEFAULT SYSTIMESTAMP);

Table created.

INSERT INTO date_time_demo (r_no) VALUES (1);
1 row created.

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';
Session altered.

ALTER SESSION SET NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FF';
Session altered.

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FFTZH:TzM';
Session altered.

SELECT * FROM date_time_demo;

Built-in Datatypes 333

R_NO C_DATE C_TIMEZONE

1 2013-08-18 16:05:52 2013-08-18 16:05:52.188000

C_TIMEZONE2 C_TS_WTZ

2013-08-18 16:05:52.19 2013-08-18 16:05:52.-05:00

C_TS_WLTZ

2013-08-18 16:05:52.188000000

INTERVAL YEAR TO MONTH
The syntax for the INTERVAL YEAR TO MONTH datatype is as follows:

INTERVAL YEAR [(precision)] TO MONTH

The INTERVAL YEAR TO MONTH datatype is used to represent a period of time as
years and months. The precision value specifies the precision needed for the year field, and
its default is 2. Valid precision values are from 0 to 9. This datatype can be used to store
the difference between two datetime values, where the only significant portions are the year
and month.

INTERVAL DAY TO SECOND
The syntax for the INTERVAL DAY TO SECOND datatype is as follows:

INTERVAL DAY [(precision)] TO SECOND

The INTERVAL DAY TO SECOND datatype is used to represent a period of time as days,
hours, minutes, and seconds. The precision variable specifies the precision needed for the
day field, and its default is 6. Valid precision values are from 0 to 9. Larger precision values
allow a greater difference between the dates; for example, a precision of 2 allows values from
0 through 99, and a precision of 4 allows values from 0 through 9,999. This datatype can be
used to store the difference between two datetime values, including seconds.

The following example demonstrates the INTERVAL datatypes. It creates a table with
the INTERVAL datatype, inserts data into it, and selects data from the table.

CREATE TABLE -interval_demo (

tsl TIMESTAMP (2),

jy2m INTERVAL YEAR (3) TO MONTH,
id2s INTERVAL DAY (4) TO SECOND);
Table created.

INSERT INTO interval_demo VALUES (

334 Chapter 7 = Creating Tables and Constraints

TO_TIMESTAMP('080101-102030.45", 'YYMMDD-HH24MISS.FF'),
TO_YMINTERVAL('3-7"),

TO_DSINTERVAL('4 02:20:30.30'));

1 row created.

SELECT * FROM -interval_demo;
TS1 IY2M ID2S

2008-01-01 10:20:30.45 +003-07 +0004 02:20:30.300000

Date Arithmetic

Datetime datatypes can be used in expressions with the plus (+) or minus (-) operator. You
can use the +, -, x, and / operators with the INTERVAL datatypes. Dates are stored in the
database as Julian numbers with a fraction component for the time. A Julian date refers to
the number of days since January 1, 4712 B.C. Because of the time component of the date,
comparing dates can result in fractional differences, even though the date is the same. Oracle
provides a number of functions, such as TRUNC, that help you remove the time component
when you want to compare only the date portions.

Adding 1 to the date simply moves the date ahead one day. You can add time to the date
by adding a fraction of a day. One day equals 24 hours, or 24 x 60 minutes, or 24 x 60 x 60
seconds. Table 7.1 shows the numbers used to add or subtract time for a datetime datatype.

TABLE 7.1 Date Arithmetic

Time to Add or Subtract Fraction Date Difference
1 day 1 1

1 hour 1/24 1/24

1 minute 1/(24 X 60) 1/1440

1 second 1/(24 X 60 X 60) 1/86400

Subtracting two dates gives you the difference between the dates in days. This usually
results in a fractional component that represents the time difference. If the time compo-
nents are the same, there will be no fractional results.

A datetime value operation using a numeric value results in a datetime value. The following
example adds two days and 12 hours to a date value:

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';

Built-in Datatypes 335

SELECT TO_DATE('2013-10-24 13:09:14') + 2.5 EXAMP
FROM dual;

2013-10-27 01:09:14
This example subtracts six hours from a timestamp value:

SELECT TO_TIMESTAMP('2013-10-24 13:09:14.05') - 0.25 EXAMP
FROM dual;

2013-10-24 07:09:14

A datetime value subtracted from another datetime value results in a numeric value (the
difference in days). You cannot add two datetime values. Here is an example that results in
the difference between dates as a fraction of a day:

SELECT SYSDATE,
SYSDATE - TO_DATE('2012-10-24 13:09:14'")

FROM dualj;
SYSDATE SYSDATE-TO_DATE('2012-10-2413:09:14")
2013-08-18 16:05:52 298.122662

This example converts the fraction of days to hours, minutes, and seconds using the
NUMTODSINTERVAL function:

SELECT SYSDATE,
NUMTODSINTERVAL (SYSDATE - TO_DATE('2012-10-24 13:09:14'), 'DAY')
FROM DUAL;

SYSDATE NUMTODSINTERVAL (SYSDATE

2013-08-18 16:05:52 + 000000298 02:56:38.000000000

A datetime value operation using an interval value results in a datetime value. The
following example adds one year and three months to today’s date:

SELECT TRUNC(SYSDATE),
TRUNC (SYSDATE) + TO_YMINTERVAL('1-3')
FROM dual;

336 Chapter 7 = Creating Tables and Constraints

TRUNC (SYSDATE) TRUNC(SYSDATE) + TO_Y

2013-08-18 00:00:00 2014-11-18 00:00:00

An interval datatype operation on another interval or numeric value results in an inter-
val value. You can use + and - between two interval datatypes and use * and / between
interval and numeric values. The following example converts a string (which represents
1 day, 3 hours, and 30 minutes) to an INTERVAL DAY TO SECOND datatype and multi-
plies that value by 2, which results in 2 days and 7 hours:

SELECT TO_DSINTERVAL('1l 03:30:00.0') * 2 FROM dual;

TO_DSINTERVAL('103:30:00.0")*2

+000000002 07:00:00.000000000

The following example shows arithmetic between two INTERVAL DAY TO SECOND
datatype values. The interval value of 3 hours and 30 minutes is subtracted from 1 day,
3 hours, and 30 minutes, resulting in 1 day.

SELECT TO_DSINTERVAL('1l 03:30:00.0")
- TO_DSINTERVAL('® 03:30:00.0")
FROM dual;

TO_DSINTERVAL('103:30:00.0') - TO_DSINTERVAL('003:30:00.0")

+000000001 00:00:00.000000000

Binary Datatypes

Binary datatypes store information without converting it to the database’s character set.
This type of storage is required to store images, audio/video, executable files, and similar
data. Four datatypes are available to store binary data:

RAW

LONG RAW
BLOB

BFILE

RAW
The syntax for the RAW datatype is as follows:

RAW (<size>)

Built-in Datatypes 337

RAW is used to store binary information up to 2,000 bytes. You must specify the
maximum size of the column in bytes. RAW is a variable-length datatype.

LONG RAW
The syntax for the LONG RAW datatype is as follows:

LONG RAW

It’s the same as RAW, but with up to 2GB of storage, and you can’t specify a maximum
size. LONG RAW is supported in Oracle Database 12¢ for backward compatibility. Use
BLOB instead. You can have only one LONG RAW or LONG column in a table.

BLOB
The syntax for the BLOB datatype is as follows:

BLOB

BLOB can store binary data up to 4GB. There is no size specification for this datatype.

BFILE
The syntax for the BFILE datatype is as follows:

BFILE

BFILE is used to store information on external files. The external file size can be up
to 4GB. Oracle stores only the file pointer in the database. The actual file is stored on
the operating system. Of the four Large Object datatypes (CLOB, BLOB, NCLOB, and
BFILE), only BFILE stores actual data outside the Oracle database.

Row ID Datatypes

Physical storage of each row in a table can be represented using a unique value called the
ROWID. Every table has a pseudocolumn called the ROWID. To store such values, Oracle
provides two datatypes:

ROWID
UROWID

ROWID
The syntax for the ROWID datatype is as follows:

ROWID

ROWID can store the physical address of a row. Physical ROWIDs store the addresses of
rows in ordinary tables (excluding index-organized tables), clustered tables, table partitions

338 Chapter 7 = Creating Tables and Constraints

and subpartitions, indexes, and index partitions and subpartitions. Logical ROWIDs store
the addresses of rows in index-organized tables. Physical ROWIDs provide the fastest possible
access to a row of a given table.

UROWID
The syntax for the UROWID datatype is as follows:

UROWID

UROWID can store the logical ROWIDs of index-organized tables or non-Oracle data-
base tables. Oracle creates logical ROWIDs based on an index-organized table’s primary
key. The logical ROWIDs do not change as long as the primary key does not change.

Creating Tables

Now that you have learned about the various datatypes you can use to store table data, you
are ready to create a table. You can think of a table as a spreadsheet with columns and rows.
It is a structure that holds data in a relational database. The table is created with a name

to identify it and columns defined with valid column names and column attributes, such as
the datatype and size. CREATE TABLE is a comprehensive statement with many options. The
certification exam only covers creating and managing a simple relational table. Here is the
simplest format to use to create a table:

CREATE TABLE products

(prod_id NUMBER (4),
prod_name VARCHAR2 (20),
stock_qty NUMBER (15,3)

)3

Table created.

You specify the table name following the keywords CREATE TABLE. The previous
example creates a table named PRODUCTS under the user (schema) connected to the data-
base. The table name can be qualified with the username; you must qualify the table
when creating a table in another user’s schema. Table and column names are discussed
in more detail in the next section.

The column definitions are enclosed in parentheses. The table created by the previous
code has three columns, each identified by a name and datatype. Commas separate the col-
umn definitions. This table has two columns with the NUMBER datatype and one column
with the VARCHAR?2 datatype. A datatype must be specified for each column.

When creating tables, you can specify the following:

Default values for columns

Whether the column is visible or invisible

Creating Tables 339

Constraints for the columns and/or table (discussed later in this chapter in the
“Managing Constraints” section)

The type of table: relational (heap), temporary, index-organized, external, or object
(Index-organized and object tables are not covered on the certification exam.)

Table storage, including any index storage and storage specification for the Large
Object columns (LOBs) in the table

The tablespace where the table/index should be stored

Any partitioning and subpartitioning information

Naming Tables and Columns

Table names are used to identify each table. You should make table names as descriptive as
possible. Table and column names are identifiers and can be up to 30 characters long. An
identifier name should begin with a letter and can contain numeric digits. The only special
characters allowed in an identifier name are the dollar sign ($), the underscore (_), and the
number sign (#). The underscore can be used for meaningful separation of the words in an
identifier name. These names are case insensitive. If, however, you enclose the identifier
name in double quotation marks ("), it will be case sensitive in the Oracle dictionary.

s Creating table names enclosed in quotation marks with mixed case can
ING cause serious problems when you query the database if you do not know
the exact case of the table name.

You can use the DESCRIBE or DESC (SQL*Plus) command to list all the columns in the table,
along with their datatype, size, nullity, and order. The syntax is DESCRIBE <table name>. The
case sensitivity of names and describing tables are illustrated in the following examples:

CREATE TABLE MyTable (
Column_1 NUMBER,
Column_2 CHAR);
Table created.

DESC mytable

Name Null? Type
COLUMN_1 NUMBER
COLUMN_2 CHAR(1)

SELECT table_name FROM user_tables
WHERE table_name = 'MyTable';
no rows selected

340 Chapter 7 = Creating Tables and Constraints

CREATE TABLE "MyTable" (
"Columnl" number,
"Column2" char);

Table created.

DESC "MyTable"

Name Null? Type
Columnl NUMBER
Column2 CHAR(1)

SELECT table_name FROM user_tables
WHERE upper(table_name) = 'MYTABLE';

TABLE_NAME
MYTABLE
MyTable
Itis a good practice to give the other objects directly related to a table a
P name that reflects the table name. For example, consider the EMPLOYEE table.

The primary key of the table may be named PK_EMPLOYEE, indexes might

be named EMPLOYEE_NDX1 and EMPLOYEE_NDX2, a check constraint could be
named CK_EMPLOYEE_STATUS, a trigger could be named TRG_EMPLOYEE_HIRE,
and so on.

Creating a Temporary Table

When you create a table without any specific keywords to indicate the type of the table,
the table created is a relational table that is permanent. If you include the keywords GLOBAL
TEMPORARY, Oracle creates a temporary relational table known as the global temporary
table (GTT); its definition is available to all sessions in the database; however, the data is
available only to the session that inserted data into it. The GTT is truly a temporary table.
On other flavors of RDBMS, a permanent table created to hold temporary data is called

a temporary table. You can do the same with Oracle, but Oracle provides true temporary
tables with GTT.

Creating Tables n

The data inserted by a session is visible only to that session. Normally, when you commit
the data changes or new rows added to a table, the data is visible to all other sessions.
When you're using GTTs, the data is truly temporary—it is not written permanently
anywhere. The ON COMMIT clause can be included to specify whether the data in the
temporary table is session-specific (ON COMMIT PRESERVE ROWS) or transaction-specific (ON
COMMIT DELETE ROWS).ON COMMIT DELETE ROWS is the default. If the definition is for session-
specific data, the inserted data will be available throughout the session. If the GTT is defined
as transaction-specific, then when a COMMIT or ROLLBACK is performed, the data in the table
is cleared. Here is an example of creating a temporary table with inserted data that will be
available throughout the session:

CREATE GLOBAL TEMPORARY TABLE emp_bonus_temp (
emp_id NUMBER (10),

bonus NUMBER (15,2))

ON COMMIT PRESERVE ROWS;

Specifying Default Values for Columns

When creating or altering a table, you can specify default values for columns. The default
value specified will be used when you do not specify any value for the column while insert-
ing data. The default value specified in the definition should satisfy the datatype and length
of the column. If a default value is not explicitly set, the default for the column is implicitly
set to NULL. If you want to substitute another value for the explicitly set NULL value, you can
use the DEFAULT ON NULL clause. The following is the syntax to use the DEFAULT clause in
column definition.

column datatype [DEFAULT [ON NULL] expr | identity_clause]

The expr should be an expression or constant that is of the same data type as the column.
The identity_clause is discussed under “Using Sequence Values as Default Values.”

Default values cannot refer to another column, and they cannot have the pseudocolumns
LEVEL, ROWNUM, or PRIOR. The default values can include SYSDATE, USER, USERENV, and UID.
The DEFAULT expression can include any SQL function as long as the function does not return
a literal argument, a column reference, or a nested function invocation.

In the following example, the table ORDERS is created with a column STATUS that has a
default value of PENDING:

CREATE TABLE orders (
order_number NUMBER (8),
status VARCHAR2 (10) DEFAULT 'PENDING');

342 Chapter 7 = Creating Tables and Constraints

Table created.

INSERT INTO orders (order_number) VALUES (4004);
1 row created.

SELECT * FROM orders;

ORDER_NUMBER STATUS

4004 PENDING
Here is an example of creating a table that includes default values for two columns:

CREATE TABLE emp_punch (
emp_id NUMBER (6) NOT NULL,
time_in DATE,
time_out DATE,
updated_by VARCHAR2 (30) DEFAULT USER,
update_time TIMESTAMP WITH LOCAL TIME ZONE
DEFAULT SYSTIMESTAMP

)5
Table created.

DESCRIBE emp_punch

Name Null? Type

EMP_ID NOT NULL NUMBER(6)

TIME_IN DATE

TIME_OUT DATE

UPDATED_BY VARCHAR2 (30)
UPDATE_TIME TIMESTAMP(6) WITH

LOCAL TIME ZONE

INSERT INTO emp_punch (emp_id, time_in)
VALUES (1090, TO_DATE('081813-2121','MMDDYY-HH24MI'));

1 row created.

SELECT * FROM emp_punch;

Creating Tables 343

EMP_ID TIME_IN TIME_OUT UPDATED_BY UPDATE_TIME

1090 2013-08-18 21:21:00 HR 2013-08-18 16:05:52.349000

A ITE NULL constraint prevents NULL values from being entered into the column.
Constraints are discussed in detail in the "Managing Constraints" section
later in this chapter.

y This example uses a NOT NULL constraint in the table definition. A NOT

If you explicitly insert a NULL value for a column with the DEFAULT defined, the value in
the DEFAULT clause will not be used. You can explicitly specify DEFAULT in the INSERT state-
ment to use the DEFAULT value, as in the following example:

INSERT INTO emp_punch
VALUES (104, TO_DATE('062801-2121','MMDDYY-HH24MI'),
DEFAULT, DEFAULT, NULL);

1 row created.

SELECT * FROM emp_punch;

EMP_ID TIME_IN TIME UPDATED UPDATE_TIME
_OUT _BY

1090 2013-08-18 21:21:00 HR 29-JUN-01 02.55.58.000000 PM

104 2013-08-18 21:21:00 HR

SQL>

The DEFAULT ON NULL option lets you define values when an explicit NULL value is inserted
in a column, or no value is specified during INSERT. If you specify the ON NULL clause, then
Oracle Database 12¢ assigns the DEFAULT column value when an INSERT statement attempts
to assign a value that evaluates to NULL.

The following example demonstrates this.

SQL> CREATE TABLE orders2 (
2 ORD_ID NUMBER,
3 ord_date date default on null sysdate,
4 memo varchar2 (20));

Table created.

SQL> dinsert into orders2 (ord_id, ord_date, memo)
VALUES (234, NULL, 'Test 1');

344 Chapter 7 = Creating Tables and Constraints

1 row created.

SQL> dinsert into orders2 (ord_id, memo) VALUES (345,'Test 2');
1 row created.

SQL> SELECT * FROM orders2;

ORD_ID ORD_DATE MEMO
234 2013-08-18 16:05:52 Test 1
345 2013-08-18 16:05:52 Test 2

SQL>

Using Sequence Values as Default Values

The pseudocolumns NEXTVAL and CURRVAL can be used as DEFAULT [ON NULL] values for
numeric columns. The sequence_name .NEXTVAL or sequence_name.CURRVAL pseudocolumns
are used to retrieve the value from sequence. The sequence must exist before it can be used
in the table definition. If the sequence is in some other schema, you should have read privi-
lege on the sequence.

We will show you how to use an existing sequence generator to populate the values
in a column. In the following example, a sequence is created first and is used in the table
definition to populate the ID column if no value is specified for the ID column during
insert. If a value is specified, that value is used. If an explicit NULL value is used, a default
value is not assigned. By default, sequences start from 1 and increment by 1.

SQL> CREATE SEQUENCE ocaexl;

Sequence created.

SQL> CREATE TABLE ocaexamplel (
2 ID NUMBER DEFAULT ocaexl.NEXTVAL,
3% NAME VARCHAR2 (20))

SQL> /

Table created.

SQL> INSERT INTO ocaexamplel (name) VALUES ('Joshua');

1 row created.

Creating Tables 345

SQL> INSERT INTO ocaexamplel (id, name) VALUES (44, 'Jenna');

1 row created.

SQL> INSERT INTO ocaexamplel (name) VALUES ('Alan');

1 row created.

SQL> INSERT INTO ocaexamplel (id, name) VALUES (NULL, 'Chris');
1 row created.

SQL> SELECT * FROM ocaexamplel;

ID NAME

1 Joshua

4 Jenna

2 Alan
Chris

sQL>

Although using CURRVAL in the column as a default is allowed, the sequence must
have initialized in the same session using the NEXTVAL for you to be able to use CURRVAL.
Instead of using an existing sequence for default value, you can define a sequence gen-
erator within the column definition; this feature is called the identity column and is dis-
cussed in the next section.

Defining Identity Column

An identity column is used to uniquely identify each row value in a column. An implicitly

defined sequence generator is used to generate the values for the column. All of the options

available while defining a sequence generator are also available in defining an identity column.
The syntax of defining an identity column is as follows:

column datatype GENERATED [ALWAYS | BY DEFAULT [ON NULL] 1]
AS IDENTITY [(didentity_options)]

The GENERATED keyword tells Oracle that this column value is generated. ALWAYS is the
default and specifies that the column value is never assigned; during INSERT/UDPATE state-
ment execution, this column will always be evaluated to NULL—the value will be populated
by Oracle based on the “identity_options.”

346 Chapter 7 = Creating Tables and Constraints

BY DEFAULT specifies that the column value is generated by Oracle (similar to ALWAYS),
but you can explicitly assign values to the column using INSERT/UPDATE statements. If you
specify ON NULL with BY DEFAULT, the generated value is assigned to the column only when
the column value is evaluated to NULL during INSERT/UPDATE.

The “identity_options” is basically the syntax for sequence generator, which is the same
as the CREATE SEQUENCE options.

e You can have only one identity column per table. The identity column has a
P NOT NULL constraint automatically created.

The following example shows the SQL code used to define a table with a GENERATED BY
DEFAULT identity column. The example also shows data added to the table and the results.
You may also use the DEFAULT ON NULL here.

SQL> CREATE TABLE oca_identl (
2 id NUMBER GENERATED BY DEFAULT AS IDENTITY,
3x memo VARCHAR2 (30));

Table created.
SQL> INSERT INTO oca_identl (id, memo) VALUES (454, 'Test 1');
1 row created.
SQL> INSERT INTO oca_identl (id, memo) VALUES (NULL, 'Test 2');

INSERT INTO oca_identl (id, memo) VALUES (NULL, 'Test 2'")
*

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."OCA_IDENT1"."ID")

SQL> INSERT INTO oca_identl (memo) VALUES ('Test 3');
1 row created.
SQL> SELECT * FROM oca_identl;

ID MEMO

454 Test 1
1 Test 3

Creating Tables 347

SQL> UPDATE oca_identl SET ID = NULL where ID = 454;
UPDATE oca_identl SET ID = NULL where ID = 454
*

ERROR at line 1:
ORA-01407: cannot update ("HR"."OCA_IDENT1"."ID") to NULL

SQL> UPDATE oca_identl SET ID = 30 where ID = 454;
1 row updated.

SQL>

The next example shows the SQL code used to define a table with a GENERATED ALWAYS
identity column. Here you can see that the generated value is always used, and you are not
allowed to explicitly assign a value.

SQL> CREATE TABLE oca_ident2 (
2 id NUMBER GENERATED ALWAYS AS IDENTITY,
3x memo VARCHAR2 (30));

Table created.

SQL> INSERT INTO oca_ident2 (id, memo) VALUES (454, 'Test 1');
INSERT INTO oca_ident2 (id, memo) VALUES (454, 'Test 1')
*

ERROR at line 1:
ORA-32795: cannot insert into a generated always <identity column

SQL> INSERT INTO oca_ident2 (id, memo) VALUES (NULL, 'Test 2');
INSERT INTO oca_ident2 (id, memo) VALUES (NULL, 'Test 2')
*

ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

SQL> INSERT INTO oca_ident2 (memo) VALUES ('Test 3');

1 row created.

348 Chapter 7 = Creating Tables and Constraints

SQL> SELECT % FROM oca_ident2;

ID MEMO

1 Test 3

SQL> UPDATE oca_ident2 SET ID = 30 where ID = 1;
UPDATE oca_ident2 SET ID = 30 where ID = 1
*
ERROR at line 1:
ORA-32796: cannot update a generated always identity column

SQL>

Adding Comments

It is a good practice to document the purpose of and any information on the type of data
stored in the table in the database itself so that developers and administrators working on
the database know the importance of the table/data. Oracle provides the COMMENT statement
to add documentation to a table or a column.

Comments on tables are added using the COMMENT ON TABLE statement, and comments on
table columns are added using the COMMENT ON COLUMN statement. The following example
provides comments for the sample table:

COMMENT ON TABLE mytable IS
'Oracle Database 12c Study Guide Example Table';
Comment created.

COMMENT ON COLUMN mytable.column_1 is
'"First column in MYTABLE';
Comment created.

You can query the table and column information from the Oracle dictionary
P using the following views: USER_TABLES, ALL_TABLES, USER_TAB_COLUMNS,
and ALL_TAB_COLUMNS.

Creating a Table from Another Table

You can create a table using a query based on one or more existing tables or views. The
column datatype and width will be determined by the query result. A table created in this

Creating Tables 349

fashion can select all the columns from another table (you can use) or a subset of columns
or expressions and functions applied on columns (these are called derived columns). The
syntax for creating a table using an existing table is as follows:

CREATE TABLE <table characteristics> AS SELECT <query>

This syntax is generally known as CTAS (the abbreviated form of CREATE TABLE AS
SELECT). The table characteristics include the new table name and its storage properties.

For example, suppose you need to duplicate the structure and data of the EMPLOYEES
table in the EMPLOYEES_COPY table. You can use CTAS, like this:

CREATE TABLE employees_copy
AS SELECT * FROM employees;

Table created.

You can have complex query statements in the CREATE TABLE statement. The table is
created with no rows if the query returned no rows. If you just want to copy the structure
of the table, make sure the query returns no rows:

CREATE TABLE employees_norows
AS SELECT * FROM employees
WHERE 1 = 2;

You can provide column alias names to have different column names in the newly created
table. The following example shows a table structure, displays the data, and then creates a
new table with the data and displays it:

DESCRIBE city

Name Null? Type
CNT_CODE NOT NULL NUMBER(4)
ST_CODE NOT NULL VARCHAR2(2)
CTY_CODE NOT NULL NUMBER(4)
CTY_NAME VARCHAR2 (20)

SELECT COUNT(x) FROM city;

COUNT (%)

CREATE TABLE new_city AS
SELECT cty_code CITY_CODE, cty_name CITY_NAME
FROM city;

350 Chapter 7 = Creating Tables and Constraints

Table created.

SELECT COUNT(*) FROM new_city;

COUNT (%)
3
DESC new_city
Name Null? Type
CITY_CODE NOT NULL NUMBER(4)
CITY_NAME VARCHAR2(20)
7 The CREATE TABLE .. AS SELECT .. statement will not work if the query
ING refers to columns of the LONG datatype.
¢ When you create a table using the subquery, only the NOT NULL con-
P straints associated with the columns are copied to the new table. Other

constraints and column default definitions are not copied. This almost
certainly will be an OCA certification exam question.

Modifying Tables

After you’ve created a table, you might want to modify it for several reasons. You can
modify a table to change its column definition or default values, add a new column, rename
a column, or drop an existing column. You can also drop and rename tables.

You might also modify a table if you need to change or add constraint definitions. You
can make a table read-only so that no modifications are possible on the data in the table.
The ALTER TABLE statement is used to change table definitions. Similar to the CREATE TABLE
statement, the ALTER TABLE statement has several options. In the following sections, we will
concentrate on the options that are pertinent to the OCA certification exam.

Adding Columns

Sometimes it is necessary to add a column to an existing table because enhancements
were made to the application or because the developer just did not plan it well. To add
a column to an existing table, you don’t need to drop and re-create the table. Using the

Modifying Tables 351

ALTER TABLE statement, you can easily add a column to the table. All columns added to
the table using the ALTER TABLE .. ADD .. statement are added to the end of the table defi-
nition. Here is the syntax to add a new column to an existing table:

ALTER TABLE [<schema>.]<table_name> ADD <column_definitions>;

When a new column is added, it is always at the bottom of the table. For the existing
rows, the new column value will be NULL.

Let’s add a new column, ORDER_AMT, to the ORDERS table. Notice that the column is added
to the end of the table definition. You cannot insert a new column between other columns in
a table. If you have such a requirement, the table has to be dropped and re-created.

DESCRIBE orders

Name Null? Type
ORDER_NUMBER NOT NULL NUMBER(8)
STATUS VARCHAR2(10)

SELECT * FROM orders;
ORDER_NUMBER STATUS

4004 PENDING
5005 COMPLETED

ALTER TABLE orders ADD order_amt NUMBER (15,2);

Table altered.

DESC orders

Name Null? Type
ORDER_NUMBER NOT NULL NUMBER(8)
STATUS VARCHAR2(10)
ORDER_AMT NUMBER (15,2)

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_AMT

4004 PENDING
5005 COMPLETED

352 Chapter 7 = Creating Tables and Constraints

If you are adding more than one column, the column definitions should be enclosed in
parentheses and separated by commas. If you specify a DEFAULT value for a newly added
column, no value is updated in the existing rows, but value is provided from the dictionary.
The following example adds two more columns to the ORDERS table:

ALTER TABLE orders ADD
(quantity NUMBER (13,3),
update_dt DATE DEFAULT SYSDATE,
memo VARCHAR2 (50));

Table altered.

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_AMT ~ QUANTITY UPDATE_DT
4004 PENDING 23-MAR-13
5005 COMPLETED 23-MAR-13

When adding a new column, you can specify the NOT NULL constraint even if the table
already has rows, only when used with the DEFAULT clause. Here is an example:

ALTER TABLE orders
ADD entered_by VARCHAR2 (30) NOT NULL;

ERROR at line 1:
ORA-01758: table must be empty to add mandatory
(NOT NULL) column

ALTER TABLE orders ADD entered_by VARCHAR2 (30)
DEFAULT "JOHN' NOT NULL;

Table altered.

In Oracle Database 12¢, when you add a column with the DEFAULT value,

P Oracle Database 12¢ does not update all the existing rows in the table with
the default value. Oracle Database 12¢ simply updates the dictionary and
gets you the value from the dictionary when you query the newly added
column. In Oracle Database 11g, this behavior was only applicable when
the DEFAULT clause was used with the NOT NULL constraint.

Modifying Tables 353

Modifying Columns

On many occasions, you may need to change the table definition. The commonly used
definition changes include adding or removing a NOT NULL constraint to/from a column,
changing the datatype of a column, and changing the length of the column. The syntax
to modify an existing column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>
MODIFY <column_name> <new_attributes>;

If you omit any of the parts of the column definition (datatype, default value, or column
constraint), the omitted parts remain unchanged. If you are modifying more than one column
at a time, enclose the column definitions in parentheses. For example, to modify the ORDERS
table, increasing the MEMO column to 25 and reducing the QUANTITY column to 10,3, do this:

ALTER TABLE orders MODIFY (quantity NUMBER (10,3),
memo VARCHAR2 (25));

You can add or drop constraints in the column and modify the DEFAULT values for the col-
umn. The DEFAULT value included in the MODIFY clause affects only the new rows inserted to
the table; the existing rows with NULL column values are not affected. To remove the DEFAULT
value for a column, redefine the DEFAULT clause with a NULL value. For example, the following
statement removes the default SYSDATE value from the UPDATE_DT column of the ORDERS table:

ALTER TABLE orders
MODIFY update_dt DEFAULT NULL;

These are the rules for modifying column definitions:

You can increase the length of the character column and precision of the numeric col-
umn. If your table has many rows, increasing the length of a CHAR column will require
a lot of resources, because the column data for all the rows needs to be blank-padded

with the additional length.

You can decrease the length of a VARCHAR2 column and reduce the precision or increase
the scale of a numeric column if all the data in the column fits the new length.

You can decrease the length of a nonempty CHAR column if the parameter BLANK_
TRIMMING is set to TRUE.

The column values must be NULL to change the column’s datatype. If you do not reduce
the length, you can change the datatype from CHAR to VARCHARZ2, or vice versa,
even if the column is not empty.

)’ When a table is modified, the dependent objects using the table could
AéTE become invalid. For each dependent of an object, if a change is made to
the definition of any element involved in the dependency (including drop-
ping the element), the dependent object is invalidated. If changes are made
only to definitions of elements that are not involved in the dependency, the
dependent object remains valid.

354 Chapter 7 = Creating Tables and Constraints

Renaming Columns

Renaming a column is not a common task, but sometimes you may have to change the
name of a column because there was a typo in the script or the developers decided to store
different data in the column. Renaming a column does not affect its data or datatype. The
syntax to rename an existing column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>
RENAME COLUMN <column_name> TO <new_name>;

When renaming a column, the column name must not be the same as an existing column
in the table. The following example renames the DATA_VALUE column of the SAMPLE_DATA
table to SAMPLE_VALUE:

DESCRIBE sample_data

Name Null? Type
DATA_VALUE VARCHAR2(20)
DATA_TYPE VARCHAR2(10)

ALTER TABLE sample_data
RENAME COLUMN data_value to sample_value;

Table altered.

DESCRIBE sample_data

Name Null? Type
SAMPLE_VALUE VARCHAR2(20)
DATA_TYPE VARCHAR2(10)

When a column in a table is renamed, dependent views and PL/SQL

dnz programs are invalidated. You cannot rename a column that is used to
define a join index. You must drop the index, rename the column, and
recreate the index.

Dropping Columns

Similar to renaming columns, dropping columns is not a common activity for the DBA, but
you should know how to drop a column in case you need to do it. You can drop a column

Modifying Tables 355

that is not used, or you can mark the column as not used and drop it later. Here is the syntax
for dropping a column:

ALTER TABLE [<schema>.]<table_name>
DROP {COLUMN <column_name> | (<column_names>)}
[CASCADE CONSTRAINTS]

DROP COLUMN drops the column name specified from the table. You can provide more
than one column name separated by commas inside parentheses. The indexes and con-
straints on the column are also dropped. You must specify CASCADE CONSTRAINTS if the
dropped column is part of a multicolumn constraint; the constraint will be dropped.

The syntax for marking a column as unused is as follows:

ALTER TABLE [<schema>.]<table_name>
SET UNUSED {COLUMN <column_name> | (<column_names>)}
[CASCADE CONSTRAINTS]

Because it takes a lot of resources, you will usually mark a column as unused instead of
dropping it immediately, especially at peak hours, if the table is very large. In such cases, you
would mark the column as unused and drop it later. Once the column is marked as unused,
you will not see it as part of the table definition. Let’s mark the UPDATE_DT column in the
ORDERS table as unused:

ALTER TABLE orders SET UNUSED COLUMN update_dt;
Table altered.

DESCRIBE orders

Name Null? Type
ORDER_NUMBER NOT NULL NUMBER(8)
STATUS VARCHAR2(15)
ORDER_DATE DATE
QUANTITY NUMBER (10, 3)

Here is the syntax for dropping a column already marked as unused:

ALTER TABLE [<schema>.]<table_name>
DROP {UNUSED COLUMNS | COLUMNS CONTINUE}

Use the COLUMNS CONTINUE clause to continue a DROP operation that was previously
interrupted. The DROP UNUSED COLUMNS clause will drop all the columns that are marked
as unused. You cannot selectively drop column names after marking them as unused. The
following example clears data from the UPDATE_DT column in the ORDERS table:

ALTER TABLE orders DROP UNUSED COLUMNS;

356 Chapter 7 = Creating Tables and Constraints

The data dictionary views DBA_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS,
P and USER_UNUSED_COL_TABS provide the names of tables in which you have
columns marked as unused.

Hiding Columns from Table

Dropping columns is an expensive operation; therefore, if you just want to hide the column for
now, either to test the application impact or to drop at a later time, the column can be made
invisible using the ALTER TABLE statement. You can also create tables with invisible columns.

The following example creates a table named MYACCOUNT with the COMMENT column as
not visible. Then we describe the table to view the columns and find out that the invisible
column is not listed. Using the SET COLINVISIBLE option, we display the invisible column,
and then use the ALTER TABLE option to make the column visible.

SQL> CREATE TABLE myaccount (
2 accno NUMBER (8) PRIMARY KEY,
3 drcr CHAR,
4 openbal NUMBER (15,2),
5 comments VARCHAR2 (20) INVISIBLE);

Table created.

SQL> desc myaccount

Name Null? Type

ACCNO NOT NULL NUMBER(8)
DRCR CHAR(1)
OPENBAL NUMBER(15,2)

SQL> SET COLINVISIBLE ON
SQL> desc myaccount

Name Null? Type

ACCNO NOT NULL NUMBER(8)
DRCR CHAR(1)
OPENBAL NUMBER(15,2)
COMMENTS (INVISIBLE) VARCHAR2 (20)

SQL> ALTER TABLE myaccount MODIFY comments VISIBLE;

Modifying Tables 357

Table altered.

sQL>

Dropping Tables

When application designs change, some tables can become orphaned or unused. You can
use the DROP TABLE statement to drop an existing table. The syntax of the DROP TABLE
statement is as follows:

DROP TABLE [schema.]table_name [CASCADE CONSTRAINTS]

When you drop a table, you remove the data and definition of the table. The indexes,
constraints, triggers, and privileges on the table are also dropped. Once you drop a table,
you cannot undo the action.

Oracle does not drop the views, materialized views, or other stored programs that refer-
ence the table, but it marks them as invalid. You must specify the CASCADE CONSTRAINTS
clause if there are referential integrity constraints referring to the primary key or unique
key of this table. Here’s how to drop the table TEST owned by the user SCOTT:

DROP TABLE scott.test;

A method for emptying a table of all rows is to use the TRUNCATE statement. This is different
from dropping and re-creating a table, because TRUNCATE does not invalidate dependent objects
or drop indexes, triggers, or referential integrity constraints. See Chapter 6, “Manipulating
Data,” for more information about using TRUNCATE.

Renaming Tables

Tables and other database schema objects can be renamed in Oracle. The RENAME statement
is used to rename a table and other database objects, such as views, private synonyms, or
sequences. The syntax for the RENAME statement is as follows:

RENAME old_name TO new_name;

Here, old_name and new_name are the names of a table, view, private synonym, or sequence.

When you rename a table, Oracle automatically transfers integrity constraints, indexes,
and grants on the old table to the new table. Oracle invalidates all objects that depend on
the renamed table, such as views, synonyms, stored procedures, and functions.

The following example renames the ORDERS table to PURCHASE_ORDERS:

RENAME orders TO purchase_orders;
Table renamed.

DESCRIBE purchase_orders

358 Chapter 7 = Creating Tables and Constraints

Name Null? Type

ORDER_NUMBER NOT NULL NUMBER(8)

STATUS VARCHAR2 (15)

ORDER_DATE DATE

QUANTITY NUMBER (10,3)

)’ You can use the RENAME statement to rename only the objects you own. You
AdﬁTE cannot rename an object owned by another user.

You can also use the RENAME TO clause of the ALTER TABLE statement to rename a table.
Using this technique, you can qualify the table name with the schema. You must use the
ALTER TABLE statement to rename a table owned by another user (and you need the ALTER
privilege on the table or the ALTER ANY TABLE system privilege). Here is an example:

ALTER TABLE hr.purchase_orders
RENAME TO orders;

Table altered.

Making Tables Read-Only

DBAs frequently receive user requests to make tables read-only. Many configuration tables
can be made read-only after the initial application setup is completed so that accidental
changes can be avoided. To place a table in read-only mode, use the READ ONLY clause of
the ALTER TABLE statement.

The following statement makes the PRODUCTS table read-only:

ALTER TABLE products READ ONLY;

Table altered.

Once the table is marked as read-only, no operation on the table that would change its
data is allowed. Many DDL operations on the table are allowed. The following operations
are not allowed on a read-only table:

INSERT, UPDATE, DELETE, or MERGE statements
The TRUNCATE operation
Adding, modifying, renaming, or dropping a column
Flashing back a table
SELECT FOR UPDATE

The following operations are allowed on a read-only table:
SELECT

Creating or modifying indexes

Modifying Tables

Creating or modifying constraints

Changing the storage characteristics of the table
Renaming the table

Dropping the table

The following examples demonstrate some operations that are not allowed on a read-
only table:

TRUNCATE TABLE products;
TRUNCATE TABLE products
*
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

DELETE FROM products;
DELETE FROM products
*
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

INSERT INTO products VALUES (200, 'TESTING', 'X1',0);
INSERT INTO products VALUES (200, 'TESTING', 'X1',0)
*
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

To change a read-only table to read-write, use the READ WRITE clause of the ALTER TABLE

statement. The following example makes the PRODUCTS table writable:

ALTER TABLE products READ WRITE;

Table altered.

Using SQL Developer to Learn and Explore Schema Objects

SQL Developer is a good friend of developers and DBAs. SQL Developer offers complete
end-to-end development of PL/SQL applications, helps run queries and scripts, acts as
an administrator console for managing the database, runs various reports, and even has
tools to migrate a non-Oracle database to Oracle. SQL Developer also supports a number
of SQL*Plus commands. All the SQL examples you see in this book can be performed
using SQLDeveloper in the Worksheet screen.

360

Chapter 7 = Creating Tables and Constraints

When you are creating or modifying a database object using SQL Developer, even though it
is GUl-based, you can utilize the option to see the DDL behind it. This is a great tool that can
help certification candidates learn DDL and the various options to create and alter objects
Right-click on the object type on the browser, and you will be able to choose to create a new
object of that type. For example, if you right-click on Tables, you will be given a choice with

New Table. If you right-click on an existing table, you will see various options to modify the
table properties and characteristics.

For example, the following image shows a Create Table dialog screen with the options

available to create a basic table.

3\ Create Table])
Srhema: [HR v] [] Advanced g
Neme: [SQL_DEMO |

Table ﬁ L
Type Size Mot Mull Frimary KEY
NUMEER 17
WVARCHAR2 20 D
DATE
__:__:_
[Add Column I [Remove Column]
——

When you click on the DDL tab in the same screen, you will see the code behind the table

creation, as in the following image.

Schema: R

[]/dvanced g
MName: [SQL_DEMO |
DDL
SQL Statement:
(3) CREATE 0
CREATE TABLE 5QL_DEMO
L
1D NUMBER(12, 0) NOT NULL
, NAME VARCHAR 2(20)
, DOB DATE NOT NULL
. SHORT_DESCRIFTION CLOB
, CONSTRAINT SQL_DEMO_PK PRIMARY KEY
{
D
)
ENABLE
%

Managing Constraints 361

Most of the object creation dialogs also have a check box for Advanced options. In the
Create Table screen, checking the Advanced box shows various options to create a table,
as you can see in the following image.

- Unique Constraints
- Foreign Keys

~ Check Constraints
- Indexes

- Column Sequences
- Table Properties

~ Lob Parameters

- Partitioning

ID NUMBER (12, 0} NOT NULL

, NAME VARCHAR 2(20)

, DOB DATE NOT NULL

» SHORT_DESCRIPTION CLOB

, CONSTRAINT SQL_DEMO_PK PRIMARY KEY
(

jis)

)
ENABLE

8 oo D ==
Schema: [- Adyanced @ I
Name: [sq_pEMo |
Table Type: (5) Mormal () External () Index Organized () Temporary (Transaction) () Temporary (Session) |
i§) ") | 50L Statement:

~ Columns @ CresTE
- Primary Key CREATE TABLE SQL_DEMO

We encourage you to explore the various objects and their DDL options so that you will
better understand them.

.- Partition Definitions %
- Subpartition Templates

- Comment CREATE INDEX SQL_DEMO_INDEX 1 ON SQL_DEMO (NAME);

¥ 001

Managing Constraints

Constraints are created in the database to enforce business rules in the database and to spec-
ify relationships between various tables. You can also enforce business rules using database
triggers and application code. Integrity constraints prevent bad data from being entered into
the database. Oracle supports five types of integrity constraints, as shown in Table 7.2.

TABLE 7.2 Integrity Constraints

Constraint Description

NOT NULL Prevents NULL values from being entered into the column. These types
of constraints are defined on a single column. By default, Oracle allows
NULL values in any column.

CHECK Checks whether the condition specified in the constraint is satisfied.

362 Chapter 7 = Creating Tables and Constraints

TABLE 7.2 Integrity Constraints (continued)

Constraint Description

UNIQUE Ensures that there are no duplicate values for the column(s) specified.
Every value or set of values is unique within the table.

PRIMARY KEY Uniquely identifies each row of the table and prevents NULL values.
A table can have only one primary key constraint.

FOREIGN KEY Establishes a parent-child relationship between tables by using common
columns. The foreign key defined on a table refers to the primary key or
unique key of another table.

Creating Constraints

Constraints are created using the CREATE TABLE or ALTER TABLE statements. You can specify
the constraint definition at the column level if the constraint is defined on a single column.
Multiple-column constraints must be defined at the table level; the columns should be specified
in parentheses and separated by commas.

If you do not provide a name for the constraints, Oracle assigns a system-generated
unique name that begins with SYS_. A name is provided for the constraint by specifying
the keyword CONSTRAINT followed by the constraint name.

ING want to compare table characteristics, such as between production and
test databases, the inconsistent system-generated names will make the
comparison difficult.

ﬁ:" You should not rely on system-generated names for constraints. If you

In the following sections, we will define the rules for each constraint type and provide
examples of creating constraints.

NOT NULL Constraint

A NOT NULL constraint is defined at the column level; it cannot be defined at the table level.
The syntax for a NOT NULL constraint is as follows:

[CONSTRAINT <constraint name>] [NOT] NULL
The following example creates a table with two columns that have NOT NULL constraints:

CREATE TABLE orders (

order_num NUMBER (4) CONSTRAINT nn_order_num NOT NULL,
order_date DATE NOT NULL,

product_id NUMBER (6))

Managing Constraints 363

The example provides a name for the constraint on the ORDER_NUM column. Because
no name is specified for the constraint on the ORDER_DATE column, it will get a system-
generated name.

Use ALTER TABLE MODIFY to add or remove a NOT NULL constraint on the columns of
an existing table. The following examples remove a constraint and add a constraint to an
existing table:

ALTER TABLE orders MODIFY order_date NULL;
ALTER TABLE orders MODIFY product_id NOT NULL;

Check Constraints

You can define a check constraint at the column level or table level. For both the column
and table levels, the syntax is as follows:

[CONSTRAINT <constraint name>] CHECK (<condition>)

The condition specified in the CHECK clause should evaluate to a Boolean result and can refer
to values in other columns of the same row; the condition cannot use queries. Environment
functions (such as SYSDATE, USER, USERENV, and UID) and pseudocolumns (such as ROWNUM,
CURRVAL, NEXTVAL, and LEVEL) cannot be used to evaluate the check condition. One column
can have more than one check constraint defined.

The following are examples of check constraints defined at the table level:

CREATE TABLE bonus (

emp_id VARCHAR2 (40) NOT NULL,

salary NUMBER (9,2),

bonus NUMBER (9,2),

CONSTRAINT ck_bonus check (bonus > 0));

ALTER TABLE bonus

ADD CONSTRAINT ck_bonus2 CHECK (bonus < salary);

The check constraint can be defined at the column level if the constraint refers to only
that column.

You cannot use the ALTER TABLE MODIFY clause to add or modify check constraints (only
NOT NULL constraints can be modified this way). Column-level constraints can be defined
when using the CREATE TABLE statement or when using the ALTER TABLE statement with the
ADD clause. Here is an example:

ALTER TABLE orders ADD cust_id number (5)
CONSTRAINT ck_cust_id CHECK (cust_id > 0);

You can use the check constraint to implement a NOT NULL constraint also. This is
especially useful if you need to disallow NULL values in multiple columns together. For
example, the following constraint definition for the BONUS table allows a NULL value

364 Chapter 7 = Creating Tables and Constraints

for the BONUS and SALARY columns if both column values are NULL, or else both columns
should have a valid non-NULL value.

ALTER TABLE bonus ADD CONSTRAINT ck_sal_bonus
CHECK ((bonus IS NULL AND salary IS NULL) OR
(bonus IS NOT NULL AND salary IS NOT NULL));

Unique Constraints

A unique constraint protects one or more columns in a table, ensuring that no two rows
contain duplicate data in the protected columns. Unique constraints can be defined at the
column level for single-column unique keys. Here is the column-level syntax:

[CONSTRAINT <constraint name>] UNIQUE

For a multiple-column unique key (a composite key; the maximum number of columns
specified can be 32). The constraint should be defined at the table level. Here is the table-
level syntax:

[CONSTRAINT <constraint name>]
UNIQUE (<column>, <column>, ..)

Oracle creates a unique index on the unique key columns to enforce uniqueness. If a
unique index or nonunique index already exists on the table with the same column-order
prefix, Oracle uses the existing index. To use the existing nonunique index for enforcing
uniqueness, there must not be any duplicate values in the unique key columns.

Unique constraints allow NULL values in the constraint columns. The following example
defines a unique constraint with two columns:

ALTER TABLE employee
ADD CONSTRAINT uqg_emp_id UNIQUE (dept, emp_id);

The next example adds a new column to the EMP table and creates a unique key at the
column level:

ALTER TABLE employee ADD
ssn VARCHAR2 (11) CONSTRAINT ug_ssn unique;

Primary Key Constraints

All characteristics of the unique key are applicable to the primary key constraint, except
that NULL values are not allowed in the primary key columns. A table can have only one
primary key. The column-level syntax is as follows:

[CONSTRAINT <constraint name>] PRIMARY KEY

Managing Constraints 365

Here is the table-level syntax:

[CONSTRAINT <constraint name>]
PRIMARY KEY (<column>, <column>, ..)

Oracle creates a unique index and NOT NULL constraints for each column in the key.
The following example defines a primary key when creating the table:

CREATE TABLE employee (

dept_no VARCHAR2 (2),

emp_id NUMBER (4),

name VARCHAR2 (20) NOT NULL,

ssn VARCHAR2 (11),

salary NUMBER (9,2) CHECK (salary > 0),
CONSTRAINT pk_employee primary key (dept_no, emp_id),
CONSTRAINT ug_ssn unique (ssn))

To add a primary key to an existing table, use the ALTER TABLE statement. Here is
an example:

ALTER TABLE employee
ADD CONSTRAINT pk_employee PRIMARY KEY (dept_no, emp_id);

Indexes created to enforce unique keys and primary keys can be managed in the same
way as any other index. However, these indexes cannot be dropped explicitly using the
DROP INDEX statement.

Foreign Key Constraints

A foreign key constraint protects one or more columns in a table by ensuring that for each
non-NULL value there is data available elsewhere in the database with a primary or unique
key. The foreign key is the column or columns in the table (child table) where the constraint is
created. The referenced key is the primary key or unique key column or columns in the table
(parent table) that is referenced by the constraint. The column datatypes in the parent table
and the child table should match.

You can define a foreign key constraint at the column level or table level. Here is the
syntax for the column-level constraint:

[CONSTRAINT <constraint name>]
REFERENCES [<schema>.]<table> [(<column>, <column>, ..]
[ON DELETE {CASCADE | SET NULL}]

Multiple-column foreign keys should be defined at the table level. Here is the table-
level syntax:

[CONSTRAINT <constraint name>]
FOREIGN KEY (<column>, <column>, ..)

366 Chapter 7 = Creating Tables and Constraints

REFERENCES [<schema>.]<table> [(<column>, <column>, ..]
[ON DELETE {CASCADE | SET NULL}]

The foreign key column(s) and referenced key column(s) can be in the same table (self-
referential integrity constraint). NULL values are allowed in the foreign key columns.

The following is an example of creating a foreign key constraint on the COUNTRY_CODE
and STATE_CODE columns of the CITY table, which refers to the COUNTRY_CODE and STATE_
CODE columns of the STATE table (the composite primary key of the STATE table).

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state (country_code, state_code);

You can omit the column listing of the referenced table if referring to the primary key
of the table. For example, if the COUNTRY_CODE and STATE_CODE columns are the primary
key of the STATE table, the previous statement could be written like this:

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state;

The ON DELETE clause specifies the action to be taken when a row in the parent
table is deleted and child rows exist for the deleted parent primary key. You can delete
the child rows (CASCADE) or set the foreign key column values to NULL (SET NULL). If
you omit this clause, Oracle will not allow you to delete from the parent table if child
records exist. You must delete the child rows first and then delete the parent row. The
following are two examples of specifying the delete action in a foreign key:

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state (country_code, state_code)
ON DELETE CASCADE;

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state (country_code, state_code)
ON DELETE SET NULL;

the following views: USER_CONSTRAINTS, ALL_CONSTRAINTS, USER_CONS_

é/ You can query the constraint information from the Oracle dictionary using
P
COLUMNS, and ALL_CONS_COLUMNS.

Managing Constraints 367

Disabled Constraints

When a constraint is created, it is enabled automatically. You can create a disabled constraint
by specifying the DISABLE keyword after the constraint definition. Here is an example:

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state (country_code, state_code) DISABLE;

ALTER TABLE bonus
ADD CONSTRAINT ck_bonus CHECK (bonus > 0) DISABLE;

Dropping Constraints

Dropping a constraint defined on a table may be necessary if you find out that business data
does not always meet strict data validations using constraints. In such instances, it may be
necessary to drop a constraint. Constraints are dropped using the ALTER TABLE statement.
Any constraint can be dropped by specifying the constraint name, as in this example:

ALTER TABLE bonus DROP CONSTRAINT ck_bonus2;
To drop the NOT NULL constraint, use the ALTER TABLE MODIFY statement, like this:
ALTER TABLE employee MODIFY employee_name NULL;

To drop unique key constraints with referenced foreign keys, specify the CASCADE
clause to drop the foreign key constraints and the unique constraint. Specify the unique
key column(s). Here is an example:

ALTER TABLE employee DROP UNIQUE (emp_id) CASCADE;

To drop primary key constraints with referenced foreign key constraints, use the CASCADE
clause to drop all foreign key constraints and then the primary key. Here is an example:

ALTER TABLE bonus DROP PRIMARY KEY CASCADE;

Enabling and Disabling Constraints

When you create a constraint, the constraint is automatically enabled (unless you specify
the DISABLE clause). You can disable a constraint by using the DISABLE clause of the ALTER
TABLE statement. When you disable unique or primary key constraints, Oracle drops the
associated unique index. When you re-enable these constraints, Oracle builds the index.
You can disable any constraint by specifying the DISABLE CONSTRAINT clause followed by
the constraint name. Specifying UNIQUE and the column name(s) can disable unique keys, and

368 Chapter 7 = Creating Tables and Constraints

specifying PRIMARY KEY can disable the table’s primary key. You cannot disable a primary key
or unique key if foreign keys that are enabled reference it. To disable all the referenced foreign
keys and the primary or unique key, specify CASCADE. The following three examples demon-
strate disabling constraints:

ALTER TABLE bonus DISABLE CONSTRAINT ck_bonus;
ALTER TABLE employee DISABLE CONSTRAINT uqg_employee;

ALTER TABLE state DISABLE PRIMARY KEY CASCADE;

Using the ENABLE clause of the ALTER TABLE statement enables a constraint. When you
enable a disabled unique or primary key, Oracle creates an index if an index with the unique
or primary key columns does not already exist. You can specify storage for the unique or
primary key while enabling these constraints, as in this example:

ALTER TABLE state ENABLE PRIMARY KEY USING INDEX
TABLESPACE user_INDEX STORAGE (INITIAL 2M NEXT 2M);

Validated Constraints

You have seen how to enable and disable a constraint. ENABLE and DISABLE affect only
future data that will be added or modified in the table. In contrast, the VALIDATE and
NOVALIDATE keywords in the ALTER TABLE statement act on the existing data. Therefore,
a constraint can have four states, as shown in Table 7.3.

TABLE 7.3 Constraints

Constraint Description

ENABLE VALIDATE This is the default for the ENABLE clause. The existing data in the
table is validated to verify that it conforms to the constraint.

ENABLE NOVALIDATE This does not validate the existing data but enables the constraint
for future constraint checking.

DISABLE VALIDATE The constraint is disabled (any index used to enforce the con-
straint is also dropped), but the constraint is kept valid. No DML
operation is allowed on the table because future changes cannot
be verified.

DISABLE NOVALIDATE This is the default for the DISABLE clause. The constraint is dis-
abled, and no checks are done on future or existing data.

Managing Constraints 369

Suppose you have a large data-warehouse table, where bulk data loads are performed
every night. The primary key of this table is enforced using a nonunique index because
Oracle does not drop the nonunique index when disabling the constraint. When you do
batch loads, you can disable the primary key constraint as follows:

ALTER TABLE whOl1 MODIFY CONSTRAINT pk_whol
DISABLE NOVALIDATE;

After the batch load completes, you can enable the primary key like this:

ALTER TABLE whO1 MODIFY CONSTRAINT pk_whol
ENABLE NOVALIDATE;

)’ Oracle does not allow any INSERT, UPDATE, or DELETE operations on a table
A&TE with a DISABLE VALIDATE constraint. This is a quick way to make a table
non-updatable in releases prior to Oracle Database 11g, where the READ
ONLY clause of the ALTER TABLE statement was not available.

Deferring Constraint Checks

By default, Oracle checks whether the data conforms to the constraint when the statement
is executed. Oracle allows you to change this behavior if the constraint is created using the
DEFERRABLE clause (NOT DEFERRABLE is the default). It specifies that the transaction can set
the constraint-checking behavior.

INITIALLY IMMEDIATE specifies that the constraint should be checked for conformance
at the end of each SQL statement (this is the default). INITIALLY DEFERRED specifies that
the constraint should be checked for conformance at the end of the transaction.

The DEFERRABLE status of a constraint cannot be changed using ALTER TABLE MODIFY
CONSTRAINT; you must drop and re-create the constraint. You can change the INITIALLY
{DEFERRED | IMMEDIATE} clause using ALTER TABLE.

If the constraint is DEFERRABLE, you can set the behavior by using the SET CONSTRAINTS
command or by using the ALTER SESSION SET CONSTRAINT command. You can enable or
disable deferred constraint checking by listing all the constraints or by specifying the ALL
keyword. The SET CONSTRAINTS command is used to set the constraint-checking behavior
for the current transaction, and the ALTER SESSION command is used to set the constraint-
checking behavior for the current session.

As an example, let’s create a primary key constraint on the CUSTOMER table and a foreign
key constraint on the ORDERS table as DEFERRABLE. Although the constraints are created as
DEFERRABLE, they are not deferred because of the INITIALLY IMMEDIATE clause.

ALTER TABLE customer ADD CONSTRAINT pk_cust_id
PRIMARY KEY (cust_id) DEFERRABLE
INITIALLY IMMEDIATE;

370 Chapter 7 = Creating Tables and Constraints

ALTER TABLE orders ADD CONSTRAINT fk_cust_id
FOREIGN KEY (cust_id)

REFERENCES customer (cust_id)

ON DELETE CASCADE DEFERRABLE;

If you try to add a row to the ORDERS table with a CUST_ID value that is not available in
the CUSTOMER table, Oracle returns an error immediately, even though you plan to add the
CUSTOMER row soon. Since the constraints are verified for conformance as each SQL statement
is executed, you must insert the row in the CUSTOMER table first and then add it to the ORDERS
table. Because the constraints are defined as DEFERRABLE, you can change this behavior by
using this command:

SET CONSTRAINTS ALL DEFERRED;

Now you can insert rows to these tables in any order. Oracle checks the constraint
conformance only at commit time.

If you want deferred constraint checking as the default, create or modify the constraint
by using INITIALLY DEFERRED, as in this example:

ALTER TABLE customer MODIFY CONSTRAINT pk_cust_id
INITIALLY DEFERRED;

@ Real World Scenario
Creating Tables and Constraints for an Application

Here’s a scenario you may find yourself in one day. You have been provided the following
information to create tables and constraints for an application developed in your com-
pany to maintain geographic information:

The COUNTRY table stores the country name and country code. The country code
uniquely identifies each country. The country name must be present.

The STATE table stores the state code, name, and its capital. The country code in this
table refers to a valid entry in the COUNTRY table. The state name must be present.
The state code and country code together uniquely identify each state.

The CITY table stores the city code, name, and population. The city code uniquely
identifies each city. The state and country where the city belongs are also stored in
the table, which refers to the STATE table. The city name must be present.

Each table should have a column identifying the created-on timestamp, with the sys-
tem date as the default.

Managing Constraints n

The user should not be able to delete from the COUNTRY table if there are records in
the STATE table for that country.

The records in the CITY table should be automatically removed when their correspond-
ing state is removed from the STATE table.

All foreign and primary key constraints should be provided with meaningful names.

Let’s start by creating the COUNTRY table:

SQL> CREATE TABLE country (
2 code NUMBER (4) PRIMARY KEY,
3 name VARCHAR2 (40));

Table created.

sQL>

Oops! CODE and NAME are not very descriptive column names, and you also have other
columns in tables to store codes and names. Let’s rename the columns to COUNTRY_CODE
and COUNTRY_NAME

SQL> ALTER TABLE country RENAME COLUMN
2 code TO country_code;
Table altered.

SQL> ALTER TABLE country RENAME COLUMN
2 name TO country_name;
Table altered.

SQL>

You also forgot to provide a name for the primary key constraint. Because the table was
created with a system-generated name, you have to find the name first to rename the
constraint:

SQL> SELECT constraint_name, constraint_type
2 FROM user_constraints
3 WHERE table_name = 'COUNTRY';

CONSTRAINT_NAME C

SYS_C0010893 P

SQL> ALTER TABLE country RENAME CONSTRAINT SYS_C0010893 TO pk_country;
Table altered.

SQL>

372 Chapter 7 = Creating Tables and Constraints

Oops, again! The table should include a column to store the created-on date, and the
country name cannot be NULL.

Before you continue, realize that if you have a good logical and physical design before
you start creating tables, you will not have any of these problems. This is not the typical
or recommended approach to creating tables for the application. The objective here is to
demonstrate the various options available.

SQL> ALTER TABLE country MODIFY country_name NOT NULL
2 ADD created DATE DEFAULT SYSDATE;

Table altered.

SQL>

Review the table created:

SQL> DESCRIBE country

Name Null? Type
COUNTRY_CODE NOT NULL NUMBER(4)
COUNTRY_NAME NOT NULL VARCHAR2(40)
CREATED DATE

SQL>

Let’s create the STATE table. Notice that multiple column constraints can be defined only
at the table level.

SQL> CREATE TABLE state (
2 state_code VARCHAR2 (3),
3 state_name VARCHAR2 (40) NOT NULL,
4 country_code NUMBER (4) REFERENCES country,
5 capital_city VARCHAR2 (40),
6 created DATE DEFAULT SYSDATE,
7 CONSTRAINT pk_state PRIMARY KEY
8 (country_code, state_code));
Table created.
SQL>

Because you did not provide a name for the COUNTRY_CODE foreign key, Oracle assigns a
name. To rename this constraint to provide a meaningful name, you can use the ALTER
TABLE statement as you did before. To demonstrate dropping a constraint and re-creating
it using ALTER TABLE, let’s drop this constraint and then add it. So, find the constraint
name from the USER_CONSTRAINTS view to drop and re-create it:

SQL> SELECT constraint_name, constraint_type
2 FROM user_constraints

Summary

373

3 WHERE table_name = 'STATE';

CONSTRAINT_NAME C

SYS_C002811
PK_STATE
SYS_C002813

SQL> ALTER TABLE state DROP CONSTRAINT SYS_C002813;
Table altered.
SQL> ALTER TABLE state ADD CONSTRAINT fk_state

2 FOREIGN KEY (country_code) REFERENCES country;
Table altered.
SQL>

Now you’ll create the CITY table. Notice the foreign key constraint is created with the ON
DELETE CASCADE clause:

SQL> CREATE TABLE city (
2 city_code VARCHAR2 (6),

3 city_name VARCHAR2 (40) NOT NULL,
4 country_code NUMBER (4) NOT NULL,
5 state_code VARCHAR2 (3) NOT NULL,
6 population NUMBER (15),
7 created DATE DEFAULT SYSDATE,
8 constraint pk_city PRIMARY KEY (city_code),
9 constraint fk_city FOREIGN KEY
10 (country_code, state_code)
11 REFERENCES state ON DELETE CASCADE);
Table created.
SQL>
Summary

Tables are the basic structure of data storage. A table comprises columns and rows, as
in a spreadsheet. Each column has a characteristic that restricts and verifies the data it

stores. You can use several datatypes to define columns. CHAR, NCHAR, VARCHAR?2,
CLOB, and NCLOB are the character datatypes. BLOB, BFILE, and RAW are the binary
datatypes. DATE, TIMESTAMP, and INTERVAL are the date datatypes. TIMESTAMP

datatypes can store the time-zone information also. NUMBER, BINARY_FLOAT, and
BINARY_DOUBLE are the numeric datatypes.

374 Chapter 7 = Creating Tables and Constraints

You use the CREATE TABLE statement to create a new table. A table should have at least
one column, and a datatype should be assigned to the column. The table name and column
name should begin with a letter and can contain letters, numbers, or special characters. You
can create a new table from an existing table using the CREATE TABLE .. AS SELECT.. (CTAS)
statement. You can add, modify, or drop columns from an existing table using the ALTER
TABLE statement.

Constraints are created in the database to enforce business rules and to specify
relationships between various tables. NOT NULL constraints can be defined only with a
column definition and are used to prevent NULL values (an absence of data). Check con-
straints are used to verify whether the data conforms to certain conditions. Primary key
constraints uniquely identify a row in the table. There can be only one primary key for
a table, and the columns in the primary key cannot have NULL values. A unique key is
similar to a primary key, but you can have more than one unique key in a table, as well
as NULL values in the unique key columns.

You can enable and disable constraints using the ALTER TABLE statement. The constraint
can be in four different states. ENABLE VALIDATE is the default state.

Exam Essentials

Understand datatypes. Know each datatype’s limitations and accepted values. Concentrate
on the new TIMESTAMP and INTERVAL datatypes.

Know how date arithmetic works. Know the resulting datatype of date arithmetic, especially
between INTERVAL and DATE datatypes.

Know how to modify column characteristics. Understand how to change datatypes, add
and modify constraints, and make other modifications.

Understand the rules associated with changing the datatype definitions of columns with
rows in a table. When the table is not empty, you can change a datatype only from CHAR
to VARCHARZ2, and vice versa. Reducing the length is allowed only if the existing data fits
in the new length specified.

Understand the DEFAULT clause on the column definition. The DEFAULT clause provides a
value for the column if the INSERT statement omits a value for the column. When modifying a
column to have default values, the existing rows with NULL values in the table are not updated
with the default value.

Know the actions permitted on read-only tables. Understand the various actions that
are permitted on a read-only table. Any operation that changes the data in the table is not
allowed on a read-only table. Most DDL statements are allowed, including DROP TABLE.

Understand constraints. Know the difference between a primary key and a unique key
constraint, and understand how to use a nonunique index for primary/unique keys.

Know how a constraint can be defined. You can use the CREATE TABLE or ALTER TABLE
statement to define a constraint on the table.

Review Questions

Review Questions 375

1. The STATE table has the following constraints (the constraint status is shown in

2.

parentheses):

Primary key
Foreign key
Check constraint
Check constraint

NOT NULL constraint

You execute the following SQL code:

pk_state (enabled)

COUNTRY table: fk_state (enabled)
ck_cnt_code (disabled)
ck_st_code (enabled)

nn_st_name (enabled)

CREATE TABLE STATE_NEW AS SELECT x FROM STATE;

How many constraints will there be in the new table?

£ moow?p
o »n W =k O

hich line of code has an error?

CREATE TABLE FRUITS_VEGETABLES
(FRUIT_TYPE VARCHAR2,
FRUIT_NAME CHAR (20),
QUANTITY NUMBER);

A w N R

SO0 w >
A W N -

376

6.

Chapter 7 = Creating Tables and Constraints

Which statement successfully adds a new column, ORDER_DATE, to the table ORDERS?
A. ALTER TABLE ORDERS ADD COLUMN ORDER_DATE DATE;

B. ALTER TABLE ORDERS ADD ORDER_DATE (DATE);

C. ALTER TABLE ORDERS ADD ORDER_DATE DATE;

D. ALTER TABLE ORDERS NEW COLUMN ORDER_DATE TYPE DATE;

What special characters are allowed in a table name? (Choose all that apply.)
A &

B. #

C. @

D. $

Consider the following statement:

CREATE TABLE MY_TABLE (
1ST_COLUMN NUMBER,
2ND_COLUMN VARCHAR2 (20));

Which of the following best describes this statement?

A. Tables cannot be created without defining a primary key. The primary key is
missing form the table definition.

B. The reserved word COLUMN cannot be part of the column name.
C. The column names are invalid.

D. No maximum length is specified for the first column definition. You must always
specify a length for character and numeric columns.

E. There is no error in the statement.

Which dictionary view would you query to list only the tables you own?
A. ALL_TABLES
B. DBA_TABLES
C. USER_TABLES
D. USR_TABLES

Review Questions 377

7. The STATE table has six rows. You issue the following command:
ALTER TABLE STATE ADD UPDATE_DT DATE DEFAULT SYSDATE;

Which of the following is correct?

A. A new column, UPDATE_DT, is added to the STATE, table, and its contents for the
existing rows are NULL.

B. Because the table is not empty, you cannot add a new column.
C. The DEFAULT value cannot be provided if the table has rows.
D. A new column, UPDATE_DT, is added to STATE, and its default value is saved in the

dictionary.

8. The HIRING table has the following data:

EMPNO HIREDATE
1021 12-DEC-00
3400 24-JAN-01
2398 30-JUN-01

What will be result of the following query?

SELECT hiredate+l FROM hiring WHERE empno = 3400;

4-FEB-01
25-JAN-01
N-02

None of the above

9. What is the default length of a CHAR column if no length is specified in the table definition?
256

1,000

64

1

You must always specify a length for CHAR columns.

10. Which statement will remove the column UPDATE_DT from the table STATE?
ALTER TABLE STATE DROP COLUMN UPDATE_DT;

ALTER TABLE STATE REMOVE COLUMN UPDATE_DT;

DROP COLUMN UPDATE_DT FROM STATE;

ALTER TABLE STATE SET UNUSED COLUMN UPDATE_DT;

moow>» E moow>» £ Do wp

You cannot drop a column from the table.

378 Chapter 7 = Creating Tables and Constraints

11. Which actions are allowed on a table that is marked as read-only? (Choose all that apply.)
A. Truncating a table
Inserting new data

Dropping a constraint

O ow

Dropping an index

E. Dropping a table
12. Which of the following statements will create a primary key for the CITY table with the

columns STATE_CD and CITY_CD?

A. CREATE PRIMARY KEY ON CITY (STATE_CD, CITY_CD);
CREATE CONSTRAINT PK_CITY PRIMARY KEY ON CITY (STATE_CD, CITY_CD);
ALTER TABLE CITY ADD CONSTRAINT PK_CITY PRIMARY KEY (STATE_CD, CITY_CD);
ALTER TABLE CITY ADD PRIMARY KEY (STATE_CD, CITY_CD);

ALTER TABLE CITY ADD PRIMARY KEY CONSTRAINT PK_CITY ON (STATE_CD,
CITY_CD);

mOOoWw

13. Which of the following check constraints will raise an error? (Choose all that apply.)
A. CONSTRAINT ck_gender CHECK (gender IN ('M', 'F'))
B. CONSTRAINT ck_old_order CHECK (order_date > (SYSDATE -30))

C. CONSTRAINT ck_vendor CHECK (vendor_id IN (SELECT vendor_id FROM
vendors))

D. CONSTRAINT ck_profit CHECK (gross_amt > net_amt)
14. Consider the datatypes DATE, TIMESTAMP (TS), TIMESTAMP WITH LOCAL
TIME ZONE (TSLTZ), INTERVAL YEAR TO MONTH (IY2M), and INTERVAL

DAY TO SECOND (ID2S). Which operations are not allowed by Oracle Database 12¢?
(Choose all that apply.)

A. DATE+DATE
TSLTZ-DATE
TSLTZ+1Y2M
TS*S

ID2S/2
IY2M+IY2M
ID2S+1Y2M
DATE-IY2M

I O moOOw

Review Questions 379

15. A constraint is created with the DEFERRABLE INITIALLY IMMEDIATE clause. What does
this mean?

16.

17.

18.

A.
B.

C.
D.

Constraint checking is done only at commit time.

Constraint checking is done after each SQL statement is executed, but you can
change this behavior by specifying SET CONSTRAINTS ALL DEFERRED.

Existing rows in the table are immediately checked for constraint violation.

The constraint is immediately checked in a DML operation, but subsequent
constraint verification is done at commit time.

What is the default precision for fractional seconds in a TIMESTAMP datatype column?

A.
B.
C.
D.

0

2
6
9

Which datatype shows the time-zone information along with the date value?

moowp»

TIMESTAMP

TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH TIME ZONE

DATE

Both options B and C

You have a large job that will load many thousands of rows into your ORDERS table.
To speed up the loading process, you want to temporarily stop enforcing the foreign key
constraint FK_ORDERS. Which of the following statements will satisfy your requirement?

A.

ALTER CONSTRAINT FK_ORDERS DISABLE;

B. ALTER TABLE ORDERS DISABLE FOREIGN KEY FK_ORDERS;
C.
D. ALTER TABLE ORDERS DISABLE ALL CONSTRAINTS;

ALTER TABLE ORDERS DISABLE CONSTRAINT FK_ORDERS;

380

Chapter 7 = Creating Tables and Constraints

19. You are connected to the database as user JOHN. You need to rename a table named
NORDERS to NEW_ORDERS, owned by SMITH. Consider the following two statements:

1. RENAME SMITH.NORDERS TO NEW_ORDERS;
2. ALTER TABLE SMITH.NORDERS RENAME TO NEW_ORDERS;

20.

Which of the following is correct?

A.

Statement 1 will work; statement 2 will not.

B. Statements 1 and 2 will work.
C.
D

. Statements 1 and 2 will not work.

Statement 1 will not work; statement 2 will work.

Tom executed the following SQL statement.

create table xx (n number, x long, y clob);

Choose the best option.

A.
B.
C.

A table named xx will be created.
Single-character column names are not allowed in table definitions.

When using the LONG datatype, other LOB datatypes cannot be used in table
definitions.

The size needs to be specified in one of the datatypes used in the column definition.

Oracle
Database 12c:
Installation and
Administration

Introducing Oracle
Database 12c¢
Components and
Architecture

ORACLE DATABASE 12c: OCA EXAM
OBJECTIVES COVERED IN THIS CHAPTER:

v Exploring the Oracle Database Architecture
= List the architectural components of Oracle Database.
= Explain the memory structures.
= Describe the background processes.

= Explain the relationship between logical and physical
storage structures.

v Oracle Database Management Tools

= Use database management tools.

With this chapter, you’ll start learning Oracle Database 12¢
(Oracle 12¢) database administration. This chapter and the
remaining chapters of the book will discuss the objectives for the
Omcle Database 12c¢: Installation and Administration OCA certification exam. There are two
parts to the exam: Oracle Database Administration and Installing, Upgrading, and Patching
the Oracle Database. The book’s chapters are organized to give you a natural progression
from the basics, installation, database creation, basic administration, and on to advanced top-
ics, not necessarily organized in the order of examination objectives specified by Oracle.

With the release of Oracle Database 12¢, the Oracle Corporation has delivered a pow-
erful and feature-rich database that can meet the performance, availability, recoverabil-
ity, multitenancy, cloud-enabled, application-testing, and security requirements of any
mission-critical application. As the Oracle DBA, you are responsible for managing and
maintaining the Oracle Database 12¢ environment throughout its lifecycle, from the initial
installation through creation, configuration, final deployment, and its daily administra-
tion. Performing these tasks requires a solid understanding of Oracle’s product offerings
so that you can apply the proper tools and features to the application. You must also use
relational database concepts to design, implement, and maintain the tables that store the
application data. At the heart of these activities is the need for a thorough understanding
of the Oracle architecture and the tools and techniques used to monitor and manage the
components of this architecture.

We will begin this chapter by reviewing the Oracle database basics. You will learn what
constitutes the Oracle Database 12¢ architecture. We’ll provide an overview of the memory
structures, the processes that manage the database, how data is stored in the database, and
the many pluggable databases in a consolidated cloud database. We will also discuss the
tools used to administer Oracle Database 12c.

In this chapter, you will see many examples of using the database to show information
from the database, and you might wonder, “Why are you doing this without first showing
me how to create a database?” It is a chicken-and-egg situation; we think knowing the basic
components and high-level architecture will help you better understand the database and
create options. So, you will learn the architecture basics in this chapter and actually create
a database in the next chapter.

Exam objectives are subject to change at any time without prior notice

ITE and at Oracle’s sole discretion. Please visit Oracle’s Training and Certifi-
cation website at http://education.oracle.com for the most current
exam-objectives listing.

http://education.oracle.com

Oracle Database Fundamentals 385

Oracle Database Fundamentals

Databases store data. The data itself is composed of related logical units of information. The
database management system (DBMS) facilitates the storage, modification, and retrieval of
this data. Some early database technologies used flat files or hierarchical file structures to
store application data. Others used networks of connections between sets of data to store and
locate information. The early DBMS architecture mixed the physical manipulation of data
with its logical manipulation. When the location of data changed, the application referenc-
ing the data had to be updated. Relational databases brought a revolutionary change to this
architecture. Relational DBMS introduced data independence, which separated the physical
model of the data from its logical model. Oracle is a relational DBMS.

All releases of Oracle’s database products have used a relational DBMS model to store
data in the database. This relational model is based on the groundbreaking work of Dr. Edgar
Codd, which was first published in 1970 in his paper “A Relational Model of Data for Large
Shared Data Banks.” IBM Corporation, which was then an early adopter of Dr. Codd’s model,
helped develop the computer language that is used to access all relational databases today—
Structured Query Language (SQL). The great thing about SQL is that you can use it to easily
interact with relational databases without having to write complex computer programs and
without needing to know where or how the data is physically stored on disk. You saw several
SQL statements in the previous chapters.

Relational Databases

The concept of a relational database management system (RDBMS) is that the data consists
of a set of relational objects. The basic storage of data in a database is a table. The relations
are implemented in tables, where data is stored in rows and columns. Figure 8.1 shows such
a relationship.

The DEPT table in the lower part of the figure stores information about departments in the
company. Each department is identified by the department ID. Along with the ID, the name
and location of the department are also stored in the table. The EMP table stores information
about the employees in the company. Each employee is identified by a unique employee ID.
This table includes employee information such as hire date, salary, manager, and so on. The
DEPTNO column in both tables provides a relationship between the tables. A department may
have many employees, but an employee can work for only one department.

Because the user accessing this data doesn’t need to know how or where the row is stored in
the database, there must be a way to uniquely identify the rows in the tables. In our example,
the department is uniquely identified by department number, and an employee is identified by
an employee ID. The column (or set of columns) that uniquely identifies a row is known as the
primary key. According to relational theory, each table in a relational database must have a
primary key.

386 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

FIGURE 8.1 Relational tables

EMP (Employee Table)
EMPNO | ENAME | JOB MGR | HIREDATE SAL | COMM DEPTNO
7369 SMITH CLERK 7902 | 17-DEC -8 0800 20

7499 ALLEN SALESMAN | 7698 | 20-FEB-8 | 11600 300 30
7521 WARD SALESMAN | 7698 | 22-FEB-8 | 11250 500 30

7566 JONES MANAGER 7839 | 02-APR-8 | 12975 20

7654 MARTIN | SALESMAN | 7698 | 28-SEP-8 | 11250 1400 30

7698 BLAKE MANAGER 7839 | 07-MAY-8 | 12850 30

7844 URNER SALESMAN | 7698 | 08-SEP-8 | 11500 30

Primary Key Foreign Key
Column Column
DEPT (Department Table)

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Primzly KeyT

Column

When relating tables together, the primary key of one table is placed in another table. For
example, the primary key of the DEPT table is a column in the EMP table. In RDBMS terminol-
ogy, this is known as a foreign key. A foreign key states that the data value in the column
exists in another table and should continue to exist in the other table to keep the relationship
between tables. The table where the column is a primary key is known as the parent table,
and the table where the foreign key column exists is known as the child table. Oracle enforces
the parent-child relationship between tables using constraints.

Oracle Database 12¢ Objects

Every RDBMS supports a variety of database objects. Oracle Database 12¢ supports the
entire set of database objects required for a relational and object-relational database, such
as tables, views, constraints, and so on. It also supports a wide range of objects specific to
the Oracle database, such as packages, sequences, materialized views, and so on. Table 8.1
lists the major commonly used objects in Oracle Database 12c.

Oracle Database Fundamentals 387

TABLE 8.1 Oracle Database 12¢ Objects

Object Type Description

Table A table is the basic form of data storage. A table has
columns and stores rows of data.

View A view is a stored query. No data-storage space is occu-
pied for view data.

Index An index is an optional structure that is useful for fetching

Materialized view

Index-organized table

Cluster

Constraint

Sequence

Synonym

Trigger

Stored function

Stored procedure

Package

Java

Database link

data faster.

Materialized views are used to summarize and store
data. They are similar to views but take up storage
space to store data.

An index-organized table stores the table data along with
the index, instead of storing table and index separately.

A cluster is a group of tables sharing a common col-
umn. The cluster stores the rows of the tables together
with the common columns stored once.

A constraint is a stored rule to enforce data integrity.

A sequence provides a mechanism for the continuous
generation of numbers.

A synonym is an alias for a database schema object.

A trigger is a PL/SQL program unit that is executed
when an event occurs.

Stored functions are PL/SQL programs that can be used
to create user-defined functions to return a value.

Stored procedures are PL/SQL programs to define a
business process.

A package is a collection of procedures, functions, and
other program constructs.

Stored Java procedures can be created in Oracle to
define business processes.

Database links are used to communicate between data-
bases to share data.

388 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

You use SQL to create database objects and to interact with application data. In the next
section, we will discuss the tools available to access and administer Oracle Database 12c.

Interacting with Oracle Database 12¢

Several Oracle database management tools are available for the DBA to interact with and man-
age Oracle Database 12¢. SQL is the language used to interact with Oracle Database 12¢. The
common tools available for the DBA to administer Oracle Database 12¢ are as follows:

SOL*Plus, which is a SQL command-line interface utility

SQL Developer, a GUI tool to explore and manage the database using predefined menu
actions and SQL statements

Oracle Enterprise Manager Database Express 12¢, a GUI tool for database adminis-
tration and performance management

Using SQL*Plus and SQL Developer, you interact directly with Oracle Database 12¢
using SQL statements and a superset of commands such as STARTUP, SHUTDOWN, and so on.
Using Enterprise Manager, you interact indirectly with Oracle Database 12c.

SQL*Plus

SQL*Plus is the primary tool for an Oracle DBA to administer the database using SQL
commands. Before you can run SQL statements, you must connect to Oracle Database 12c¢.
You can start SQL*Plus from a Windows command prompt using the SQLPLUS.EXE execut-
able or using the $ORACLE_HOME /bin/sqlplus executable on the Unix/Linux platform.
Figure 8.2 shows connecting to SQL*Plus from a Linux workstation.

FIGURE 8.2 SQL*Plusloginin Linux

[samuellbtlnx63 ~1% sqlplus system
SQL*Plus: Release 12.1.0.1.0 Production on Sun Aug 25 11:49:47 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved

Enter password:
Last Successful login time: Sun Aug 25 2013 11:47:34 -05:00

Connected to

Oracle Database 12c Enterprise Edition Release 12.1.8.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions

SQL> SELECT db_unigue_name, cdb FROM védatabase;

DB_UNIQUE_NAME CDB

C12DB1 YES

SQL> SHOW USER
USER 1s "SYSTEM"
soL=

Oracle Database Fundamentals 389

To get an overview of SQL*Plus and how to connect to the database using SQL*Plus,
refer to Chapter 2, “Introducing SQL.”

SQL Developer

SQL Developer is a GUI database-development tool. With SQL Developer, you can create

and view the database objects, make changes to the objects, run SQL statements, run PL/SQL
programs, create and edit PL/SQL programs, and perform PL/SQL debugging. SQL Developer
also includes a migration utility to migrate Microsoft Access and Microsoft SQL Server data-
bases to Oracle Database 12c¢. Figure 8.3 shows the object browser screen of SQL Developer.

FIGURE 8.3 The SQL Developer screen

Fle Edit View Movigste Run Versioning Tools Help
o 9 XEmO-0- & ":'”
[r.Y x| (Hreports * =) (@strtPage * | 01201 * [HEMPLOVEES * ®
lp-@TD Colurwrs |Data | Constraints Grants |Statstics | Trgoers |Flasrbiack | Dependenies | Detals |Parttions |Indexes |SQu
R Comectors ~|| o 7 @ ~ Actons...
S-@ 01201 3 consTRAINT_Nave [l CONSTRAINT_TYPE |SEARCH_CONDITION 2 rowner [§ rvame Nave [§ R CONSTRAINT NaM|
5 Tables (Fitere) lEMe_DEPT_FK Foreign_Key (null) HE DEPARIMENTS DEPT_ID_PK i
i E ."" Emm— evE BMATL M Check "EMATL" IS NOT WULL (null) (nuil) (mally |
& Elood Osen eME_EMATL_UK Untque (nu11) (null) tau) (nul1) |
wEn EMF_EME_ID FK Erimery_Key (nu1l) (muln) (nu11y (nu11y
® Hc [£ME HIRE_DATEWMN Check “HIRE_DATE" IS KOT NULL (null) (au11) (1)
&-@Eo Import Data... leur_soB_f Foreign_Hey {nuil) HR J08s J08_to_BK
=8 Egport... BE oo oheck =30B_ID" IS NOT NULL {null) (mull) (mall)
g Rename... M Check “LAST_HAME" IS KOT NULL {null) (mull} (mall}
@y Comn v copye Fareign ey (nu11) =® EMPLOYEES B PP 10_PK
Copstrait~ *| Drog.. Check salazy > 0 (null) [Ee) (1)
Index M Truneate.. >
Privileges v Lock-
Statistics. » Comment...
Storsge v Parallel. =
Trigger v Logging.. oo
Spatial b HoPerallel..
Redaction 12 Count Rows...
QuekDDL »|_Ganerate TableAPL.

Table HR.ACCOUNTS 0 12c01

You can download and learn more about SQL Developer on the OTN website
TE (http://www.oracle.com/technetwork/developer-tools/sql-developer).

SQL Developer is installed by default with your Oracle Database 12c¢ tool set.

Enterprise Manager Database Express 12¢

Oracle Enterprise Manager (EM) Database Express is a web-based database management
tool that is bundled with Oracle Database 12¢. This is a graphical tool specifically designed
to administer an Oracle database. Enterprise Manager Database Express is used to manage

a single database (single instance or cluster database), whereas Enterprise Manager Cloud
Control 12¢ can manage multiple databases and other services and applications, such as OAS,

http://www.oracle.com/technetwork/developer-tools/sql-developer

390 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

and even non-Oracle applications at the same time. Figure 8.4 shows the Enterprise Manager
Database Express home screen, where an overview of the database is shown.

FIGURE 8.4 The Enterprise Manager home screen

ORACLE Enterprise Manager Database Express 12¢ 2 sysTEM | LogOut O
B. C12DB1 (12.1.0.1.0) ion 4 erfol F binx63
Type Singke instance (C12D81) N
DB (2 FDBS) .
A 12:1.0.1.0 Entarprise Edition 12 W BTiPDE
e 12081 M 4 PDBSSEED
Instance Name G120B1 4 1) SizFii
—, - - - M CODBSROOT
Ehatiorm Name Linux X85 64-bi e - el _u — nnu
1220 FM 12:30 FM 12:40 FM 12:50 PM 1:00 FM 110 PM 1:20 PM
Host Name btinx63 Newv 9
Oracke Home /uO1apporack/product/1 2.1.0vb)
Thread 1 [| Resources
o Archiver Stopped | Host CPU Active Sessions Memory
|] v
| Incidents - Last 24 Hours 1o | . W OtherSGA
- M Shared 10 Pool
inst. | Time |inci. |pro.. | Emor 3 . % - N
o I, o - Vit os M Large Pool
[— s & M Shared Pool
o Incidents
e 2% z a8 W Gutfer Cache
0% — o — oGe m FGA
+ SOL Monitor - Last Hour (20 max)
| Running Jota Status | Duration T. [ID | User Parallel | Database .. | SOL Text
.. | cont. |ow.. |Na. |EL. | Stared ¢ 12 0s i L= ™, Gla EEalliss - SOLbuil
w Mz0s [E coyhupmcisw @CDEIROOT s Nois insert into
No Running Jobs M20s bj7wO1568DKEY @CDBIROOT Ba lzoams insert into

EM Database Express is configured using a check box in Database Configuration
Assistant when you’re creating a new database. EM Database Express requires that
XMLDB be installed in the database. The default port configured is 5,500, and the URL
for EM Database Express is https://<hostname>:5500/em. The port can be changed
using the DBMS_XDB_CONFIG.setHTTPsPort (<port>) procedure.

EM Database Express is available only when the database is open. Therefore, this tool
cannot be used to start or stop a database.

)’ Oracle Enterprise Manager (OEM) Cloud Control is installed separately,
AéTE outside of the Oracle Database 12c install. Agents are installed on each
server that is configured in OEM Cloud Control. To learn more about OEM
Cloud Control, visit http://www.oracle.com/technetwork/oem.

For all the database-administration examples in this chapter, you can use either SQL*Plus
to perform the SQL command line or use the GUI tool Enterprise Manager Database Express.
All the commands you run using SQL*Plus can also be performed using SQL Developer.
However, if there are any administrative tasks that can be performed using predefined menu
options in SQL Developer, we will show that. Before you start learning to administer Oracle
Database 12c, let’s start with the basics. In the next section, you’ll learn about Oracle 12¢
architecture.

http://www.oracle.com/technetwork/oem

Oracle Database 12c Architecture 391

Oracle Database 12c Architecture

All of the previously described database administration and development tools allow users

to interact with the database. Using these tools requires that user accounts be created in the
database and that connectivity to the database be in place across the network. Users must also
have adequate storage capacity for the data they add, and they need recovery mechanisms for
restoring the transactions they are performing in the event of a hardware failure. As the DBA,
you take care of each of these tasks, as well as others, which include the following:

Selecting the server hardware on which the database software will run
Installing and configuring the Oracle Database 12¢ software on the server hardware

Deciding to use Oracle Database 12¢ Container or a traditional single database (now
known as non-Pluggable Database (PDB).

Creating Oracle Database 12¢ database

Creating and managing the tables and other objects used to manage the application data
Creating and managing database users

Establishing reliable backup and recovery procedure for the database

Monitoring and tuning database performance

Analyzing trends and forecasting resource and storage requirements

The remainder of this book is dedicated to helping you understand how to perform these
and other important Oracle database-administration tasks. But first, to succeed as an Oracle
DBA, you need to completely understand Oracle’s underlying architecture and its mechanisms.
Understanding the relationship between Oracle’s memory structures, background processes,
and I/O activities is critical before learning how to manage these areas.

The Oracle server architecture can be described in three categories:

Server processes that communicate with users processes and interact with an Oracle
instance to fulfill requests

Logical memory structures that are collectively called an Oracle instance
Physical file structures that are collectively called a database

You will also see how the physical structures map to the logical structures of the database
you are familiar with, such as tables and indexes.

Database is a confusing term that is often used to represent different things on different
platforms; the only commonality is that it is something related to storing data. In Oracle,
however, the term database represents the physical files that store data. An instance is com-
posed of the memory structures and background processes. Each database should have at
least one instance associated with it. It is possible for multiple instances to access a single
database; such a configuration is known as Real Application Clusters (RAC). In this book,
however, you’ll concentrate only on single-instance databases because RAC is not part of
the OCA certification exam.

Figure 8.5 shows the parts of an Oracle instance and database at a high level. Although
the architecture in Figure 8.5 may at first seem complex, each of these architecture

392 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

components is described in more detail in the following sections, beginning with the user-
related processes, and is actually fairly simple. This figure is an important piece of funda-
mental information when learning about the Oracle Database 12¢ architecture.

e The key database components are memory structures, process structures,

P and storage structures. Process and memory structures together are called
an instance; the storage structure is called a database. Taken together, the
instance and the database are called an Oracle server.

FIGURE 8.5 The Oracle Database 12c architecture

User User
Server Process ... Server Process
y A
2 v
Instance
PGA
_ | Background
SGA B Processes
Archive
Logs ARGN DBWN| CMPT| LGWR
A Y
Flashback . :
Logs Database
Physical Password RVWR
Database File Data Control Redo Log
Structure Files File Files
Parameter
File prantSHIIAINGLL I
Listener :
Config File Data File Data File Data File Data File | | Temp File
1 2 3 4 1

Database
Logical
Database
Structure

SYSTEM SYSAUX Tablespaces TEMP
Tablespace Tablespace Tablespace

Oracle Database 12c Architecture 393

Each Oracle database consists of several schemas that reside in tablespaces. Tablespace
is a logical storage structure at the highest level in the database. Each tablespace consists
of one or more data files. The database has user data and overhead, such as database
dictionary, memory, control files, archived log files, flashback files, etc. Do not worry
if you do not understand these components yet; you will get to know them in the next
few chapters.

Oracle Database 12¢ comes with a major architectural change compared to its predeces-
sors. Oracle Database 12¢ allows multitenancy, meaning, you can have more than one data-
base in a structure called a container database. The database overhead will be shared by all
the databases in the container database. The databases in the container database are called
pluggable databases. Administration and resource overhead are reduced by going with this
architecture. Figure 8.6 shows database multitenancy.

FIGURE 8.6 Oracle Database 12¢ multitenancy

Container Database
Instance

CDB Logical

Root OBSROOT

Logical — —
Seed PDB PDB PDB
PDB 1 2 3

CDB Physical

Data Control Redo Log
Files

Physical

More on container and pluggable databases will be discussed in Chapter 9, “Creating
and Operating Oracle Database 12¢.”

394 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

What Is a Schema?

When working with Oracle, you will often hear the words schema and user used inter-
changeably. Is there a difference between the two? Yes and no. A user is a defined database
entity that has a set of abilities to perform activities based on their granted rights. A schema,
which is associated with a user entity, is more appropriately defined as a collection of data-
base objects. Some examples of database objects are tables, indexes, and views.

A schema can be related to a real person, such as a user of your Sales database who may
have a user ID and password they use to access the database. This user may or may not
own any schema objects.

Because a schema is a collection of objects, DBAs often define a schema to represent
a collection of objects associated with an application. For example, a DBA might create
a schema called SALES and create objects owned by that schema. Then, they can grant
access to other database users who need the ability to access the SALES schema.

In this way, the schema becomes a logical collection of objects associated with an applica-
tion and is not tied to any specific user. This ability makes it easy to logically group common
objects that are related to specific applications or tasks using a common schema name.

The main difference is that users are the entities that perform work, and schemas are the
collections of objects on which users perform work.

User and Server Processes

At the user level, two types of processes allow a user to interact with the instance and,
ultimately, with the database: the user process and the server process.

Whenever a user runs an application, such as a human-resources or order-taking applica-
tion, Oracle starts a user process to support the user’s connection to the instance. Depending
on the technical architecture of the application, the user process exists either on the user’s own
computer or on the middle-tier application server. The user process then initiates a connection
to the instance. Oracle calls the process of initiating and maintaining communication between
the user process and the instance a connection. Once the connection is made, the user estab-
lishes a session in the instance.

After establishing a session, each user starts a server process on the host server itself.

It is this server process that is responsible for performing the tasks that actually allow the
user to interact with the database. The server processes are allowed to interact with the
instance, but not the user process directly.

Examples of these interactions include sending SQL statements to the database, retrieving
needed data from the database’s physical files, and returning that data to the user.

Oracle Database 12c Architecture 395

Server processes generally have a one-to-one relationship with user pro-
&TE cesses—in other words, each user process connects to one and only one
server process. However, in some Oracle configurations, multiple user pro-
cesses can share a single server process. We will discuss Oracle connection
configurations in Chapter 12, “Understanding Oracle Network Architecture.”

On a Unix system, it is easier to distinguish these processes. Here is an example.
User initiates SQL*Plus to connect to Oracle database. You can see the process that
starts SQL*Plus (user process with process ID 10604) by samuel. This in turn starts
another process that connects to the instance (server process with process ID 10606)
owned by database server user oracle.

$ ps -ef |grep sqlplus | grep -v grep
samuel 10604 10511 0O 01:51 pts/2 00:00:00 sqlplus

$ ps -ef |grep 10604 | grep -v grep
samuel 10604 10511 0 01:51 pts/2 00:00:00 sqlplus

oracle 10606 10604 0 01:52 ? 00:00:00 oracleC12DB1
(DESCRIPTION=(LOCAL=YES) (ADDRESS=(PROTOCOL=beq)))

In addition to the user and server processes that are associated with each user connection,
an additional memory structure called the program global area (PGA) is also created for
each server process. The PGA stores user-specific session information such as bind variables
and session variables. Every server process on the server has a PGA memory area. Figure 8.7
shows the relationship between a user process, server processes, and the PGA.

FIGURE 8.7 Therelationship between user and server processes and the PGA

The user starts the Oracle-based
application on their computer,
creating a user process...

User Process

Oracle Instance

) AN

...the user process communicates
with the server process on the host
server using the PGA to store
session-specific information.

Host Server

396 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

PGA memory is not shared. Each server process has a PGA associated with it and is
exclusive. As a DBA, you set the total memory that can be allocated to all the PGA memory
allocated to all server and background processes. The components of PGA are

SQL Work Area Area used for memory-intensive operations such as sorting or building a
hash table during join operations.

Private SQL Area Holds information about SQL statement and bind variable values.

The PGA can be configured to manage automatically by setting the database parameter
PGA_AGGREGATE_TARGET. Oracle then contains the total amount of PGA memory allocated
across all database server processes and background processes within this target.

The server process communicates with the Oracle instance on behalf of the user. The
Oracle instance is examined in the next section.

The Oracle Instance

An Oracle database instance consists of Oracle’s main memory structure, called the

system global area (SGA, also known as shared global area) and several Oracle back-

ground processes. When the user accesses the data in the database, it is the SGA with

which the server process communicates. Figure 8.8 shows the components of the SGA.
The components of the instance are described in the following sections.

Oracle Memory Structures

The SGA is a shared memory area. All the users of the database share the information
maintained in this area. Oracle allocates memory for the SGA when the instance is started
and de-allocates it when the instance is shut down. The SGA consists of three mandatory
components and four optional components. Table 8.2 describes the required components.

TABLE 8.2 Required SGA Components

SGA Component Description

Shared pool Caches the most recently used SQL statements that have been
issued by database users

Database buffer cache Caches the data that has been most recently accessed by data-
base users

Redo log buffer Stores transaction information for recovery purposes

Oracle Database 12c Architecture 397

FIGURE 8.8 SGA components

SGA
DB Buffer Cache Shared Pool
Keep Recycle Default Data Result
Dictionary Cache
Cache
Redo Buffer
Reserved Pool
Large Pool
Library Cache
Java Pool Shared Shared
SQL PL/SQL
Area Area
Shared Pool
Fixed SGA Control Structures
A A A A A A
Y Y Y Y Y Y
Others...

Background Processes

Table 8.3 describes the optional SGA components required, based on the database con-
figuration and use.

398 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

TABLE 8.3 Optional SGA Components

SGA Component Description

Java pool Caches the most recently used Java objects and application code
when Oracle’s JVM option is used.

Large pool Caches data for large operations such as Recovery Manager (RMAN)
backup and restore activities and Shared Server components.

Streams pool Caches the data associated with queued message requests when
Oracle’s Advanced Queuing option is used.

Result cache This new area is introduced in Oracle Database 12¢ and stores results
of SQL queries and PL/SQL functions for better performance.

Oracle Database 12¢ can manage the components of SGA and PGA automatically using
the Automatic Memory Management (AMM) feature. Memory in the SGA is allocated in
units of contiguous memory called granules. The size of a granule depends on the parameter
MEMORY_MAX_TARGET. If MEMORY_MAX_TARGET is larger than 1,024MB, the granule size is either
16MB or 4MB. MEMORY_MAX_TARGET is discussed in detail in Chapter 14, “Maintaining the
Database and Managing Performance.” A minimum of three granules must be allocated to
SGA—one each for the required components in Table 8.2.

The sizes of these SGA components can be managed in two ways: manually or auto-
matically. If you choose to manage these components manually, you must specify the size
of each SGA component and then increase or decrease the size of each component accord-
ing to the needs of the application. If these components are managed automatically, the
instance itself will monitor the utilization of each SGA component and adjust their sizes
accordingly, relative to a predefined maximum allowable aggregate SGA size.

Oracle Database 12¢ provides several dynamic performance views to see the components
and sizes of SGA; you can use V$SGA and V$SGAINFO, as shown here:

SQL> select * from vS$sga;

NAME VALUE CON_ID
Fixed Size 2290368 0
Variable Size 620760384 0
Database Buffers 1694498816 0
Redo Buffers 20762624 0

Alternatively, you may use the SHOW SGA command from SQL*Plus, as shown here:

SQL> show sga

Oracle Database 12c Architecture

Total System Global Area 2338312192 bytes
Fixed Size 2290368 bytes

Variable Size
Database Buffers
Redo Buffers
sQL>

620760384 bytes
1694498816 bytes
20762624 bytes

399

The output from this query shows that the total size of the SGA is 2,338,312,192 bytes.

This total size is composed of the variable space that is composed of the shared pool, the

large pool, and the Java pool (620,760,384 bytes); the database buffer cache (1,694,498,816
bytes); the redo log buffers (20,762,624 bytes); and some additional space (2,290,368 bytes)

that stores information used by the instance’s background processes. The V$SGAINFO view

displays additional details about the allocation of space within the SGA, as shown in the fol-

lowing query:

SQL> SELECT * FROM v$sgainfo;

Fixed SGA Size

Redo Buffers

Buffer Cache Size

Shared Pool Size

Large Pool Size

Java Pool Size

Streams Pool Size

Shared IO Pool Size

Data Transfer Cache Size
Granule Size

Maximum SGA Size

Startup Overhead in Shared Pool
Free SGA Memory Available

13 rows selected.

sQL>

2290368
20762624
1694498816
570425344
33554432
16777216

0
117440512
0

16777216
2338312192
149697048
0

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

No

No

©® O O © O O © O O © O o o

The results of this query show in detail how much space is occupied by each component
in the shared pool. The components with the RESIZEABLE column with a value of Yes can

be managed dynamically by Oracle Database 12c.

You can also use EM Database Express to view the sizes of each of the SGA components, as
shown in Figure 8.9. From the home screen, go to the Server tab and click Memory Advisors to

see this.

400 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

FIGURE 8.9 EM Database Express showing SGA components

ORACLE Enterprise Manager Database Express 12¢ Hep ~ sysTEM | Log Out
p
B C12DB1 (12. 0) 4 i
Memory Management | & Configure Memory Page Rafreshad 1:24:06 PMGMT-0800 ¢, |~
| Configuration
Memory Settings SGA Advisor (i) PGA Advisor (i)
SGA Memory
A 5 100 — yove———————o
Management Mods Auto H r._’—-—- o d
sga_trget 22GE 3 @ [F-
H 4
PGA Memory i w0 f ® Current Setting ; 40 ® Current Setting
i L)
Management Mods Auto : £
. oA o
ga_sgrigele_int 208 0 1000 2000 3000 4000 5000 o 2000 4000 8000
pga_sggregats_targst 744MB oga_tamgat (M8} paa_aggrgate_tamer (MB)
| Statistics.
Allocation Breakdown Allocation History Top Sessions by PGA Consumed
Hest M how Pa
- | 9GA - Frasable || Show Hest Memory || Show Paging Only g e
.08 GB
108 W FGA-SOL Workareas 23008 [—— -
155G8 M PGA - Untunable 1r6GB — Towl 964
147 GB W SGA-Shard 10 Pool 147 GB W Shared LO Pool ™
M SGA - Java Pool 3 I I
~ W Jova Pool
e 2 G- Large i R e 2o Ilnm
- Shared Paal oGH o 2z 2o [T
=EE SGA - Shared Pool Shared Pool .
W SCA- Buller Cache 12:25 PM 1255 PM 125 PM I a0
0GB - Now® W Butfer Cache Sesmion 1D
PGA r
222 -

You’ll learn more about the components in the SGA in the next sections.

Database Buffer Cache

The database buffer cache is the area in SGA that caches the database data, holding blocks
from the data files that have been accessed recently. The database buffer cache is shared
among all the users connected to the database. There are three types of buffers:

= Dirty buffers are the buffer blocks that need to be written to the data files. The data in
these buffers has changed and has not yet been written to the disk.

= Free buffers do not contain any data or are free to be overwritten. When Oracle reads
data from the disk, free buffers hold this data.

= Pinned buffers are the buffers that are currently being accessed or explicitly retained
for future use.

Oracle uses a least recently used algorithm (LRU algorithm) to manage the contents of
the shared pool and database buffer cache. When a user’s server process needs to put a SQL
statement into the shared pool or copy a database block into the buffer cache, Oracle uses the
space in memory that is occupied by the least recently accessed SQL statement or buffer to
hold the requested SQL or block copy. Using this technique, Oracle keeps frequently accessed
SQL statements and database buffers in memory longer, improving the overall performance
of the server by minimizing parsing and physical disk I/O.

base buffer cache to the data files. Dirty buffers contain data that changed

é/ The background process DBWn writes the database blocks from the data-
P
and must be written to disk.

Oracle Database 12c Architecture 401

To better manage the buffer cache better, Oracle Database 12¢ provides three buffer
caches. The DEFAULT cache is the default and is required. The KEEP cache and the RECYCLE
cache can be optionally configured. By default all the data read from the disk is written to
the DEFAULT pool. If you want certain data not to be aged from memory, you can configure
the KEEP pool and use the ALTER TABLE statement to specify which tables should use the KEEP
pool. Similarly, if you do not want to age out good data from the default cache for tempo-
rary data, you may specify such tables to have the RECYCLE pool instead of the default. The
blocks in the KEEP pool also follow the LRU algorithm to age out blocks when new blocks
need space in the KEEP pool. By sizing the KEEP pool appropriately, you can hold frequently
used blocks longer in the KEEP pool. The RECYCLE cache removes the buffers from memory
as soon as they are no longer needed.

y The DB_CACHE_SIZE parameter specifies the size of the database buffer
A&TE cache DEFAULT pool. To configure the KEEP and RECYCLE pools, use the
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE parameters.

Since Oracle Database 11g Release 2, Oracle Linux and Oracle Solaris servers make
use of the flash storage for additional buffer cache. Database Smart Flash Cache allows the
database buffer cache to be expanded beyond the SGA in main memory to a second level
cache on flash memory. When the block expires from the SGA buffer cache, it is evicted to
the database flash cache until required again. Flash cache is configured using two database
parameters. DB_FLASH_CACHE_FILE identifies the flash device, and DB_FLASH_CACHE_SIZE
specifies the size of flash cache.

Redo Log Buffer

The redo log buffer is a circular buffer in the SGA that holds information about the changes
made to the database data. The changes are known as redo entries or change vectors and are
used to redo the changes in case of a failure. DML and DDL statements are used to make
changes to the database data. The parameter LOG_BUFFER determines the size of the redo log
buffer cache.

¢ The background process LGWR writes the redo log information to the
P online redo log files.
Shared Pool

The shared pool portion of the SGA holds information such as SQL, PL/SQL procedures
and packages, the data dictionary, locks, character-set information, security attributes, and
so on. The shared pool consists of the library cache and the data dictionary cache.

The library cache contains the shared SQL areas, private SQL areas, PL/SQL programs,
and control structures such as locks and library cache handles.

The shared SQL area is used for maintaining recently executed SQL statements and their
execution plans. Oracle divides each SQL statement that it executes into a shared SQL area

402 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

and a private SQL area. When two users are executing the same SQL, the information in
the shared SQL area is used for both. The shared SQL area contains the parse tree and exe-
cution plan, whereas the private SQL area contains values for the bind variables (persistent
area) and runtime buffers (runtime area). Oracle creates the runtime area as the first step
of an execute request. For INSERT, UPDATE, and DELETE statements, Oracle frees the runtime
area after the statement has been executed. For queries, Oracle frees the runtime area only
after all rows have been fetched or the query has been canceled.

Oracle processes PL/SQL program units the same way it processes SQL statements.
When a PL/SQL program unit is executed, the code is moved to the shared PL/SQL area,
and the individual SQL commands within the program unit are moved to the shared SQL
area. Again, the shared program units are maintained in memory with an LRU algorithm.

The third area in the library cache is used to store control information and is maintained
internally by Oracle. Various locks, latches, and other control structures reside here, and
any server process that requires this information can access it.

The data dictionary cache holds the most recently used database dictionary information.
The data dictionary cache is also known as the row cache because it holds data as rows
instead of buffers (which hold entire blocks of data).

The SQL query result cache stores the results of queries. If an application runs the same
SELECT statement repeatedly and if the results are cached, then the database can return
them immediately. In this way, the database avoids the expensive operation of rereading
blocks to show results.

The PL/SQL function result cache is used to hold the SQL and PL/SQL function results.
Executions of similar SQL statements can use the cached results to answer query requests.
Because retrieving results from the SQL query result cache is faster than rerunning a query,
frequently run queries experience a significant performance improvement when their results
are cached.

The reserved pool is an area in the shared pool used to allocate large chunks of memory.
Its size is determined by the SHARED_POOL_RESERVED_SIZE initialization parameter.

é/ The parameter SHARED_POOL_SIZE determines the size of the shared pool.
P

Large Pool

The large pool is an optional area in the SGA that the DBA can configure to provide large
memory allocations for specific database operations such as an RMAN backup or restore.
The large pool allows Oracle to request large memory allocations from a separate pool

to prevent contention from other applications for the same memory. The large pool does
not have an LRU list; Oracle Database 12¢ does not attempt to age objects out of the large
pool. The parameter LARGE_POOL_SIZE determines the size of the large pool.

Oracle Database 12c Architecture 403

Java Pool

The Java pool is another optional area in the SGA that the DBA can configure to provide
memory for Java operations, just as the shared pool is provided for processing SQL and
PL/SQL statements. The parameter JAVA_POOL_SIZE determines the size of the Java pool.

Streams Pool

The streams pool is exclusively used by Oracle streams. The STREAMS_POOL_SIZE parameter
determines the size of the streams pool.

If any SGA component size is set smaller than the granule size, the size of
P the component is rounded to the nearest granule size.
Oracle Database 12¢ can manage all the components of the SGA and PGA
&’TE automatically; there is no need for the DBA to configure each pool indi-

vidually. You will learn more about automatic memory management in
Chapter 14.

Oracle Background Process

Many types of Oracle background processes exist, designed specifically for different func-
tions. Each process performs a specific job in helping to manage an instance. Five Oracle
background processes are required by the Oracle instance, and several background processes
are optional. The required background processes are found in all Oracle instances. Optional
background processes may or may not be used, depending on the features that are being
used in the database. Table 8.4 describes the required background processes. The database
instance terminates abruptly if you terminate any of these processes (except RECO, DIAO,
DIAG—these are restarted automatically if the process dies or is terminated) or if there is an
error in one of these processes and Oracle had to shut down the process. The processes are
started by default when the instance starts.

TABLE 8.4 Required Oracle Background Processes

Process Name OS Process Description

Database Writer DBWn Writes modified database blocks from the SGA’s
BWnn database buffer cache to the data files on disk.

Checkpoint CKPT Updates the data file headers following a check-

point event.

404 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

TABLE 8.4 Required Oracle Background Processes (continued)

Process Name OS Process Description

Log Writer LGWR Writes transaction recovery information from the
SGA's redo log buffer to the online redo log files
on disk.

Process Monitor PMON Cleans up failed user database connections.

System Monitor SMON Performs instance recovery following an instance
crash, coalesces free space in the database, and
manages space used for sorting.

Listener Registration LREG Registers information about the database instance
and dispatcher processes with the listener.

Recoverer RECO Recovers failed transactions that are distributed
across multiple databases when using Oracle’s
distributed database feature.

Memory Monitor MMON Gathers and analyzes statistics used by the Auto-
matic Workload Repository feature. See Chap-
ter 14 for more information on using this feature.

Memory Monitor MMNL Gathers and analyzes statistics used by the Active

Light Session History feature. See Chapter 14 for more
information on using this feature.

Virtual Keeper of VKTM Responsible for providing a wall-clock time

Time (updated every second) and reference-time
counter.

Diagnosability DIAG Performs diagnostic dumps.

Diagnosability DIAO Diagnostic process responsible for hang detec-

tion and deadlock resolution.

Table 8.5 describes some of the optional background processes.

Oracle Database 12c Architecture 405

TABLE 8.5 Optional Oracle Background Processes

Process Name OS Process Description

Archiver ARCn Copies the transaction recovery information
from the redo log files to the archive location.
Nearly all production databases use this optional
process. You can have up to 30 archival pro-
cesses (ARCO-ARC9, ARCa-ARCt).

Recovery Writer RVWR Writes flashback data to flashback database logs
in the fast recovery area.

ASM Disk ASMB Present on databases using Automatic Storage
Management disks.

ASM Balance RBAL Coordinates rebalance activity of disks in an ASM
disk group.

Job Queue Monitor CJQn Assigns jobs to the job queue processes when
using Oracle’s job scheduling feature.

Job Queue Jnnn Executes database jobs that have been scheduled
using Oracle’s job-scheduling feature.

Queue Monitor QMNn Monitors the messages in the message queue
when Oracle’s Advanced Queuing feature is used.

Event Monitor EMNC Process responsible for event-management coor-
dination and notification.

Flashback Data FBDA Archives historical records from a table when the

Archive flashback data archive feature is used.

Parallel Query Slave Qnnn Carries out portions of a larger overall query
when Oracle’s Parallel Query feature is used.

Dispatcher Dnnn Assigns user’s database requests to a queue
where they are then serviced by shared server
processes when Oracle’s Shared Server feature
is used. See Chapter 11, “Managing Data and
Undo,” for details on using shared servers.

Shared Server Snnn Server processes that are shared among several

users when Oracle’s Shared Server feature is used.
See Chapter 11 for details on using shared servers.

406 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

TABLE 8.5 Optional Oracle Background Processes (continued)

Process Name OS Process Description

Memory Manager MMAN Manages the size of each individual SGA compo-
nent when Oracle’s Automatic Shared Memory
Management feature is used. See Chapter 14 for
more information on using this feature.

Recovery Writer RVWR Writes recovery information to disk when Oracle’s
Flashback Database feature is used. See Chap-
ter 16, “Implementing Database Backups,” for
details on how to use the Flashback Database

feature.
Change Tracking CTWR Keeps track of which database blocks have
Writer changed when Oracle’s incremental Recovery

Manager feature is used. See Chapter 16 for details
on using Recovery Manager to perform backups.

Space Management SMCO Coordinates various space management tasks.
Coordinator Worker processes are identified with Wnnn.

On Unix systems, you can view these background processes from the operating system
using the ps command, as shown here:

$ ps -ef |grep C12DB1

oracle 3623 1 0 Aug24 ? 00:00:05 ora_pmon_C12DB1
oracle 3625 1 0 Aug24 ? 00:00:06 ora_psp0_C12DB1
oracle 3627 1 2 Aug24 ? 00:12:21 ora_vktm_C12DB1
oracle 3631 1 0 Aug24 ? 00:00:01 ora_gen0_C12DB1
oracle 3633 1 0 Aug24 ? 00:00:01 ora_mman_C12DB1
oracle 3637 1 0 Aug24 ? 00:00:01 ora_diag_C12DB1
oracle 3639 1 0 Aug24 ? 00:00:01 ora_dbrm_C12DB1
oracle 3641 1 0 Aug24 ? 00:00:29 ora_dia0_C12DB1
oracle 3643 1 0 Aug24 ? 00:00:12 ora_dbw0®_C12DB1
oracle 3645 1 0 Aug24 ? 00:00:06 ora_lgwr_C12DB1
oracle 3647 1 0 Aug24 ? 00:00:10 ora_ckpt_C12DB1
oracle 3649 1 0 Aug24 ? 00:00:12 ora_1lg00_C12DB1
oracle 3651 1 0 Aug24 ? 00:00:04 ora_lg0l_C12DB1
oracle 3653 1 0 Aug24 ? 00:00:01 ora_smon_C12DB1
oracle 3655 1 0 Aug24 ? 00:00:00 ora_reco_C12DB1
oracle 3657 1 0 Aug24 ? 00:00:01 ora_lreg_C12DB1
oracle 3659 1 0 Aug24 ? 00:00:23 ora_mmon_C12DB1
oracle 3661 1 0 Aug24 ? 00:00:20 ora_mmnl_C12DB1

Oracle Database 12c Architecture 407

oracle 3663
oracle 3679
oracle 3681
oracle 3683
oracle 3685
oracle 3687
oracle 3691
oracle 3693
oracle 3697
oracle 3699
oracle 3701
oracle 3703
oracle 3705
oracle 3707
oracle 3737
oracle 3741
oracle 3743
oracle 3746
oracle 3951
oracle 4102
oracle 4886
oracle 4906
oracle 6504
oracle 11619
oracle 11621
oracle 11632
oracle 11634

Aug24 ? 00:00:00 ora_deee_C12DB1
Aug24 ? 00:01:39 ora_p000_C12DB1
Aug24 ? 00:01:16 ora_p001_C12DB1
Aug24 ? 00:00:00 ora_tmon_C12DB1
Aug24 ? 00:00:01 ora_tt00_C12DB1
Aug24 ? 00:00:00 ora_smco_C12DB1
Aug24 ? 00:00:00 ora_aqpc_C12DB1
Aug24 ? 00:00:03 ora_w000_C12DB1
Aug24 ? 00:00:15 ora_p002_C12DB1
Aug24 ? 00:00:14 ora_p003_C12DB1
Aug24 ? 00:00:01 ora_p004_C12DB1
Aug24 ? 00:00:01 ora_p005_C12DB1
Aug24 ? 00:00:00 ora_p006_C12DB1
Aug24 ? 00:00:00 ora_p007_C12DB1
Aug24 ? 00:00:00 ora_qgmo2_C12DB1
Aug24 ? 00:00:00 ora_q002_C12DB1
Aug24 ? 00:00:00 ora_q003_C12DB1
Aug24 ? 00:00:27 ora_cjq0_C12DB1
Aug24 ? 00:00:03 ora_w001_C12DB1
Aug24 ? 00:00:04 ora_w002_C12DB1
Aug24 ? 00:00:00 ora_w003_C12DB1
Aug24 ? 00:00:00 ora_w004_C12DB1
Aug24 ? 00:00:05 ora_s000_C12DB1
03:13 ? 00:00:00 ora_p00a_C12DB1
03:13 ? 00:00:00 ora_p00b_C12DB1
03:14 ? 00:00:00 ora_p008_C12DB1
03:14 ? 00:00:00 ora_p009_C12DB1

R B R R R R R R R R B R BB B R B R BB B BBRBRBRBRBBRB B
O O O © O O O O O O O O O O O O O O O O oo o o o oo o o

This output shows that several background processes are running on the Linux server
for the C12DB1 database, which is a container database.

Threaded Execution

A new parameter introduced in Oracle Database 12¢ allows multiple background processes
to share a single OS process on Unix, similar to the model Oracle has on Windows. This
behavior on Unix is controlled by the parameter THREADED_EXECUTION, which by default is
set to FALSE. The multithreaded Oracle Database model enables Oracle processes to exe-
cute as operating system threads in separate address spaces. In default process models,
SPID and STID columns of VSPROCESS will have the same values, whereas in multithreaded
models, each SPID (process) will have multiple STID (threads) values. The EXECUTION_TYPE
column in VSPROCESS will show THREAD.

408 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

The dynamic view V$BGPROCESS shows the background processes available. The follow-
ing query may be used to list all the background processes running on the instance.

SQL> SELECT min(name || ': '|| description) process_description
2 FROM vS$bgprocess
3 group by substr(name,1,3)
4% ORDER BY 1

sQL> /

y On Windows systems, each background and server process is a thread to

A&TE the oracle.exe process.

Knowing the purpose of the required background processes is a must for the OCA
certification exam. We’ll discuss those purposes in the next subsections.

Database Writer (DBWn)

The purpose of the database writer process (DBWn) is to write the contents of the dirty
buffers to the data files. By default, Oracle starts one database writer process when the
instance starts. For multiuser and busy systems, you can have up to 100 database writer
processes to improve performance. The names of the first 36 database writer processes are
DBWO—DBW9 and DBWa—DBWz. The names of the 37th through 100th database writer processes
are BW36-BW99. The parameter DB_WRITER_PROCESSES determines the additional number of
database writer processes to be started. Having more DBW# processes than the number
of CPUs is normally not beneficial.

The DBWn process writes the modified buffer blocks to disk, so more free buffers are
available in the buffer cache. Writes are always performed in bulk to reduce disk contention;
the number of blocks written in each 1/0 is OS-dependent.

Checkpoint (CKPT)

When a change is committed to a database, Oracle identifies the transaction with a unique
number called the system change number (SCN). The value of an SCN is the logical point
in time at which changes are made to a database. A checkpoint is when the DBWn process
writes all the dirty buffers to the data files. When a checkpoint occurs, Oracle must update
the control file and each data file header to record the checkpoint. This update is done by the
checkpoint process (CKPT); the DBWn process writes the actual data blocks to the data files.

Checkpoints help reduce the time required for instance recovery. If checkpoints occur
too frequently, disk contention becomes a problem with the data file updates. If checkpoints
occur too infrequently, the time required to recover a failed database instance can be sig-
nificantly longer. Checkpoints occur automatically when an online redo log file is full (a log
switch happens).

When a redo log switch happens, the checkpoint process needs to update the header of
all the data files; this causes performance issues on databases with hundreds of data files.
To alleviate this situation, Oracle uses incremental checkpoints. Here the responsibility of

Oracle Database 12c Architecture 409

updating the data file header is given to the DBW# process, when it writes dirty buffers to
data files. The CKPT process updates only the control file with the checkpoint position,
not the data files.

When Does Database Writer Write?

The DBWn background process writes to the data files whenever one of the following
events occurs:

A user’s server process has searched too long for a free buffer when reading a buffer
into the buffer cache.

The number of modified and committed, but unwritten, buffers in the database buf-
fer cache is too large.

At a database checkpoint event. See Chapter 16 for information on checkpoints.
The instance is shut down using any method other than a shutdown abort.

A tablespace is placed into backup mode.

A tablespace is taken offline to make it unavailable or is changed to READ ONLY.

A segment is dropped.

A database checkpoint or thread checkpoint is when all data file headers as well as the
control file are updated with checkpoint information. At this time, the database writes all
the dirty buffers to data files. This happens during normal database shutdown, online redo
log switch, forced checkpoint using ALTER SYSTEM CHECKPOINT, or when the database is
placed in backup mode using ALTER DATABASE BEGIN BACKUP.

Log Writer (LGWR)

The log writer process (LGWR) writes the blocks in the redo log buffer of the SGA to the
online redo log files. When the LGWR writes log buffers to disk, Oracle server processes can
write new entries in the redo log buffer. LGWR writes the entries to the disk fast enough to
ensure that room is available for the server process to write the redo entries. There can be
only one LGWR process in the database.

If the redo log files are multiplexed, LGWR writes simultaneously to all the members of
the redo log group. Even if one of the log files in the group is damaged, LGWR writes the
redo information to the available files. LGWR writes to the redo log files sequentially so
that transactions can be applied in order in the event of a failure.

As soon as a transaction commits, the information is written to redo log files. By writing
the committed transaction immediately to the redo log files, the change to the database is
never lost. Even if the database crashes, committed changes can be recovered from the online
redo log files and applied to the data files.

410 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

When Does Log Writer Write?

The LGWR background process writes to the current redo log group under any of the fol-
lowing conditions:

Three seconds since the last LGWR write

When a user commits a transaction

When the redo log buffer is a third full

When the redo log buffer contains 1MB worth of redo information

Whenever a database checkpoint occurs

Process Monitor (PMON)

The process monitor process (PMON) cleans up failed user processes and frees up all the
resources used by the failed process. It resets the status of the active transaction table and
removes the process ID from the list of active processes. It reclaims all the resources held
by the user and releases all locks on tables and rows held by the user. PMON wakes up
periodically to check whether it is needed. Other processes can call PMON if they detect
a need for a PMON process.

PMON also checks on some optional background processes and restarts them if any
have stopped.

System Monitor (SMION)

The system monitor process (SMON) performs instance or crash recovery at database startup
by using the online redo log files. SMON is also responsible for cleaning up temporary seg-
ments in the tablespaces that are no longer used and for coalescing the contiguous free space
in the dictionary-managed tablespaces. If any dead transactions were skipped during instance
recovery because of file-read or offline errors, SMON recovers them when the tablespace or
data file is brought back online. SMON wakes up regularly to check whether it is needed.
Other processes can call SMON if they detect a need for an SMON process.

In Windows environments, a Windows service called

P OracleServiceInstanceName is also associated with each instance. This
service must be started in order to start up the instance in Windows
environments.

Oracle Storage Structures

An instance is a memory structure, but the Oracle database consists of a set of physical files
that reside on the host server’s disk drives. The physical storage structures include three

Oracle Database 12c Architecture an

types of files. These files are called control files, data files, and redo log files. The additional
physical files that are associated with an Oracle database but are not technically part of

the database are as follows: the password file, the parameter file, and any archived redo

log files. The Oracle Net configuration files are also required for connectivity to an Oracle
database. To roll back database changes using the Database Flashback feature, the flash-
back log files are used. Table 8.6 summarizes the role that each of these files plays in the
database architecture.

TABLE 8.6 Oracle Physical Files

File Type Information Contained in Files

Control file Locations of other physical files, database name, database
block size, database character set, and recovery information.
These files are required to open the database.

Data file All application data and internal metadata.

Redo log file Record of all changes made to the database; used for
instance recovery.

Parameter (pfile or spfile) Configuration parameters for the SGA, optional Oracle fea-
tures, and background processes.

Archived redo log file Copy of the contents of online redo logs, used for database
recovery and for change capture.

Password file Optional file used to store names of users who have been
granted the SYSDBA and SYSOPER privileges. See Chapter 13,
“Implementing Security and Auditing,” for details on SYSDBA
and SYSOPER privileges.

Oracle Net file Entries that configure the database listener and client-to-
database connectivity. See Chapter 12 for details.

Flashback log file If the database has flashback logging enabled, files are written
to the fast recovery area.

Figure 8.10 shows where to view the physical storage information of the database using
OEM Database Express 12¢.

Figure 8.11 shows how to access the DBA menu in SQL Developer. Under DBA menu,
you can view and administer several components of the database.

The three types of critical files that make up a database—the control file, the data file,
and the redo log file—are described in the following sections.

M2 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

FIGURE 8.10 The OEM Database Express Storage menu

ORACLE Enterprise Manager Database Express 12c

2y Seauity v H§ Performance ¥

§ 012C01 (12.1.0.1.0) /& Configuration v | Storage =

Control Files | @) Backup to Trace Tablespaces
Undo Management

| Control File Information
Redo Log Groups
Control Flle Type Current

Control File Creation Date Fri Jul 12, 2013
Control File Sequence Mumber 10018
Last Change Mumber 3341398
Date Last Modified Sun Aug 25, 2013 4:09:32 AM

Archive Logs

Control Files

FIGURE 8.11 The SQL Developer DBA menu

File Edit Mavigate Runm Versioning Tools Help

FH =8 ': Breakpoints Cirl+Shift-R | v |
— B Component Palette Cti+SnifiF -
ﬂﬂm - N ’E (F)startPage * |fho1201 x |[[Estatus x
g e) Tog g Database Status Oracle Host | Oracle Home | TNS Listener
gr UE‘, = Run Manager Al A W
a | i ? Status m Name ‘\u'alue
- Team » 1 Current Status OFEN
@ = APEX Listener 2 Up Since AUG 24, 2013 03:07:54 EPM
| 3 Database Name ol2c0l
& Cert 4 Database Version 12.1.0.1.0

Change M, t
ﬁ ANGE WVanagemen 5 Database Status ACTIVE
Lennections 6 Shutdown Pending NO

7hctive Stave HORML

@ Data Miner 3

o 8 Blocked Ho

: = gbms Qutput 9 Parallel no
& E!Ies . 10 Lrchiver STOPPED
@8 Find DB Object 11 Logins ALLOWED

@ Map View

Migration Projects

; OWA Output

i @ Recent Objects

= Reparts

@& sQL History Fa
=] Snippets

ﬂ Task Progress

2 a Unit Test

v Show Status Bar
Show Toolbars]

Control Files

Control files are critical components of the database because they store important informa-
tion that is not available anywhere else. This information includes the following:

= The name of the database

= A database-creation timestamp

Oracle Database 12c Architecture

The names, locations, and sizes of the data files and redo log files

Tablespace information

Redo log information used to recover the database in the case of a disk failure or

user error

Archived log information

RMAN backup information

Checkpoint information

The following query shows the types of information kept in the control file, indicating

the importance of this file.

SQL> SELECT type FROM vs$controlfile_record_section;

DATABASE

CKPT PROGRESS
REDO THREAD

REDO LOG

DATAFILE

FILENAME
TABLESPACE
TEMPORARY FILENAME
RMAN CONFIGURATION
LOG HISTORY
OFFLINE RANGE
ARCHIVED LOG
BACKUP SET

BACKUP PIECE
BACKUP DATAFILE
BACKUP REDOLOG
DATAFILE COPY
BACKUP CORRUPTION
COPY CORRUPTION
DELETED OBJECT
PROXY COPY

41 rows selected.

SQL>

BACKUP SPFILE

DATABASE INCARNATION
FLASHBACK LOG

RECOVERY DESTINATION
INSTANCE SPACE RESERVATION
REMOVABLE RECOVERY FILES
RMAN STATUS

THREAD INSTANCE NAME MAPPING
MTTR

DATAFILE HISTORY

STANDBY DATABASE MATRIX
GUARANTEED RESTORE POINT
RESTORE POINT

DATABASE BLOCK CORRUPTION
ACM OPERATION

FOREIGN ARCHIVED LOG

PDB RECORD

AUXILIARY DATAFILE COPY
MULTI INSTANCE REDO APPLY
PDBINC RECORD

43

M4 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

The control files are created when the database is created in the locations specified in the
control_files parameter in the parameter file. Because a loss of the control files negatively
impacts the ability to recover the database, most databases multiplex their control files to
multiple locations. Oracle uses the CKPT background process to automatically update each
of these files as needed, keeping the contents of all copies of the control synchronized. You
can use the dynamic performance view VSCONTROLFILE to display the names and locations
of all the database’s control files. A sample query on V$CONTROLFILE is shown here:

SQL> SELECT name FROM vs$controlfile;

/u@l/app/oracle/oradata/C12DBl/controlfile/ol_mf_8tx7cfnl_.ctl
/u@l/app/oracle/fast_recovery_area/C12DBl/controlfile/ol_mf_8tx7cfz0_.ctl

sQL>

This query shows that the database has two control files, called o1_mf_8tx7cfnl_.ctl
and ol_mf_8tx7cfz0_.ctl, which are stored in different directories. The control files can
be stored in any directory; however, it is better if they are physically stored on different
disks. You can also monitor control files using EM Database Express (on the Server tab,
choose Control Files under Storage, as shown in Figure 8.12).

few megabytes in size. However, they can be larger, depending on the
PFILE/SPFILE setting for CONTROLFILE_RECORD_KEEP_TIME when the
Recovery Manager feature is used.

é/ Control files are usually the smallest files in the database, generally a
P

FIGURE 8.12 EM Database Express showing control files

ORACLE Enterprise Manager Database Express 12¢ Help = 4 svsTEM | LogOut O
10.10) A Configuration v 5 B Performance v
Control Files | @ Backupto Trace K Page Refreshed 1:26:43 PMGMT-0800 (%,
v/ Control File Information | Control File Sections.
Control Fiis Typs Currant R
Gontrol Fils Greation Data - Tua Jun 4. 201350745 P | rype Total Record C... | Used Record C.. | Record Size | Section Size
Contel Pl Sacuenes fumber - 87041 [Fiename 4146 27 52— 7B =]
Last Changs Number 18514466 e oo B 02 1oxe
Dals Last Modfied Sat Nov 9, 2013 1:25:25 PM
Backup Fie 1,006 0 760 M T66KE
Datafile Co 1,000 2 736 | 715KE
Database .. B384 0 e0 [655KE
| List of Control Files Foreign Arc 1,002 [604 [591KB
[File Nome | Fite Dire.. | Created in Flash Reco.. | File Size Datafile 1024 21 520 | 520k8 -
| o1_mr_ster suo1/eppr Yes - Restore Pol 2083 o 212 [431K
o1_mf_Btx7 Jubl/app/. Ho [l Guarantee 2,048 o 212 [424KB
| Backup Da 1,063 o 200 | 208KB
Offline Ran 1,063 a 200 | 208ke
Flashback 2,048 o0 54 [l 168KB
Cipt Progr. 1 [8180 [BOKE.
Auxiliary D 128 0 584 [73kB
Tablespace 1024 19 68 W eoKe
Temporary 1,024 4 56 W 56KB L

Oracle Database 12c Architecture 415

In the database, the control files keep track of the names, locations, and sizes of the
database data files. Data files, and their relationship to another database structure called a
tablespace, are examined in the next section.

Data Files

Data files are the physical files that actually store the data that has been inserted into each
table in the database. The size of the data files is directly related to the amount of table data
they store. Data files are the physical structure behind another database storage area called
a tablespace. A tablespace is a logical storage area within the database. Tablespaces group
logically related segments. For example, all the tables for the Accounts Receivable applica-
tion might be stored together in a tablespace called AR_TAB, and the indexes on these tables
might be stored in a tablespace called AR_IDX.

By default, every Oracle Database 12¢ must have at least three tablespaces. Table 8.7
describes these tablespaces.

TABLE 8.7 Required Tablespaces in Oracle 12¢

Tablespace Name Description

SYSTEM Stores the data dictionary tables and PL/SQL code.

SYSAUX Stores segments used for database options such as the Automatic Work-
load Repository, Online Analytical Processing (OLAP), and Spatial.

TEMP Used for performing large sort operations. TEMP is required when the
SYSTEM tablespace is created as a locally managed tablespace; other-
wise, it is optional. See Chapter 10, “Understanding Storage and Space
Management,” for details.

In addition to these three required tablespaces, most databases have tablespaces for stor-
ing other database segments such as undo and application data. Many production databases
often have many more tablespaces for storing application segments. Either you or the applica-
tion vendor determines the total number and names of these tablespaces. Tablespaces are dis-
cussed in detail in Chapter 10, “Understanding Storage and Space Management.”

For each tablespace in the database, there must be at least one data file. Some tablespaces
may be composed of several data files for management or performance reasons. The data
dictionary view DBA_DATA_FILES shows the data files associated with each tablespace in the
database. The following SQL statement shows a sample query on the DBA_DATA_FILES data
dictionary view:

SQL> SELECT tablespace_name, file_name
2 FROM dba_data_files
3 ORDER BY tablespace_name;

416 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

TABLESPACE_N FILE_NAME

APPL_DATA /u@l/app/oracle/oradata/12cR1l/appl_datadl.dbf
APPL_DATA /udl/app/oracle/oradata/12cR1l/appl_data62.dbf

EXAMPLE /u@l/app/oracle/oradata/12cR1l/example@l.dbf
SYSAUX /u@l/app/oracle/oradata/12cR1l/sysaux0l.dbf
SYSTEM /u@l/app/oracle/oradata/12cR1/system0l.dbf
UNDOTBS1 /u@l/app/oracle/oradata/12cR1l/undotbs0l.dbf
USERS /udl/app/oracle/oradata/12cR1l/users0l.dbf

7 rows selected.
SQL>

The output shows that the APPL_DATA tablespace is comprised of two data files; all
other tablespaces have one data file. You can also monitor data files using EM, as shown
in Figure 8.13.

Data files are usually the largest files in the database, ranging from mega-
é/l’ bytes to gigabytes or terabytes in size.

When a user performs a SQL operation on a table, the user’s server process copies the
affected data from the data files into the database buffer cache in the SGA. If the user has
performed a committed transaction that modifies that data, the database writer process
(DBW#) ultimately writes the modified data back to the data files.

FIGURE 8.13 EM Database Express showing data files

ORACLE Enterprise Manager Database Express 12¢ Hep = 1L svsTEM | legOut O
& 012001 (12.1.0.1.0) FEVCOMGWEMEAIN) < Storage ¥ % Searity v B Performance ¥
Tablespaces “age Refreshed 1:29:10 PM GMT-0600
achons - Vew = | [Freate % 3 (] Permanrt | P, 1o tame |

Name | size | Free Space Used (%) |Avto ... | Ma... | Status ‘ Type | Growp... [Auto... ‘ Directory \

©) APPLICATION_ DATA [l 100M8 e I v Unimte @) v CPPIORACLELZC),,
O1_MF_APPLICAT 9... [100M8 - v I v Unlimite @ @ C\APPYORACLE12C),

B EXAMPLE | BT [U] [X v Unimite @ @ v CPPIORACLELXCY.
EXAMPLEOL.DGF [EE [E.0] T ER v Unimite @ & C:\APPORACIE1ZC..

B SYSAUX [R I 551 v Unlimite @ @ v C:WPPYDRACLEIXCY..
SYSALUXOL.DBF | TREE I o1 v Unlimite @ 5] C:VAPPYORACLE12CY,..

[l SYSTEM [TSR] I 05 v A @ 5]
©O1_MF_SYSTEM_91N... [l 100M8 T e 'H v B @ @ CIAPPORACLE12C),.
SYSTEMO1.D8F . 0 i [T Unlimite @ @ CIAPPYORACLE12CY

B TEMe g save L] Jut v %8 @ & CHAPPIORACLE12CY,.
TEMPO1.06F W save e Jr1 v 4GB @ & CHAPPIORACLE1C),.

B UNDOTBS L ! 7258 71mM8 | 1.9 v 468 @ 2 CWWPPYORACLE12CY,..
UNDOTBS01.D8F ! T25M8 71M8 | L9 VAR -] @ @& CAAPPIORACLELCY,..

Bl USERS [| 28 I 5 v Unimite @ @ v C:VPPYORACLEIZCY..
USERS01.08F (EE | 248 I 75 v Udimite @ & CAPPIORACLEL2CY,..

Oracle Database 12c Architecture a7

Redo Log Files

Whenever a user performs a transaction in the database, the information needed to repro-
duce this transaction in the event of a database failure is written to the redo log files, and
the user does not get a confirmation of the commit until the transaction is successfully
written to the redo log files.

Because of the important role that redo logs play in Oracle’s recovery mechanism, they are
usually multiplexed. This means that each redo log contains one or more copies of itself in case
one of the copies becomes corrupt or is lost because of a hardware failure. Collectively, these
sets of redo logs are referred to as redo log groups. Each multiplexed file within the group is
called a redo log group member. Oracle automatically writes to all members of the redo log
group to keep the files in sync. Each redo log group must be composed of one or more mem-
bers. Each database must have a minimum of two redo log groups because redo logs are used
in a circular fashion.

V$LOG dynamic performance view shows information on redo logs in the database, their
size along with other information. You can use the VSLOGFILE dynamic performance view
to view the names of the redo log groups and the names and locations of their members, as
shown here:

SQL> SELECT group#, member
2 FROM vS$logfile
3% ORDER BY group#

sQL> /

GROUP# MEMBER
:\APP\ORACLE12C\MULTIPLEX\012C01\REDOOL.LOG
:\APP\ORACLE12C\ORADATA\012CO1\REDOOL. LOG
:\APP\ORACLE12C\MULTIPLEX\012CO1\RED0®2.LOG
:\APP\ORACLE12C\ORADATA\012CO1\RED0O2. LOG
:\APP\ORACLE12C\MULTIPLEX\012C01\REDO®3.LOG
:\APP\ORACLE12C\ORADATA\012C01\RED0O3. LOG
:\APP\ORACLE12C\MULTIPLEX\012CO1\REDO®4.LOG
:\APP\ORACLE12C\ORADATA\012CO1\RED0O4 . LOG

A DA W W NN R

8 rows selected.
SQL>

This output shows that the database has a total of four redo log groups and that each group
has two members. Each of the members is located in a separate directory on the server’s disk
drives so that the loss of a single disk drive will not result in the loss of the recovery informa-
tion stored in the redo logs. You can also monitor redo logs using EM Database Express, as
shown in Figure 8.14.

418 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

FIGURE 8.14 EM Database Express showing redo logs

ORACLE Enterprise Manager Database Express 12c Help = g svsTEM | Logout ©
§ 012C01 (12.1.0.1.0) & Configuration v ¢ Storage v % Seawity v [Performance v § HomassE643
Redo Log Groups Page Refreshed 1:29:58 PM GMT-0600 (%,

Actions ~ View ¥ Create Group... =) p_ Name

MName ‘ Status |Member”. | Archived | Size | Sequence | First Change ... | File Dir...

Bl Redo Log Group 1 Current 2 I 10015 175 4294176
REDOOLLOG . e C:\APPL...
REDOOLLOG I o CHVAPP...

[l Redo Log Group 2 Inactive 2 [B 172 4258350
REDO02.LOG I 0 CHAPP...
REDO02.LOG [B C:WAPP\...

Bl Redo Log Group 3 Inactive z I (00 173 4252818
REDO03.LOG [B C:VAPPY...
REDO03.LOG [B CVAPPL..

Bl Redo Log Group 4 Inactive 2 I 100 174 4282510
REDO04.LOG [B C:VAPPL..
REDO04.LOG I o CHWAPP...

When a user performs a DML activity on the database, the recovery information for this
transaction is written to the redo log buffer by the user’s server process. LGWR eventually
writes this recovery information to the active redo log group until that log group is filled.
Once the current log fills with transaction information, LGWR switches to the next redo
log until that log group fills with transaction information, and so on, until all available
redo logs are used. When the last redo log is used, LGWR wraps around and starts using
the first redo log again. As shown in the following query, you can use the V$L0G dynamic
performance view to display which redo log group is currently active and being written to
by LGWR:

SQL> SELECT group#, members, status
2 FROM vs$log
3 ORDER BY group#;

GROUP# MEMBERS STATUS

1 2 CURRENT
2 2 INACTIVE
3 2 INACTIVE
4 2 ACTIVE

This output shows that redo log group number 1 is current and being written to by
LGWR. Once redo log group 4 is full, LGWR switches back to redo log group 1. The fol-
lowing are the statuses available for log files.

= UNUSED - Online redo log is new and never been written to.

= CURRENT - The current active redo log.

Oracle Database 12c Architecture 419

= ACTIVE - Log is active but is not the current log. It is needed for crash recovery.

= CLEARING - A short time status during ALTER DATABASE CLEAR LOGFILE statement.
After the log is cleared, the status changes to UNUSED.

= CLEARING_CURRENT - Current log is being cleared of a closed thread. The log file may be
in this status if there is an I/O error writing the new log information.

= INACTIVE - Log is no longer needed for instance recovery.

When LGWR wraps around from the last redo log group back to the first redo log
group, any recovery information previously stored in the first redo log group is overwritten
and, therefore, no longer available for recovery purposes.

However, if the database is operating in archive log mode, the contents of these previ-
ously used logs are copied to a secondary location before the log is reused by LGWR. If this
archiving feature is enabled, it is the job of the ARC#n background process described in the
previous section to copy the contents of the redo log to the archive location. These copies of
old redo log entries are called archive logs. Figure 8.15 shows this process graphically.

In Figure 8.13, the first redo log group has been filled, and LGWR has moved on to redo
log group 2. As soon as LGWR switches from redo log group 1 to redo log group 2, the
ARCn process starts copying the contents of redo log group 1 to the archive log file location.
Once the first redo log group is safely archived, LGWR is free to wrap around and reuse the
first redo log group once redo log group 3 is filled.

FIGURE 8.15 How ARCncopies redo log entries to disk

peee IS o B |

Fle Edit View Navigate Run Versigning JTooks Help
\
BeEd e XEMO-O &- =
ﬂmﬂ % (©) @startpage x | 01201 x [[[Rpatafies x =
My Datafies Errors
3 {1 SQL Translator Framework ~ | o @) - Actions... =1
g #-{[5) Scheduler
& 2-{{3 Seaurity g re |@ i
| -3 Auit Settings 1 C:\APPIORACIE 12C\OR ADATAIO12C0 1\EXAMPLEO 1.DBF EXAMPLE
(3] ®- (3 Profiles 2 C:MPPIORACLEL2CIOR ILEVO1 MF SYSTEM SINBSYK) .DEF SYSTEM
#-[7 Rotes 3 CiAPPIORACLE12CIORADATAD 1 2C0 11SYSAUXD1.DBF SYSAUX
5[Users 4 C:APPIO DATAI012C01\SYSTEMO 1,08
=-{F3 Storage 5 Crap
~-[§5) Archive Logs sl -
&-[E3 Control Files
- C:\APP\ORACLE 12C\FAST_RECOVERY | 7 CiAP Properties |SQL

ALTER TABLESPACE "SYSTEN™
ADD DATRETLE 'C:\APP\ORACLE12CYORADATAY012C01Y SYSTENOZ.DEF'
SIZE 100K

AUTOEXTEHD OH HEXT 100M
MAXSTZE 1000M

5 C:\APP\ORACLE 12C\ORADATAD 12C0
= ({3 Datafies
- B3] C:\APP\ORACLE 12C\ORADATAD 12C0
- £ C:\APP\ORACLE 12C\ORADATAQ 12C0
& 5] C:\APP\ORACLE12C\ORADATAYO12C0
-8 C:\APPYORACLE 12C\ORADATAYO12CD
& B C:\APPIORACLE 12C\ORADATAYD 12C0
- EE C:\APP\ORACLE 12C\ORADATAYD 12C0
a1 B C:\APPIORACLE 12C\ORADATAYD12C0
=[5 Redo Log Groups
-8 =1
- #2
@8
@ EE 24
@[3 Rolback Segments
=-{f3 Tablespaces
- £ EXAMPLE
en. B cysaun

420 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

Nearly all production databases run in archive-log mode because they
doTE need to be able to redo all transactions since the last backup in the event
of a hardware failure or user error that damages the database.

A database can have multiple archive processes and multiple archive destinations. We will
discuss archiving and how the archived redo logs are used for database recovery in Chapter 15.

sl If LGWR needs to write to the redo log group that ARCn is trying to copy
ING but cannot because the destination is full, the database hangs until space

is cleared on the drive.

SQL Developer also has friendly menu options to manage database storage structures
easily for DBAs. Figure 8.16 shows the storage menu screen from SQL Developer, giving
you an overview. We encourage you to go through the menu items, modify the configura-
tion, and use the SQL tab to view the SQL code generated by the SQL Developer tool. This
will help you obtain a good understanding of the options and the syntax.

Real Application Clusters Database

Oracle Real Application Clusters were introduced in Oracle9jand have seen major
enhancements in the Oracle 10g database where “grid” is the key. In the RAC architec-
ture, there is one storage structure (database), with multiple Oracle instances (memory
and processes) running on multiple nodes. This architecture gives high availability and
horizontal scalability. When you need more capacity, all you need to do is add one more
node to the RAC cluster.

In the RAC architecture, certain components must be shared by the instances; some can
be shared by the instances and some components cannot be shared.

Control files belong to the database, and all instances use the same control files.

Database files belong to the database, and all instances access the same data files
and permanent and temporary tablespaces.

Each instance undo is kept separately and, therefore, requires that each instance
undo its tablespace separately.

Each instance has its own redo log buffer and redo threads and, therefore, has its
own redo log files. Redo log files are not shared by the instances, but the files must
reside in a shared location for recovery and backup purposes.

It is advisable to keep the parameter file in a shared location accessible to all
instances, with instance-specific parameters prefixed with the instance name.

Oracle Database 12c Architecture 421

FIGURE 8.16 The SQL Developer screen showing database storage

ey T el

|| Fle Edit View Mavigate Run Versioning Tools Help
FoEd 90 XEMO-O & B
0 Byoea x) (@statrage x |Fho12c1 x | [FGDatafles x]
M Datafies Errors
| é (@ (£ SQL Translator Framework ~ | # @) ~ Actons... 7
i ;-7 Schedule
H zmmmr 8 Fietame 8 Tabiespace
-2 Audt Settings 1 C:VAPP\ORACLE 12CIORADATAIO 12C0 1\EXAMPLEO1.0BF EXAMPLE
W (3 Profies 2 C:WAPP\ORACLE 12C\DRADATAIO 1200110 12CO1DATAFILEVO1 MF SYSTEM 9INBSYK) .OBF SYSTEM
@[3 Roles 3 C;\APP\ORACLE 12C\ORADAT A0 1200 1\SYSAUXD 1.0BF SYSAUX
@[3 Users 1VAPPIORA RA S .00 ~
=-{f3 Storage sc —
(B9 Archive Logs ==
{5 Control Fies sc
2 C:\APPIORACLE 12CFAST _RECOVERY_ | | Properties |SQL
2 C:\VAPPORACLE 12C\ORADATAYD 12C0 RLTER TABLESPRCE “SYSTEN™ 3
= [15 Datafies RDD DATRETILE 'C:\APP\ORACLE12C\ ORADATA\012C01\SYSTENOZ. DEF'
& B8] C:\APPYORACLE 12C\CRADATA\D 12C0 SIZE 100K
- EE C:\APP\ORACLE 12C\ORADATAO 12C0 RUTOEXTEHD ON HEXT 100M
& £ C:\APP\ORACLE 12C\ORADATAO 12C0 MIXSIZE 1000
- £ C:\APP\ORACLE12C\ORADATAD 12C0
- E C:\APP\ORACLE 12C1ORADATAIO 1200
- E C:\APP\CRACLE 12C\ORADATAID 12C0
& B8 C:\APP\ORACLE 12C\ORADATAYD 12C0.
(=-(F Redo Log Groups
-8 =1
a8 n
-8 =3
w-E #4
@[3 Rolbadk Segments
=) Tablespaces w
- EH exampie < 3
o) svaminy -

The Logical Structure

In the previous section, you saw how the Oracle database is configured physically. The
obvious question is where and how your table is stored in a database. Let’s try to relate the
physical storage to the logical structures you know, such as tables and indexes.

Oracle logically divides the database into smaller units to manage, store, and retrieve
data efficiently. The following paragraphs give you an overview of the logical structures:

Tablespaces The database is logically divided into smaller units at the highest level, called
tablespaces. A tablespace has a direct relationship to the physical structure—a data file can
belong to one and only one tablespace. A tablespace could have more than one data file asso-
ciated with it.

A tablespace commonly groups related logical structures together. For example, you might
group data specific to an application in a tablespace. This will ease the management of the
application from the DBA’s point of view. This logical division helps administer a portion of
the database without affecting the rest of it. Each Oracle Database 12¢ database must have at
least three tablespaces: SYSTEM, SYSAUX, and TEMP. For better management and performance,
it must have two more tablespaces holding the UNDO data and application data.

Tablespaces are discussed in detail in Chapter 10.

Blocks A block is the smallest unit of storage in Oracle. A block is usually a multiple of
the operating-system block size. A data block corresponds to a specific number of bytes
of storage space. The block size is based on the parameter DB_BLOCK_SIZE and is deter-
mined when the database is created.

422 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

Extents An extent is the next level of logical grouping. It is a grouping of contiguous
blocks, allocated in one chunk. Because they are allocated in contiguous chunks, extents
cannot spawn multiple data files.

Segments A segment is a set of extents allocated for logical structures such as tables, indexes,
clusters, table partitions, materialized views, and so on. Whenever you create a logical struc-
ture that stores data, Oracle allocates a segment, which contains at least one extent, which in
turn has at least one block. A segment can be associated to only one tablespace; the extents

of a segment may belong to more than one datafile. A segment is created when a table, index,
materialized view, or a clustered table is created. When partitioned tables or partitioned
indexes are created, one segment is created for each partition.

Figure 8.17 shows the relationship between data files, tablespaces, segments, extents,
and blocks.

A schema is a logical structure that groups the database objects. A schema is not directly
related to a tablespace or to any other logical storage structure. The objects that belong to
a schema can reside in different tablespaces, and a tablespace can have objects that belong
to multiple schemas. Schema objects include structures such as tables, indexes, synonyms,
procedures, triggers, database links, and so on.

The DBA sees and manages the physical structure and logical structures of the database,
whereas the programmer or a database user sees only the logical storage structures such as
tables, indexes, and materialized views. They are not interested or not required to know to
which tablespace the table belongs or where the tablespace data files are stored.

FIGURE 8.17 Logical database structure

Database

SYSAUX [l | Tablespace || |Tablespace
Tablespace 1 2

SYSTEM
Tablespace

N

Tablespace Segment
Segment 1 Segment 2 Dj:ljjj\
J g Extent 1 ™~

Segment 3 |:|:|:|:|:|j/

AN Extent 2

Oracle Database 12c Architecture 423

@ Real World Scenario
Exploring the Data Dictionary for Physical and Logical Structures

The Oracle Data Dictionary is discussed in detail in Chapter 9. You may do this exercise after
the database is created, but we wanted to document the information where it is relevant.

Here are a few data dictionary objects you can use to explore and help you understand
the physical and logical structures more. You can use SQL*Plus or SQL Developer to
explore. However, because SQL Developer shows a spreadsheet-like output, we recom-
mend that you use SQL Developer for improved readability; just execute SELECT * FROM
<dictionary_view> in the Worksheet.

Physical Storage Structures

Use the following v$ and DBA views to explore your database’s physical storage.

Control Files
VSCONTROLFILE

Redo Log Files
V$LOG

VSLOGFILE

Data Files—The tablespace number (V$) or name (DBA) links a data file to its logical stor-
age structure

V$DATAFILE
VSTEMPFILE
DBA_DATA_FILES
DBA_TEMP_FILES

Logical Storage Structures

Use the following DBA views to explore the logical storage structures, and see how
they are linked to physical storage. All of the views listed here have a file number col-
umn that ties the tablespace, segment, or extent back to its physical storage.

Tablespaces

DBA_TABLESPACES

Segments—The tablespace name links to DBA_TABLESPACES, segment’s parent in the
relational model for database logical structures.

DBA_SEGMENTS

424 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

Extents—The tablespace name ties extents to DBA_TABLESPACES, and the segment
owner, segment type, and segment name combination ties each extent to a segment in
the relational model.

DBA_EXTENTS

Summary

This chapter introduced you to the Oracle Database 12¢ architecture with the components that
constitute an Oracle database server. Most popular databases today are relational databases.
Relational databases consist of data composed of a set of relational objects. Data is stored in
tables as rows and columns. Oracle is a relational database. SQL is the language used to man-
age and administer Oracle databases. Several tools are available to administer Oracle Database
12¢. The most common ones used by DBAs are SQL*Plus and Oracle Enterprise Manager.
SQL Developer is a GUI tool that can be used to interact with Oracle Database 12¢ using sev-
eral DBA functions readily coded in menu items.

The Oracle Database 12¢ architecture consists of three major components: memory, pro-
cesses, and storage. A user process initiates a connection with the Oracle database and starts
a server process. The server process is responsible for performing the tasks on the database.
The memory structures and background processes together are an Oracle instance. The server
process communicates with the memory structure known as the system global area. The SGA
consists of a shared pool, database buffer cache, and redo log buffer. The shared pool also
includes components such as a Java pool, large pool, result cache, and streams pool.

There are many types of background processes, each performing a specific job to maintain
and manage the database instance. All databases have at least nine background processes:
the important ones are database writer, checkpoint writer, log writer, process monitor, and
system monitor. Depending on the configuration of the database, there may be other back-
ground processes such as archiver, ASM balancing, and so on.

The physical data structure consists of several files stored on disk. The most important file
is the control file, which keeps track of several important pieces of information, such as data-
base name, names of data files and redo log files, backup information, and so on. The CKPT
process is responsible for keeping the control file updated. Redo log files contain information
from the redo log buffer. The LGWR process is responsible for writing the redo log buffer
contents to the redo log files. Oracle metadata and application data are stored in data files.
The DBWn process is responsible for writing dirty blocks from the database buffer cache to
the data files.

Looking at the logical structure of the database, a tablespace is the highest level of logical
unit. A tablespace consists of several segments. A segment consists of one or more extents.
An extent is a contiguous allocation of blocks. A block is the smallest unit of storage in an
Oracle database.

Exam Essentials 425

Exam Essentials

Describe common Oracle tools and their uses. Know which tools are available for
connecting to and interacting with an Oracle database. Understand how these tools
differ from one another.

Understand the Oracle architecture components. Be able to describe the logical and physical
components of the Oracle architecture and the components that make up each. Know the rela-
tionship between segments, extents, database blocks, and operating-system blocks.

Understand the difference between a traditional Oracle database and a multitenancy
database. Multitenancy databases are known as container databases and can have one
or more pluggable databases. A traditional database is one database.

Know the background processes. Understand the Oracle Database 12¢ background processes
and how they are used. The important ones to know are DBW#, CKPT, LGWR, PMON,
SMON, ARCr, ASMB, RBAL.

Identify the three types of database files that constitute the database. Understand the
purposes and key differences between the control files, data files, and redo log files.

Explain and categorize the SGA memory structures. Identify the SGA areas along with
the subcomponents contained within each of these areas.

426 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

Review Questions

1. Choose two SGA structures that are required in every Oracle instance.
A. Large pool
B. Shared pool
C. Buffer cache
D. Java pool

2. Which statement is true?
A. A database can have only one control file.
B. A database must have at least two control files.
C. A database may have zero or more control files.
D. A database must have at least one control file.
3. Which component is configured at database startup and cannot be dynamically
managed?
. Redo log buffer
. Streams pool

A
B
C. Java pool
D. Shared pool
E

. None of the above

4. Which component is not part of an Oracle instance?
System global area

Process monitor

Control file

Shared pool

moowP»

None

5. Which background process guarantees that committed data is saved even when the
changes have not been recorded in data files?
A. DBWx

PMON

LGWR

CKPT

ARCn

mOOow

10.

1.

Review Questions

User John has updated several rows in a table and issued a commit. What does the
DBW# (database writer) process do at this time in response to the commit event?

A.
B.
C.
D.

Writes the changed blocks to data files.
Writes the changed blocks to redo log files.
Triggers checkpoint and thus LGWR writes the changes to redo log files.

Does nothing.

Which of the following best describes a RAC configuration?

A.
B.
C.
D.

One database, multiple instances
One instance, multiple databases
Multiple databases plugged in from multiple servers

Multiple databases, multiple instances

Which component of the SGA contains the parsed SQL code?

A.
B.
C.
D.

Database buffer cache
Dictionary cache
Library cache

Parse cache

Which tasks are accomplished by the SMON process? (Choose all that apply.)

A.
B.
C.
D.

Performs recovery at instance startup
Performs cleanup after a user session is terminated
Starts any server process that stopped running

Coalesces contiguous free space in dictionary-managed tablespaces

Choose the best statement from the options related to segments.

A.

A contiguous set of blocks constitutes a segment.

B. A nonpartitioned table can have only one segment.
C.
D

. All of the above are true.

A segment can belong to more than one tablespace.

421

From the following list, choose two processes that are optional in an Oracle Database
12¢ database.

A.

MMON

B. MMNL
C.
D. MMAN

ARCn

428

12.

13.

14.

15.

Chapter 8 = Introducing Oracle Database 12c Components and Architecture

Which SGA component will you increase or configure so that RMAN tape backups do
not use memory from the shared pool?

A. Java pool

B. Streams pool

C. Recovery pool

D. Large pool
When a user session is terminated, which processes are responsible for cleaning up and
releasing locks? (Choose all that apply.)
A. DBW#n

B. LGWR

C. MMON

D. PMON

E. SMON

The LRU algorithm is used to manage what part of the Oracle architecture?

A. Users who log on to the database infrequently and may be candidates for being

dropped

B. The data file that stores the least amount of information and will need the least
frequent backup

C. The tables that users rarely access so that they can be moved to a less active
tablespace

D. The shared pool and database buffer cache portions of the SGA
Two structures make up an Oracle server: an instance and a database. Which of the
following best describes the difference between an Oracle instance and a database?

A. An instance consists of memory structures and processes, whereas a database is
composed of physical files.

B. An instance is used only during database creation; after that, the database is all
that is needed.

C. An instance is started whenever the demands on the database are high, but the
database is used all the time.

D. An instance is configured using a pfile, whereas a database is configured using
a spfile.

Review Questions 429

16. Which of the following is the proper order of Oracle’s storage hierarchy, from smallest
to largest?

A. Operating-system block, database block, segment, extent
B. Operating-system block, database block, extent, segment
C. Segment, extent, database block, operating-system block
D. Segment, database block, extent, operating-system block
17. The DBA unknowingly terminated the process ID belonging to the PMON process

of Oracle Database 12¢ database using the kill -9 command on Unix. Choose the
best answer:

A. Oracle spawns another PMON process automatically.
B. The database hangs, and the DBA must manually start a PMON process.

C. If the database is in ARCHIVELOG mode, Oracle automatically starts another
PMON process and recovers from the database hang.

D. The instance crashes and needs to be restarted.
18. When an incremental checkpoint happens in a database, which file(s) are updated with
the checkpoint position? Choose all options that are correct.
A. Data files
B. Control files
C. Initialization Parameter Files
D. Redo log files
E. Archive log files
19. User Isabella updates a table and commits the change after a few seconds. Which of the

following actions are happening in the database? Order them in the correct sequence
and ignore the actions that are not relevant.

A. Oracle reads the blocks from data file to buffer cache and updates the blocks.
B. Changed blocks from the buffer cache are written to data files.

C. The user commits the change.

D. LGWR writes the changed blocks to the redo log buffer.

E. The server process writes the change vectors to the redo log buffer.

F. LGWR flushes the redo log buffer to redo log files.

G.

A checkpoint occurs.

430 Chapter 8 = Introducing Oracle Database 12c Components and Architecture

20. Querying the V$LOG file shows the following information. Which redo group files are
required for instance crash recovery?
SQL> select GROUP#, ARCHIVED, STATUS from VSLOG;
GROUP# ARC STATUS

1 NO CURRENT
2 NO 1INACTIVE
3 NO INACTIVE
4 NO ACTIVE

Group 1 and 4
Group 2 and 3
Groups 1 through 4
Group 1

m©oowP»

Group 4

Creating and
Operating Oracle
Database 12c¢

ORACLE DATABASE 12c¢: OCA EXAM
OBJECTIVES COVERED IN THIS CHAPTER:

v Oracle Software Installation Basics

= Plan for an Oracle Database software installation.

v Installing Oracle Database Software

= Install the Oracle Database software.

v Creating an Oracle Database Using DBCA

= Create a database by using the Database Configuration
Assistant (DBCA).

® Generate database creation scripts by using DBCA.
* Manage database design templates by using DBCA.

= Configure database options by using DBCA.

v Oracle Database Instance
= Understand initialization parameter files.
= Start up and shut down an Oracle database instance.

* View the alert log and access dynamic performance views.

As a DBA, you are responsible for creating and manag-

; ing Oracle databases and services within your organization.
I Oracle provides a comprehensive and cohesive set of tools to
help DBAs perform these tasks. It is important for you to understand these tools and how
to use them properly.

Oracle uses Java-based tools to manage Oracle Database 12¢ because Java gives the same
look and feel to the tools across all platforms. In this chapter, we will cover how to use the
Oracle Database Configuration Assistant tool, which is used to create and delete Oracle
databases, and how you can use templates to create databases. DBCA can also be used to
modify the database options installed.

After the database is created using DBCA, it will be up and running. We will then cover
how to shut down and restart the database for some configuration changes, apply patches,
and perform server maintenance. We’ll describe the various database startup and shutdown
options and explain the circumstances under which you use these options.

You will also learn more about the Oracle data dictionary, including how the dictionary
is created, where it is created, and so on. Finally, we will cover initialization parameter files
and discuss how you can use them to manage, locate, and view the database alert log.

Oracle Database 12c¢ Software Installation

We will begin this chapter with Oracle’s software installation tool, Oracle Universal Installer
(OUI). OUL is a Java-based graphical tool used to install Oracle software. Because it is written
in Java, OUI looks and feels the same on all platforms. OUI is included with every software
installation distribution media.

OUI also has the option to create an Oracle database along with the software install. Before
software installation and database creation can occur, certain operating-system requirements
must be met. As the DBA, you must properly plan the Oracle database software installation.

The examples in this section are for a Linux server, but most of the con-
d#TE cepts apply equally to Windows platforms. Any significant differences
between Linux and Windows are noted.

Oracle Database 12c Software Installation 433

Planning the Oracle Database 12¢ Software Install

The base release of Oracle database software and other Oracle products can be down-
loaded from Oracle’s software delivery cloud location https://edelivery.oracle.com.
You must have a valid support identification number to download patches and patch sets
from My Oracle Support (MOS) location at http://support.oracle.com, widely known
as Metalink.

Oracle Database 12¢ software is available on various platforms: Unix, Linux, and Windows
(64-bit edition only). This chapter will show examples of downloading and installing on a
Linux platform.

Reviewing the Documentation

Before beginning an installation of Oracle Database 12¢, you need to review several docu-
ments so that you completely understand the installation requirements. These documents
include the following:

The installation guide for your operating system

The general release notes for the version of Oracle you are installing

The operating-system-specific release notes for the version of Oracle you are installing
Any quick-start installation guides

Before you begin, review each of these documents so that you are thoroughly familiar
with the installation process and any known associated issues.

All of these documents are available on Oracle’s Documentation Library
dﬂz website located at http://www.oracle.com/pls/db121/homepage.

Reviewing the System Requirements

The next task is to review your server-hardware specifications to see whether they meet
or exceed the specifications in the install documentation. Minimally, this means you must
confirm that your server meets the installation requirements in these four areas:

The operating system is of the proper release level.

The server has adequate memory to perform the install and run an instance.

The server has adequate CPU resources to perform the install and run an instance.
The server has adequate disk storage space to perform the install and run a database.

Table 9.1 shows the recommended minimum hardware requirements for an Oracle
Database 12¢ installation.

https://edelivery.oracle.com
http://support.oracle.com
http://www.oracle.com/pls/db121/homepage

434 Chapter 9 = Creating and Operating Oracle Database 12c

TABLE 9.1 Recommended Hardware Requirements for Oracle Database 12¢

Hardware Component Recommended Requirement

Memory 1GB minimum, 2GB+ recommended

Swap space 1.5GB or equal to the amount of RAM

Temp space 1GB of free space in the /tmp directory on Unix systems
Free disk space 6.4GB of disk space

The Oracle Universal Installer, which is described in the subsequent section “Using the
Oracle Universal Installer,” will perform a quick system check prior to starting an installa-
tion to see whether your system meets the specific requirements for your operating system.
If your system does not meet the minimum requirements, the installer will return an error
and abort.

On Unix systems, you must examine one critical system requirement before installation:
the Unix kernel parameters. Unix kernel parameters are used to configure the Unix operating-
system settings for operating-system-level operations that impact Oracle-related activities such
as the following:

The maximum size allowed for a sharable memory segment on the server, which can
impact the system global area (SGA) size

The maximum number of files that can be open on the server at one time, which
impacts the total number of users and files in the database

The number of processes that can run concurrently on the server, which impacts the
number of users and the ability to use some optional features

The systems administrator usually makes Unix kernel changes, which may require a
server reboot in order to take effect. The install guide and/or release notes provide details
on the appropriate kernel setting for your operating system. In addition to kernel settings,
the system administrator may have to configure the server’s disk storage system and backup
hardware before installing the Oracle software.

Planning Your Install

Once you review the documentation and system requirements, you are ready to begin
planning your installation. This is the last step before actually running the Oracle
Universal Installer.

One way to simplify the installation planning is to adopt the Optimal Flexible Architecture
(OFA) model that Oracle recommends as a best-practice methodology for managing Oracle
installations in Unix environments (and to a lesser extent, Windows environments). The OFA
model was designed to produce database installations that are easier to manage, upgrade, and

Oracle Database 12c Software Installation 435

back up, while at the same time minimizing problems associated with database growth. The
OFA model addresses four areas:

Naming conventions for Unix file systems and mount points
Naming conventions for directory paths

Naming conventions for database files

Standardized locations for Oracle-related files

In addition to using the OFA model, planning your install also means answering the

following questions:

Which operating-system user will own the installed Oracle software?
On which disk drive and directory will the Oracle software be installed?

What directory structure will be used to store the Oracle software, its related configu-
ration files, and the database itself?

How should the database files be laid out so that the maximum performance benefits
will be realized?

How should the database files be laid out so that the maximum recoverability benefits
will be realized?

Creating the Oracle User Account

On Unix systems, every file is owned by an operating-system user account. Therefore, before
you can install the Oracle software, you must create a Unix user account that will own the
Oracle binaries. The username for this account can be anything, but common Oracle user-
names include oracle, oral2c, and oral21l. Each Unix user is also in one or more operating-
system groups. Create a new operating-system group for the Oracle Unix user. This group is
usually called dba, and you will be prompted for it later during the installation.

On Windows systems, you can choose an account that has administrative privileges on

the server.
)’ On Linux platforms, Oracle provides a preinstall RPM. As a root user, you
AéTE can install the RPM using yum install oracle-rdbms-server-12cR1-

preinstall. This RPM creates the required users and groups to install
Oracle software as well.

Oracle Inventory

Oracle maintains an inventory of all software installed on the server using the Oracle
Inventory. On Unix systems, the Oracle Inventory location is identified by the file /etc/
oralnst.loc. The /etc/oralnst.loc file typically has two lines:

inventory_loc=central_inventory_location

inst_group=group

436 Chapter 9 = Creating and Operating Oracle Database 12c

The central_inventory_location is the directory where the Oracle Inventory is saved.
All users installing Oracle software on this server should have access to this directory. The
group is the install group where the software install users belong, thus they have privilege
to create and update the central inventory. The inventory group (typically named oinstall
on Unix) needs to be created before the software install.

On Windows systems, the central inventory is located under C:\Program Files\Oracle\
Inventory. On Windows systems the inventory group is always named ORA_INSTALL.
The ORA_INSTALL group contains all the Oracle Home Users for all the Oracle Homes
on the server. The central inventory directory and group are automatically created by the
installer on windows.

Job Role Separation Using OS Groups

Oracle Database 12¢ can use operating-system authentication to connect to a specific data-
base, and OS groups may be configured for different job roles and separation of duties.
Oracle Database 12¢ installation requires one mandatory group (the default group where
the software install user belongs in Unix, usually named dba), which is the OSDBA group.
Members belonging to this group can authenticate to the database without a password
using the / AS SYSDBA login option.

Table 9.2 gives an overview of the groups identified by Oracle Database 12¢. All groups
are subsets of OSDBA, meaning members belonging to the OSDBA group can perform all
job role functions. In Table 9.2, the <hn> indicates the home name used for software instal-
lation. The privileges are specific to the databases running under the specific Oracle Home.

TABLE 9.2 Job Role Separation Groups

Job Role System Privilege Windows Group Typical Unix Group

OS DBA - OS users with SYSDBA ORA_<hn>_DBA OSDBA (dba)

DBA privileges

Operator — Limited SYSOPER ORA_<hn>_OPER OSOPER (oper)
administrative privileges

Backup and Recovery SYSBACKUP ORA_<hn>_ OSBACKUPDBA (backupdba)
Admin SYSBACKUP

Data Guard Admin SYSDG ORA_<hn>_SYSDG OSDGDBA (dgdba)
Encryption Key SYSKM ORA_<hn>_SYSKM OSKMDBA (kmdba)

Management Admin

Oracle Database 12c Software Installation 437

Itis possible to install the Oracle Database 12¢ software without creating

&’TE any additional groups on Unix. Only one group is required, typically named
dba, which can be used for the software install inventory group, the OSDBA
group, and the various job role authentication groups, although that is not
the recommended configuration. On Windows, Oracle installer automati-
cally creates the groups.

Naming Volumes and Mount Points

Unless Oracle’s Automatic Storage Management feature or raw devices are used, almost all
files on a Unix server are stored on logical storage areas called volumes that are attached, or
mounted, to directories, or mount points, by the Unix system administrator. The OFA model
suggests that these mount points be given a name that consists of a combination of a character
and numeric values. Common OFA mount points for Unix systems include the following;:

Judl
/mntO1
/du01
/do1

Notice that the naming convention for these mount points is generic. The mount point’s
name has no relationship to what type of file it will ultimately hold. The OFA model recom-
mends this generic naming convention because it provides the greatest flexibility for future
management of the server’s file systems.

)’ The concept of mount points does not apply directly to Windows environ-
A&TE ments. Windows environments assign a standard Windows drive letter
(for example, C:, D:) to each volume.

Creating OFA Directory Paths

The OFA model prescribes that the directory structures under the mount points use a con-
sistent and meaningful naming convention. In addition to this naming convention, the OFA
model assigns standard operating-system environment variable names to some of these direc-
tory paths as nicknames to aid in navigation and to ensure the portability of the directory
structures in the event that they need to be moved to new file systems.

Table 9.3 shows the two operating-system environment variables used in the OFA
model, along with the directories with which the variables are associated, for Unix systems.

438 Chapter 9 = Creating and Operating Oracle Database 12c

TABLE 9.3 Comparison of Unix Directory Paths and Variables

Environment Variable Directory Path Description

SORACLE_BASE /u@l/app/oracle Top-level directory for Oracle

software on the host server

SORACLE_HOME /u@l/app/oracle/ Directory into which the Oracle 12¢
product/12.1.0/dbhome_1 software will be installed

Table 9.4 shows the variables and directories used in the OFA model for Windows

systems.

TABLE 9.4 Comparison of Windows Directory Paths and Variables

Environment Variable Directory Path Description

%0RACLE_BASE% C:\app\oraclel2c Top-level directory for Oracle

software on the host server

%0RACLE_HOMEY% C:\app\oraclel2c\ Directory into which the Oracle 12¢
product\12.1.0\dbhome_1 software will be installed

These environment variables are used extensively when Oracle systems are installed,
patched, upgraded, and managed. Table 9.5 shows several examples of how these variables
define the locations of other Oracle directories.

TABLE 9.5 Common Uses of ORACLE_BASE and ORACLE_HOME

Directory

Description

$ORACLE_HOME /dbs

%0RACLE_HOME%\database

$ORACLE_BASE/admin/PROD/pfile

%O0RACLE_BASE%\admin\PROD\pfile

Default location for password file and parameter file
on Unix systems

Default location for parameter file on Windows
systems

Location of the pfile for a database called PROD on
Unix systems

Location of the pfile for a database called PROD on
Windows systems

Oracle Database 12c Software Installation 439

Directory Description

SORACLE_HOME /network/admin Default location for Oracle Net configuration files on
Unix systems

%0ORACLE_HOME%\network\admin Default location for Oracle Net configuration files on
Windows systems

SORACLE_HOME/rdbms/admin Location of many Oracle database-configuration
scripts on Unix systems

%0RACLE_HOME%\ rdbms\admin Location of many database-configuration scripts on
Windows systems

For Unix systems, Table 9.5 says $SORACLE_HOME /dbs is the default location for the pfile and
spfile but then says that pfiles should be stored in $ORACLE_BASE/admin/<instance>/pfile.
Windows systems are similar. This implies that the same file needs to be in two locations at
the same time. You can accomplish this using two tricks; which one you use depends on your
operating system.

The following examples use 12CR11 as the database (and instance) name. On Unix systems,
you can create the pfile in the $ORACLE_BASE/admin/12CR11/pfile directory, and then create
a symbolic link in $ORACLE_HOME/dbs that points to the file in $ORACLE_BASE/admin/12CR11/
pfile using this syntax:

1n -s $ORACLE_BASE/admin/12CR11/pfile/init12CR11l.0ra
SORACLE_HOME/dbs/initl12CR11.0ra

On Windows systems, you can create the pfile in the %0RACLE_BASE%\admin\12CR11\pfile
directory, and then put another pfile in $ORACLE_HOME%\dbs that contains a single entry that
points to the other pfile in %0RACLE_BASE%\admin\12CR11\pfile like this:

ifile=D:\oracle\admin\12CR11\pfile\initl2CR1ll.ora

Using these techniques allows you to put the initialization parameter files in their default
locations under $ORACLE_HOME but also in their desired location under $ORACLE_BASE.

Why should the real copy of the pfiles be stored under $ORACLE_BASE instead of $ORACLE_
HOME? Weell, it is a good idea to keep only version-specific files under $ORACLE_HOME. That way,
when you eventually uninstall the software from an old SORACLE_HOME, you won’t lose your
carefully tailored initialization files.

In addition to $ORACLE_BASE and $ORACLE_HOME, you should also be aware of a few other
non-OFA-related operating-system environment variables on Unix and Windows systems.
These are described in Table 9.6.

440 Chapter 9 = Creating and Operating Oracle Database 12c

TABLE 9.6 Common Non-OFA Environment Variables

Operating-System Variable

Description

$ORACLE_SID

%0RACLE_SID%

$TNS_ADMIN

%TNS_ADMIN%

$TWO_TASK

%LOCAL%

$LD_LIBRARY_PATH

$PATH

%PATHY%

Defines which instance a Unix user session should be
connecting to on the server.

Defines which instance a Windows user session should
connect to on the server.

Specifies where the Oracle Net configuration files are
stored on Unix systems—if they are to be stored outside
their default location of $ORACLE_HOME /network/admin.

Specifies where the Oracle Net configuration files are stored
on Windows systems—if they are to be stored outside their
default location of $ORACLE_HOME%\network\admin.

Establishes a default Oracle Net connection string that will
be used if none is specified by the user.

Establishes a default Oracle Net connection string that will
be used if none is specified by the user.

Specifies the locations of the Oracle shared object
libraries. This variable usually points to SORACLE_HOME/1ib
on Unix systems.

Tells the operating system in which directories to look for
executable files on Unix systems.

Tells the operating system in which directories to look for
executable files on Windows systems.

There is no need to set any of these variables for an Oracle Database 12¢ install; setting
ORACLE_BASE is recommended, but is not mandatory. These variables are important when
you’re ready to create a database.

Using the Oracle Universal Installer

You use the Oracle Universal Installer (OUI) to install and configure the Oracle Database
12¢ software. The OUI is a Java-based application that provides the same installation look
and feel no matter which operating system the install is being run on. The OUI process
consists of seven primary operations:

Unzipping Software and starting the OUI

Performing preinstallation checks

Oracle Database 12c Software Installation am

Responding to server-specific prompts for file locations, names, and so on
Selecting the products you want to install

Copying the files from the install media to $ORACLE_HOME

Compiling the Oracle binaries

Performing post-install operations using configuration assistants

Unzipping Software and Starting the OUI
To begin the install process, unzip the software downloaded from the Oracle Software
Delivery Cloud. OUI installations on Unix systems require you to set the X Windows
DISPLAY environment variable; otherwise, the OUI will not appear.

Once you unzip both parts of the Oracle Database 12¢ Release 1 (12.1.0.1.0) software, you
should see the database directory. The OUI is invoked by running the SETUP.EXE program on
Windows or the runInstaller program on Unix and Linux platforms.

Performing Preinstallation Checks

Start the OUT using the runInstaller command, as shown in Figure 9.1, on the
Linux platform.

FIGURE 9.1 Invoking the Oracle Database 12c install

[oracle@bt1lnx63 databasel$./runInstaller
Starting Oracle Universal Instafler..

Checking Temp space: must be greater than 500 MB. Actual 2158 MB Passed
Checking swap space: must be greater than 150 MB. Actual 15857 MB Passed
Checking monitor: must be configured to display at least 256 colors. Actual 1
6777216 Passed

Preparing to launch Oracle Universal Installer from /tmp/Oralnstall2el3-09-15_02
-05-52AM., Please wait ...[oracle@btlnx63 databasel$ [l

Notice that the output shows that the OUI checked the server’s operating-system version,
available RAM, temporary and swap space, and so on.

If necessary, you can turn off the system verification that occurs
é: prior to the installation by using the -ignoreSysPrereqs option of
the runInstaller command.

Once the preinstallation tests are completed and passed, the OUI displays the initial OUI
screen shown in Figure 9.2.

Provide an email address and Oracle support password if you have one and would like to
receive updates. For this install, uncheck the I Wish To Receive Security Updates check box
and click Next. The second screen is also applicable if you have an Oracle support account
to download software updates. Software updates are recommended; they include critical
patches released for the software.

442

Chapter 9 = Creating and Operating Oracle Database 12c

FIGURE 9.2 Theinitial OUl installation screen

Oracle Database 12c Release 1 Installer - Installing database - Step 1 of 10
] - ORACLE
Configure Security Updates _— c
. DATABASE
.) 5 Provide your email address to be informed of security issues, install the product
s Configure Security Updates and initiate configuration manager. View details.
I
)T\ Software Updates Email:
A Easier for you if you use your My Oracle Support email
[address/username.
4
/l\ | wish to receive security updates via My Oracle Support.
l My Oracle Support Password:
Help | Mext > J Cancel

Responding to OUIl Prompts

The next OUI screen, Select Installation Option, provides the various options available for the

software installation. Figure 9.3 shows the installation options screen, along with the Help

window display. You can click on the Help button in any screen to get context-sensitive help.
Based on the option chosen in this screen, the rest of the screens will change appropriately.

The

options provided in this screen are

Create And Configure A Database: This option installs the software and creates a new
database. If you choose this option, you can create a database with minimal configura-
tion (desktop class) or opt for an advanced configuration (server class) database.

Install Database Software Only: This option installs only the database binaries and
does not create a database. Because this chapter also discusses the database creation,
this section will show only the software installation.

Upgrade An Existing Database: This option installs the database software and upgrades
an existing database to Oracle Database 12¢.

To create a new database in an existing software home, use the Database Configuration
Assistant (DBCA) tool; to upgrade a previous version of the database to a current software

Oracle Database 12c Software Installation

443

version, use the Database Upgrade Assistant (DBUA) tool. The database creation screens
and database upgrade screens that appear when you choose option 1 or 3 are discussed in
detail later in the book. Here you will review the screens and options in option 2: Install
Database Software Only. Select the Install Database Software Only option, and the next
screen will prompt the grid options shown in Figure 9.4.

FIGURE 9.3 The Select Installation Option screen

£

Select Installation Option

Oracle Database 12c Release 1 Installer - Installing database - Step 3 of 11

ORACLE

DATﬂBﬂSE

125

Configure Security Updates
Software Updates
T
= Installation Option
I
)]* System Class

i

AT

I
I
I
I
I

Help

Select any of the following install options.

w.}.- Create and configure a database

w':'- Install database software only

() Upgrade an existing database

Eile

GCo Tools

Help Topic Window

B <+ o9 B

Select Installation Option

alongwith sample schemas.

Assistant after the software installation.

Legal Motices

Select any one of the following install options and click Next.
Create and configure a database - Choose this option to create a new database

Install database software only - Choose this option to install only the database
binaries. To configure the database, you must run Cracle Database Configuration

Upgrade an existing database - Choose this option to upgrade an existing database.
This option installs the software binaries in a new Oracle home. At the end of the
installation, you can upgrade the existing database.

Copyright ® 2007, 2012, Oracle and/or its affiliates. All rights reserved.

D]

<]

< Back ” Mext >

Cancel

FIGURE 9.4 The Grid Installation Options screen

Grid Installation Options

Oracle Database 12c Release 1 Installer - Installing database - Step 4 of 10

ORACLE
" DATABASE

12‘

Configure Security Updates
Software Updates
Installation Option

T

Sl Grid Installation Options

I
)T\ Install Type

Select the type of database installation you want 1o perform.

(3) Single instance database installation

Oracle Real Application Clusters database installation

(_) Oracle RAC Ong Node database installation

444 Chapter 9 = Creating and Operating Oracle Database 12c

The Grid Installation screen provides the option to install software into a cluster for use
with a Real Application Cluster (RAC) database. The RAC installation of Oracle Database
12¢ software is possible only if the server is part of a cluster. Because RAC is not part of the
OCA exam, you should choose Single Instance Database Installation for now. When single
instance installation is chosen, you have the option to install languages. By default only one
language is installed (US English), but you can install as many languages as you want the
product to run on. Install the supported languages used by your users.

Oracle database can be installed in one of four editions, as shown in Figure 9.5, based
on the license purchased and the requirements. Figure 9.5 shows only three options, because
Personal Edition is not available on Linux.

FIGURE 9.5 The Select Database Edition screen

Oracle Database 12c Release 1 Installer - Installing database - Step 6 of 12
- OoRACLE
Select Database Edition _— c
" DATABASE
T Confiqure Security Updates WE_ch database edition do you want to install?
/\r\ Software Updates b Enterprise Edition (6.4GE)
Installation Option Dracle Database 12c Enterprise Edition is a self-managing database that has the scalability,
/\F performance, high availability, and security features required to run the most demanding,
)T\ GCrid Installation Options mission-critical applications.
'y Product Languages () Standard Edition (6.1GB)
I
o Database Edition Oracle Database 12c Standard Edition is a full-featured data management solution ideally suited to
|) the needs of medium-sized businesses. It includes Oracle Real Application Clusters for
T Installation Location, enterprise-class availability and comes complete with its own Oracle Clusterware and storage
management capabilities.
] E::- Standard Edition One (6.1CE)
I Oracle Database 12c Standard Edition One is a full-Teatured data management solution ideally suited
] tothe needs of small and medium-sized businesses.

Enterprise Edition: This installation type is designed for enterprise-level applications. It is
engineered for mission-critical, high-security online transaction processing (OLTP) and
data warehousing environments. If you select this installation type, then all separately
licensable Enterprise Edition options are installed.

Standard Edition: This installation type is designed for department or workgroup-level
applications and for small and medium-sized enterprises (SMEs). It is engineered to pro-
vide core relational-database management services and options. It installs an integrated
set of management tools, full distribution, replication, web features, and facilities for
building business-critical applications.

Standard Edition One (Desktop and Single Instance Installations Only): This installation
type is designed for department, workgroup-level, or web applications. From single-server
environments for small business to highly distributed branch environments, Oracle Data-
base Standard Edition One includes all the facilities necessary to build business-critical
applications.

Oracle Database 12c Software Installation 445

Personal Edition (Microsoft Windows Operating Systems Only): This installation type
installs the same software as the Enterprise Edition installation type, with the excep-

tion of the management packs. However, it supports only a single-user development and
deployment environment that requires full compatibility with Enterprise Edition and Stan-
dard Edition. Oracle RAC is not installed with Personal Edition.

The Specify Installation Location screen is where you specify the ORACLE_BASE and
ORACLE_HOME values. If you have defined these environment variables, they will be shown
here; if you haven’t, platform-specific default values will be shown.

The next screen is specific to Unix installations, where you can choose the groups
to identify the job roles discussed in the “Job Role Separation Using OS Groups” section.
See Figure 9.6. On Windows, the groups are automatically created by the OUI with stan-
dard names.

FIGURE 9.6 The Privileged Operating System Groups screen

Oracle Database 12c Release 1 Installer - Installing database - Step 8 of 12

Privileged Operating System g'mups] % 12("

DATABASE

SYS privileges are required to create a database using operating system (0S) authentication. Membership

Prereguisite Checks

Configure Security Updates " P
T in OS Croups grants the corresponding SYS privilege, eg. membership in OSDBA grants the SYSDEA
,T\ Software Updates privilege
1 Installation Option Database Administrator (OSDEAY group R [aba M
/‘r\ 0 ol st Database Operator (DSOPER) group (Optional): |:|
Product Languages R
T Database Backup and Recovery (OSBACKUPDEA) group: |backupdba 'l
T Database Edition —
¥ Installation Location Data Guard administrative (OSDCDEBA) group: |dgdba '|
I N R
'@ Operating System Groups Encryption Key Management administrative (OSKMDBA) group: |dha '|
| bR

If all the prerequisite checks are successful, the Privilege Checks screen is not shown and
OUI goes straight to Summary screen. If there are any prerequisite check issues, they will be
displayed, and you will be given the option to fix or ignore them. Even if there are no issues, to
help you better understand all of the prerequisite checks, we recommend clicking the Back but-
ton from the Summary screen to view the Prerequisite Checks screen, as shown in Figure 9.7.
The bottom portion of the screen shows what is checked as part of the prerequisite. Click on
each item to see the limit that the OUI checks each item against. Sometimes more information
is available when you click the More Details link.

The prerequisites checks are for disk space, memory, user and groups, open file and process
limits, Linux version and architecture, OS Kernel parameters, and OS Packages installed. You
have the option to fix errors as well as ignore errors and warnings. Ignore errors only if you are
sure ignoring will not impact the installation and ongoing operation. The Summary of installa-
tion options is shown for you to confirm before starting the installation. The same screen also
has a Save Response File button to save the options chosen in the install session to a file, and it
can be used to install Oracle Database 12¢ in a silent mode without going through the screens.
If you are satisfied with your selections, click the Next button to start copying and linking the
Oracle binaries to the $ORACLE_HOME directory.

446 Chapter 9 = Creating and Operating Oracle Database 12c

FIGURE 9.7 The Perform Prerequisite Checks screen

B Oracle Database 12c Release 1 Installer - Installing database - Step 9 of 12 - O x
o ORACLE’
Perform Prerequisite Checks | _ ¢
L DATABASE
T Configure Security Updates LA = el
)T\ Software Updates All minimum requirements are satisfied. ¥ou may proceed with the installation.
’ Installation Option [checkAgain | [showai ~| i
Grid Installation Options M : B
)T‘\ Che{ch ow Failed | Status Fixable
T Product Languages Show Succeeded o
Database Edition n
T Available Physical Memory Succeeded
T Installation Location Q-} Swap Size Succeeded
¢ Dperating System Croups =-{F Free Space I |
i — % Free Space: btlnx&3:/tmp Succeeded
[Prerequisite Checks & User Existence: oracle Succeeded
! Summary Q} Croup Existence: oinstall Succeeded
T Q} Croup Existence: dba Succeeded
l Q} Croup Existence: backupdba Succeeded
¢ & Croup Existence: dgdba Succeeded
Q} Croup Membership: oinstall Succeeded
Q} Croup Membership: dba Succeeded
Q} Croup Membership: backupdba Succeeded
Q} Croup Membership: dgdba Succeeded
&% Run Level Succeeded B3
This is a prerequisite condition to test whether the system has at least 1CB (1048576.0KE) of total
physical memory. {(more details)
Expected Yalue :1CE (1048576.0KE)
Actual Value 0 7.26730GE (7620360.0KE)
Help < Back || Mext = ‘ Cancel

Copying and Compiling Files

The OUI displays status information while the installation and setup is in progress. Once
the file-copy portion of the installation is complete, the OUI will begin linking the binaries
to create the executable files needed to make the Oracle Database 12¢ software run on the
server. On Unix systems, after the linking process, you are prompted to execute configura-
tion scripts as the super-user root from the Unix command line. The orainstRoot.sh script
creates the inventory location and necessary inventory directory.

y On Unix and Linux platforms, the orainstRoot.sh script creates a file

A ITE named /etc/oralnst.loc, which has information about the Oracle
Inventory location and the software installation owner name.

The root.sh script should be executed as root. Executing the root.sh script copies some
files to a location outside $ORACLE_HOME and sets the permissions on several files inside and
outside SORACLE_HOME. Once the root. sh script executes successfully, click OK to continue
the installation.

Using DBCA to Create an Oracle 12c Database 447

One important file created by the root.sh script is the /etc/oratab file (the /var/opt/
oracle/oratab file on Solaris). When databases are created on this server, this file will have
information about the database and which Oracle Home directory is used by the database.

P and minimize errors by building an OUI response file. This text file contains
all the necessary responses to the OUl prompts so that an unattended,
silent install is possible.

é/ If you have multiple installations to perform, you can speed up the process

Once the root. sh script has completed, the OUI will perform some brief post-installation
configuration activities before displaying the End of Installation screen. Click the Close button
to exit the OUI and return to the Unix prompt.

Once the OUI is complete, you should have a completely installed and configured
$ORACLE_HOME. In the next section, you’ll use this software to create your first database.

Using DBCA to Create an
Oracle 12¢ Database

The Oracle Database Configuration Assistant (DBCA) is a Java-based tool used to cre-
ate Oracle databases. If you’ve been a DBA for a few years, you probably remember the
days of writing and maintaining scripts to create databases. Although it is still possible
to manually create a database, the DBCA provides a flexible and robust environment in
which you not only can create databases but also can generate templates containing the
definitions of the databases created. This provides you with the ease of using a GUI-based
interface with the flexibility of Oracle-generated XML-based templates that you can use to
maintain a library of database definitions.

You can also use the DBCA to add options to a running database or to remove a database.
In recent years, many die-hard command-line DBAs have switched to the DBCA tool to create
databases, mainly because of its flexibility and ease of use.

You can use the DBCA to create a database while the Oracle software is installed, or you
can invoke the DBCA later to manually create a database. In the following sections, we will
show you the steps necessary to create an Oracle database using the DBCA tool.

Invoking the Database Configuration Assistant

You can invoke the DBCA from a command line in the Unix environment or as an
application in a Windows environment. If you are using the Windows environment,
choose Start & All Programs = Oracle Home = Configuration and Migration Tools =&
Database Configuration Assistant.

448 Chapter 9 = Creating and Operating Oracle Database 12c

If you are in a Unix environment or would prefer to work from the command line in
Windows, type dbca from the $ORACLE_HOME/bin location. The ORACLE_HOME variable must
be set appropriately before invoking dbca. Also, it is recommended to set the PATH variable
to include $ORACLE_HOME/bin so that all Oracle Database 12¢ tools can be invoked without
specifying or changing to the $ORACLE_HOME/bin directory.

After you invoke the DBCA, you should see the Operation screen, as shown in Figure 9.8.
The Operation screen will be different on a node that belongs to Real Application Cluster,
where you will have the option to create a single instance RAC database or a multinode RAC
database. Because RAC is not part of the certification exam, you will be using a node that is
not part of the RAC.

FIGURE 9.8 The DBCA Database Operation screen

Database Configuration Assistant - Welcome - Step 1 of 5
ORACLE’
Database Operation _— ¢
¥ DATABASE

- Select the operation that you want to perform

i) Database Operation .

i () Create Database

T Creation Mode

! () Manage Templates
| Help | | Next = J | Cancel |

In the Database Operation screen, you can choose to create a database, configure
database options, delete a database, manage templates, and manage pluggable databases.
Table 9.7 lists and describes the DBCA database operation options.

Choose Create A Database, and click Next to open the Creation Mode screen. This gives
you two options to create the database. The Create Database With Default Configuration
option does not ask any more questions; it creates the database with minimal informa-
tion collected in the screen and utilizes default configuration. See Figure 9.9 for the DBCA
Creation Mode screen. (Note the number of screens on the left side; there is only one more

Using DBCA to Create an Oracle 12c Database 449

before the summary when the default configuration is chosen.) You have to provide the
database name, database file-storage location, character set, and administrative password.
You can create a consolidated multitenant database by checking the Create As Container
Database option; if so, you will need to provide a pluggable database name.

TABLE 9.7 DBCA Database Management Options

Option Description

Create a Database Allows the step-by-step creation of a database. The
database can be created based on an existing template
or customized for the specific needs of the organization.

Configure Database Options Performs the necessary changes to move from a dedi-
cated server to a shared server. You can also add database
options that have not been previously configured for use
with your database.

Delete a Database Completely removes a database and all associated files.

Manage Templates Manages database templates. The database templates
are definitions of your database configuration saved in an
XML file format on your local hard disk. You can choose
from several predefined templates, or you can create cus-
tomized templates.

Manage Pluggable Databases This option enables you to manage pluggable databases.
Pluggable or container databases allow you to consolidate
multiple databases into a multitenant database. Container
databases are not part of the OCA objectives at the time of
writing this book.

The Advanced Mode option provides more customizable options to create the database.
Choose the Advanced Mode to customize and help you learn the database creation options.
Clicking Next will bring up the database template screen. In the following sections, we will
discuss database templates and the various screens in the DBCA to create a database.

Database Templates

The DBCA comes with two preconfigured database templates. These XML-based docu-
ments contain the information necessary to create the Oracle Database 12¢ database. You
can choose one of these predefined templates, or you can build a custom database definition.
The predefined database templates are Data Warehouse and General Purpose or Transaction
Processing (see Figure 9.10). These templates were designed to create databases that are opti-
mized for a particular type of workload. When you choose Custom Database, you will have
more flexibility to create tablespaces and decide which components to install. The screens that
are different when choosing the Custom Database option are identified later in the section.

450 Chapter 9 = Creating and Operating Oracle Database 12c

FIGURE 9.9 The DBCA Creation Mode screen

B Database Configuration Assistant - Create Database - Step 2 of 5 - O x

Creation Mode ORACLE 12(,‘
" DATABASE

. @{2) Create a database with default configuration
¥ Database Operation
1

@ Creation Mode Clobal Database Name: |c12ncdb ‘

I . B

T Pre Requisite Checks Storage Type: |Autam atic Storage Management (ASM) "

l Database Files Location: |+ORADATA ‘ | Browse... |
Fast Recovery Area: |+ORAFLASH ‘ | Browse |
Database Character Set |AL32UTEE - Unicode UTF-8 Universal character set -|

Administrative Password : |---------- ‘

Confirm Password: [sesesences |

[T] Create As Container Database

() Adyanced Mode

Help < Back || Mext = ‘ Cancel

FIGURE 9.10 The DBCA Database Template screen

Database Configuration Assistant - Create Database - Step 3 of 13

C)R’ACI_E
Database Template) c
- DATABASE
Select Template
Creation Mode Templates that include datafiles contain pre-created databases. They allowyou to create a new
T database in minutes, as opposed to an hour or more. Use templates without datafiles only when
el Database Template necessary, such as when you need to change attributes like block size, which cannot be altered after
| database creation
T Database Identification
Select Includes Datafiles I =
I or Transaction Processing fes

To display the configuration definitions for these preconfigured databases, click Show
Details. Figure 9.11 shows the details of the General Purpose or Transaction Processing tem-
plate. Using the button at the bottom-right corner, you have the option of saving the details as
an HTML file. Before creating the database, you will get the summary information, and you

will have the option to save the database create scripts as well as a similar HTML file with all
the options and parameter values.

Using DBCA to Create an Oracle 12c Database 451

Table 9.8 displays information about what is contained in the template definition shown
in Figure 9.11. When you scroll down, you’ll see multiple sections on the page. Each section
of the page gives further information about the template. For example, under the Common
Options section, you will see a list of each of the database options that gets installed for the
template definition you have chosen.

FIGURE 9.11 The DBCA Templates Details screen

General Purpose or Transaction
Processing

Use this database template to create a pre-configured database optimized for general purpose ortransaction processing usage

Database Components

Component Selected

Oracle JVM true
Oracle Text true
Oracle Multimedia true
Oracle OLAP true
Oracle Spatial true
Oracle Label Security true
Sample Schemas false
Oracle Application Express true
Oracle Database Vault true

Initialization Parameters

Name Value
audit_file_dest {ORACLE_BASE} admin{DE_UNIQUE_NAMEN adump
audit_trail db
compatible 12.1.0.0.0
control_files [{ORACLE_BASE} oradata/{DB_UNIQUE_NAME} control0l ctl",
- “{ORACLE_BASENfast_recovery_area/{DE_UNIQUE_NAME} control02.ctl) =

TABLE 9.8 Template Definition Details

Section Description

Database Components Displays which database components will be installed

Initialization Parameters Displays the common initialization parameters and their settings

Character Sets Displays character sets to be used
Control Files Displays filenames and locations for control files
Data Files Displays filenames and size for each tablespace

Redo Log Groups Displays group number and size

452 Chapter 9 = Creating and Operating Oracle Database 12c

Choosing the Custom Database template option on the DBCA Database Templates screen
gives you the most flexibility. For other templates, the database data files are prebuilt with
certain Oracle options. Also, the database block size cannot be changed from 8KB. A No
value in the Includes Datafiles column in the Database Templates screen indicates which
templates are fully customizable.

After you have chosen the appropriate template to use, click Next. The Database
Identification screen will appear.

Database Identification

The Database Identification screen (see Figure 9.12) allows you to enter the global database
name and Oracle system identification name (commonly referred to as the Oracle SID).

FIGURE 9.12 The DBCA Database Identification screen

Database Configuration Assistant - Create Database - Step 4 of 13 - O x
- - ORACLE’
Database Identification —_— c
: DATABASE
Database Identification
Global Database Mame |c12ncdb.onas com ‘
Database Template
5D [c12ncan |
Database Identification
Management Options
[[] Create As Container Database

Creates a database container for consolidating multiple databases into a single database and enables
database virtualization. A container database (CDE) can have zero or more pluggable databases (PDEB).

C—(—(——(C——(——C—C—C—&€—C—

‘ Help ‘ ‘ < Back " Next > ‘ ‘ Cancel ‘

The global database name is the fully qualified name of the database in the enterprise.
It is composed of a database name and a database domain, and it takes the format
database_name.database_domain—for example, sales.company.com.

In this example, the first part of the global database name, c12ncdb, is the name of your
database. Normally, the database domain is the same as the network domain within the enter-
prise. A global database name must be unique within a given network domain. The database
name can be up to eight characters and can include letters and numbers.

Using DBCA to Create an Oracle 12c Database 453

The Oracle SID is the name of the instance associated with the database. Usually, this name
is the same as the database name. For RAC databases where multiple instances are associated
with the database, the instance name is usually different from the database name. The Oracle
SID can be a maximum of eight characters and must be unique on the server. For example,
you cannot have two Oracle SIDs called PROD on a single server.

The second section of the Database Identification screen is used to create the new database
as a multitenant container database. If you choose this option, specify the number of pluggable
databases and the pluggable database name for the CDB.

Management Options

After you provide the database name, you can configure Enterprise Manager to monitor
and manage your database using the DBCA Management Options screen (see Figure 9.13).

FIGURE 9.13 The DBCA Management Options screen

Database Configuration Assistant - Create Database - Step 5 of 13

Management Options 1 ORACLE 12C

DATABASE

Specify the management options for the database

Configure Enterprise Manager (EM) Database Express
@ |:| Register with Enterprise Manager (EM) Cloud Contral
¥ Database Identification

I
Management Options

I
I
|
]

@
T Database Credentials

I
I
[

You can choose from two options: you can centrally manage all your databases from a
single management console if the Management Agent for Oracle Enterprise Manager Cloud
Control is installed on the database server, or you can manage each database individually
using the EM Database Express.

If the Oracle Management Agent is installed, the DBCA detects its presence and lists
the name of the agent service. You can select this name if you want this existing agent to
manage this database. Your new database then becomes one of the managed targets for
the existing agent.

If you don’t have an agent installed or are not doing centralized database management,
you can still use Enterprise Manager to monitor and maintain the database. Choose the
Configure Enterprise Manager (EM) Database Express check box if you want to install
Enterprise Manager and configure it locally.

Database Credentials

You use the Database Credentials screen (see Figure 9.14) to configure passwords for
the various administrative accounts that are set up automatically when the database is

454 Chapter 9 = Creating and Operating Oracle Database 12c

configured. You can select the same password for all the critical accounts, or you can elect
to have a different password for each of the preconfigured accounts. How you elect to set
your passwords may depend on the policies of your particular organization. Typically, the
same critical passwords are set for these accounts, and the accounts that you won’t need to
access are locked.

FIGURE 9.14 The DBCA Database Credentials screen

Databa[.‘,ge Configuration Assistant - Create Database - Step 6 of 13

. ORACLE’
Database Credentials _— ¢
1 DATABASE
For security reasons, you must specify passwords for the following user accounts in the new database.
} () Use Different Administrative Passwords
I User Name | Password Confirm Password ‘
SYS [|
I SYSTEM [|
L Managem ent Options
L
5 Database Credentials
I
T Storage Locations
I -'_}_'- Use the Same Administrative Password for All Accounts
} Password: CIYTTYTTYTY
T Confirm Passwordg) [se0eceenes
Messages:
Password: The password entered does not conform to the Oracle recommended standards. A password
Ashould have minimum of 8 characters in length. In addition, the password must contain at least one
upper case character, one lower case character and one digit
| Help | | < Back ” Next > J | Cancel |

The SYS user owns all the internal Oracle tables that constitute the data dictionary.
Normally, you should not perform any actions as the SYS user and should ensure that this
account password is properly protected. Also, don’t manually modify the underlying objects
owned by the SYS user.

SYSTEM is an administrative user that contains additional administrative tables and
views. Many DBAs use this account to administer the database, but ideally this account
should also be locked and secured.

Once you have completed the Database Credentials page, click Next. You will be presented
with the Network Configuration screen.

Network Configuration

The Network Configuration screen (shown in Figure 9.15) provides the opportunity to
define and start a listener, or to associate the new database with a listener.
Click Next to go to the Storage Locations screen.

Using DBCA to Create an Oracle 12c Database 455

FIGURE 9.15 The DBCA Network Configuration screen

B Database Configuration Assistant - Create Database - Step 7 of 14
] . ORACLE
Network Configuration | ¢
- DATABASE
] Listener Selection
] Listeners from current Oracle home are listed below. To create a newlistener in current Cracle
home, specify the listener name and port"

] Select Listeners

] Select Mame Oracle Home Status

qi Database redentials LISTENERL Judl/app/ roduct/12.1.0/dbhome_2

1

) Network Configuration

I

L Storage Locations

Storage Locations

The Storage Locations screen (see Figure 9.16) is used to define how you want to configure
the disk storage areas used by the database. You have two choices:

File System
Automatic Storage Management (ASM)

Let’s take a look at these options in more detail.

FIGURE 9.16 The DBCA Storage Locations screen

7 Database Configuration Assistant - Create Database - Step 8 of 14
; C}R’ACI_E c
Storage Locations]
- DATABABE
Database Files

] Storage Type ? ‘Flle System d
] () Use Database File Locations from T%Autom_aﬂc Storage Managem ent (ASM)
] () Use Common Location for All Database Files
| Database File Locations \(ORACLE_BASE};nrada[a | | Browse..
] Use Oracle-Managed Files ‘ Multiplex Redo Logs and Cantrol Files |

Network Contfiguration
\r Network Configuration Recovery Related Files
\T- Storage Locations Storage Type: ‘Flle System -l

Darabase Options
T Database Options Specify Fast Recovery Area
T Fast Recovery Area: [{ORACLE_BASEN/fast_recovery_area |[erowse. |
T Fast Recovery Area Size: ‘ 24|%HC Bytes ¥/
] Enable Archiving ‘ Edit Archive Mode Parameters
= | File Lacation variables _ |

Help < Back || Next > ‘ Cancel

456 Chapter 9 = Creating and Operating Oracle Database 12c

File System Storage

File system storage is a widely used type of storage configuration for many Oracle databases.
This type of storage definition relies on the underlying operating system to maintain and
manage the actual files you, as the DBA, define. When you choose this option, the DBCA
suggests a set of data filenames and directory locations for those files. You can modify this
information at the database-storage step later in the database-creation process.

The DBCA uses the Optimal Flexible Architecture (OFA) directory design for laying out
the suggested file locations. The OFA is an Oracle-recommended method for designing a
flexible directory structure and naming convention for your Oracle database files.

ASM Storage

Automatic Storage Management (ASM) is a type of storage mechanism available since
Oracle 10g. ASM is designed to relieve the burden of disk and storage management and
relies on Oracle to maintain your database storage. Instead of managing many individual
database files, ASM allows you to define disk groups for file management.

Using disk groups, you can define one or more groups of disks as a logical unit that Oracle
views as a single unit of storage. This concept is similar in nature to the way that some oper-
ating systems, including various versions of Unix, define volume groups.

Oracle manages the storage definitions of the database within a second instance used
exclusively by ASM to keep track of the diskgroup allocations. When you create a database
and select the ASM option in the Storage Locations screen, a series of screens guides you
through the process of defining the secondary ASM database instance. Every server using
ASM storage should be tied to an ASM instance running.

More about ASM Install and disks are discussed in Chapter 18, “Using Grid Infrastructure
and Data Movement Tools.” For now, choose File System on the DBCA Storage Locations
screen, and specify the file locations.

Depending on the type of storage option you choose, you may have more or fewer
location options available. You will be presented with three options on the Database
File Locations screen:

Use Database File Locations From Template
Use Common Location For All Database Files
Use Oracle-Managed Files

The following are descriptions of each of these options.

Use Database File Locations From Template

If you choose one of the predefined database templates to use for this database, Oracle uses
the previously defined locations from the template as the basis for the database file locations.
You still have the opportunity later in the database-definition process to review and modify
the filenames and locations even if you choose this option.

Use Common Location For All Database Files

If you choose this option, you can specify a new directory for all your database files.
Again, even if you choose this option, you can change the filenames and locations later
in the database-definition process.

Using DBCA to Create an Oracle 12c Database 457

Use Oracle-Managed Files

If you choose Use Oracle-Managed Files, you let the Oracle database manage the database
files. As a DBA, you just specify the location of the database files. The tasks of creating and
deleting files as required by the database are automatically managed—the DBA doesn’t need
to specify a data file’s location when creating a new tablespace or specify the size or filename.
Since you will not be presented with an option to change the storage characteristics of the data
files later when the Use Oracle-Managed Files option is chosen, you can have multiplexed redo
log files and control files by clicking the Multiplex Redo Logs and Control Files button. In the
pop-up window, specify the location of the redo log and control files.

You use the Recovery Related files section of the screen to set up database backup and
recovery related files. Similar to database files, you can save the recovery related files on
ASM or in a file system. You can configure several options, including specifying the flash
recovery area and size. You can also enable archive-log mode for the database and specify
archive-log parameters. Let’s take a look at each of these options.

Fast Recovery Area

Oracle fast recovery (popularly known as FRA) has been available since Oracle 10g. It is the
foundation of the automated disk-based recovery feature. Fast recovery is designed to simplify
your life in terms of Oracle backups by providing a centralized location to maintain and man-
age all the files related to database backups and recovery.

The fast recovery area is an area of the disk dedicated to the storage and management
of files needed for recovering an Oracle database. This area is completely separate from the
other components of the Oracle database, such as the data files, redo logs, and control files.

Oracle uses the fast recovery area to store and manage the archive logs. The Oracle
Recovery Manager (RMAN) uses the fast recovery area and ensures that the database is
recoverable based on the files being stored in the fast recovery area. All files necessary to
recover the database following a media failure are part of the fast recovery area.

)’ You will explore the fast recovery area in more detail in Chapter 15, “Using
A&TE Backup and Recovery.”

You can specify the directory location and the size of the disk area you want to dedi-
cate to the fast recovery area. The default location of the directory provided by DBCA is
$ORACLE_BASE/fast_recovery_area. You can click File Location Variables on the Recovery
Configuration screen to display a summary of the Oracle file location parameters, including
the current setting of the ORACLE_BASE parameter. The size of the flash recovery area defaults
to 2,048MB and can be set larger or smaller by changing the Fast Recovery Size setting.

Enable Archiving

You also have the ability to enable the Oracle archive-logging option. Archive logging is
the mechanism Oracle uses to enable you to perform a point-of-failure recovery of a data-
base. To enable archive logging, select the Enable Archiving check box. By default, when
the DBCA is used to create a database, the archive logs are written to Fast Recovery Area.

458 Chapter 9 = Creating and Operating Oracle Database 12¢

Once you enable the archiving checkbox, the button Edit Archive Mode Parameters will be
enabled. If you click this button, you are presented with a screen that enables you to set the
various parameters that are used to configure archive logging.

y We will explore archive logging in more detail in Chapter 16, “Controlling

A&TE Resources and Jobs.”

After completing the Storage Locations screen, click Next. The Database Options screen
will appear.

Database Options

If you chose a predefined template (OLTP or Data Warehouse), you will be presented with
the Database Options screen shown in Figure 9.17. You will then have the option to add
sample schemas to the database, which is explored in the next section, “Sample Schemas
and Custom Scripts.”

FIGURE 9.17 The DBCA Database Options screen for a predefined database template

Database Configuration Assistant - Create Database - Step 9 of 14

Database Options ORACLE 12C
. DATABASE

rgamp\e Schemas r/ Database Vault & Label Security

Sample Schemas

Sample Schemas illustrate the use of a layered approach to complexity, and are used by some
demonstration programs. Installing this will give you the following schemas in your database:
Human Resources, Order Entry, Online Catalog, Product Media, Information Exchange, Sales
History. It will also create atablespace called EXAMPLE. The tablespace will be about 150 MB

Specify whether or not to add the Sample Schemas to your database.

Storage Locations
[]sample Schemas @
Database Options

Initialization Parameters)
Custom Scripts

Specify the SOL scripts you want to run after the database is created. The scripts are run in the
order they are listed below:.

Select a script: | | Browse...

C—(—(C—(C—€ @€ C—C—C—C—~C—~C—

| Help | | < Back ” Mext > | | Cancel |

Certain options, such as Database Vault and Label Security, are not included in the
predefined templates; you have the option to add them if needed. If you chose to create

Using DBCA to Create an Oracle 12c Database 459

a custom database on the Database Templates screen, you will be presented with the
Database Options screen shown in Figure 9.18.

You use the options on this screen to specify which Oracle Database 12¢ components
you want to install. Table 9.9 describes the components that can be included and configured
automatically by the DBCA.

TABLE 9.9 Optional Oracle Components

Component Description

Oracle JVM Enables the database to run Java stored procedures,
Java Database Connectivity (JDBC), and SQLJ.

Oracle Text Provides support for multimedia content, search and
analyze documents.

Oracle Multimedia Enables you to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an
integrated fashion.

Oracle OLAP Provides facilities for creating and deploying online ana-
lytical processing applications.

Oracle Spatial Provides the components and infrastructure for Oracle
to manage and maintain geographic and spatial infor-
mation such as map coordinates.

Oracle Label Security Manages and controls access to sensitive information
within the database. This option will be enabled if
the Label Security option is installed in the Oracle
software home.

Oracle Application Express Oracle Application Express is a rapid web application
development tool using only a web browser and limited
programming experience.

Oracle Database Vault Addresses a security solution for regulatory compli-
ance and security controls. This option will be enabled
if the Database Vault option is installed in the Oracle
software home.

Oracle recommends installing the standard components such as JVM, Text, multimedia,
OLAP, and Application Express. You can pick the tablespace for storing the component
tables; the default shown by DBCA is good to keep as is.

460 Chapter 9 = Creating and Operating Oracle Database 12c

FIGURE 9.18 The DBCA Database Options screen for a custom database template

=

* Database Configuration Assistant - Create Database - Step 9 of 14

; ORACLE’
Database Options _— c
- DATABASE
rgalabase Components rgimp\a Schemas
l Select the standard database components you want to configure for use in your database. Oracle
l recommends that you always install these components in your database. Deselecting these
COMPONents may cause youto no longer be able to choose some components on the previous
[page.
l [v] Oracle Jvm
} Oracle Text |SYSAU)(-‘
¥ Storage Locations Oracle Multimedia |W\
1
' Database Options
| [v] Oracle OLAP |SYSAU)(v‘
T Initialization Param eters 7
Oracle Spatial |SYSAU)(v‘
l [7] Oracle Label Security
[Oracle Application Express |SYSAU)(v‘
[] Oracle Database Vault
Help < Back " Next > Cancel

Sample Schemas and Custom Scripts

The DBCA also lets you install examples of actual working databases. Oracle provides a set
of example schemas and applications that use these schemas. You can install these sample
schemas now or later by running a series of SQL scripts.

These sample schemas include the following:

Human Resources (HR)
Order Entry (OE)
Product Media (PM)
Sales History (SH)
Queued Shipping (QS)

These schemas are designed to provide you with working examples of how to use and
implement a variety of features within Oracle. For example, the Product Media schema
shows how to use the Oracle Intermedia option, which is used to manage binary large
objects (BLOBs) such as images and sound clips.

If you choose to create the sample schemas, Oracle creates a tablespace called EXAMPLE and
stores all the necessary tables within that tablespace. Be aware that this adds about 130MB to

Using DBCA to Create an Oracle 12c Database 461

your database definition. The examples shown in Chapters 1 through 7 mostly used the tables
that belonged to the sample schema HR.

You can also run custom scripts as part of the database-creation process. Click the
Custom Scripts tab on the Database Options screen to enter the names and locations of
the custom scripts that you want to run at database creation (see Figure 9.19).

FIGURE 9.19 The DBCA Database Options screen’s Sample Schemas tab

Database Configuration Assistant - Create Database - Step 9 of 14

Database Options : ORACLE 12(,‘

DATABASE

r Database Components rgample Schemas

k Sample Schemas

Sample Schemas illustrate the use of a layered approach to complexity, and are used by some
demonstration programs. Installing this will give you the following schemas in your database

Human Resources, Order Entry, Online Catalog, Product Media, Information Exchange, Sales
History. It will also create atablespace called EXAMPLE. The tablespace will be about 150 ME.

Specify whether or not to add the Sample Schemas to your database.

Storage Locations
@ []5ample Schemas
Database Options

Initialization Parameters .
Custom Scripts

Specify the SQL scripts you want to run after the database is created. The scripts are run inthe
order they are listed below:

C—C—C—C—§—1EHE—C—C—C—(C—C—C—

Sglect a script | Browse
| Help | | < Back ” Mext > J | Cancel |

For example, you might want the DBCA to automatically create the schema and define
the tables that you will use for this database. You can create a script that performs all the
necessary work and have the DBCA run the script as part of the database-creation process.
The custom scripts are run using the command-line utility SQL*Plus, so you will have to
define a user ID and password within the body of the script. For example, your script might
contain the following line:

connect some_userid/some_password

This line directs Oracle to connect to the current Oracle database, which is determined
by your ORACLE_SID environment variable using the supplied user ID and password.

After completing the Database Options screen, click Next. You will then be presented
with the Initialization Parameters screen.

462 Chapter 9 = Creating and Operating Oracle Database 12c

Initialization Parameters

You use the Initialization Parameters screen to define the various initialization-parameter set-
tings used to configure size and set up the characteristics of the Oracle instance. The following
four tabs are categorized according to the parameters used to manage the Oracle instance:

Memory

Sizing

Character Sets
Connection Mode

Let’s take a look at each of these tabs and the settings you can manage on each one.

The Memory Tab

You use the options on the Memory tab to control the size of the database parameters that
configure the overall memory footprint of the Oracle instance (see Figure 9.20). There are
two general approaches to managing the memory database parameters: Oracle can set and
manage most of the parameters for you, or you can customize each of the initialization
parameters for your specific database.

FIGURE 9.20 The Memory tab on the Initialization Parameters screen

L3

ngmory rjwzmg I’gnarm:rms ngrm::tmn Mode

(3) Typical Settings

Memaory Size (SCA and PCA) 2960 | ME I {77} 1
Percentage 40% 390 ME 7440 MB
D Use Automatic Memory Management Show Mem ory Distribution..

() Custom Settings

If you choose Typical Settings, Oracle allocates memory to the various components
within the Oracle system global area (SGA) and process global area (PGA). This memory
allocation is automatic and is a percentage of the overall physical memory available on the
server. The default is 40 percent of the total memory available, but you can change this
setting by specifying the memory size or by sliding the bar to the appropriate size. If you
choose this setting, click the Show Memory Distribution button to see how Oracle will
allocate the memory between the SGA and the PGA (see Figure 9.21).

If you choose the Use Automatic Memory Management option under Typical Settings,
Oracle will manage the total memory automatically, including the SGA and PGA. The
memory distribution will show differently, as in Figure 9.22, if this option is selected.

Using DBCA to Create an Oracle 12c Database 463

FIGURE 9.21 Memory distribution for SGA and PGA for the Typical Settings

| 2} Memory Distribution x
SGA Size: ME
PGA Size: ME
Total Memory for Oracle: 2960 MEB
[ex]

FIGURE 9.22 Memory distribution for Automatic Memory Management

Memory [Slzing Memory Distribution x
(3) Typical Settings
Memory Size (SGA arf 3GA Size: Me

[w] Use Automatic M
Total Memory for Oracle: 2960 MEB

(7) Custom Settings

‘ Close ‘

If you choose the Custom Settings option, you will again have two options:
Automatic Shared Memory Management and Manual Shared Memory Management.
With Automatic Shared Memory Management, you specify only the SGA size and the
PGA size. Each component inside the SGA is configured automatically by Oracle. With
Manual Shared Memory Management, you have full control over how much each of
the specific areas of the SGA will take. The main areas that you will configure are the
shared pool, buffer cache, Java pool, large pool, and PGA size. Each setting maps to a
specific Oracle parameter. Figure 9.23 shows the options.

FIGURE 9.23 DBCA showing the Manual Shared Memory Management options

(2) Custom Settings

Memary Management @lManuaI Shared Memory Management '|

Shared Pool Size: | 437|%] |M Bytes '|

Buffer Cache Size: 14622 [MBytes =

|ava Pool Size: 48[2] (M sytes =]

|
|

Large Pool Size | 222|%] |M Bytes vl
|

PGA Size 740[3 [Meytes =/

Total Memory for Oracle: 2959 ME

464 Chapter 9 = Creating and Operating Oracle Database 12c

Memory management and the parameters associated with memory are
doTE discussed in detail in Chapter 14, “Maintaining the Database and Managing
Performance.”

The Sizing Tab

You use the options on the Sizing tab (see Figure 9.24) to configure the block size of your
database and the number of processes that can connect to this database. The Block Size
setting corresponds to the smallest unit of storage within the Oracle database. All storage
of database objects (tables, indexes, and so on) is governed by the block size. The block size
defaults to 8KB, but you can modify it in the custom template only. Once the database is
created, you cannot modify the database block size.

FIGURE 9.24 The Sizing tab on the Initialization Parameters screen

(Mgmurv rgizimg rghiriner!ets ngnneuinn Mode ‘

A block is the smallest unit of storage for allocation and for [/Q. It cannot be changed once the
database is created.

Block Size: [g192 | Bytes
Specify the maximum number of operating system user processes that can be simultaneously

connected to this database. The value of this parameter includes the user processes and the Oracle
background processes

Processes: 300‘5

The maximum and minimum size of an Oracle block depend on the operating system.
Generally, 8KB is sufficient for most transaction-oriented applications; larger block sizes,
such as 16KB and higher, are used in data warehouse-type applications. The block size can
be 2KB, 4KB, 8KB, 16KB, or 32KB.

The Processes setting specifies the maximum number of simultaneous operating-system
processes that can be connected to this Oracle database. If you are not sure of the number
of processes needed, you can start with the default value of 300. This parameter does have
a bearing on the overall size of your Oracle instance. The larger you make this number, the
more room Oracle must reserve in the SGA to track the processes.

)’ The block size can be changed only for the Custom Database Template.
Ad’TE For the other predefined templates that include data files, you cannot
change the block size.

The Character Sets Tab

You use the options on the Character Sets tab to configure the character sets you will use
within your database (see Figure 9.25). You will determine the database character set, the
national character set, the default language, and the default date format.

Using DBCA to Create an Oracle 12c Database 465

FIGURE 9.25 The Character Sets tab on the Initialization Parameters screen

fM;mnw rglzmg rgharactersk_: ngnnectmn Mode |

() Use the default

The default character set for this database is based on the language setting of this operating
system: WEBMSWIN1252

3

: Use Unjcode (AL32UTFE)

Setting character set to Unicode (AL32UTFEB) enables you to store multiple language groups

: Choose from the list of character sets

National Character Set: 4| 16UTFL6 - Unicode UTF-16 Universal character set -

Default Language: |American vl

Default Territory: |Um1ed States 'l

Specifying a database character set defines the type of encoding scheme that Oracle uses
to determine how characters are displayed and stored within your Oracle environment. The
character set you choose determines the languages that can be represented in your environ-
ment. It also controls other nuances, such as how your database interacts with your operating
system and how much storage is required for your data. The default character set is based on
the language setting of the operating system.

Specifying a national character set defines how your database represents Unicode characters
in a database that does not use a Unicode-enabled character set. You use the Default Language
setting to manage certain aspects of how your database represents information pertaining to
different locales. For example, this setting determines how your database displays time and
monetary values. AL16UTF16 and UTFS are the only national character sets from which you
can choose.

Use the Default Language and Default Territory setting to specify how Oracle supports
certain locale-sensitive information such as day and month abbreviations, writing direction,
and default sorting.

The Connection Mode Tab

You use the options on the Connection Mode tab to specify the type of connections to
use for this database (see Figure 9.26). You can choose Dedicated Server Mode or Shared
Server Mode. The default connection mode is Dedicated Server Mode.

The Dedicated Server and Shared Server modes are covered in more detail
doTE in Chapter 12, “Understanding Oracle Network Architecture.”

In the Dedicated Server Mode, each user process will have a dedicated server process. In
the Shared Process Mode, many user processes share a server process.

466 Chapter 9 = Creating and Operating Oracle Database 12c

FIGURE 9.26 The Connection Mode tab on the Initialization Parameters screen

Database Configuration Assistant - Create Database - Step 10 of 14

e C)R’ACI_E 12(,‘
Initialization Pgrameters
! " DATABASE

(Memaory rjizing rgharin:r Sets r Connection Mode

Select the mode in which you want your database to operate by default:

() Dedicated Server Mode

For each client connection the database will allocate a resource dedicated to serving only that
client. Use this mode when the number of total client connections is expected to be small or
when clients will be making persistent, long-running requests to the database

(") Shared Server Mode

Several client connections share a database-allocated pool of resources. Use this mode when
alarge number of users need to connect to the database simultaneously while efficiently
utilizing system resources. The Oracle shared server feature will be enabled

Database Options
Shared Servers specifies the number of server processes that you want to create when an

Initialization Parameters instance is started up.

Creation Options 1

C—C—C—§1@H—C—C—C—C—C—(C—C—

All Initialization Parameters...

| Help | | < Back ” Mext = | | Cancel |

If you want to review the initialization parameters and make any changes, click the
All Initialization Parameters button. The screen shown in Figure 9.27 details the basic
parameters. From this screen, you can view/edit the advanced parameters using the Show
Advanced Parameters button. You have the option to edit a value on this screen.

FIGURE 9.27 The DBCA Initialization Parameters screen

All Initialization Parameters x
Mame = i3 Value Override Default Category
cluster_database FALSE Cluster Database =
compatible 12.1.0.0.0 v Miscellaneous
control_files (' ful2/oradata/{DE_UNIQUE_MAME... v File Configuration
db_block_size 8 Lol Cache and /O
db_create_file_dest File Configuration
db_create_online_log_dest_1 File Configuration
db_create_online_log_dest_2 File Configuration
db_domain v Database Identification
db_name cl2ndbl v Database Identification
db_recovery_file_dest {ORACLE_BASE}/fast_recovery_area v File Configuration
db_recovery_file_dest_size 11 Vv File Configuration |
db_unigue_name Miscellaneous
instance_number 0 Cluster Database
log_archive_dest_1 Archive
log_archive_dest_2 Archive
log_archive_dest_state_1 enable Archive
log_archive_dest_state_2 enable Archive E
fo FEYT=atr=ram P

| Help H Close | | Show Advanced Parameters || Show Description

Using DBCA to Create an Oracle 12c Database 467

After completing the Initialization Parameters screen, click Next. You will then be
presented with the Creation Options screen.

Creation Options

The Creation Options screen (see Figure 9.28) provides you with three options, and you can
choose all three if needed.

FIGURE 9.28 The DBCA Creation Options screen

Database Configuration Assistant - Create Database - Step 11 of 14

Creation Optikns : ORACLE 12(,‘

DATABASE

Select the database creation options
Create Database

|:| Save as a Database Template

Cenerate Database Creation Scripts

nitialization Parameters

DestinationDirectory: i i
Creation Options E. I |quljapp,'oraclejadmmfchndbl..'scrlpts ‘ | Erowse... |

Pre Requisite Checks
‘ Customize Storage Locations |

C—C—€— i e—C—C—C—C—C—C—C—C—

Help < Back ” Mext > J Cancel

Create Database Use this option to have the DBCA create your database.

Save as a Database Template You can elect to save your database definition to a template
and create the database at a later time, or you can have the DBCA create the template along
with creating the database.

Generate Database Creation Scripts This option will generate scripts for you to create the
database at a later time without using the DBCA.

If you elect to create your database, the DBCA uses the information you provided in
the previous screens to create all the necessary components of your database, populates the
database with sample schemas if they were chosen, starts your database, and gets the data-
base ready for use.

468 Chapter 9 = Creating and Operating Oracle Database 12c

If you elect to save your database to a template definition, this definition is added to the
list of database definitions that you can select on subsequent executions of the DBCA.

You can also let the DBCA create a set of scripts that you can run manually to create the
database. You can choose a location to store your scripts, and then you can run the scripts
manually to generate your database. If you choose a manual creation process, you will also
have to manually configure several items, including the Oracle Internet Directory Service
if you elect to use centralized naming and your listener. Also, depending on your operating
system, you will have to configure or modify the oratab file (under /etc or /var/opt/oracle
depending on the platform) on Unix or create a service in the Windows environment.

y When preparing for the test, create the database using a predefined template
A&TE as well as a custom template. Save the database-creation scripts, and go
through the scripts so that you understand what statements are executed
behind the scenes by the DBCA to create the database. When using a custom
template, a new database will be created using the CREATE DATABASE state-
ment. When using a predefined template, Oracle does not create a new data-
base from scratch; instead, it clones an existing database from the template.

The Creation Options screen has a button to customize storage locations. Choose this if
you want to adjust the storage location or data file properties.

Customizing Storage

The Customize Storage screen provides you with the opportunity to review and change
the locations of the actual objects that compose the Oracle database; namely, the data
files, control files, and redo logs (see Figure 9.29).

FIGURE 9.29 The DBCA Customize Storage screen

2] Customize Storage x
. 4
5 storage ¥ Edit Tablespace - SYSAUX
-- Control Files
- Tablespaces Ceneral | Options
x|
@5‘ Hame: [svsaux
B SYSTEM
lﬁa‘ TEMP Type: (3) Permanent(_) Temporary () Undo
#15 UNDOTES1 BlockSize (KE):[g192
-4 USERS —
- Datafiles Datafiles
[fuoz/oradata/{DE_UNIQUE_NA File Name Size un
/U02/ oradata/{DE_UNIQUE_NA Jun2/oradata/{DE_UNIQUE_NAME}/ sysaux 01 dbf 550 ME
fud2/oradata/{DE_UNIQUE_NA
fu02/oradata/{DE_UNIQUE_NA
Ju0z2/oradata/{DE_UNIQUE_NA
[=-Redo Log Groups P] | »
Gyl =
i =T <
593

Using DBCA to Create an Oracle 12c Database 469

This screen displays a tree structure in the left pane. You can click the various elements
within the tree to expand and display the details of each component. Selecting an element
displays details about the element in the pane on the right. For example, clicking Control
File displays a summary of the control filenames and locations in the right pane. You can
make manual changes to the names and locations of the control files in the right pane.

If you are creating a custom database definition that does not use a template, you can
add new objects to a particular group. For example, clicking the Tablespaces folder and
then clicking Create lets you add new tablespaces to your database definition. If you
selected a database template that included data file definitions, you cannot add or remove
data files, or tablespaces, but you can modify the location of the data files, control files,
and redo log groups.

Chapter 10, “Understanding Storage and Space Management,” covers
dnz configuring and managing tablespaces and data files in detail.

After completing the Database Storage screen, click Close to go back to the Database
Options screen. When you click Next, DBCA performs all the prerequisite checks and skips
the prerequisite screen display if there are no issues. If issues are identified, you will be pro-
vided with the Pre Requisite Checks screen as in Figure 9.30. You have the option to fix the
issue and click Check Again or Ignore All and proceed with the database creation.

FIGURE 9.30 The DBCA Pre Requisite Checks screen

2] Database Configuration Assistant - Create Database - Step 12 of 14 - O x
Pre Requisite Checks | % 126
- DATABASE
| Check Again ‘
Validation Results
[]lanare Al Show |a) vl

‘ Validation ‘ Severity
= Database Validation Checks

Once the prerequisites are met, the Database Summary screen appears as in Figure 9.31.
You can scroll down the window to examine the following:

Components to install into the database
The initialization-parameter settings
Character-set settings

Tablespaces

Names and locations for data files

470 Chapter 9 = Creating and Operating Oracle Database 12c

Names and locations for redo logs

Names and locations for control files

FIGURE 9.31 The DBCA Summary screen

n Database Configuration Assistant - Create Database - Step 13 of 14
C)R’ACI_E C
Summary
L DA'IABASE
k
L5
T’ el e i) Database Configuration Assistant: Summary
T Creation Mode 2
T b i e e T Create Database - Summary
Database Identification . .
T Database Configuration Summmary
Management Options
T Global Database Name: cl2ndbl
Database Credentials R .
TB Database Configuration Type: Single Instance ™
T Network Configuration sID: clzndbl
T Storage Locations Create As Container Database MNo
Database Options Storage Type: File System
T Memory Configuration Type: Automatic Shared Memory Management
Initialization Param sters
T - Template Name: Custom Database
Creation Options
T Database Configuration Details
Pre Reguisite Checks
T
@ Summary Database Components
I
- Component Selected
Oracle Vi true
Oracle Text true
Oracle Multimedia true
Oracle OLAP true
Oracle Spatial true =
Help < Back Finish ‘ ‘ Cancel

Once you click Finish to start the database-creation process, Oracle creates the data-
base you specified. It starts the instance, creates all the necessary database components,
and configures all the database options you specified. If you chose to create scripts, DBCA
displays the location of the scripts. Depending on the size of database you create and how
many options you are installing, the process can take anywhere from several minutes to an
hour or more.

During the database creation, the summary progress is displayed. Two buttons in
this screen are useful for viewing more information: Activity Log and Alert Log. Click
on the Activity Log to view detailed information about the steps that are executing.
Click on the Alert Log button to view the database alert log file. Figure 9.32 shows the
Progress Page with alert log pop-up displaying information.

After the database is created, DBCA displays a summary screen, as shown in Figure 9.33.
Note the information on this screen, especially the URL to invoke Enterprise Manager
Database Express and the server parameter file location.

Using DBCA to Create an Oracle 12c Database

FIGURE 9.32 The DBCA Progress Page screen

(]

Progress Page

Database Configuration Assistant - Create Database - Step 14 of 14

k

ORACLE 1 2(:
DA'IABASE

I
I
I
I
I
I
I
I
I
I
I
I
[

! Progress Page

Progress

Database "cl2ndbl" creation in progress...

r

1%

Creating and sf
Creating datab|
Creating data
Adding Oracle
Adding Oracle
Adding Oracle
Adding Oracle
Adding Oracle
Adding Sam ple|
Adding Oracle
Completing Da

Alert Log

processing 7,‘rdbmsfadm|n,‘dexnab bsq

processing ?frdbms fadmin/ddm bsqg

processing ?frdbms fadmin/dimnr.bseg

Sat Sep 21 16:52:50 2013

Thread 1 advanced to log sequence 2 (LCWR switch)
Current log# 2 seq# 2 mem# 0: Jud2/oradata/cl2ndbl/redo02.log

Sat Sep 21 16:52:50 2013

processing ?/rdbmsfadmin/ddst.bsg

processing 7/rdbms fadmin/dfba.bsq

processing ?/rdbms fadmin/dpstdy.bsq

processing ?/rdbmsfadmin/drupa.bsq

processing ?/rdbms fadmin/dtlog bsg

Sat Sep 21 16:52:51 2013

SMON: enabling tx recovery

Starting background process SMCO

Sat Sep 21 165251 2013

SMCO started with pid=25, OS id=26229

Activity Log

Help

Close

FIGURE 9.33 The DBCA result summary screen

Database Information
Clobal Database Mame:
System IdentifierID):
Server Parameter File name:

EM Database Express URL:

Database creation complete. For details check the logfiles at:
fudl/app/oracle/cfgtoollogs/dbca/clzndbl

clZndbl
clz2ndbl

Mote: All database accounts except SYS and SYSTEM are locked. Select the Password Management
button to view a complete list of locked accounts or to manage the database accounts. From the
Password Management window, unlock only the accounts you will use. Oracle Corporation strongly
recommends changing the default passwords immediately after unlocking the account.

se Configuration Assistal

fu0ljapp/oracle/product/12.1.0/dbhome_2 fdbs/spfilec12ndbl. oral
https://btlnx63:5500/em

Password Management. ||

| Exit |

an

472 Chapter 9 = Creating and Operating Oracle Database 12c

On this screen, you have the option to manage passwords (click Password Management).
By default, all the accounts except SYS, SYSTEM are locked. You can change the password
and unlock selective accounts.

When the creation process is complete, connect to the database with one of the tools such
as SQL*Plus or Enterprise Manager to verify that all the database options and components
were installed properly. Logging into Enterprise Manager will give you an overview of the
new database. By using the URL specified in Figure 9.33, you can invoke the EM Database
Express home page.

Configuring an Oracle Database Using the DBCA

The DBCA lets you change various aspects of an existing database. To change the database
configuration, select Configure Database Options on the DBCA Operations screen, as shown
in Figure 9.8. (Options that are not applicable to the particular Oracle Home are grayed out.
Once a database is created, the Configure and Delete options will be visible.) If the database
is not started, the DBCA starts it for you automatically. You must connect to the database as
a user who has DBA authority.

Once you have selected and started the database, you can add options that may not have
been previously included in the database. Using DBCA you can make the following changes
to the database configuration:

Add database options that are not already installed (no reinstall option) in the database
(refer to Figure 9.18).

Install a sample schema if not already installed (refer to Figure 9.19).

Change the default connection mode for the database. You can change from Dedicated
Server Mode to Shared Server Mode, or vice versa (refer to Figure 9.26).

Deleting an Oracle Database Using the DBCA

You can also delete a database using the DBCA. On the Operations screen (Figure 9.8),
choose Delete Database, and click Next to open the Database screen. The DBCA lists all
the databases available for deletion. Choose the database you want to delete. DBCA also
gives you the option to deregister the database from the EM cloud control if the database
is registered.

The Delete Database summary screen shows the name of the database and files associated
with the database that is removed. If you click Finish, the DBCA removes all files on the disk
associated with the database you have chosen. If you are using Windows, the DBCA also
removes the service associated with the database.

Exercise 9.1 shows you how to delete a database manually using SQL*Plus.

Using DBCA to Create an Oracle 12c Database 473

Manually Delete or Remove an Oracle Database

Some DBAs prefer to use a command-line interface to perform their tasks. You can delete
a database using the command-line tool SQL*Plus.

To do so, first connect to SQL*Plus as an administrator who has the ability to start up the
database—that is, an administrator with either the SYSOPER or the SYSDBA privilege.

Here’'s an example:
/u@l/app/oracle>sqlplus sys/**xx as sysdba

Once you are connected, you need to put the database in MOUNT RESTRICT mode. Issue
the following command if the database is not running:

Startup mount restrict;
Next, issue the following command
Drop database;

This command shuts down the instance and deletes all the files associated with the
database, including the server parameter file. You may have to remove any archived logs
from the database archive area using the appropriate operating-system command.

Managing Database Templates Using the DBCA

As explained earlier in this chapter, the DBCA can store and use XML-based templates to cre-
ate your Oracle database. As the DBA, you can manage these database-definition templates.
Saving a definition of your database in a template format makes it easier to perform various
tasks. For example, you can copy a preexisting template to modify new database definitions.
The template definition is normally stored in the $ORACLE_HOME /assistants/dbca/templates
directory on Unix and in the %0RACLE_HOME%\assistants\dbca\templates directory on
Windows systems.

The DBCA can use two types of templates: seed and nonseed. Seed templates are template
definitions that contain database-definition information and the actual data files and redo log
files. The advantage of a seed template is that the DBCA makes a copy of the data files and
redo logs included in the definition file. These prebuilt data files include all schema informa-
tion, which makes the database-creation process faster. The seed templates carry a .dbc exten-
sion. The associated predefined data files are stored as files having a .dfb extension. When you
use a seed template, you can change the database name, the data file locations, the number of
control files and redo log groups, and the initialization parameters.

474 Chapter 9 = Creating and Operating Oracle Database 12c

Nonseed templates contain custom-defined database definitions. Unlike seed templates,
they do not come with preconfigured data files and redo logs. Nonseed templates carry a .dbt
extension.

Now let’s look at the various options you have to manage templates.

Creating Template Definitions Using the DBCA

You can use the DBCA interface to create new database templates. DBCA templates are
XML files that contain information required to create a new database or to clone existing
databases. Templates can be copied from one machine to another, and thus can be used to
create databases with a uniform standard. When you connect to the DBCA, select Manage
Templates on the Database Operation screen (see Figure 9.8, shown earlier in this chapter),
and click Next to open the Template Management screen, as shown in Figure 9.34.

FIGURE 9.34 The DBCA Template Management screen

Database Configuration Assistant - Manage Templates - Step 2 of 11 - 0O x
ORACLE 2
Template Management —_— 1 (2
» DATABASE

, Database Operation

Select the template management operation you want to perform:
Template Management

(3) Create a database template

Source Database Template
(3) From an existing template

(") From an existing database (structure anly)

The template will contain structural information about the source database including database
options, tablespaces, datafiles, and initialization parameters specified in the source database.
User defined schemas and their data will not be part of the created tem plate

From an existing database (structure as well as data)

The template will contain the structural information as well as physical datafiles specified in the
source database. Databases created using such atemplate will be identical to the source
database. User defined schemas and their data will be part of the template.

C—C—C—C—(—(—C—C—€—E€

() Delete a database template

You have three choices for creating templates. Table 9.10 summarizes your options.

TABLE 9.10 Template-Creation Options

Selection Description

From an Existing Template Creates a new template definition from a preexisting
template. This allows you to modify a variety of

template settings, including parameters and data file
storage characteristics.

Working with Oracle Database Metadata 475

Selection Description
From an Existing Database Creates a new template based on the structural
(Structure Only) characteristics of an existing database. The data files are

created from scratch and will not include data from the
original database. Choose this option when you want

a database that is structurally like another database
but does not contain any data. The database you are
copying from can reside anywhere in your network.

From an Existing Database Creates a new template based on the structural

(Structure As Well As Data) characteristics of an existing database. The data files
and all corresponding user data are included in the
new database. Choose this option when you want an
exact copy of an existing database. The database you
are copying must reside on the same physical server
as the new database you are creating.

Depending on the option selected, you will be presented with a set of forms to save your
template definition. If you elect to create a template from an existing database, you will have
to connect to the database so that the DBCA can obtain information about the database.
You must connect to the database as a user who has DBA credentials to perform this task.

If you are copying a definition from an existing template, you can configure the template
by following a series of screens that are similar to those used to create a database. These
screens allow you to configure the various aspects of the template, including initialization
parameters and data file and redo log locations.

Deleting Template Definitions Using the DBCA

You can also delete an existing template definition. On the Database Operation screen (see
Figure 9.8, shown earlier in this chapter), click Manage Templates. You will be presented with
the Template Management screen (see Figure 9.34). Select the Delete a Database Template
option. You can then select the template to delete. When you remove the template, the DBCA
removes the XML file from the system.

Working with Oracle Database Metadata

In addition to tables such as DEPARTMENTS and EMPLOYEES that store important business data,
Oracle databases also contain system tables that store data about the database. Examples

of the type of information in these system tables include the names of all the tables in the
database, the column names and datatypes of those tables, the number of rows those tables
contain, and security information about which users are allowed to access those tables. This
“data about the database” is referred to as metadata. As a DBA, you will frequently use this
metadata when performing your administration tasks.

476 Chapter 9 = Creating and Operating Oracle Database 12c

An Oracle Database 12¢ database contains two types of metadata views:
Data dictionary views
Dynamic performance views

The SYS user owns the data dictionary and dynamic performance views in the Oracle data-
base, and they are stored in the SYSTEM tablespace. During normal database operation, Oracle
frequently uses the data dictionary and updates the dictionary with the current status of the
database components. The dictionary is also immediately updated when a DDL statement is
executed.

Data dictionary views and dynamic performance views are described in the next section.

Data Dictionary Views

Data dictionary views provide information about the database and its objects. Depending on
which features are installed and configured, an Oracle Database 12¢ database can contain
more than 2,000 data dictionary views. Data dictionary views have names that begin with
DBA_, ALL_, and USER_. For every DBA_ view a corresponding CDB_ view also exists with a con-
tainer identifier. Oracle creates public synonyms on many data dictionary views so users can
access the views conveniently. Data dictionary is owned by user SYS.

The difference between the DBA_, ALL_, and USER_ views can be illustrated using the DBA_
OBJECTS data dictionary view as an example. The DBA_OBJECTS view shows information
on all the objects in the database. The corresponding ALL_OBJECTS view, despite its name,
shows only the objects that a particular database user owns or can access. For example,
if you were logged into the database as a user named SCOTT, the ALL_OBJECTS view would
show all the objects owned by the user SCOTT and the objects to which SCOTT has been
granted access by other users or through a system privilege. The USER_OBJECTS view shows
only those objects owned by a user. If the user SCOTT were to examine the USER_OBJECTS
view, only those objects he owns would be displayed. In a multitenant container database,
multiple pluggable databases are present. The CDB_ views are available for the CDB admin-
istrator to view information from all the databases in the CDB. Figure 9.35 shows a graphi-
cal representation of the relationship between the CDB_, DBA_, ALL_, and USER_ views.

Because the DBA_ views provide the broadest metadata information, they are generally
the data dictionary views used by DBAs. Table 9.11 provides examples of a few DBA_ data
dictionary views.

TABLE 9.11 Examples of Data Dictionary Views

Dictionary View Description

DBA_TABLES Shows the names and physical storage information about all the
tables in the database

DBA_USERS Shows information about all the users in the database

Working with Oracle Database Metadata 4717

Dictionary View Description
DBA_VIEWS Shows information about all the views in the database
DBA_TAB_COLUMNS Shows all the names and datatypes of the table columns in

the database

DBA_TABLESPACES Shows information on tablespaces in the database

DBA_DATA_FILES Shows information on the data files belonging to the database
You can find a complete list of the Oracle Database 12¢ data dictionary
&’TE views in the “Oracle Database Reference 12c Release 1 (12.1) E17615-18"

document available at http://www.oracle.com/pls/db121/portal
.all_books.

FIGURE 9.35 A comparison of data dictionary views

/—CDB_DBJEC'I
All objects that are created in the root and all

pluggable databases
——DBA_CBIECT: ~

All objects that are created in the database

/—ALL_OBJECI
All objects owned by user plus
objects the user has been granted
access

/—USER_OBIECT&—\

All objects owned
by a particular user

Dynamic Performance Views

Throughout database operation, Oracle updates a set of virtual tables to record the current
database activity and status. These tables are called dynamic performance tables. Views are

http://www.oracle.com/pls/db121/portal.all_books
http://www.oracle.com/pls/db121/portal.all_books

478 Chapter 9 = Creating and Operating Oracle Database 12c

created on top of the dynamic performance tables so that information is grouped better and
names are in a user-friendly format. The dynamic performance views are sometimes called
fixed views, because they cannot be altered or removed by the database administrator.

The dynamic performance tables begin with X$. The dynamic performance view names
begin with V_$. Public synonyms are created for these views, and they begin with Vs.
For example, the dynamic performance view with data file information is v_sdatafile,
whereas the public synonym is védatafile.

Depending on which features are installed and configured, an Oracle database can con-
tain over 700 dynamic performance views. Most of these views have names that begin with
V$. Table 9.12 describes a few of these dynamic performance views.

TABLE 9.12 Examples of Dynamic Performance Views

Dynamic Performance View Description

VSDATABASE Contains information about the database, such as the
database name and when the database was created

VSVERSION Shows which software version the database is using

VSOPTION Displays which optional components are installed in the
database

V$SQL Displays information about the SQL statements that

database users have been issuing

Although the contents of the DBA_ and V$ metadata views are similar, there are some
important differences between the two types. Table 9.13 compares these two types.

TABLE 9.13 DataDictionary vs. Dynamic Performance Views

Data Dictionary Views Dynamic Performance Views

The DBA_ views usually have plural names The names of the V$ views are generally

(for example, DBA_DATA_FILES). singular (for example, VSDATAFILE).

The DBA_ views are available only whenthe Some VS views are available even when the
database is open and running. database is not fully open and running.
The data contained in the DBA_ views is The VS views contain dynamic statistical

static and is not cleared when the database data that is lost each time the database is
is shut down. shut down.

Managing Initialization-Parameter Files 479

The data dictionary view DICTIONARY shows information about the data dic-

doTE tionary and dynamic performance views in the database. DICT is a synonym
for the DICTIONARY view. The COMMENTS column shows the purpose or con-
tents of the view. The VSFIXED_TABLE view lists the dynamic performance
tables and views in the database. You can use SQL Developer to query the
contents of these views so that you can better understand them.

The Oracle data dictionary and dynamic performance views are created while creating
the database. The scripts to create the metadata are stored in the $ORACLE_HOME/rdbms/admin
directory. Several scripts are in this directory, and the script that creates the base dictionary
objects is called catalog.sql. The catproc.sql script creates the PL/SQL packages and func-
tionality to support PL/SQL in the database.

You are not allowed to log in as SYS and modify the data dictionary views

Ad@TE or update information directly using SQL. The only SYS-owned table you
are allowed to delete records from is AUDS. This table is used to store data-
base audit information.

Managing Initialization-Parameter Files

Oracle uses initialization-parameter files to store information about initialization parameters
used when an Oracle instance starts. Oracle reads the parameter file to obtain information
about how the Oracle instance should be sized and configured upon startup.

The parameter file can be a plaintext file, commonly referred to as a pfile, or it can be
a binary parameter file, commonly referred to as an spfile. You can use either type of file
to configure instance and database options; however, there are some important differences
between the two types of configuration files, as shown in Table 9.14.

TABLE 9.14 Pfiles vs. Spfiles

Pfile Spfile

Text file that can be edited using a text editor. Binary file that cannot be edited directly.

When changes are made to the pfile, the Parameter changes made to the database
instance must be shut down and restarted using ALTER SYSTEM are updated in the spfile.
before it takes effect.

Is called initinstance_name.ora. Is called spfileinstance_name.ora.

480 Chapter 9 = Creating and Operating Oracle Database 12c

TABLE 9.14 Pfiles vs. Spfiles (continued)

Pfile Spfile

Oracle instance reads only from pfile. Oracle instance reads and writes to the spfile.
Can be created from an spfile using the Can be created from a pfile using the create
create pfile from spfile command. spfile from pfile command.

You can specify more than 365 documented configuration parameters in the pfile
or spfile. Oracle Database 12¢ divides these parameters into two categories: basic and
advanced. Oracle recommends you set only the basic initialization parameters manually.
Oracle also recommends you do not modify the remaining parameters unless directed to
do so by Oracle Support or to meet the specific needs of your application.

Most parameters can be modified dynamically, meaning a database restart is not
required for the new value to take effect. But certain parameter value changes require a
database restart. Table 9.15 describes the basic initialization parameters. A “Yes” in the
Static column indicates that the parameter is static and cannot be modified dynamically
without a database restart.

TABLE 9.15 Oracle Database 12¢ Basic Initialization Parameters

Parameter Name Static Description

CLUSTER_DATABASE Yes Tells the instance whether it is part of a clustered
environment.

COMPATIBLE Yes Specifies the release level and feature set you want to
be active in the instance.

CONTROL_FILES Yes Designates the physical location of the database
control files.

DB_BLOCK_SIZE Yes Specifies the default database block size. The
database block size specified at database creation
cannot be changed.

DB_CREATE_FILE_DEST No Specifies the directory location where database data
files will be created if the Oracle-Managed Files feature
is used.

DB_CREATE_ONLINE_ No Specifies the location(s) where the database redo log

LOG_DEST_n files will be created if the Oracle-Managed Files feature

is used.

Managing Initialization-Parameter Files 481

Parameter Name Static Description

DB_DOMAIN Yes Specifies the logical location of the database on
the network.

DB_NAME Yes Specifies the name of the database that is mounted by
the instance.

DB_RECOVERY_FILE_ No Specifies the location where recovery files will be

DEST written if the flash recovery feature is used.

DB_RECOVERY_FILE_ No Specifies the amount of disk space available for storing

DEST_SIZE flash recovery files.

DB_UNIQUE_NAME Yes Specifies a globally unique name for the database
within the enterprise.

INSTANCE_NUMBER Yes Identifies the instance in a Real Application Clusters
(RAC) environment.

LDAP_DIRECTORY_ Yes Enables or disables Oracle Internet Directory—-based

SYSAUTH authentication for SYSDBA and SYSOPER connections to
the database.

LOG_ARCHIVE_DEST_n No Specifies as many as nine locations where archived
redo log files are to be written.

LOG_ARCHIVE_DEST_ No Indicates how the specified locations should be used for

STATE_n log archiving.

NLS_LANGUAGE Yes Specifies the default language of the database.

NLS_TERRITORY Yes Specifies the default region or territory of the database.

OPEN_CURSORS No Sets the maximum number of cursors that an individual
session can have open at one time.

PGA_AGGREGATE_ No Establishes the overall amount of memory that all PGA

TARGET processes are allowed to consume.

PROCESSES Yes Specifies the maximum number of operating-system
processes that can connect to the instance.

REMOTE_LISTENER No Specifies a network name that points to the address or
list of addresses of remote Oracle Net listeners.

REMOTE _LOGIN_ Yes Determines whether the instance uses a password file

PASSWORDFILE

and what type.

482 Chapter 9 = Creating and Operating Oracle Database 12c

TABLE 9.15

Oracle Database 12¢ Basic Initialization Parameters (continued)

Parameter Name

Static Description

SESSIONS

SGA_TARGET

SHARED_SERVERS

Yes Determines the maximum number of sessions that can
connect to the database.

No Establishes the maximum size of the SGA, within
which space is automatically allocated to each SGA
component when Automatic Memory Management
is used.

No Specifies the number of shared server processes to
start when the instance is started. See Chapter 11,
“Managing Data and Undo,” for details.

STAR_TRANSFORMATION_ No Determines whether the optimizer will consider star

ENABLED

transformations when queries are executed. See
Chapter 14 for details on the optimizer.

UNDO_TABLESPACE No Specifies which tablespace stores undo segments if

the Automatic Undo Management option is used. See
Chapter 11 for details on undo management.

<

The VSPARAMETER view shows the parameters that are available to use.
Review the DESCRIPTION column to understand the purpose. The ISBASIC
column with value TRUE identifies the basic parameters.

SELECT name, description
FROM v$parameter
WHERE dsbasic = 'TRUE';

Any parameters not specified in the pfile or spfile take on their default values. The
following is an example of the contents of a typical Oracle Database 12¢ pfile after the
database was created using DBCA:

*x.,audit_file_dest='/udl/app/oracle/admin/cl2ndbl/adump'’
x,audit_trail="db'
x,compatible='12.1.0.0.0"

x.control_files='/u®2/oradata/cl2ndbl/controlel.ctl','/udl/app/oracle/fast_
recovery_area/cl2ndbl/control02.ctl’'

*x.db_block_size
*x.db_domain=""

=8192

*x.db_name="'cl2ndbl'

Managing Initialization-Parameter Files 483

x.db_recovery_file_dest='/u®l/app/oracle/fast_recovery_area'
x.db_recovery_file_dest_size=11g
x.diagnostic_dest='/u@l/app/oracle’
x.dispatchers='(PROTOCOL=TCP) (SERVICE=c12ndblXDB)'
x.local_listener="LISTENER_C12NDB1'
x.log_archive_format="'%t_%s_%r.dbf'
*.memory_target=4000m

*.open_cursors=300

*.processes=300
x.remote_login_passwordfile='EXCLUSIVE'
*,undo_tablespace="'UNDOTBS1'

In this sample pfile, the sizes of the shared pool, database buffer cache, large pool, and
Java pool are not individually specified. Instead, Oracle’s Automatic Memory Management
features allow you to simply set one configuration parameter—MEMORY_TARGET—to estab-
lish the total amount of memory allocated to the SGA and PGA. This parameter is dis-
cussed in Chapter 14.

On production databases, if your Oracle license is based on the number of named users,
you can enforce the license compliance by setting the LICENSE_MAX_USERS parameter. The
default for this parameter is 0, which means you can create any number of users in the
database and the license compliance is not enforced.

@ Real World Scenario
Handle with Care: Undocumented Configuration Parameters

You've just read a performance-tuning tip posted to the Oracle newsgroup at comp
.databases.oracle.server. The person posting the tip suggests setting the undocu-
mented pfile parameter _optimizer_dyn_smp_blks to a value of 200 in order to fix an issue.
Should you implement this suggestion as a precaution or even if you see a similar issue?

More than 2,900 undocumented configuration parameters are available in Oracle Database
12c. Undocumented configuration parameters are distinguished from their documented
counterparts by the underscore that precedes their name, as with the parameter described
in the newsgroup posting.

We do not recommend utilizing undocumented pfile or spfile parameters on any of your
systems because knowing the appropriate reasons to use these parameters, and the appro-
priate values to set these parameters to, is almost pure speculation because of their undocu-
mented nature. Although some undocumented parameters are relatively harmless (such as
_trace_files_public), using others incorrectly can cause unforeseen database problems.

484 Chapter 9 = Creating and Operating Oracle Database 12c

You may use the following query logged in as SYSDBA to view all undocumented parameters
in the database.

select ksppinm parameter, ksppdesc description
from xSksppi
where substr(ksppinm,1,1) = '_'

One exception to this recommendation is when you are directed to use an undocumented
configuration parameter by Oracle Support or an application vendor. Oracle Support occa-
sionally uses these parameters to enhance the generation of debug information or to work
around a bug in the kernel code or to enhance the performance of certain code.

Certain parameters in the spfile begin with a double underscore. These are dynamic
areas managed by Oracle automatic features and are used as starting sizes when you
restart the database. Here is an example:

$ strings spfileC12DBl.ora | head -10
C12DB1.__data_transfer_cache_size=0

C12DB1.__db_cache_size=788529152

C12DB1l.__java_pool_size=16777216

C12DB1.__large_pool_size=16777216
C12DBl.__oracle_base="/u@l/app/oracle'#ORACLE_BASE set from environment
C12DBl.__pga_aggregate_target=788529152

C12DB1.__sga_target=2348810240

C12DB1.__shared_io_pool_size=117440512
C12DB1.__shared_pool_size=1375731712

C12DBl.__streams_pool_size=0

Locating the Default Parameter File

The default location that Oracle searches to find the pfile and spfile parameter files is
$ORACLE_HOME/dbs on Unix systems and %ORACLE_HOME%\database on Windows systems.

Oracle uses a search hierarchy when a startup command is issued without specifying
either a pfile or an spfile. Oracle looks for files with the following names in the default
directory to start the instance:

spfile$ORACLE_SID.ora
spfile.ora

init$SORACLE_SID.ora

Managing Initialization-Parameter Files 485

Oracle first looks for a parameter file called spfile$ORACLE_SID.ora. If it doesn’t find
that, it searches for spfile.ora. Finally, it searches for a traditional text pfile with the default
name of init$SORACLE_SID.ora.

If the parameter files do not exist in the default location or you want to use a different
parameter file to start your database, you can specify a parameter file to use when you issue
a startup command to start the Oracle database. A database instance cannot start without
referring to a parameter file.

y You will see examples of how database startup is performed later in this
A&TE chapter in the section “Starting up and Shutting down an Oracle Instance.”

Modifying Initialization-Parameter Values

In some instances, you may need to change the initialization parameters. For example, you
might need to increase the number of sessions allowed to connect to the database because you
are adding users. Whatever the case, you need to know how to make these changes. There are
a few options to change the initialization-parameter value, based on the type of parameter file
used. Here they are

If PFILE is used, edit the pfile using an OS editor and make any appropriate changes.

If SPFILE is used, connect to the instance and make the changes using the ALTER SYSTEM
SET parameter_name = value statement.

Use EM Database Express to make changes.

Using EM Database Express

To use the EM Database Express tool to modify existing database parameters, navigate to the
Configuration menu and choose Initialization Parameters. The SPFile tab shows the parame-
ters as set in the spfile. You can also use the filters to find the exact parameter that needs to be
modified. The SPFile tab groups the parameters in various categories. Figure 9.36 shows the
EM screen to change initialization parameters. You have to be logged in as SYSDBA to modify
the parameters.

The Initialization Parameters screen has two tabs:

Current Tab This tab displays all the currently active settings for the initialization parame-
ters for the database instance. If a parameter is marked Dynamic, you can modify it, and this
modification immediately affects the parameter that affects the currently running instance
without stopping the database. The changes you make on the Current tab are not permanent,
so the next time the database is stopped and restarted, the settings will revert to their original
values. Click on Set to modify the parameter values; you will have the option to change the
memory value or spfile value, or both.

486 Chapter 9 = Creating and Operating Oracle Database 12c

SPFile Tab If you are using a server parameter file, you will see the SPFile tab. This

tab also lets you change existing database parameters. The difference between changing
parameters on this tab and changing parameters on the Current tab is that changes to the
spfile are persistent across database startups and shutdowns because the changes are saved
to the spfile definition. You can also apply your changes to the spfile only or to the spfile
and the currently running instance. Click on Set to modify the parameter values. The SQL
code used for set is alter system set "<parameter>"=<value> scope=spfile sid='x".
Click on Reset to remove the parameter from SPFile and have it default. The SQL used for
reset is alter system reset "<parameter>" scope=spfile sid='x".

FIGURE 9.36 The EM Database Express Initialization Parameters screen

ORACLE Enterprise Manager Database Express 12¢ Help - L svsTEM | LegOut O

& C12NDB1(12.1.0.1.0) /& Configuration v £ Storage v Iy Security v [§f Performance w [btinx63

Initialization Parameters Page Refreshed 11:21:57 PM GMT-0500 ¢,

Current SPFile

The parameter values listed here are set in SPFILE /uDVapploracle/product/12.1. (/dbhome_2/dbs/spfilec12ndbl ora

View v & st) Reset (@) Help] Basic W

Name A| Value | Comment | SID | Dyn... |Sess.. | Basic ‘ Type | Categon|

B Archiving and R... [l
db_recovery_file_d... Ju0lfapp/ora.. > W ' String Archi
db_recovery_file_d.. 11G * + ' Big I.. Archi
log_archive_format %t %s_%r.dbf 3 String Archiy =

B Buffer Cache a...

db_block_size 8152 a o Integ... Buffe
B Cursors and Lib...

Open_cursors 300 = + ' Integ... Curso

E Database/Insta...

Using SQL*Plus or SQL Developer

Although EM Database Express is a handy tool to modify the initialization parameters,
sometimes it is convenient to use SQL*Plus or SQL Developer and make changes to the
parameters. You should know about two dynamic performance views: VSPARAMETER and
V$SPPARAMETER.

V$PARAMETER

The VSPARAMETER view shows information about the initialization parameters that are
currently in effect. This view has several useful columns. Table 9.16 lists some of the
columns in V$PARAMETER and how they can be used in queries.

Managing Initialization-Parameter Files 487

TABLE 9.16 V$PARAMETER Columns

Column Name

Description

NAME

VALUE
DISPLAY_VALUE
DESCRIPTION

ISBASIC

ISDEFAULT

ISMODIFIED

ISSES_MODIFIABLE

ISSYS_MODIFIABLE

This specifies the name of the initialization parameter.

This specifies the current value of the parameter.

This specifies the current value in a more user-friendly format.
This gives a short description about the parameter.

TRUE indicates that the parameter is categorized as a basic
parameter.

FALSE indicates that the parameter was specified in the pfile or
spfile during instance startup.

FALSE indicates that the parameter has not been modified since
the instance started.

TRUE indicates that the parameter can be modified using an ALTER
SESSION statement.

FALSE indicates that the parameter cannot be modified using an
ALTER SYSTEM statement. Such parameters can be changed only
using the SCOPE=SPFILE clause.

V$SPPARAMETER

The VSSPPARAMETER view shows the contents of the spfile used to start the instance. A TRUE
value for the ISSPECIFIED column shows whether the parameter was specified in the spfile.
If a pfile was used to start the instance, all the rows will have FALSE for the ISSPECIFIED
column. Sometimes, querying the V$SPPARAMETER can produce readable output for param-
eters that take multiple values.

V$PARAMETER vs. V$SPPARAMETER
The following SQL example shows the difference in the result from the VSPARAMETER and

VSSPPARAMETER views:

SQL> SELECT name, value

2 FROM vS$parameter

3 WHERE name LIKE 'control%'
4 AND qisdefault = 'FALSE';

488 Chapter 9 = Creating and Operating Oracle Database 12c

control_files /u®2/oradata/cl2ndbl/control@l.ctl, /u@l/app/oracle/fast
_recovery_area/cl2ndbl/controle2.ctl

SQL> SELECT name, value
2 FROM vS$spparameter
3 WHERE name LIKE 'control%'
4 AND qisspecified = 'TRUE';

control_files /u02/oradata/cl2ndbl/control@l.ctl
control_files /u®l/app/oracle/fast_recovery_area/cl2ndbl/control02.ctl

sQL>

You can use the ALTER SESSION statement to change the value of a parameter in the
current session. For example, if you want to change the default date-display format for
the session only, use the following statement:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
Session altered.

sQL>

You can use the ALTER SYSTEM statement to change the value of a parameter system-wide
or in the spfile, or both. You use the SCOPE clause to define where you want to change the
parameter value: MEMORY, SPFILE, and BOTH are the valid values for the SCOPE clause.

A value of DEFERRED or IMMEDIATE in the ISSYS_MODIFIABLE column shows that the param-
eter can be dynamically changed using ALTER SYSTEM. The DEFERRED value indicates that the
change you make does not take effect until a new