

Biju Thomas

OCA: Oracle®
Database 12c Administrator

Certified Associate
Study Guide

Senior Acquisitions Editor: Jeff Kellum
Development Editor: Lisa Bishop
Technical Editors: Arup Nanda and Syed Jaffar Hussain
Production Editor: Dassi Zeidel
Copy Editor: Kathy Grider-Carlyle
Editorial Manager: Pete Gaughan
Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher: Chris Webb
Media Project Manager 1: Laura Moss-Hollister
Media Associate Producer: Shawn Patrick
Media Quality Assurance: Marilyn Hummel
Book Designer: Judy Fung
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Kathy Pope
Indexer: Ted Laux
Project Coordinator, Cover: Todd Klemme
Cover Designer: Wiley
Cover Image: © Getty Images Inc./Jeremy Woodhouse
Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-1-118-64395-2
ISBN: 978-1-118-76325-4 (ebk)
ISBN: 978-1-118-93133-2 (ebk)
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.
Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.
For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax
(317) 572-4002.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.
Library of Congress Control Number: 2014930413
TRADEMARKS: Wiley and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written per-
mission. Oracle is a registered trademark of Oracle, Inc. All other trademarks are the property of their respec-
tive owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing OCA: Oracle Database 12c Administrator Certified Associate Study
Guide. This book is part of a family of premium-quality Sybex books, all of which are written
by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing con-
sistently exceptional books. With each of our titles, we’re working hard to set a new standard
for the industry. From the paper we print on, to the authors we work with, our goal is to bring
you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about this
or any other Sybex book by sending me an email at contactus@sybex.com. If you think you’ve
found a technical error in this book, please visit http://sybex.custhelp.com. Customer feed-
back is critical to our efforts at Sybex.

Best regards,

Chris Webb
Associate Publisher
Sybex, an Imprint of Wiley

mailto:contactus@sybex.com
http://sybex.custhelp.com

To the ladies in my family: my lovely wife, loving mom, and lovable sisters.

Thanks for always being there for me.

To my children: Joshua and Jeanette. You brighten my day, every day!

Acknowledgments
I thank the great publishing team at Wiley for helping me throughout the writing process. I am
grateful to Jeff Kellum, acquisitions editor at Wiley, for initiating this project and having faith
in me. I am indebted to Lisa Bishop, developmental editor, for offering valuable suggestions to
improve the readability and organization of the book. Thank you both for your patience and
hard work throughout this project.

Thank you Kathy Grider-Carlyle, copy editor, for meticulously going through the chapters
and making sure there is no ambiguity and that all the pieces tie together. I thank Dassi Zeidel,
production editor, for ensuring consistency and accuracy and coordinating the production pro-
cess. I would like to thank Pete Gaughan, Connor O’Brien, Jenni Housh, Rayna Erlick, and
everyone at Wiley who helped in the making of this book.

A technical book is judged by not only who wrote it, but also who reviewed it. I am
much honored to have two great Oracle experts as technical reviewers, both Oracle ACE
Directors and recipients of the DBA of the Year award. I thank Arup Nanda for reviewing
each paragraph of every chapter and for the invaluable comments, tips, and edits. I thank
Syed Jaffar Hussain for reading and ensuring the technical accuracy. The input from two
Oracle stalwarts certainly improved the content and reliability of the book.

I sincerely thank Gavin Powell for initially signing up as a coauthor to this book. Due to
unforeseen events, Gavin could complete only one chapter. I thank Gavin for working with
me and helping with the book.

I have many friends to thank at OneNeck IT Solutions for their friendship and encourage-
ment. My heartfelt thanks to Chuck Vermillion (SVP & General Manager) for his support and
confidence in me. Thank you Danny Carrizosa for the motivation and your willingness to help
out wherever needed. I thank Phil Pearson and the entire team for their trust in my technical
abilities. It sure is great working with you all.

Last but not least, no words can express the ceaseless support and encouragement given by
my dear wife. Thank you, Shiji. You are the best. I owe my kids several weekends and thank
them for their patience and tolerance of so much of my attention being given to this book.

About the Author
Biju Thomas   is an Oracle ACE, Oracle Certified Professional, and Certified Oracle Database
SQL Expert. Biju has been developing and administering Oracle databases since 1993. He
now spends time mentoring DBAs, performance tuning, and designing Oracle solutions. He is
Principal Solutions Architect at OneNeck IT Solutions (http://www.oneneck.com). He is a fre-
quent presenter at Oracle conferences and a contributor to Oracle technical journals. He blogs
at http://www.bijoos.com/oraclenotes, and you can follow his tweets @biju_thomas.

About the Contributor
Gavin Powell   spent 25 years as an IT professional in positions such as Oracle DBA, per-
formance tuner, data architect, and developer. In the last 10 years, he has branched out into
technical writing (many titles in print) in between contract and consulting jobs. He also
enjoys music, songwriting, performing, singing, playing too many instruments, home record-
ing/producing, and studying music at Berklee.

About the Technical Reviewers
Arup Nanda   has been an Oracle DBA for the last 20 years, working on all aspects of
Oracle technology from modeling to performance tuning to disaster recovery. He has writ-
ten over 500 published articles, presented over 300 sessions in 22 countries, and coauthored
5 books. He is an Oracle ACE Director, Oak Table Network member, editor for SELECT
Journal, and a board member of Exadata SIG of IOUG. In recognition, Oracle conferred
on him the coveted DBA of the Year and Architect of the Year awards in 2003 and 2012,
respectively. He lives in Danbury, CT.

Syed Jaffar Hussain   has over 21 years IT experience that includes more than 14 years of
production Oracle database administration. Oracle has honored him with the prestigious
Oracle ACE Director role and named him DBA of the Year for 2011, both for his excel-
lent knowledge and contributions to the Oracle community. He is an Oracle Certified
Master (OCM) for Oracle Database 10g, a status granted only after passing extensive
challenges in a hands-on environment. He is also an Oracle Database 10g RAC Certified
Expert. Syed Jaffar is a well-known Oracle speaker, and he coauthored Expert Oracle
RAC12 and Oracle 11g R1/R2 Real Application Clusters Essentials. He blogs regularly
at http://jaffardba.blogspot.com.

http://www.oneneck.com
http://www.bijoos.com/oraclenotes
http://jaffardba.blogspot.com

Contents at a Glance

Introduction	 xx

Assessment Test	 xxxv

Part I	 Oracle Database 12c: SQL Fundamentals	 1

Chapter 1	 Introducing Oracle Database 12c RDBMS	 3

Chapter 2	 Introducing SQL	 35

Chapter 3	 Using Single-Row Functions	 89

Chapter 4	 Using Group Functions	 175

Chapter 5	 Using Joins and Subqueries	 227

Chapter 6	 Manipulating Data	 281

Chapter 7	 Creating Tables and Constraints	 319

Part II	 Oracle Database 12c: Installation
and Administration	 381

Chapter 8	 Introducing Oracle Database 12c Components
and Architecture	 383

Chapter 9	 Creating and Operating Oracle Database 12c	 431

Chapter 10	 Understanding Storage and Space Management	 511

Chapter 11	 Managing Data Concurrency and Undo	 569

Chapter 12	 Understanding Oracle Network Architecture	 603

Chapter 13	 Implementing Security and Auditing	 677

Chapter 14	 Maintaining the Database and Managing Performance	 753

Chapter 15	 Using Backup and Recovery	 825

Chapter 16	 Controlling Resources and Jobs	 903

Chapter 17	 Upgrading to Oracle Database 12c	 957

Chapter 18	 Using Grid Infrastructure and Data Movement Tools	 1005

Appendix A	 Answers to Review Questions	 1083

Appendix B	 About the Additional Study Tools	 1119

Index	 1123

Contents

Introduction	 xx

Assessment Test	 xxxv

Part I	 Oracle Database 12c: SQL Fundamentals	 1

Chapter 1	 Introducing Oracle Database 12c RDBMS	 3

Relational Database Management Systems	 4
Characteristics of a Relational Database	 5
Oracle’s Implementation of RDBMS and ORDBMS	 8

The Oracle Database 12c	 9
Oracle Database 12c Implementations	 9
Connecting to Oracle Database	 13
Database Management Tools	 14
Oracle Database 12c in the Cloud	 19

Familiarizing SQL*Plus	 19
Summary	 30
Exam Essentials	 31
Review Questions	 32

Chapter 2	 Introducing SQL	 35

SQL Fundamentals	 36
Oracle Datatypes	 38
Operators and Literals	 42

Writing Simple Queries	 46
Using the SELECT Statement	 46
Filtering Rows	 51
Sorting Rows	 62
Sorting NULLs	 64
Limiting Rows	 67
Using Expressions	 68

Accepting Values at Runtime	 72
Using Ampersand Substitution Variables	 73
Saving a Variable for a Session	 75
Using Positional Notation for Variables	 77

Summary	 78
Exam Essentials	 78
Review Questions	 80

Chapter 3	 Using Single-Row Functions	 89

Single-Row Function Fundamentals	 90
Functions for NULL Handling	 91

Contents
Assessment Test	

	

	

	

	

	
	

	 35

SQL Fundamentals	
	

	

	
	

	

	
	

	
	

	

x	 Contents

Using Single-Row Character Functions	 95
Character Function Overview	 95
Character Function Descriptions	 96

Using Single-Row Numeric Functions	 108
Numeric Function Overview	 108
Numeric Function Descriptions	 109

Using Single-Row Date Functions	 119
Date Format Conversion	 119
Date Function Overview	 120
Date Function Descriptions	 121

Using Single-Row Conversion Functions	 131
Conversion Function Overview	 131
Conversion Function Descriptions	 133

Using Other Single-Row Functions	 154
Miscellaneous Function Overview	 154
Miscellaneous Function Descriptions	 155

Summary	 167
Exam Essentials	 168
Review Questions	 169

Chapter 4	 Using Group Functions	 175

Group Function Fundamentals	 176
Utilizing Aggregate Functions	 177

Grouping Data with GROUP BY	 178
Group Function Overview	 182
Group Function Descriptions: Part 1	 184
Group Function Descriptions: Part 2	 194
Limiting Grouped Data with HAVING	 207
Creating Superaggregates with CUBE and ROLLUP	 208
Nesting Functions	 215

Summary	 218
Exam Essentials	 218
Review Questions	 219

Chapter 5	 Using Joins and Subqueries	 227

Writing Multiple-Table Queries	 228
Inner Joins 	 229
Cartesian Joins	 239
Outer Joins	 240
Other Multiple-Table Queries	 245

Using Set Operators	 247
The UNION Operator 	 248
The UNION ALL Operator 	 249
The INTERSECT Operator 	 250

	 Contents	 xi

The MINUS Operator 	 250
Putting It All Together	 250

Using Subqueries	 252
Single-Row Subqueries	 253
Multiple-Row Subqueries	 254
Subquery Returns No Rows	 256
Correlated Subqueries	 258
Scalar Subqueries	 259
Multiple-Column Subqueries	 267
Subqueries in Other DML Statements	 268

Summary	 269
Exam Essentials	 270
Review Questions	 271

Chapter 6	 Manipulating Data	 281

Using DML Statements	 282
Inserting Rows into a Table	 283
Updating Rows in a Table	 289
Deleting Rows from a Table	 294
Merging Rows	 297

Understanding Transaction Control	 299
Savepoints and Partial Rollbacks	 302
Data Visibility	 304

Summary	 306
Exam Essentials	 307
Review Questions	 308

Chapter 7	 Creating Tables and Constraints	 319

Database Objects Overview	 320
Schema Objects	 322
Using Sequences	 324

Built-in Datatypes	 325
Character Datatypes	 325
Numeric Datatypes	 329
Date and Time Datatypes	 330
Date Arithmetic	 334
Binary Datatypes	 336
Row ID Datatypes	 337

Creating Tables	 338
Naming Tables and Columns	 339
Specifying Default Values for Columns	 341
Adding Comments	 348
Creating a Table from Another Table	 348

Modifying Tables	 350
Adding Columns	 350

xii	 Contents

Modifying Columns	 353
Renaming Columns	 354
Dropping Columns	 354
Hiding Columns from Table	 356
Dropping Tables	 357
Renaming Tables	 357
Making Tables Read-Only	 358

Managing Constraints	 361
Creating Constraints	 362
Dropping Constraints	 367
Enabling and Disabling Constraints	 367
Deferring Constraint Checks	 369

Summary	 373
Exam Essentials	 374
Review Questions	 375

Part II	 Oracle Database 12c: Installation
and Administration	 381

Chapter 8	 Introducing Oracle Database 12c Components
and Architecture	 383

Oracle Database Fundamentals	 385
Relational Databases	 385
Oracle Database 12c Objects	 386
Interacting with Oracle Database 12c	 388

Oracle Database 12c Architecture	 391
User and Server Processes	 394
The Oracle Instance	 396
Oracle Storage Structures	 410

Summary	 424
Exam Essentials	 425
Review Questions	 426

Chapter 9	 Creating and Operating Oracle Database 12c	 431

Oracle Database 12c Software Installation	 432
Planning the Oracle Database 12c Software Install	 433
Using the Oracle Universal Installer	 440

Using DBCA to Create an Oracle 12c Database	 447
Invoking the Database Configuration Assistant	 447
Configuring an Oracle Database Using the DBCA	 472
Deleting an Oracle Database Using the DBCA	 472
Managing Database Templates Using the DBCA	 473

Working with Oracle Database Metadata	 475
Data Dictionary Views	 476
Dynamic Performance Views	 477

	 Contents	 xiii

Managing Initialization-Parameter Files	 479
Locating the Default Parameter File	 484
Modifying Initialization-Parameter Values	 485

Starting Up and Shutting Down an Oracle Instance	 490
Starting Up an Oracle Database 12c Instance	 491
Shutting Down an Oracle Database 12c Instance	 495

Monitoring the Database Alert Log	 497
Summary	 503
Exam Essentials	 504
Review Questions	 506

Chapter 10	 Understanding Storage and Space Management	 511

Understanding the Physical and Logical Storage	 512
Contents of a Data Block	 514

Managing Tablespaces	 516
Identifying Default Tablespaces	 516
Creating and Maintaining Tablespaces	 516
Obtaining Tablespace Information	 531

Managing Data Files	 534
Performing Operations on Data Files	 535
Using the Oracle Managed Files Feature	 539
Querying Data File Information	 544

Managing Space	 547
Automatic Space Management Features	 547
Monitoring Tablespace Free Space	 551
Using Segment Advisor	 554
Avoiding Out-of-Space Errors	 559

Summary	 562
Exam Essentials	 563
Review Questions	 565

Chapter 11	 Managing Data Concurrency and Undo	 569

Managing Data Changes Using DML	 570
Understanding “Change”	 571
Differentiating Undo and Redo	 572
Configuring and Monitoring Undo	 576

Managing Data Concurrency	 584
Understanding Locks and Transactions	 585
Maximizing Data Concurrency	 587
Detecting and Resolving Lock Conflicts	 590

Summary	 595
Exam Essentials	 595
Review Questions	 597

xiv	 Contents

Chapter 12	 Understanding Oracle Network Architecture	 603

Introducing Network Configurations	 604
Single-Tier Architecture	 605
Two-Tier Architecture	 605
n-Tier Architecture	 606

An Overview of Oracle Net Features	 607
Connectivity	 608
Manageability	 608
Scalability	 609
Security	 611
Accessibility	 613

Configuring Oracle Net on the Server	 613
Understanding the Oracle Listener	 614
Managing Oracle Listeners	 618
Dynamically Registering Services	 634
Oracle Net Logging and Tracing on the Server	 635

Configuring Oracle Net for the Client	 637
Client-Side Names Resolution Options	 637
The Host Naming Method	 638
The Oracle Easy Connect Method	 639
The Local Naming Method	 641
Troubleshooting Client-Side Connection Problems	 646

An Overview of Oracle Shared Server	 648
Dedicated Server vs. Shared Server	 648
Advantages and Disadvantages of Shared Server	 650
Oracle Shared Server Infrastructure	 651
Configuring the Oracle Shared Server	 653
Managing a Shared Server	 658

Understanding Database Resident Connection Pooling	 661
Configuring DRCP	 662
Comparing Connection Architectures	 663

Communicating Between Databases	 666
Introduction to Database Links	 666
Creating Database Links	 667

Summary	 669
Exam Essentials	 670
Review Questions	 672

Chapter 13	 Implementing Security and Auditing	 677

Creating and Managing User Accounts	 678
Configuring Authentication	 679
Assigning Tablespaces and Quotas	 681
Assigning a Profile and Account Settings	 684

	 Contents	 xv

Removing a User from the Database	 686
Managing Default User Accounts	 687

Granting and Revoking Privileges	 687
Granting Object Privileges	 688
Granting System Privileges	 692
Role Privileges	 701
Applying the Principle of Least Privilege	 705

Controlling Resource Usage by Users	 711
Implementing Password Security Features	 714

Auditing Database Activity	 718
Managing Statement Auditing	 720
Managing Privilege Auditing	 724
Managing Object Auditing	 725
Using SQL Developer for Audit Management	 727
Purging the Audit Trail	 729
Managing Fine-Grained Auditing	 732
Implementing Unified Auditing	 735

Summary	 745
Exam Essentials	 746
Review Questions	 747

Chapter 14	 Maintaining the Database and
Managing Performance	 753

Proactive Database Maintenance	 754
Managing Optimizer Statistics	 755
Gathering Performance Statistics 	 775
Automatic Database Diagnostic Monitoring	 782
The Advisory Framework	 793
Monitoring Server-Generated Alerts	 798
Understanding Automatic Diagnostic Repository	 801

Managing Performance	 806
Sources of Tuning Information	 807
Tuning Memory	 812
Automatic Shared Memory Management	 813
Automatic SQL Execution Memory Management	 815
Managing Memory Using EM Cloud Control	 817

Summary	 819
Exam Essentials	 820
Review Questions	 821

Chapter 15	 Using Backup and Recovery	 825

Understanding and Configuring Recovery Components	 827
Understanding Control Files	 827
Understanding Checkpoints	 831

xvi	 Contents

Understanding Redo Log Files	 832
Understanding Archived Redo Log (ARCHIVELOG) Files	 839
Understanding the Fast Recovery Area	 844

Performing Backups	 848
Understanding Backup Terminology	 848
Backing Up the Control File	 850
Backing Up the Database	 851
Using RMAN to Perform Backups	 852
Managing Backups	 861

Understanding Types of Database Failures	 864
Statement Failures	 865
User-Process Failures	 865
Network Failures	 866
User-Error Failures	 866
Instance Failures	 867
Media Failures	 868

Performing Recovery Operations	 868
Understanding Instance Startup	 868
Keeping an Instance from Failing	 870
Recovering from Instance Failure	 870
Tuning Instance Recovery	 871
Recovering from User Errors	 873
Recovering from the Loss of a Control File	 881
Using the Data Recovery Advisor	 883
Recovering from the Loss of a Redo Log File	 884
Recovering from the Loss of a Non-System-Critical

Data File	 886
Recovering from the Loss of a System-Critical Data File	 892
Table Recovery Using RMAN	 893

Summary	 894
Exam Essentials	 895
Review Questions	 897

Chapter 16	 Controlling Resources and Jobs	 903

Resource Management with the Resource Manager	 904
Functions of the Resource Manager	 904
Understanding Resource Manager Components	 905
Configuring the Database Resource Manager	 911
Accessing and Creating Resource Plans	 916
Updating and Deleting Resources	 924
Monitoring the Resource Manager	 927

Task Automation with Oracle Scheduler	 930
Scheduler Architecture	 930
Using Oracle Scheduler	 934

	 Contents	 xvii

Relating Tasks with Job Chains	 943
Scheduling Jobs on Remote Systems	 947
Prioritizing Jobs with Oracle Scheduler	 948

Summary	 951
Exam Essentials	 951
Review Questions	 952

Chapter 17	 Upgrading to Oracle Database 12c	 957

Determining the Database Upgrade Method	 958
Using Direct Upgrade	 959
Migrating to Oracle Database 12c	 961

Preparing for a Database Upgrade	 963
Running the Pre-Upgrade Information Tool	 964
Preparing the Oracle Home	 974
Reducing Upgrade Downtime	 975

Upgrading the Database	 976
Using Database Upgrade Assistant	 976
Performing a Manual Upgrade 	 987
Completing the Post-Upgrade Tasks	 991
Migrating to Unified Auditing	 994
Downgrading to an Earlier Release	 995

Summary	 997
Exam Essentials	 997
Review Questions	 999

Chapter 18	 Using Grid Infrastructure and
Data Movement Tools	 1005

Tools for Moving Data 	 1006
Migrating Data Using Data Pump	 1008

Data Pump Architecture	 1009
Using Data Pump Clients	 1012
Using the Data Pump Wizard	 1033
Upgrading an 11g R2 Database to 12c

Using Full Transportable Export	 1037
Loading Data with SQL*Loader	 1039

Specifying SQL*Loader Command-Line Parameters	 1040
Specifying Control File Options	 1042

Populating External Tables	 1046
Loading External Tables Using Data Pump 	 1046
Loading External Tables Using Loader	 1048

Introducing Grid Infrastructure	 1050
Installing Oracle Grid Infrastructure	 1051
Managing Oracle ASM Storage	 1061
Using Oracle Restart	 1068

xviii	 Contents

Summary	 1076
Exam Essentials	 1077
Review Questions	 1078

Appendix A	 Answers to Review Questions	 1083

Chapter 1: Introducing Oracle Database 12c RDBMS	 1084
Chapter 2: Introducing SQL	 1085
Chapter 3: Using Single-Row Functions	 1087
Chapter 4: Using Group Functions	 1089
Chapter 5: Using Joins and Subqueries	 1090
Chapter 6: Manipulating Data	 1092
Chapter 7: Creating Tables and Constraints	 1094
Chapter 8: Introducing Oracle Database 12c Components

and Architecture	 1096
Chapter 9: Creating and Operating Oracle Database 12c	 1098
Chapter 10: Understanding Storage and Space Management	 1100
Chapter 11: Managing Data Concurrency and Undo	 1102
Chapter 12: Understanding Oracle Network Architecture	 1104
Chapter 13: Implementing Security and Auditing	 1106
Chapter 14: Maintaining the Database and

Managing Performance	 1108
Chapter 15: Using Backup and Recovery	 1110
Chapter 16: Controlling Resources and Jobs	 1112
Chapter 17: Upgrading to Oracle Database 12c	 1114
Chapter 18: Using Grid Infrastructure and

Data Movement Tools	 1116

Appendix B	 About the Additional Study Tools	 1119

Additional Study Tools	 1120
Sybex Test Engine	 1120
Electronic Flashcards	 1120
Bonus Author Materials	 1120
PDF of Glossary of Terms	 1120
Adobe Reader	 1121

System Requirements	 1121
Using the Study Tools	 1121
Troubleshooting	 1121

Customer Care	 1122

Index	 1123

Table of Exercises
Exercise   1.1	 Practicing SQL*Plus File Commands . 26

Exercise   9.1	 Manually Delete or Remove an Oracle Database 473

Exercise   9.2	 Creating an Oracle Database 12c Database . 501

Introduction
There is high demand for professionals in the information technology (IT) industry, and
Oracle certifications are the hottest credential in the database world. You have made the right
decision to pursue certification, because being certified in the latest version of Oracle, Oracle
Database 12c, will give you a distinct advantage in this highly competitive market.

Many readers may already be familiar with Oracle and do not need an introduction
to Oracle databases. For those who aren’t familiar with the company, Oracle, founded in
1977, sold the first commercial relational database and is now the world’s leading database
company and second-largest independent software company with revenues of more than
$37 billion, and is headquartered in Redwood City, California.

Oracle databases are the de facto standard for large Internet sites, mission-critical enter-
prise applications, and cloud solutions. With the acquisition of Sun Microsystems, Oracle
offers complete enterprise business solutions with engineered systems capable of running
world-class databases and applications. Enterprise Resource Planning (ERP) application
suites, data warehouses, and business applications at many large and medium-sized com-
panies rely on Oracle. The demand for DBA resources remains higher than others during
weak economic times.

This book is intended to help you on your exciting path toward becoming an Oracle
Database 12c Administrator Certified Associate (OCA), which is the first step on the path
toward Oracle Certified Professional (OCP) and Oracle Certified Master (OCM) certification.
This book covers two of the exams required for the OCA certification. Using this book and a
practice database, you can start learning Oracle Database 12c and pass the 1Z0-061 “Oracle
Database 12c: SQL Fundamentals” and 1Z0-062 “Oracle Database 12c: Installation and
Administration” exams.

Why Become Oracle Certified?
The number one reason to become OCA or OCP certified is to gain more visibility and
greater access to the industry’s most challenging opportunities. Oracle certification is the
best way to demonstrate your knowledge and skills in Oracle database systems. Preparing
for the certification exam may be the best time spent on your career because you learn the
tasks that are necessary to be successful as a DBA.

Certification is proof of your knowledge and shows that you have the skills required to
support Oracle core products. The Oracle certification program can help a company identify
proven performers who have demonstrated their skills and who can support the company’s
investment in Oracle technology. It demonstrates that you have a solid understanding of your
job role and the Oracle products used in that role.

The certification tests are scenario-based, which is the most effective way to assess your
hands-on expertise and critical problem-solving skills. OCPs are among the best paid in the
IT industry. Salary surveys consistently show the OCP certification to yield higher salaries
than the other certifications, including Microsoft, Novell, and Cisco.

	 Introduction	 xxi

So, whether you are beginning a career, changing careers, securing your present posi-
tion, or seeking to refine and promote your position, this book is for you!

Oracle Certifications
Oracle certifications follow a track that is oriented toward a job role. The primary certi-
fication tracks are Database, Applications, Java, Enterprise Management, Virtualization,
and Operating Systems. Within each track, Oracle has a tiered certification program of
OCA and OCP. Only the Database track has OCM. The Database track is clearly for the
Database Administrator job role.

For the latest certification information on all of Oracle certification paths,
please visit the Oracle website at http://education.oracle.com/pls/web_
prod-plq-dad/db_pages.getpage?page_id=39&p_org_id=1001&lang=US.

The role of database administrator (DBA) has become a key to success in today’s highly
complex database systems. The best DBAs work behind the scenes, but are in the spotlight
when critical issues arise. They plan, create, maintain, and ensure that the database is avail-
able for the business, most importantly, DBAs troubleshoot, diagnose, and resolve issues.
They have tools to proactively monitor the database for performance issues and to prevent
unscheduled downtime. The DBA’s job requires a broad understanding of the architecture
of an Oracle database and expertise in solving problems.

Sybex has Oracle certification study guides for the Database track. The following sections
will introduce you to the different tiers in the Oracle Database 12c certification track.

Oracle Database 12c Administrator Certified Associate
The Oracle Certified Associate (OCA) credential is the first step toward achieving the Oracle
Certified Professional (OCP) certification. OCA shows that you have the fundamental knowl-
edge and skills to support an Oracle Database 12c database. This certification requires you to
pass two exams that demonstrate your Oracle basics:

■■ 1Z0-061: Oracle Database 12c: SQL Fundamentals

■■ 1Z0-062: Oracle Database 12c: Installation and Administration

If you have already passed any one of the following tests, you need not take the 1Z0-061
exam. You only need to pass the 1Z0-062.

■■ 1Z0-051: Oracle Database 11g SQL Fundamentals I

■■ 1Z0-047: Oracle Database SQL Expert

The 1Z0-061 exam can be taken at a testing location or from your home using the
Internet. The 1Z0-062 test is offered at a Pearson Vue facility.

To register for the test, visit Pearson Vue at http:// www.pearsonvue.com.

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=39&p_org_id=1001&lang=US
http://www.pearsonvue.com

xxii	 Introduction

Oracle Database 12c Administrator Certified Professional
The Oracle Certified Professional credential shows that you have the skill and technical
expertise to manage and implement enterprise databases. The OCP tier challenges you to
demonstrate your continuing experience and knowledge of Oracle technologies. The OCP test
will measure your knowledge in setting up and managing multitenant architecture databases
and in backup and recovery. The Oracle Database 12c Administrator Certified Professional
certification requires you to have the OCA certification as well as to pass the following exam.

■■ 1Z0-063: Oracle Database 12c: Advanced Administration

In addition, the OCP candidate must take one instructor-led Oracle university hands-on
requirement class.

You should verify the list of approved hands-on courses at the Oracle
Education website at http://education.oracle.com/pls/web_prod-plq-
dad/db_pages.getpage?page_id=244#5.

Oracle Database 12c Administrator Certified Master
The highest level of certification available in any track is the Oracle Certified Master. The
OCM certification credential shows that you have the highest level of expertise in an Oracle
product. To become a certified master, you must first achieve OCP status and then complete
two advanced instructor-led classes at an Oracle Education facility. You must also pass a
hands-on examination at an Oracle Education facility. At the time of writing this book, the
Oracle Database 12c Certified Master Exam is not released.

More Information and Resources
You can find most current information about Oracle certification at http://education
.oracle.com/certification. You may be asked to choose the country of residence before
being directed to the site. Follow the links under Certifications to choose the track and
learn more.

Choose the Database track to view the different certification versions available. Choose
Oracle Database 12c Administrator Certified Associate, and then click on the test to find
out more about the test contents, the objectives covered in the test, the passing score, and
to register for the test.

The Oracle documentation is available online at http://tahiti.oracle.com. Oracle
documentation contains a wealth of information, which can be used to supplement what
you learn from this book.

Oracle provides training series with step-by-step instructions to perform a variety of
Oracle Database 12c tasks. The Oracle by Example (OBE) tutorial can be found at http://
apex.oracle.com/pls/apex/f?p=44785:1.

Oracle Technology Network (http://www.oracle.com/technology/index.html) is a
great resource for database administrators and developers. You can read articles; view sample
code; access documentation; participate in forums; and most importantly, download Oracle
Database 12c, Oracle Enterprise Manager Cloud Control 12c, and other Oracle products.

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=244#5
http://education.oracle.com/certification
http://tahiti.oracle.com
http://apex.oracle.com/pls/apex/f?p=44785:1
http://apex.oracle.com/pls/apex/f?p=44785:1
http://www.oracle.com/technology/index.html
http://education.oracle.com/certification

	 Introduction	 xxiii

OCA/OCP Study Guides
The Oracle Database 12c Administration track certification consists of three tests: two
for OCA and one for OCP. Sybex offers study guides to help you achieve OCA and OCP
certification.

■■ OCA: Oracle Database 12c Administrator Certified Associate Study Guide
(9781118643952) – Covers exams 1Z0-061: Oracle Database 12c: SQL Fundamentals
and 1Z0-062: Oracle Database 12c: Installation and Administration.

■■ OCP: Oracle Database 12c Administrator Certified Professional Study Guide
(9781118644072) – Covers exam 1Z0-063: Oracle Database 12c: Advanced
Administration.

These two books are offered in a boxed set as OCP: Oracle Certified Professional on
Oracle Database 12c Certification Kit (9781118957684).

Oracle Exam Requirements
The Oracle Database 12c Database Certified Associate certification tests your basic SQL
skills for the SQL exam and database architecture and administration skills for the DBA
exam. The SQL exam tests your knowledge of writing SQL and using the functions avail-
able in Oracle Database 12c. The Installation and Administration exam concentrates
on the architecture and the basic administration of Oracle 12c databases. The following
sections detail the skills needed to pass the SQL Fundamentals and the Installation and
Administration exams.

OCA SQL (1Z0-061) Requirements
To pass the Oracle Database 12c SQL Fundamentals exam, you must have the following skills:

■■ Write SQL SELECT statements that display data from one or more tables

■■ Join tables using ANSI syntax and Oracle traditional syntax

■■ Restrict, sort, and aggregate data using single-row, conversion, and group functions

■■ Write subqueries and queries using SET operators

■■ Manipulate data: insert, update, delete

■■ Create and manage tables and other database objects

OCA Installation and Administration (1Z0-062) Requirements
To pass the Oracle Database 12c Installation and Administration exam, you must have the
following skills:

■■ Understand the Oracle server architecture (database and instance)

■■ Install Oracle Database 12c software and create a database

■■ Use Database Configuration Assistant and Enterprise Manager tools

■■ Understand the physical and logical storage of the database, and be able to manage
space allocation and growth

xxiv	 Introduction

■■ Use the data dictionary views and set database parameters

■■ Manage and manipulate data, including its storage, loading, and reorganization

■■ Create and manage tables, constraints, and indexes

■■ Manage redo logs, archive logs, and automatic undo

■■ Configure Oracle Net on the server side and client side

■■ Understand backup and recovery architecture

■■ Secure the database and audit database usage

■■ Use advisors to tune and manage the database

■■ Upgrade the database

■■ Move data between databases

■■ Install and manage Grid Infrastructure, Oracle Restart, and Automatic Storage
Management

Tips for Taking the OCA Exams
The following tips will help you prepare for and pass each exam.

■■ Each test consists of between 70 and 95 questions to be completed in 120 to 150 minutes
(depending on the exam). Answer the questions you are sure of first, before you run out
of time.

■■ Many questions on the exam have answer choices that at first glance look identical.
Read the questions carefully. Do not jump to conclusions. Make sure you clearly under-
stand what each question asks.

■■ Most questions are based on scenarios. Some of the scenarios contain nonessential infor-
mation and exhibits. You need to be able to identify what’s important and what’s not.

■■ Do not leave any questions unanswered. There is no negative scoring. After selecting
an answer, you can mark difficult questions or the ones you are unsure of and come
back to them later.

■■ When answering questions you are not sure about, use a process of elimination to get
rid of the obviously incorrect answers first. Doing this greatly improves your odds if
you need to make an educated guess.

■■ If you are not sure of your answer, mark it for review and then look for other questions
that may help you eliminate any incorrect answers. At the end of the test, you can review
the questions you marked earlier.

You should be familiar with the exam objectives, which are included at the
beginning of each chapter. Please check the objective listing on the Oracle
Education website for any changes or updates. The detail page for each
exam shows the passing score, number of questions, and minutes allocated
along with the exam fees and any other requirements.

	 Introduction	 xxv

What Is Covered in This Book
This book covers everything you need to pass the Oracle Database 12c Certified Associate
exams. Part I includes the first seven chapters that cover the objectives for the Oracle Database
12c SQL Fundamentals exam. Part II of the book includes the remaining 11 chapters that
cover the objectives for the Oracle Database 12c Installation and Administration exam.

Part I: Oracle Database 12c SQL Fundamentals

Chapter 1: Introducing Oracle Database 12c RDBMS introduces you to the features of
Oracle Database 12c and the aspects of a relational database.

Chapter 2: Introducing SQL introduces you to writing simple queries using SELECT
statements. It also introduces you to filtering and sorting data.

Chapter 3: Using Single-Row Functions discusses the single-row functions and conver-
sion functions available, with details on how and where to use them.

Chapter 4: Using Group Functions explains data aggregations, Oracle’s built-in group
function, and nesting of functions.

Chapter 5: Using Joins and Subqueries explains how data from multiple tables can be
related via joins, subqueries, and by using SET operators.

Chapter 6: Manipulating Data explores how to manipulate data: adding, removing,
and updating data. The chapter also covers how transaction control works.

Chapter 7: Creating Tables and Constraints explains how to create and manage tables
and constraints. It also discusses the various datatypes available in Oracle Database 12c
to store data.

Part II: Oracle Database 12c Installation and Administration

Chapter 8: Introducing Oracle Database 12c Components and Architecture is the first
chapter to start if you’re reading for the Oracle Database 12c Installation and Admin-
istration exam. This chapter introduces you to the Oracle Database 12c database archi-
tecture and the relationship between logical and physical storage structures.

Chapter 9: Creating and Operating an Oracle Database 12c explains how you can
install the Oracle Database 12c software and create a database. It discusses the initial-
ization parameters, stages of database startup and shutdown, where to find log and
trace files, and how to use the data dictionary.

Chapter 10: Understanding Storage and Space Management explores the logical and
physical storage of the database. You will learn space management and the various types
of tablespaces. This chapter also discusses monitoring space and reclaiming wasted space.

Chapter 11: Managing Data Concurrency and Undo shows you how you can add,
update, and remove data from tables, as well as how transactions work. It introduces you
to undo data and undo management. This chapter also discusses how Oracle manages
locks to ensure data concurrency. Be sure to read Chapter 6 before you read this chapter.

xxvi	 Introduction

Chapter 12: Understanding Oracle Network Architecture introduces you to the Oracle
Net configuration and setup. You will learn to set up network architecture on the server
and client.

Chapter 13: Implementing Security and Auditing shows how you can secure your data-
base using privileges, profiles, and roles. You will also learn to audit database usage.

Chapter 14: Maintaining the Database and Managing Performance explores the tools
available in Oracle Database 12c to manage the performance of the database. You will
learn about optimizer statistics, Automatic Workload Repository, various advisors, and
Automatic Memory Management.

Chapter 15: Using Backup and Recovery introduces you to the backup architecture
concepts. It discusses the various backup modes and using RMAN. It also delves into
the various recovery scenarios and how best to get the data back. It shows you how to
use the Data Recovery Advisor, which can help find and recover the database, as well
as offer advice.

Chapter 16: Controlling Resources and Jobs shows you how to manage the resources
available on the database server using the Resource Manager. You will also learn about
the Oracle Scheduler job management system.

Chapter 17: Upgrading to Oracle Database 12c familiarizes you with the process of
upgrading a database to Oracle Database 12c. You also learn the various upgrade and
migration methods.

Chapter 18: Using Grid Infrastructure and Data Movement Tools introduces you to
Data Pump and SQL*Loader, the tools available in Oracle Database 12c to move and
load data. This chapter also covers the Grid Infrastructure installation and configura-
tion, including setting up Automatic Storage Management disks.

Each chapter ends with Review Questions that are specifically designed to help you
retain the knowledge presented. To really nail down your skills, read and answer each
question carefully.

What’s Available Online?
The book includes a number of companion study tools, which can be downloaded from
www.sybex.com/go/oca12sg. See Appendix B, “About the Additional Study Tools,” for
information on how to access and install these tools:

Test Preparation Software    The test preparation software prepares you to pass both the
1Z0-061 and 1Z0-062 exams. You’ll find all the review and assessment questions from
the book plus an additional four practice exams (two for each exam) that appear exclu-
sively from the downloadable study tools.

Electronic Flashcards    The companion study tools include over 400 flashcards specifically
written to hit you hard, so don’t get discouraged if you don’t ace your way through them at
first! They’re there to ensure that you’re really ready for the exam. And no worries—armed
with the review questions, practice exams, and flashcards, you’ll be more than prepared
when exam day comes!

http://www.sybex.com/go/oca12sg

	 Introduction	 xxvii

Author Bonus Material    I’ve included all of the code from the book, as well as three bonus
Whitepapers that show you how to install an Oracle 12c database on Windows, how to
create non-CDB Oracle Database 12c on Windows, and how to install Oracle Enterprise
Manager 12c on Virtual Box.

Glossary    A complete glossary of common terms is available at www.sybex.com/go/oca12sg.

How to Use This Book
This book provides a solid foundation for the serious effort of preparing for the Oracle
Database 12c Certified Associate exams. To best benefit from the book, use the following
study method:

	 1.	 Take the assessment tests immediately following this introduction. (The answers are at
the end of the tests.) Carefully read the explanations for any questions you get wrong,
and note in which chapters the material is covered. This information should help you
plan your study strategy.

	 2.	 Study each chapter carefully, making sure you fully understand the information and
the test objectives listed at the beginning of each chapter. Pay close attention to any
chapter related to questions you missed in the assessment test.

	 3.	 Complete all hands-on activities in the chapter, referring to the chapter so that you
understand the reason for each step you take. It is best to have an Oracle Database
12c database available to try out the examples and the code provided in the book.
All the code is also included with the additional study tools.

	 4.	 Answer the review questions related to that chapter. Note the review questions that
confuse or trick you, and study those sections of the book again.

	 5.	 The two bonus exams for each exam are included with the accompanying study tools.
They will give you a complete overview of what you can expect to see on the real test.

	 6.	 Answer all the flashcard questions included with the study tools.

	 7.	 Remember to use the study tools included with this book. The electronic flash cards
and the Sybex test engine exam-preparation software has been specifically designed to
help you study and pass your exams.

The additional study tools can be downloaded from www.sybex.com/go/
oca12sg.

To learn all the material covered in this book, you will need to apply yourself regularly
and with discipline. Try to set the same time period every day to study, and select a com-
fortable and quite place to do so. If you work hard, you will be surprised at how quickly
you will learn this material. You can also find supplemental reading material and Oracle
documentation references on my blog that will deepen your knowledge of what you read in
this book. All the best!

http://www.sybex.com/go/oca12sg
http://www.sybex.com/go/oca12sg
http://www.sybex.com/go/oca12sg

xxviii	 Introduction

Prebuilt Oracle Database 12c can be downloaded and set up on Virtual-
Box. This is convenient, especially if you are new to Oracle. Prebuilt Ora-
cle VMs can be downloaded from http://www.oracle.com/technetwork/
community/developer-vm. You will have to install and set up Oracle VM
VirtualBox to use the prebuilt VMs.

How to Contact the Author
I welcome feedback from you about this book or about books you’d like to see from me in
the future. You can reach me by writing to biju.thomas.sybex@gmail.com. For more infor-
mation about database administration and Oracle Database 12c certification, please visit
my blog at www.bijoos.com/oraclenotes. You may follow me on social media through
Twitter (@biju_thomas) and Facebook (Oracle Notes www.facebook.com/oraclenotes).

Sybex strives to keep you supplied with the latest tools and information you need for
your work. Please check their website at www.sybex.com, where we’ll post additional con-
tent, errata, and updates that supplement this book if the need arises. Enter search terms
in the Search box (or type the book’s ISBN— 9781118643952), and click Go to get to the
book’s update page.

http://www.oracle.com/technetwork/community/developer-vm
mailto:biju.thomas.sybex@gmail.com
http://www.bijoos.com/oraclenotes
http://www.facebook.com/oraclenotes
http://www.sybex.com
http://www.oracle.com/technetwork/community/developer-vm

	 Exam Objectives	 xxix

Exam Objectives

Part I: 1Z0-061 Oracle Database 12c: SQL Fundamentals
Objective Map

■■ 1 Introduction Chapter 1

■■ 1.1 Describe the features of Oracle Database 12c, Chapter 1

■■ 1.2 Describe the salient features of Oracle Cloud 12c, Chapter 1

■■ 1.3 Explain the theoretical and physical aspects of a relational database, Chapter 1

■■ 1.4 Describe Oracle server’s implementation of RDBMS and object relational data-
base management system (ORDBMS), Chapter 1

■■ 2 Retrieving Data Using the SQL SELECT Statement, Chapter 2

■■ 2.1 Explain the capabilities of SQL SELECT statements, Chapter 2

■■ 2.2 Execute a basic SELECT statement, Chapter 2

■■ 3 Restricting and Sorting Data, Chapter 2

■■ 3.1 Limit the rows that are retrieved by a query, Chapter 2

■■ 3.2 Sort the rows that are retrieved by a query, Chapter 2

■■ 3.2 Use ampersand substitution to restrict and sort output at runtime, Chapter 2

■■ 4 Using Single-Row Functions to Customize Output, Chapter 3

■■ 4.1 Describe various types of functions available in SQL, Chapter 3

■■ 4.2 Use character, number, and date functions in SELECT statements, Chapter 3

■■ 5 Using Conversion Functions and Conditional Expressions, Chapter 3

■■ 5.1 Describe various types of conversion functions that are available in SQL,
Chapter 3

■■ 5.2 Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions,
Chapter 3

■■ 5.3 Apply conditional expressions in a SELECT statement, Chapter 3

■■ 6 Reporting Aggregated Data Using the Group Functions, Chapter 4

■■ 6.1 Identify the available group functions, Chapter 4

■■ 6.2 Describe the use of group functions, Chapter 4

■■ 6.3 Group data by using the GROUP BY clause, Chapter 4

■■ 6.4 Include or exclude grouped rows by using the HAVING clause, Chapter 4

xxx	 Introduction

■■ 7 Displaying Data from Multiple Tables Using Joins, Chapter 5

■■ 7.1 Write SELECT statements to access data from more than one table using equi-
joins and nonequijoins, Chapter 5

■■ 7.2 Join a table to itself by using a self-join, Chapter 5

■■ 7.3 View data that generally does not meet a join condition by using OUTER joins,
Chapter 5

■■ 7.4 Generate a Cartesian product of all rows from two or more tables, Chapter 5

■■ 8 Using Subqueries to Solve Queries, Chapter 5

■■ 8.1 Define subqueries, Chapter 5

■■ 8.2 Describe the types of problems that the subqueries can solve, Chapter 5

■■ 8.3 Describe the types of subqueries, Chapter 5

■■ 8.4 Write single-row and multiple-row subqueries, Chapter 5

■■ 8.5 Using the set operators, Chapter 5

■■ 8.6 Describe set operators, Chapter 5

■■ 8.7 Use a set operator to combine multiple queries into a single query, Chapter 5

■■ 8.8 Control the order of rows returned, Chapter 5

■■ 9 Managing Tables Using DML Statements, Chapter 6

■■ 9.1 Truncate data, Chapter 6

■■ 9.2 Insert rows into a table, Chapter 6

■■ 9.3 Update rows in a table, Chapter 6

■■ 9.4 Delete rows from a table, Chapter 6

■■ 9.5 Control transaction, Chapter 6

■■ 10 Introduction to Data Definition Language, Chapter 7

■■ 10.1 Categorize the main database objects, Chapter 7

■■ 10.2 Explain the table structure, Chapter 7

■■ 10.3 Describe the datatypes that are available for columns, Chapter 7

■■ 10.4 Create a simple table, Chapter 7

■■ 10.5 Explain how constraints are created at the time of table creation, Chapter 7

■■ 10.6 Describe how schema objects work, Chapter 7

Part II: IZ0-062 Oracle Database 12c Installation and
Administration Exam Objectives

■■ 1.1 Exploring the Oracle Database Architecture, Chapter 8

■■ 1.1.1 List the architectural components of Oracle Database, Chapter 8

■■ 1.1.2 Explain the memory structures, Chapter 8

	 Exam Objectives	 xxxi

■■ 1.1.3 Describe the background processes, Chapter 8

■■ 1.1.4 Explain the relationship between logical and physical storage structures,
Chapter 8

■■ 1.2 Oracle Database Management Tools, Chapter 8

■■ 1.2.1 Use database managements tools, Chapter 8

■■ 1.3 Oracle Database Instance, Chapter 9

■■ 1.3.1 Understand initialization parameter files, Chapter 9

■■ 1.3.2 Start up and shut down an Oracle database instance, Chapter 9

■■ 1.3.3 View the alert log and access dynamic performance views, Chapter 9

■■ 2.1 Oracle Software Installation Basics, Chapter 9

■■ 2.1.1 Plan for an Oracle database software installation, Chapter 9

■■ 2.3 Installing Oracle Database Software, Chapter 9

■■ 2.3.1 Install the Oracle database software, Chapter 9

■■ 2.4 Creating an Oracle Database Using DBCA, Chapter 9

■■ 2.4.1 Create a database by using the Database Configuration Assistant (DBCA),
Chapter 9

■■ 2.4.2 Generate database creation scripts by using DBCA, Chapter 9

■■ 2.4.3 Manage database design template by using DBCA, Chapter 9

■■ 2.4.4 Configure database options by using DBCA, Chapter 9

■■ 1.5 Managing Database Storage Structures, Chapter 10

■■ 1.5.1 Describe the storage of table row data in blocks, Chapter 10

■■ 1.5.2 Create and manage tablespaces, Chapter 10

■■ 1.7 Managing Space, Chapter 10

■■ 1.7.1 Explain how Oracle database server automatically manages space, Chapter 10

■■ 1.7.2 Save space by using compression, Chapter 10

■■ 1.7.3 Proactively monitor and manage tablespace space usage, Chapter 10

■■ 1.7.4 Use the Segment Advisor, Chapter 10

■■ 1.7.5 Reclaim wasted space from tables and indexes by using the segment shrink,
Chapter 10

■■ 1.7.6 Manage resumable space allocations, Chapter 10

■■ 1.8 Managing Undo Data, Chapter 11

■■ 1.8.1 Explain DML and undo data generation, Chapter 11

■■ 1.8.2 Monitor and administer undo data, Chapter 11

■■ 1.8.3 Describe the difference between undo data and redo data, Chapter 11

■■ 1.8.4 Configure undo retention, Chapter 11

xxxii	 Introduction

■■ 1.9 Managing Data Concurrency, Chapter 11

■■ 1.9.1. Describe the locking mechanism and how Oracle manages data concurrency,
Chapter 11

■■ 1.9.2 Monitor and resolve locking conflicts, Chapter 11

■■ 1.4 Configuring the Oracle Network Environment, Chapter 12

■■ 1.4.1 Configure Oracle Net services, Chapter 12

■■ 1.4.2 Use tools for configuring and managing the Oracle network, Chapter 12

■■ 1.4.3 Configure client-side network, Chapter 12

■■ 1.4.4 Understand database resident connection polling, Chapter 12

■■ 1.4.5 Configure communication between databases, Chapter 12

■■ 1.10 Implementing Oracle Database Auditing, Chapter 13

■■ 1.10.1 Explain DBA responsibilities for security and auditing, Chapter 13

■■ 1.10.2 Enable standard database auditing and Unified Auditing, Chapter 13

■■ 1.6 Administering User Security, Chapter 13

■■ 1.6.1 Create and manage database user accounts, Chapter 13

■■ 1.6.2 Grant and revoke privileges, Chapter 13

■■ 1.6.3 Create and manage roles, Chapter 13

■■ 1.6.4 Create and manage profiles, Chapter 13

■■ 1.16. Performing Database Maintenance, Chapter 14

■■ 1.16.1 Manage the Automatic Workload Repository (AWR), Chapter 14

■■ 1.16.2 Use the Automatic Database Diagnostic Monitor (ADDM), Chapter 14

■■ 1.16.3 Describe and use the advisory framework, Chapter 14

■■ 1.16.4 Set alert thresholds, Chapter 14

■■ 1.16.5 Use automated tasks, Chapter 14

■■ 1.17 Managing Performance, Chapter 14

■■ 1.17.1 Use Enterprise Manager to monitor performance, Chapter 14

■■ 1.17.2 Use Automatic Memory Management, Chapter 14

■■ 1.17.3 Use the Memory Advisor to size memory buffers, Chapter 14

■■ 1.18 Managing Performance SQL Tuning, Chapter 14

■■ 1.18.1 Manage optimizer statistics, Chapter 14

■■ 1.18 2 Use the SQL Tuning Advisor, Chapter 14

■■ 1.18.3 Use the SQL Access Advisor to tune a workload, Chapter 14

■■ 1.19 Managing Resources Using Database Resource Manager, Chapter 16

■■ 1.19.1 Configure the Database Resource Manager, Chapter 16

■■ 1.19.2 Access and create resource plans, Chapter 16

■■ 1.19.3 Monitor the Resource Manager, Chapter 16

	 Exam Objectives	 xxxiii

■■ 1.20 Automating Tasks by Using Oracle Scheduler, Chapter 16

■■ 1.20.1 Use Oracle Scheduler to simplify management tasks, Chapter 16

■■ 1.20.2 Use job chains to perform a series of related tasks, Chapter 16

■■ 1.20.3 Use Scheduler jobs on remote systems, Chapter 16

■■ 1.20.4 Use advanced Scheduler features to prioritize jobs, Chapter 16

■■ 1.11 Backup and Recovery Concepts, Chapter 15

■■ 1.11.1 Identify the importance of checkpoints, redo log files, and archive log files,
Chapter 15

■■ 1.12 Backup and Recovery Configuration, Chapter 15

■■ 1.12.1 Configure the fast recovery area, Chapter 15

■■ 1.12.1 Configure ARCHIVELOG mode, Chapter 15

■■ 1.13 Performing Database Backups, Chapter 15

■■ 1.13.1 Create consistent database backups, Chapter 15

■■ 1.13.2 Back up your database without shutting it down, Chapter 15

■■ 1.13.3 Create incremental backups, Chapter 15

■■ 1.13.4 Automate database backups, Chapter 15

■■ 1.13.5 Manage backups, Chapter 15

■■ 1.14 Performing Database Recovery, Chapter 15

■■ 1.14.1 Determine the need for performing recovery, Chapter 15

■■ 1.14.2 Use Recovery Manager (RMAN) and the Data Recovery Advisor to perform
recovery of the control file, redo log file, and data file, Chapter 15

■■ 2.6 Upgrading Database Software, Chapter 17

■■ 2.6.1 Describe upgrade methods, Chapter 17

■■ 2.6.2 Describe data migration methods, Chapter 17

■■ 2.6.3 Describe the upgrade process, Chapter 17

■■ 2.7 Preparing to Upgrade to Oracle Database 12c, Chapter 17

■■ 2.7.1 Describe upgrade requirements when certain features or options are used in
Oracle database, Chapter 17

■■ 2.7.2 Use the Pre-Upgrade Information tool before performing an upgrade,
Chapter 17

■■ 2.7.3 Prepare the new Oracle home prior to performing an upgrade, Chapter 17

■■ 2.8 Upgrading to Oracle Database 12c, Chapter 17

■■ 2.8.1 Upgrade the database to Oracle Database 12c by using the Database Upgrade
Assistant (DBUA), Chapter 17

■■ 2.8.2 Perform a manual upgrade to Oracle Database 12c by using scripts and
tools, Chapter 17

xxxiv	 Introduction

■■ 2.9 Performing Post-Upgrade Tasks, Chapter 17

■■ 2.9.1 Migrate to Unified Auditing, Chapter 17

■■ 2.9.2 Perform post-upgrade tasks, Chapter 17

■■ 1.15 Moving Data, Chapter 18

■■ 1.15.1 Describe ways to move data, Chapter 18

■■ 1.15.2 Use SQL*Loader to load data from a non-Oracle database, Chapter 18

■■ 1.15.3 Use external tables to move data via platform-independent files, Chapter 18

■■ 1.15.4 Use Data Pump Export and Import to move data between Oracle databases,
Chapter 18

■■ 2.10 Migrating Data by Using Oracle Data Pump, Chapter 18

■■ 2.10.1 Migrate data by using Oracle Data Pump, Chapter 18

■■ 2.2 Installing Oracle Grid Infrastructure for a Standalone Server, Chapter 18

■■ 2.2.1 Configure storage for Oracle Automatic Storage Management (ASM),
Chapter 18

■■ 2.2.2 Install Oracle Grid Infrastructure for a standalone server, Chapter 18

■■ 2.5 Using Oracle Restart, Chapter 18

■■ 2.5.1 Use Oracle Restart to manage components, Chapter 18

	 Assessment Test	 xxxv

Assessment Test

Exam 1Z0-061: SQL Fundamentals

	 1.	 Which operator will be evaluated first in the following SELECT statement?

SELECT (2+3*4/2–5) FROM dual;

	 A.	 +

	 B.	 *

	 C.	 /

	 D.	 –

	 2.	 John wants to remove the values present in column SALARY in the EMPLOYEES table for all
employees who belong to DEPARTMENT_ID 90. Which SQL would accomplish the task?

	 A.	 DELETE FROM EMPLOYEES (SALARY) WHERE DEPARTMENT_ID = 90;

	 B.	 INSERT INTO EMPLOYEES (SALARY) VALUES (NULL) WHERE DEPARTMENT_ID = 90;

	 C.	 UPDATE EMPLOYEES SET SALARY = NULL WHERE DEPARTMENT_ID = 90;

	 D.	 MERGE EMPLOYEES SET SALARY IS NULL WHERE DEPARTMENT_ID = 90;

	 3.	 Which function can possibly return a non-NULL value when one of the arguments is NULL?

	 A.	 NULLIF

	 B.	 LENGTH

	 C.	 CONCAT

	 D.	 INSTR

	 E.	 TAN

	 4.	 The following statement will raise an exception on which line?

select dept_name, avg(all salary)
 ,count(*) "number of employees"
from emp , dept
where emp.deptno = dept.dept_no
 and count(*) > 5
group by dept_name
order by 2 desc;

	 A.	 select dept_name, avg(all salary), count(*) "number of employees"

	 B.	 where emp.deptno = dept.dept_no

	 C.	 and count(*) > 5

xxxvi	 Assessment Test

	 D.	 group by dept_name

	 E.	 order by 2 desc;

	 5.	 Review the code segment.

1. INSERT INTO salaries VALUES (101, 23400, SYSDATE);
2. UPDATE salaries
3. SET salary = salary * 1.1
4. AND effective_dt = SYSDATE
5. WHERE empno = 333;

Which line has an error?

	 A.	 2

	 B.	 4

	 C.	 5

	 D.	 No error

	 6.	 Review the following SQL and choose the most appropriate option.

SELECT job_id, COUNT(*)
FROM employees
GROUP BY department_id;

	 A.	 The statement will show the number of jobs in each department.

	 B.	 The statement will show the number of employees in each department.

	 C.	 The statement will generate an error.

	 D.	 The statement will work if the GROUP BY clause is removed.

	 7.	 Which datatype stores data outside the Oracle database?

	 A.	 UROWID

	 B.	 BFILE

	 C.	 BLOB

	 D.	 NCLOB

	 E.	 EXTERNAL

	 8.	 The DEPT table has the following data.

SQL> SELECT * FROM dept;
 DEPTNO DNAME LOC
---------- -------------- ----------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

	 Assessment Test	 xxxvii

Consider this INSERT statement:

INSERT INTO (SELECT * FROM dept WHERE deptno = 10)
VALUES (50, 'MARKETING', 'FORT WORTH');

Choose the best answer.

	 A.	 The INSERT statement is invalid; a valid table name is missing.

	 B.	 50 is not a valid DEPTNO value, since the subquery limits DEPTNO to 10.

	 C.	 The statement will work without error.

	 D.	 A subquery and a VALUES clause cannot appear together.

	 9.	 Which two of the following queries is valid syntax that would return all rows from the
EMPLOYEES and DEPARTMENTS tables, even if there are no corresponding/related rows in
the other table?

	 A.	 SELECT last_name, first_name, department_nameFROM employees e FULL
JOIN departments dON e.department_id = d.department_id;

	 B.	 SELECT last_name, first_name, department_nameFROM employees e OUTER
JOIN departments dON e.department_id = d.department_id;

	 C.	 SELECT e.last_name, e.first_name, d.department_nameFROM employees
eLEFT OUTER JOIN departments dON e.department_id = d.department_
idRIGHT OUTER JOIN employees fON f.department_id = d.department_id;

	 D.	 SELECT e.last_name, e.first_name, d.department_nameFROM employees
eCROSS JOIN departments dON e.department_id = d.department_id;

	 E.	SELECT last_name, first_name, department_nameFROM employeesFULL OUTER
JOIN departments USING (department_id);

	10.	 Which of the following statements could use an index on the columns PRODUCT_ID and
WAREHOUSE_ID of the OE.INVENTORIES table?

	 A.	 select count(distinct warehouse_id)from oe.inventories;

	 B.	 select product_id, quantity_on_hand from oe.inventories where product_
id = 100;

	 C.	 insert into oe.inventories values (5,100,32);

	 D.	 None of these statements could use the index.

	11.	 The following statements are executed:

create sequence my_seq;
select my_seq.nextval from dual;
select my_seq.nextval from dual;
rollback;
select my_seq.nextval from dual;

xxxviii	 Assessment Test

What will be selected when the last statement is executed?

	 A.	 0

	 B.	 1

	 C.	 2

	 D.	 3

	 E.	 NULL

	12.	 Which of the following statements are true? (Choose two.)

	 A.	 Primary key constraints allow NULL values in the columns.

	 B.	 Unique key constraints allow NULL values in the columns.

	 C.	 Primary key constraints do not allow NULL values in the columns.

	 D.	 A non-unique index cannot be used to enforce primary key constraints.

	13.	 The current time in Dubai is “04-APR-2013 08:50:00” and the time in Dallas is
“03-APR-2013 23:50:00”. A user from Dubai is connected to a session in the data-
base located on a server in Dallas. What will be the result of his query?

SELECT TO_CHAR(SYSDATE,'DD-MON-YYYY HH24:MI:SS') FROM dual;

	 A. 	04-APR-20138 08:50:00

	 B.	 03-APR-2013 8 23:50:00

	 C.	 03-APR-2013 2324:50:00

	 D.	 None of the above

	14.	 The FIRED_EMPLOYEES table has the following structure.

EMPLOYEE_ID NUMBER (4)
FIRE_DATE DATE

How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(*) FROM FIRED_EMPLOYEES;
COUNT(*)

 105

INSERT INTO FIRED_EMPLOYEES VALUES (104, TRUNC(SYSDATE));
SAVEPOINT A;
INSERT INTO FIRED_EMPLOYEES VALUES (106, TRUNC(SYSDATE));
SAVEPOINT B;
INSERT INTO FIRED_EMPLOYEES VALUES (108, TRUNC(SYSDATE));
ROLLBACK TO A;

	 Assessment Test	 xxxix

INSERT INTO FIRED_EMPLOYEES VALUES (104, TRUNC(SYSDATE));
COMMIT;
SELECT COUNT(*) FROM FIRED_EMPLOYEES;

	 A.	 109

	 B.	 106

	 C.	 105

	 D.	 107

	15.	 At a minimum, how many join conditions should there be to avoid a Cartesian join if
there are three tables in the FROM clause?

	 A.	 1

	 B.	 2

	 C.	 3

	 D.	 There is no minimum.

	16.	 Why does the following statement fail?

CREATE TABLE FRUITS-N-VEGETABLES

(NAME VARCHAR2 (40));

	 A. 	The table should have more than one column in its definition.

	 B.	 NAME is a reserved word, which cannot be used as a column name.

	 C.	 The table name is invalid.

	 D.	 Column length cannot exceed 30 characters.

	17.	 Which two statements are true about NULL values?

	 A.	 You cannot search for a NULL value in a column using the WHERE clause.

	 B.	 If a NULL value is returned in the subquery or if NULL is included in the list when
using a NOT IN operator, no rows will be returned.

	 C.	 Only = and != operators can be used to search for NULL values in a column.

	 D.	 In an ascending order sort, NULL values appear at the bottom of the result set.

	 E.	 Concatenating a NULL value to a non-NULL string results in a NULL.

	18.	 Table CUSTOMERS has a column named CUST_ZIP which could be NULL. Which of the fol-
lowing functions include the NULL rows in its result?

	 A.	 COUNT (CUST_ZIP)

	 B.	 SUM (CUST_ZIP)

	 C.	 AVG (DISTINCT CUST_ZIP)

	 D.	 None of the above

xl	 Assessment Test

	19.	 Using the following EMP table, you need to increase everyone’s salary by 5 percent of
their combined salary and bonus. Which of the following statements will achieve the
desired results?

Column Name emp_id name salary bonus

Key Type pk pk

NULLs/Unique NN NN NN

FK Table

Datatype VARCHAR2 VARCHAR2 NUMBER NUMBER

Length 9 50 11,2 11,2

	 A.	 UPDATE emp SET salary = (salary + bonus)*1.05;

	 B.	 UPDATE emp SET salary = salary*1.05 + bonus*1.05;

	 C.	 UPDATE emp SET salary = salary + (salary + bonus)*0.05;

	 D.	 A, B, and C will achieve the desired results.

	 E.	 None of these statements will achieve the desired results.

	20.	 Which option is not available in Oracle when modifying tables?

	 A.	 Add new columns

	 B.	 Rename existing column

	 C.	 Drop existing column

	 D.	 None of the above

	21.	 The following data is from the EMPLOYEES table:

DEPARTMENT_ID EMPNO FIRST_NAME
------------- ---------- -------------
 30 119 Karen
 50 124 Kevin
 50 135 Ki
 80 146 Karen
 178 Kimberely
 50 188 Kelly
 50 197 Kevin

Which row (empno) will be returned last when the following query is executed?

select department_id, employee_id empno, first_name
from employees

	 Assessment Test	 xli

order by 1, 2

	 A.	 188

	 B.	 178

	 C.	 146

	 D.	 119

	22.	 INTERVAL datatypes store a period of time. Which components are included in the
INTERVAL DAY TO SECOND datatype column? (Choose all that apply.)

	 A.	 Years

	 B.	 Quarters

	 C.	 Months

	 D.	 Days

	 E.	 Hours

	 F.	 Minutes

	 G.	 Seconds

	 H.	 Fractional seconds

	23.	 Which components are not part of the easy connect connection string? (Choose two.)

	 A.	 hostname

	 B.	 service name

	 C.	 database sid

	 D.	 port number

	 E.	 network protocol

	24.	 The table CUSTOMERS has the following data:

ID NAME ZIP UPD_DATE
---- --------------- ---------- ---------
L921 LEEZA 75252 01-JAN-00
B023 WILLIAMS 15215
K783 KATHY 75252 15-FEB-00
B445 BENJAMIN 76021 15-FEB-00
D334 DENNIS 12443

You issue the following command to alter the table:

1. ALTER TABLE CUSTOMERS
2. MODIFY
3. (UPD_DATE DEFAULT SYSDATE NOT NULL,
4. ZIP NOT NULL);

xlii	 Assessment Test

Which line of code will cause an error?

	 A.	 Line 2

	 B.	 Line 3

	 C.	 Line 4

	 D.	 There will be no error.

	25.	 In ANSI SQL, a self-join can be represented by using which of the following? (Choose
the best answer.)

	 A.	 NATURAL JOIN clause

	 B.	 CROSS JOIN clause

	 C.	 JOIN … USING clause

	 D.	 JOIN … ON clause

	 E.	 All of the above

	26.	 What will be result of trunc(2916.16, -1)?

	 A.	 2916.2

	 B.	 290

	 C.	 2916.1

	 D.	 2900

	 E.	 2910

	27.	 The table ADDRESSES is created using the following syntax. How many indexes will be
created automatically when this table is created?

CREATE TABLE ADDRESSES (
NAME VARCHAR2 (40) PRIMARY KEY,
STREET VARCHAR2 (40),
CITY VARCHAR2 (40),
STATE CHAR (2) REFERENCES STATE (ST_CODE),
ZIP NUMBER (5) NOT NULL,
PHONE VARCHAR2 (12) UNIQUE);

	 A.	 0

	 B.	 1

	 C.	 2

	 D.	 3

	28.	 Which line of the following code has an error?

SELECT *
FROM emp

	 Assessment Test	 xliii

WHERE comm = NULL
ORDER BY ename;

	 A.	 SELECT *

	 B.	 FROM emp

	 C.	 WHERE comm = NULL

	 D.	 There is no error in this statement.

	29.	 How do you represent the following business rule in an ER diagram? “A customer may
have one or more orders; an order must belong to one and only one customer.”

	 A.	 Single solid line.

	 B.	 Single line that is solid at one end and dotted at another end.

	 C.	 Single solid line with a crowfoot at one end.

	 D.	 The business rule cannot be represented in the ER diagram.

	30.	 What order does Oracle use in resolving a table or view referenced in a SQL statement?

	 A.	 Table/view within user’s schema, public synonym, private synonym

	 B.	 Table/view within user’s schema, private synonym, public synonym

	 C.	 Public synonym, table/view within user’s schema, private synonym

	 D.	 Private synonym, public synonym, table/view within user’s schema

	31.	 Which two options are not true when you execute a COMMIT statement?

	 A.	 All locks created by DML statements are released in the session.

	 B.	 All savepoints created are erased in the session.

	 C.	 Queries started before the COMMIT in other sessions will show the current
changes after COMMIT.

	 D.	 All undo information written from the DML statements are erased.

	32.	 Which two operators are used to add more joining conditions in a multiple-table query?

	 A.	 NOT

	 B.	 OR

	 C.	 AND

	 D.	 Comma (,)

	33.	 What is wrong with the following SQL?

SELECT department_id, MAX(COUNT(*))
FROM employees
GROUP BY department_id;

xliv	 Assessment Test

	 A.	 Aggregate functions cannot be nested.

	 B.	 GROUP BY clause should not be included when using nested aggregate functions.

	 C.	 The department_id column in the SELECT clause should not be used when using
nested aggregate functions.

	 D.	 When using COUNT function cannot be nested.

	34.	 Which types of constraints can be created on a view?

	 A.	 Check, NOT NULL

	 B.	 Primary key, foreign key, unique key

	 C.	 Check, NOT NULL, primary key, foreign key, unique key

	 D.	 No constraints can be created on a view.

	35.	 Which two declarations define the maximum length of a CHAR datatype column
in bytes?

	 A.	 CHAR (20)

	 B.	 CHAR (20) BYTE

	 C.	 CHAR (20 BYTE)

	 D.	 BYTE (20 CHAR)

	 E.	 CHAR BYTE (20)

	36.	 Which SELECT statement clauses can be used to limit the rows returned (say, you want
to display the rows 6 through 15). (Choose two.)

	 A.	 WHERE

	 B.	 OFFSET

	 C.	 FETCH

	 D.	 FILTER

	37.	 You query the database with the following:

SELECT PRODUCT_ID FROM PRODUCTS
WHERE PRODUCT_ID LIKE '%S_J_C' ESCAPE '\';

Choose the PRODUCT_ID strings from the options that will satisfy the query. (Choose two.)

	 A.	 BTS_J_C

	 B.	 SJC

	 C.	 SKJKC

	 D.	 S_J_C

	 Assessment Test	 xlv

	38.	 The EMPLOYEE table is defined as follows:

EMP_NAME VARCHAR2(40)
HIRE_DATE DATE
SALARY NUMBER (14,2)

Which query is most appropriate to use if you need to find the employees who were
hired before 01-Jan-1998 and have a salary above 5,000 or below 1,000?

	 A.	 SELECT emp_name FROM employee WHERE hire_date > TO_
DATE('01011998','MMDDYYYY')AND SALARY < 1000 OR > 5000;

	 B.	 SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998','MMDDYYYY')AND SALARY < 1000 OR SALARY > 5000;

	 C.	 SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998','MMDDYYYY')AND (SALARY < 1000 OR SALARY > 5000);

	 D.	 SELECT emp_name FROM employee WHERE hire_date < TO_
DATE('01011998','MMDDYYYY')AND SALARY BETWEEN 1000 AND 5000;

	39.	 What happens when you issue the following command? (Choose all correct answers.)

TRUNCATE TABLE SCOTT.EMPLOYEE;

	 A.	 All the rows in the table EMPLOYEE owned by SCOTT are removed.

	 B.	 The storage space used by the table EMPLOYEE is released (except the initial extent).

	 C.	 If foreign key constraints are defined to this table using the ON DELETE CASCADE
clause, the rows from the child tables are also removed.

	 D.	 The indexes on the table are dropped.

	 E.	 You cannot truncate a table if triggers are defined on the table.

	40.	 Which two statements will drop the primary key defined on table EMP. The primary
key name is PK_EMP.

	 A.	 ALTER TABLE EMP DROP PRIMARY KEY;

	 B.	 DROP CONSTRAINT PK_EMP;

	 C.	 ALTER TABLE EMP DROP CONSTRAINT PK_EMP;

	 D.	 ALTER CONSTRAINT PK_EMP DROP CASCADE;

	 E.	 DROP CONSTRAINT PK_EMP ON EMP;

xlvi	 Assessment Test

Exam 1Z0-062: Installation and Administration

	 1.	 Which database version cannot be upgraded directly to Oracle Database 12c?

	 A.	 11.2.0.2

	 B.	 11.2.0.1

	 C.	 11.1.0.7

	 D.	 10.2.0.5

	 E.	 All of the above

	 2.	 The following steps might be related to relocating a data file belonging to the USERS
tablespace. Pick the steps that are required for relocating the data file from /disk1 to
/disk2.

	 A.	 Copy the file '/disk1/users01.dbf' to '/disk2/users01.dbf' using an OS
command.

	 B.	 ALTER DATABASE MOVE DATAFILE '/disk1/users01.dbf' to '/disk2/users01.dbf'

	 C.	 ALTER DATABASE RENAME FILE '/disk1/users01.dbf' to '/disk2/users01.dbf'

	 D.	 ALTER TABLESPACE USERS OFFLINE

	 E.	 ALTER TABLESPACE USERS ONLINE

	 3.	 Which of the following is not considered part of an Oracle database?

	 A.	 Data files

	 B.	 Redo logs

	 C.	 The pfile and spfile

	 D.	 Control files

	 4.	 The highest level at which a user can request a lock is the ________ level.

	 A.	 Schema

	 B.	 Table

	 C.	 Row

	 D.	 Block

	 5.	 To grant the SELECT privilege on the table HR.CUSTOMERS to all users in the database,
which statement would you use?

	 A.	 GRANT SELECT ON HR.CUSTOMERS TO ALL USERS;

	 B.	 GRANT SELECT ON HR.CUSTOMERS TO ALL;

	 C.	 GRANT SELECT ON HR.CUSTOMERS TO ANONYMOUS;

	 D.	 GRANT SELECT ON HR.CUSTOMERS TO PUBLIC;

	 Assessment Test	 xlvii

	 6.	 Which query can be used to find and categorize all chained jobs (only chained jobs),
and includes any remote steps as applied to those chained jobs, as executed from the
current database? (Choose the best answers, more than one if appropriate.)

	 A.	 select table_name from dictionary where table_name like 'DBA_%SCHED%'
or table_name like 'DBA_%REMOTE%';

	 B.	 SELECT TABLE_NAME FROM DICTIONARY WHERE TABLE_NAME LIKE 'DBA_%CHAIN%'
OR TABLE_NAME LIKE 'DBA_%REMOTE%';

	 C.	 select table_name from dictionary where table_name like 'DBA_%CHAIN%'
or table_name like 'DBA_%REMOTE%';

	 D.	 select table_name from dictionary where table_name like 'DBA_%SCHED%'
or table_name like 'DBA_%CHAIN%';

	 E.	 None of the above

	 7.	 The Automatic Workload Repository (AWR) is primarily populated with performance
statistics by which Oracle Database 12c background process?

	 A.	 MMNL

	 B.	 QMN1

	 C.	 MMON

	 D.	 MMAN

	 8.	 The initialization parameter RESUMABLE_TIMEOUT is set to 600. Which other statements
are the minimum required to enable a resumable session?

	 A.	 No other setup is required if the RESUMABLE_TIMEOUT is a nonzero value.

	 B.	 ALTER SESSION ENABLE RESUMABLE

	 C.	 ALTER SESSION ENABLE RESUMABLE TIMEOUT 0

	 D.	 ALTER SESSION BEGIN RESUMABLE SESSION

	 9.	 Which utility is used to install Oracle Database 12c?

	 A.	 DBCA

	 B.	 OUI

	 C.	 runInstaller

	 D.	 Oracle Database 12c is installed using the URL to www.oracle.com.

	10.	 You have just made changes to the listener.ora file for the listener called listener1
using Oracle Net Manager. Which of the following commands or combinations of
commands would you use to put the changes into effect with the least amount of client
disruption?

	 A.	 lsnrctl stop listener1 followed by lsnrctl start listener1

	 B.	 lsrnctl restart listener1

	 C.	 lsnrctl reload listener1

	 D.	 lsnrctl cycle services

http://www.oracle.com

xlviii	 Assessment Test

	11.	 If a job is not running and a STOP_JOB procedure is executed, what will happen?
(Choose the best answer.)

	 A.	 An error will not occur.

	 B.	 The job will stop running.

	 C.	 The job will be dropped altogether.

	 D.	 All of the above.

	 E.	 None of the above.

	12.	 Where does Oracle Database 12c record all the changes made to the database that can
be used for recovery operations?

	 A.	 Control files

	 B.	 Redo log files

	 C.	 Alert log file

	 D.	 Parameter file

	13.	 What is accomplished when you issue the following statement?

ALTER USER JOHN DEFAULT ROLE ALL;

	 A.	 John is assigned all the roles created in the database.

	 B.	 Any existing roles remain the same, but any future roles created will be enabled.

	 C.	 All of John’s roles are enabled except the roles with passwords.

	 D.	 All of John’s roles are enabled including the roles with passwords.

	14.	 Which activity is a must do before upgrading a database to 12c using the manual
upgrade method?

	 A.	 Run dbms_stats.gather_dictionary_stats.

	 B.	 Run $ORACLE_HOME/rdbms/admin/emremove.sql.

	 C.	 Run dbms_stats.gather_database_stats.

	 D.	 Run preupgrd.sql script.

	15.	 What would you do to reduce the time required to start the instance after a data-
base crash?

	 A.	 Multiplex the redo log files

	 B.	 Increase the size of the redo log files

	 C.	 Set FAST_START_MTTR_TARGET parameter to 0

	 D.	 All of the above

	 E.	 None of the above

	 Assessment Test	 xlix

	16.	 When you are configuring Oracle Shared Server, which initialization parameter would
you likely need to modify?

	 A.	 DB_CACHE_SIZE

	 B.	 DB_BLOCK_BUFFERS

	 C.	 LARGE_POOL_SIZE

	 D.	 BUFFER_SIZE

	 E.	 None of the above

	17.	 Which options are available in DBCA to configure recovery-related operations?

	 A.	 Data Guard

	 B.	 Standby Database

	 C.	 Fast Recovery Area

	 D.	 Archiving

	18.	 When you started the Oracle Database 12c database, you got an ORA-01157: cannot
identify data file … error. After invoking RMAN, which command would you first
use before performing the REPAIR FAILURE?

	 A.	 RECOVER FAILURE

	 B.	 ADVISE FAILURE

	 C.	 LIST FAILURE

	 D.	 CHANGE FAILURE

	19.	 Which of the following commands is most likely to generate an error message?
(Choose two.)

	 A.	 ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=MEMORY;

	 B.	 ALTER SYSTEM SET UNDO_MANAGEMENT=AUTO SCOPE=SPFILE;

	 C.	 ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=MEMORY;

	 D.	 ALTER SYSTEM SET UNDO_MANAGEMENT=MANUAL SCOPE=SPFILE;

	 E.	 ALTER SYSTEM SET UNDO_TABLESPACE=RBS1 SCOPE=BOTH;

	20.	 You performed a SHUTDOWN ABORT on the database. What happens when you issue the
STARTUP command?

	 A.	 Startup will fail, because you have not completed the instance recovery.

	 B.	 Oracle automatically performs recovery. All committed changes are written to
data files.

	 C.	 During instance recovery, you have the option to selectively commit uncommitted
transactions.

	 D.	 After the database starts, you have to manually clean out uncommitted transactions
from the transaction table.

l	 Assessment Test

	21.	 Where does the following procedure allow jobs to be created?

BEGIN

DBMS_SCHEDULER.CREATE_GROUP(group_name=>'things'

,group_type=>'DB_DEST',member=>'LOCAL');

END;

/

	 A.	 On a remote server as a database destination

	 B.	 On a remote server using a hostname and IP address

	 C.	 On a local database server only

	 D.	 On a local server using a hostname and an IP address

	 E.	 None of the above

	22.	 Which of the following statements is not always true? (Choose two.)

	 A.	 Every database should have at least two tablespaces.

	 B.	 Every database should have at least two data files.

	 C.	 Every database should have at least three multiplexed redo logs.

	 D.	 Every database should have at least three control files.

	23.	 How can you prevent someone from using an all-alphabet password?

	 A.	 Set the initialization parameter PASSWORD_COMPLEXITY to ALPHANUM.

	 B.	 Alter that user’s profile setting PASSWORD_COMPLEXITY to ALPHNANUM.

	 C.	 Alter the user’s profile to use a password-verify function that performs comparisons
to validate the password.

	 D.	 There is no mechanism that lets you prevent an all-alphabet password.

	24.	 Which metadata view can be used to find Oracle Scheduler priorities?

	 A.	 DBA_CHAINS

	 B.	 DBA_SCHEDULER_CHAINS

	 C.	 DBA_SCHEDULER_JOBS

	 D.	 DBA_SCHEDULER_DESTS

	 E.	 None of the above

	25.	 Which component of the SGA has the dictionary cache?

	 A.	 Buffer cache

	 B.	 Library cache

	 C.	 Shared pool

	 Assessment Test	 li

	 D.	 Program global area

	 E.	 Large pool

	 F.	 Result cache

	26.	 Which of the following advisors is used to determine if the database read-consistency
mechanisms are properly configured?

	 A.	 Undo Management Advisor

	 B.	 SQL Access Advisor

	 C.	 SQL Tuning Advisor

	 D.	 Memory Advisor

	27.	 Which storage parameter is used to make sure that each extent is a multiple of the
value specified?

	 A.	 MINEXTENTS

	 B.	 INITIAL

	 C.	 MINIMUM EXTENT

	 D.	 MAXEXTENTS

	28.	 What is (are) the name of the audit trail view(s) where audit records from Unified Auditing
is (are) stored, when database auditing, RMAN, and Data Pump auditing are enabled?

	 A.	 UNIFIED_AUDIT_TRAIL

	 B.	 UNIFIED_AUDIT_TRAIL, COMPONENT_AUDIT_TRAIL

	 C.	 SYS.AUD$

	 D.	 AUDIT_TRAIL_DB, AUDIT_TRAIL_DP, AUDIT_TRAIL_RMAN

	29.	 Which of the following is the utility that you can use to test the network connections
across TCP/IP?

	 A.	 trcasst

	 B.	 lsnrctl

	 C.	 namesctl

	 D.	 ping

	 E.	 None of the above

	30. 	Undo data in an undo tablespace is not used for which of the following purposes?

	 A.	 Providing users with read-consistent queries

	 B.	 Rolling forward after an instance failure

	 C.	 Flashback queries

	 D.	 Recovering from a failed transaction

	 E.	 Restoring original data when a ROLLBACK is issued

lii	 Assessment Test

	31.	 In which file could you tell SQL*Loader to use the direct path option?

	 A.	 Log file

	 B.	 Parfile

	 C.	 Bad file

	 D.	 Data file

	32. 	Which of the following is false about shared servers?

	 A.	 Shared servers can process requests from many users.

	 B.	 Shared servers receive their requests directly from dispatchers.

	 C.	 Shared servers place completed requests on a dispatcher response queue.

	 D.	 The SHARED_SERVERS parameter configures the number of shared servers to start at
instance startup.

	33.	 Identify the statement that is not true about checkpoints.

	 A.	 Instance recovery is complete when the data from the last checkpoint up to the
latest SCN in the control file has been written to the data files.

	 B.	 A checkpoint keeps track of what has already been written to the data files.

	 C.	 The redo log group writes must occur before a commit complete is returned to
the user.

	 D.	 The distance between the checkpoint position in the redo log file and the end of
the redo log group can never be more than 90 percent of the size of the largest redo
log group.

	 E.	 How much the checkpoint lags behind the SCN is controlled by both the size of
the redo log groups and by setting the parameter FAST_START_MTTR_TARGET.

	34.	 Which parameter is used to enable the Automatic Memory Management feature of the
Oracle database?

	 A.	 MEMORY_MANAGEMENT

	 B.	 MEMORY_TARGET

	 C.	 SGA_TARGET

	 D.	 MEMORY_SIZE

	35.	 When performing a Data Pump Import using impdp, which of the following options is
not a valid value to the TABLE_EXISTS_ACTION parameter?

	 A. 	SKIP

	 B. 	APPEND

	 C. 	TRUNCATE

	 D. 	RECREATE

	 Assessment Test	 liii

	36.	 Two tablespaces are critical to the database. The loss of a data file in these tablespaces
requires an instance shutdown to recover. Which are these tablespaces?

	 A.	 TEMP

	 B.	 SYSTEM

	 C.	 UNDO

	 D.	 SYSAUX

	37.	 Which initialization parameter determines the location of the alert log file?

	 A.	 DIAGNOSTIC_DEST

	 B.	 BACKGROUND_DUMP_DEST

	 C.	 ALERT_LOG_DEST

	 D.	 USER_DUMP_DEST

	38.	 Which statement regarding a global temporary table and redo generation is true?

	 A.	 Global temporary tables generate the same amount of redo as persistent tables.

	 B.	 Global temporary tables generate redo from undo when a DML operation is per-
formed on them.

	 C.	 By setting the TEMP_UNDO_ENABLED to TRUE, you turn off the undo generation for
DML on temporary tables.

	 D.	 All of the above are true.

	39.	 Which database management tools are automatically installed and configured when
Oracle Database 12c database is configured? (Choose two.)

	 A.	 OEM Database Express

	 B.	 OEM Cloud Control

	 C.	 SQL*Plus

	 D.	 SQL Developer

	40.	 Which parameter is used to set up the directory for Oracle to create data files, if the
DATAFILE clause does not specify a filename when you’re creating or altering tablespaces?

	 A.	 DB_FILE_CREATE_DEST

	 B.	 DB_CREATE_FILE_DEST

	 C.	 DB_8K_CACHE_SIZE

	 D.	 USER_DUMP_DEST

	 E.	 DB_CREATE_ONLINE_LOG_DEST_1

liv	 Assessment Test

	41.	 In Oracle Database 12c, which script is recommended to run for upgrading a database
from 11.1.0.7?

	 A.	 catupgrd.sql

	 B.	 utlu121i.sql

	 C.	 catctl.pl

	 D.	 utlu121s.sql

	42.	 How do you enable Database Resident Connection Pooling (DRCP)?

	 A. 	Using listener.ora configuration.

	 B.	 Using Oracle Net Manager configuration.

	 C.	 Using a PL/SQL package.

	 D.	 Depends on the application. PHP, HTTP, and SQL*Net applications have different
configurations.

	43.	 Which initialization parameter determines the location of the alert log file?

	 A.	 LOG_ARCHIVE_DEST

	 B.	 USER_DUMP_DEST

	 C.	 BACKGROUND_DUMP_DEST

	 D.	 DIAGNOSTIC_DEST

	44.	 Which product do you install to configure an Oracle Automatic Storage Management
instance?

	 A.	 Oracle Database 12c database

	 B.	 Oracle Database 12c Grid Infrastructure

	 C.	 Oracle Database 12c Automatic Storage Management

	 D.	 Oracle Restart

	 Answers to Assessment Test	 lv

Answers to Assessment Test

Exam 1Z0-061: SQL Fundamentals

	 1.	 B.  In the arithmetic operators, unary operators are evaluated first, then multiplication
and division, and finally addition and subtraction. The expression is evaluated from
left to right. See Chapter 2 for more information.

	 2.	 C.  Except for option C, all other SQL statements are not valid syntactically. To change
a value in a column for existing rows, you need to use the UPDATE statement. The DELETE
statement deletes the entire row. The INSERT statement adds a new row. The MERGE state-
ment performs kind of an upsert—it inserts if the row does not exist, and updates if the
row exists. For more information, read Chapter 6.

	 3.	 C.  CONCAT will return a non-NULL if only one parameter is NULL. Both CONCAT parame-
ters would need to be NULL for CONCAT to return NULL. The NULLIF function returns NULL
if the two parameters are equal. The LENGTH of a NULL is NULL. INSTR will return NULL if
NULL is passed in, and the tangent (TAN) of a NULL is NULL. See Chapter 3 to learn more.

	 4.	 C.  Group functions cannot appear in the WHERE clause. Read Chapter 4 to learn more
about group functions.

	 5.	 B.  When using multiple columns to update in a single UPDATE statement, the column
assignments in the SET clause must be separated by a comma, not an AND operator.
See Chapter 6 for more information.

	 6.	 C.  Since job_id is used in the SELECT clause, it must be used in the GROUP BY clause
also. For more information, see Chapter 4.

	 7.	 B.  UROWID datatype is used ot store ROWID data. The BFILE datatype stores only the
locator to an external file in the database; the actual data is stored as an operating sys-
tem file. BLOB, NCLOB, and CLOB are other Large Object data types in Oracle Data-
base 12c. EXTERNAL is not a valid datatype. Read Chapter 7 for more information.

	 8.	 C.  The statement will work without error. Option B would be correct if you used the
WITH CHECK OPTION clause in the subquery. See Chapter 5 for more information about
subqueries.

	 9.	 A, E.  An outer join on both tables can be achieved using the FULL OUTER JOIN syn-
tax. The join condition can be specified by using the ON clause to specify the columns
explicitly or using the USING clause to specify columns with common column names.
Options B and D would result in errors. In option B, the join type is not specified; OUTER
is an optional keyword. In option D, CROSS JOIN is used to get a Cartesian result, and
Oracle does not expect a join condition. See Chapter 5 for more information.

lvi	 Answers to Assessment Test

	10.	 A, B.  The index contains all the information needed to satisfy the query in option A,
and a full-index scan would be faster than a full-table scan. A subset of indexes columns
is specified in the WHERE clause of option B, hence Oracle database can use the index.
Read Chapter 7 to learn more about using an index.

	11.	 D.  The CREATE SEQUENCE statement will create an increasing sequence that will start
with 1, increment by 1, and be unaffected by the rollback. A rollback will never stuff
values back into a sequence. Read Chapter 7 for more information.

	12.	 B, C.  Primary key and unique key constraints can be enforced using non-unique
indexes. Unique constraints allow NULL values in the columns, but primary keys
do not. See Chapter 7 for more information.

	13.	 B.  The SYSDATE function returns the date and time on the server where the database
instance is started. CURRENT_DATE returns local date and time. See Chapter 3 for more
information.

	14.	 D.  The first INSERT statement and last INSERT statement will be saved in the database.
The ROLLBACK TO A statement will undo the second and third inserts. For more infroma-
tion, see Chapter 6.

	15.	 B.  There should be at least n-1 join conditions when joining n tables to avoid a Cartesian
join. See Chapter 5 for more information.

	16.	 C.  The table and column names can include only three special characters: #, $, and _.
No other characters are allowed in the table name. You can have letters and numbers
in the table name. Read Chapter 7 for more information.

	17.	 B, D.  You can use the IS NULL or IS NOT NULL operator to search for NULLs or non-
NULLs in a column. Since NULLs are sorted higher, they appear at the bottom of the
result set in an ascending order sort. See Chapter 2 for more information.

	18.	 D.  COUNT (<column_name>) does not include the NULL values, whereas COUNT (*)
includes the NULL values. No other aggregate function takes NULL into consideration.
See Chapter 4 for more information.

	19.	 E.  These statements don’t account for possible NULL values in the BONUS column.
Read Chapter 3 for more information.

	20.	 D.  Using the ALTER TABLE statement, you can add new columns, rename existing col-
umns, and drop existing columns. To learn more about managing tables, read chapter 7.

	21.	 B.  Since DEPARTMENT_ID is NULL for employee 178, NULL will be sorted after the non-
NULL values when doing an ascending order sort. Since we did not specify the sort order
or NULLS FIRST clause, the defaults are ASC and NULLS LAST. Read Chapter 2 for more
information.

	22.	 D, E, F, G.  The INTERVAL DAY TO SECOND dataype is used to store an interval
between two datetime components. Read Chapter 7 for more information.

	 Answers to Assessment Test	 lvii

	23.	 C, E.  The easy connect syntax is @<host>:<port>/<service_name>. For databases
where the sid is the same as the database unique name, the service name is the same as
the sid; thus you can say option C is also part of the easy connect string. However, in
reality it is the service name. Easy connect only supports TCP protocol. See Chapter 1
for more information.

	24.	 B.  When altering an existing column to add a NOT NULL constraint, no rows in the
table should have NULL values. In the example, there are two rows with NULL values.
Read Chapter 7 for more information.

	25.	 D.  NATURAL JOIN and JOIN … USING clauses will not allow alias names to be used.
Since a self-join is getting data from the same table, you must include alias names and
qualify column names. See Chapter 5 for more information.

	26.	 E.  The TRUNC function used with a negative second argument will truncate to the left
of the decimal. See Chapter 3 for more information.

	27.	 C.  Oracle creates unique indexes for each unique key and primary key defined in the
table. The table ADDRESSES has one unique key and a primary key. Indexes will not be
created for NOT NULL or foreign key constraints. See Chapter 7 for more information.

	28.	 D.  Although there is no error in this statement, the statement will not return the
desired result. When a NULL is compared, you cannot use the = or != operators; you
must use the IS NULL or IS NOT NULL operator. See Chapter 2 for more information.

	29.	 C.  The solid line represents that the order must belong to a customer, and the crow-
foot represents that a customer can have more than one order. See Chapter 1 for more
information.

	30.	 B.  Private synonyms override public synonyms, and tables or views owned by the user
always resolve first. See Chapter 7 for more information.

	31.	 C, D.  When a COMMIT is executed, all locks are released, savepoints are erased, and
queries started before the COMMIT will constitute a read-consistent view using the
undo information. See Chapter 6 for more information.

	32.	 B, C.  The operators OR and AND are used to add more joining conditions to the query.
NOT is a negation operator, and a comma is used to separate column names and table
names. For more information, see Chapter 5.

	33.	 C.  Since we are finding the aggregate of aggregate, non-aggregate columns should not
be used in the SELECT clause. See Chapter 4 for more information.

	34.	 B.  You can create primary key, foreign key, and unique key constraints on a view. The
constraints on views are not enforced by Oracle. To enforce a constraint, it must be
defined on a table. See Chapter 7 for more information.

lviii	 Answers to Assessment Test

	35.	 A, C.  The maximum lengths of CHAR and VARCHAR2 columns can be defined in
characters or bytes. BYTE is the default; the default can be changed by setting the data-
base parameter NLS_LENGTH_SEMANTICS. See Chapter 7 for more information.

	36.	 B, C.  The row limiting feature uses OFFSET and FETCH clauses to filter the rows. To
get to rows 6 through 15 here, you may use the clause OFFSET 5 ROWS FETCH NEXT 10
ROWS. See Chapter 2 for more information.

	37.	 D.  The substitution character % may be substituted for zero or many characters. The
substitution character _ does not have any effect in this query because an escape char-
acter precedes it, so it is treated as a literal. See Chapter 2 for more information.

	38.	 C.  You have two main conditions in the question: one on the hire_date and the other
on the salary. So an AND operator should be used. In the second part, you have two
options: the salary can be either more than 5000 or less than 1000, so the second part
should be enclosed in parentheses; use an OR operator. Option B is similar to option C
except for the parentheses, but the difference changes the meaning completely. Option B
would select the employees who were hired before 01-Jan-1998 or have a salary above
5,000 or have a salary below 1,000. Read Chapter 2 for more information.

	39.	 A, B.  The TRUNCATE command is used to remove all the rows from a table or cluster. By
default, this command releases all the storage space used by the table and resets the table’s
high-water mark to zero. None of the indexes, constraints, or triggers on the table are
dropped or disabled. If there are valid foreign key constraints defined to this table, you
must disable all of them before truncating the table. Read Chapter 6 for more information.

	40.	 A, C.  Since there can be only one primary key per table, the syntax in option
A works. Any constraint (except NOT NULL) can be dropped using the syntax in
option C. See Chapter 7 for more information.

Exam 1Z0-062: Installation and Administration

	 1.	 B.  Database Upgrade Assistant and a manual upgrade both support an upgrade from
10.2.0.5, 11.1.0.7, 11.2.0.2, and higher-version databases. For 11.2.0.1, you must upgrade
to 11.2.0.2 or higher before upgrading to 12.1.0. See Chapter 17 for more information.

	 2.	 B.  To rename or relocate a data file in Oracle Database 12c, you need to use only the
statement specified in option B. To rename a data file in pre-12c databases, you need to
take the tablespace offline so that Oracle does not try to update the data file while you
are renaming. Using OS commands, copy the data file to the new location and using
the ALTER DATABASE RENAME FILE command or the ALTER TABLESPACE RENAME FILE
command, rename the file in the database’s control file. To rename the file in the data-
base, the new file should exist. Bring the tablespace online for normal database opera-
tion. For more information, read Chapter 10.

	 3.	 C.  Although pfiles and spfiles are physical files used to configure the Oracle instance,
they are not considered part of the database. For more information, see Chapter 8.

	 Answers to Assessment Test	 lix

	 4.	 B.  The highest level at which a user can request a lock is the table level; the only other
lock level available to a user is a row-level lock. Users cannot lock at the block or
schema level. Read Chapter 11 for more information.

	 5.	 D.  PUBLIC is the group or class of database users where all existing and future database
users belong. Read Chapter 13 for more information.

	 6.	 B, C.  B and C are both the best answers. They are identical because queries in Oracle
are case-insensitive. For more information, read Chapter 16.

	 7.	 C.  The Manageability Monitor (MMON) process gathers performance statistics from
the SGA (System Global Area) and stores them in the AWR. MMNL (Manageability
Monitor Light) also does some AWR-related statistics gathering, but not to the extent
that MMON does. QMN1 is the process that monitors Oracle advanced queuing fea-
tures. MMAN (Memory Manager) is the process that dynamically manages the sizes
of each SGA component when directed to make changes by the ADDM (Automatic
Database Diagnostic Monitoring). See Chapter 14 for more information.

	 8.	 B.  RESUMABLE_TIMEOUT set at the initialization parameter is used only as the default
timeout value for a resumable session. The resumable session must be enabled using
option B. Option C disables the resumable session. Option D is invalid. Read Chapter
10 for more information.

	 9.	 B.  Use the Oracle Universal Installer (OUI) to install and configure the Oracle Data-
base 12c software. The OUI is a Java-based application that provides the same installa-
tion look and feel no matter which operating system is being used for the installation.
runInstaller is the executable that invokes OUI on Linux/Unix systems. See Chapter 9
for more information.

	10.	 C.  Although you can use choice A to stop and start the listener, doing so temporarily
disrupts clients attempting to connect to the database. Choice D is fine if you are start-
ing and stopping the default listener called LISTENER, but we are using a nondefault
listener. Choice B is not valid because RESTART is not a valid command-line argument
for lsnrctl. Therefore, the best method is C, to use the lsnrctl reload listener1
command to load the new set of values for the listener without disrupting connection
service to the databases the listener is servicing. For more information, see Chapter 12.

	11.	 E.  An error will occur because the job is not running, given that a job that is not execut-
ing cannot be stopped. The error produced will be ORA-27366, including other follow-
ing errors as the error trap is pushed up the stack back to the executable (something like
SQL*Plus), which executed the STOP_JOB procedure. See Chapter 16 for more information.

	12.	 B.  Redo log files record all the changes made to the Oracle database, whether the change
is committed or not. See Chapter 15 for more information.

	13.	 D.  Default roles are enabled when a user connects to the database, even if the roles are
password protected. Read Chapter 13 for more information.

lx	 Answers to Assessment Test

	14.	 D.  Although options A and B are recommended practices for upgrade performance,
option D is a must. The Pre-Upgrade Information tool must be run, and all errors
must be taken care of before upgrading the database. Option C is not required for the
upgrade process. For more information, read Chapter 17.

	15.	 E.  To tune the instance recovery time, configure the FAST_START_MTTR_TARGET param-
eter to a nonzero value. The default is 300 seconds. A lower value will reduce the
instance recovery time, but may cause frequent checkpoints. A value of 0 turns off
MTTR tuning. Read Chapter 15 for more information.

	16.	 C.  Oracle Shared Server requires a shift of memory away from individual session pro-
cesses to the SGA. More information has to be kept in the SGA (in the UGA) within
the shared pool. A large pool is configured and is responsible for most of the SGA
space allocation. The cache size and block buffers settings do not affect Oracle Shared
Server. See Chapter 12 for more information.

	17.	 C, D.  Recovery options are optional when you create a database. Specify Fast Recov-
ery Area and Enable Archiving are the options available. Read Chapter 9 for more
information.

	18.	 B.  The REPAIR FAILURE command works only after an ADVISE FAILURE. Option A is
invalid. LIST FAILURE displays the failures. CHANGE FAILURE can be used to lower or
raise the priority of a failure. For more information, see Chapter 15.

	19.	 A, C.  You cannot dynamically change the parameter UNDO_MANAGEMENT after the instance
has started. You can, however, change the UNDO_TABLESPACE parameter to switch to
another undo tablespace while the instance is up and running. See Chapter 11 for more
information.

	20.	 B.  Oracle automatically performs instance recovery after a database crash or SHUTDOWN
ABORT. All uncommitted changes are rolled back, and committed changes are written
to data files during instance recovery. Read Chapter 9 for more information.

	21.	 C.  DB_DEST implies a database instance destination identified by a TNS name. LOCAL
implies the current machine only. See Chapter 16 for more information.

	22.	 C, D.  Every database must have at least two redo log files, which may or may not
be multiplexed. Every database must have one control file. It is a good idea to have
more than one control file for redundancy. Because SYSTEM and SYSAUX are mandatory
tablespaces, there will be at least two data files. Read Chapter 8 for more information.

	23.	 C.  There are no standard password complexity settings in either the initialization
parameters or profiles. A password-verify function can validate new passwords
against any rules that you can code in PL/SQL, including regular expression com-
parisons. For more information, read Chapter 13.

	24.	 B.  DBA_CHAINS does not exist. DBA_SCHEDULER_CHAINS only shows chained groups of jobs.
DBA_SCHEDULER_DESTS shows on job execution destinations. The DBA_SCHEDULER_JOBS
metadata view has a JOB_PRIORITY column. For more information, read Chapter 16.

	 Answers to Assessment Test	 lxi

	25.	 C.  The shared pool has three components: library cache, result cache, and dictionary
cache. Read Chapter 8 for more information.

	26.	 A.  You can use the Undo Management Advisor to monitor and manage the undo
segments to ensure maximum levels of read consistency and minimize occurrences
of ORA-01555: Snapshot Too Old error messages. For more information, see
Chapter 14.

	27.	 C.  The MINIMUM EXTENT parameter is used to make sure each extent is a multiple of
the value specified. This parameter is useful to reduce fragmentation in the tablespace.
Read Chapter 10 for more information.

	28.	 A.  Irrespective of the components audited, all audit trail information is queried from
UNIFIED_AUDIT_TRAIL. Audit records are stored in a table under the AUDSYS table. See
Chapter 13 for more information.

	29.	 D.  Protocols come with tools that allow you to test network connectivity. One such
utility for TCP/IP is ping. The user supplies either an IP address or a hostname to the
ping utility. It then searches the network for this address. If it finds one, it displays
information on data that is sent and received and on how quickly it found this address.
The other choices are Oracle-supplied utilities. Read Chapter 12 for more information.

	30.	 B.  The online redo log files are used to roll forward after an instance failure; undo data
is used to roll back any uncommitted transactions. See Chapter 11 for more information.

	31.	 B.  The log and bad files are written to (not read from) SQL*Loader, and the data file
contains only data. The direct=y option, which tells SQL*Loader to use the direct
path option, can appear on the command line or in the parfile. See Chapter 18 for
more information.

	32.	 B.  Shared servers can process requests from many users. The completed requests
are placed into the dispatchers’ response queues. The servers are configured with the
SERVERS parameter. However, shared servers do not receive requests directly from dis-
patchers. The requests are taken from the request queue. Read Chapter 12 for more
information.

	33.	 D.  The distance between the checkpoint position in the redo log file and the end of the
redo log group can never be more than 90 percent of the size of the smallest redo log
group. See Chapter 15 for more information.

	34.	 B.  A nonzero value for the MEMORY_TARGET parameter enables the Automatic Memory
Management. SGA_TARGET enables Automatic Shared Memory Management. Automatic
Memory Management tunes both SGA and PGA components of the memory. For more
information, read Chapter 14.

	35.	 D.  REPLACE is the valid value; it drops the existing table and creates the table using the
definition from the dump file. SKIP leaves the table untouched. APPEND inserts rows to
the existing table. TRUNCATE leaves the structure but removes all existing rows before
inserting rows. Read Chapter 18 to learn more.

lxii	 Answers to Assessment Test

	36.	 B, C.  Only the SYSTEM and UNDO tablespaces require the instance to be shut down when
their data files need to be recovered. See Chapter 15 for more information.

	37.	 A.  Oracle Database 12c uses the Automatic Diagnostic Repository to maintain the
alert log and other diagnostic information. The BACKGROUND_DUMP_DEST parameter is
derived from the DIAGNOSTIC_DEST. See Chapter 9 for more information.

	38.	 B.  Option A is not correct because operations on temporary tablespaces do not gen-
erate redo, and a temporary table is created in a temporary tablespace. When DML
is performed on a temporary table, the undo is written by default to the active undo
tablespace, which generates redo. By setting the parameter TEMP_UNDO_ENABLED, you
can direct the undo writing to a temporary tablespace instead of an undo tablespace,
thus eliminating redo generation. Option C is wrong. When TEMP_UNDO_ENABLED is
true, the undo gets generated as usual; however, the undo gets generated in the temp
tablespace, so the redo is not generated. See Chapter 11 for more information.

	39.	 A, C.  OEM Database Express is automatically configured when you create a data-
base using DBCA. SQL*Plus is installed along with Oracle RDBMS software tools.
SQLDeveloper and OEM Cloud Control must be downloaded and installed separately.
Read Chapter 8 for more information.

	40.	 B.  DB_CREATE_FILE_DEST specifies the directory to use to create data files and temp
files. This directory is also used for control files and redo log files if the DB_CREATE_
ONLINE_LOG_DEST_1 parameter is not set. See Chapter 10 for more information.

	41.	 C.  In the previous database releases, the upgrade script was named catupgrd.sql. In
Oracle Database 12c, the upgrade script is also catupgrd.sql, but it must be invoked
using the catctl.pl perl script. This script runs the upgrade in parallel by default, thereby
reducing the upgrade time. The utlu121i.sql script is replaced with the preupgrd.sql
script and is used for pre-upgrade information. The utlu121s.sql script is a post-upgrade
status tool. For more information, see Chapter 17.

	42.	 C.  DRCP is enabled and disabled by using the database package DBMS_CONNECTION_POOL.
The procedure START_POOL starts the server pool and STOP_POOL stops it. The CONFIGURE_
POOL procedure can be used to configure various parameters. Read Chapter 12 for more
information.

	43.	 D.  DIAGNOSTIC_DEST determines the location of the alert log file and trace files. See
Chapter 14 for more information.

	44.	 B.  Oracle Grid Infrastructure includes Oracle ASM and Oracle Restart. ASM disks are
managed and controlled by a special type of instance known as the ASM instance. The
ASM instance does not have any data files or database associated to it; it has only the
memory structures and processes. See Chapter 18 for more information.

Oracle Database
12c: SQL

Fundamentals

Part

I

Chapter

1
Introducing Oracle
Database 12c RDBMS

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Introduction

■■ Describe the features of Oracle Database 12c.

■■ Describe the salient features of Oracle Cloud 12c.

■■ Explain the theoretical and physical aspects of a

relational database.

■■ Describe Oracle server’s implementation of RDBMS and

object relational database management system (ORDBMS).

Organizations and individuals collect and use a variety of infor-
mation (data). A database collects data, stores and organizes
data, and retrieves related data used by a business. Oracle is the

world’s most widely used database management system. With the release of its Database 12c,
Oracle has enhanced the capabilities of its feature-rich database to include cloud architecture.
The c in 12c stands for cloud computing. From Oracle version 8 onward, Oracle includes the
core emphasis of the release along with the version number in its name. Versions 8 and 9 are
called i to indicate Internet computing; versions 10 and 11 are called g for grid computing.

With the cloud enablement, Oracle Database 12c lets you manage many databases as
one, thereby reducing overhead and valuable resource consumption.

This chapter will introduce you to the Oracle Database 12c high-level components and
how the Oracle database is organized. You will also learn about the relational and object
capabilities of the database, and the tools available for database administrators (DBAs) to
retrieve information and manage the database.

Exam objectives are subject to change at any time without prior notice and
at Oracle’s sole discretion. Please visit Oracle’s Training and Certification
website at http://www.oracle.com/education/certification for the
most current exam objectives.

Relational Database Management
Systems
A database management system (DBMS) controls the storage, organization, and retrieval of
data. In a DBMS, the kernel code is the software piece that manages the storage and memory
component of the database. There is metadata in the DBMS that keeps track of all the com-
ponents of the database, also known as the dictionary. The code or language used to retrieve
data from the database is known as SQL, which stands for Structured Query Language.

Over the years, database management systems have evolved from hierarchical to network
to relational database management systems (RDBMS). A relational database management
system is an organized model of subjects and characteristics that have relationships among
the subjects. A well-designed relational database provides volumes of information about
a business or process. RDBMS is the most widely used database system, and the object

http://www.oracle.com/education/certification

	 Relational Database Management Systems	 5

structures are related. We see relationships everywhere in our daily lives: parents and chil-
dren, team and players, doctor and patient, to name a few. The main advantages of RDBMS
include the way it stores and retrieves information and how the data integrity is maintained.
RDBMS structures are easy to understand and build. These structures are logically repre-
sented using the entity-relationship (ER) model. The exam will have one or two questions on
the ER diagram and/or the RDBMS concept. You may already be familiar with the RDBMS
concepts and ER diagrams; a brief refresher is included here.

Characteristics of a Relational Database
Relational databases have the following three major characteristics that constitute a
well-defined RDBMS:

■■ Structures are objects that store or access data from the database. Tables, views, and
indexes are examples of structures in Oracle.

■■ Operations are the actions that are used to define the structures or to manipulate data
between the structures. SELECT statements and CREATE statements are examples of
operations in Oracle.

■■ Integrity rules govern what kinds of actions are allowed on data and the database
structure. These rules protect the data and the structure of the database. The primary
keys and foreign keys are examples of integrity rules in Oracle.

Logical Model
In the design phase of the system development cycle, a logical model of the database is
created. A logical model of an RDBMS is typically a block diagram of entities and rela-
tionships, referred to as an entity-relationship (ER) model or ER diagram.

An ER model has entity, relationship, and attributes. An ER model is visual, showing
the structure, characteristics, and interactions within and around the data being modeled.

Entities and Attributes    An entity in a logical model is much like a noun in grammar—a
person, place, or thing. The characteristics of an entity are known as its attributes. Attributes
are detailed information about an entity that serves to qualify, identify, classify, or quantify
it. For example: ABC Inc. has many offices in the United States; each office has many depart-
ments, and each department may have many employees. Placing the organization of ABC Inc.
in terms of the ER model, you could identify OFFICE, DEPARTMENT, and EMPLOYEE
as entities. Each entity will also have its own characteristics. For instance, when you say
“office,” you might want to know the address and city where the office is located, the state,
and how many employees work there. Similarly, you might want to know the department
name, its manager, the employee’s name, date of birth, hiring date, and salary grade. You
might also like to know the employee’s spouse’s name. See Figure 1.1.

There are optional and mandatory attributes. In Figure 1.1, the spouse’s name, along with the
employee information, is optional; whereas the employee name, the department he/she belongs
to, hire date, and date of birth are mandatory in Figure 1.2. An asterisk along with the attribute
name indicates that it is mandatory. The optional attribute may be indicated with a small o.

6	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

F igur e 1.1     Entities and attributes

Office

Address
City
State
ZIP

Department

Department Name
Manager

Employee

Name
DOB
Join Date
Grade
Spouse

Relationships and Unique Identifiers    In the example of ABC Inc., the relationship between
the entities is described as “each office has many departments,” “one department belongs to
only one office,” “each department has many employees,” and “one employee can belong
to only one department.” If there is an office in one city, there should be at least one depart-
ment. So it is mandatory to have at least one occurrence of department for each location.
There may be many departments in one location. In the ER model, a solid line represents a
mandatory relationship, and a crowfoot represents the “many.” But in some departments,
there may not be any employees at all. Optional occurrence is represented by a dotted line.

You should be able to identify each occurrence of an entity uniquely. Now what happens
if there are two employees with the same name? How do you distinguish them? For office
location, the city and state uniquely identify each office; for department, the department
name identifies it uniquely. For employee, you can introduce a unique identifier (UID) called
employee number. Figure 1.2 is a refined version of Figure 1.1, and it shows the entities,
attributes, relationships, optional and mandatory attributes, and UIDs. UID is represented
in the diagram using a pound (#) symbol.

F igur e 1. 2     An entity-relationship (ER) model

OFFICE

LOC_ID

* ADDRESS
* CITY
• STATE
* ZIP

DEPARTMENT

DEPT_NO

* DEPT_NAME
 MGR_ID
* LOC_ID

EMPLOYEE

EMP_NO

* NAME
* DOB
* JOIN_DT
 GRADE
• SPOUSE
* DEPT_NO

Three types of relationships can be defined between the entities. (Figure 1.3):

One-to-One    A one-to-one relationship is one in which each occurrence of one entity is
represented by a single occurrence in another entity. For example, product and patent—one
product might have a patent, and one patent corresponds to only one product.

One-to-Many    A one-to-many relationship is one in which an occurrence of one entity
can be represented by many occurrences in another entity. For example, department and

	 Relational Database Management Systems	 7

employees—one department has one or more employees, and an employee belongs to only
one department.

Many-to-Many    A many-to-many relationship is one in which an occurrence from one
entity can be represented by one or more occurences in another entity, and an occurrence
from the second entity may be represented by one or many occurences in the first entity.
Many-to-many relationships should not exist in RDBMS because they cannot be properly
joined to represent a single row correctly. To solve this, create another entity that has an
one-to-many relationship with the first entity and an one-to-many relationship with the
second entity. For example, doctor and patient—a patient can visit many doctors, and
a doctor can have many patients.

F igur e 1. 3     Types of relationships

Product

One-to-One

Patent

Department

One-to-Many

Employee

Doctor

Many-to-Many

Patient

The logical model also provides information known as access paths. They are the common
ways you usually query the database in order to retreive information. For example, you would
always query the employee records with the Dept_No or Emp_No. Think of the access paths
as an index to the data; they help us locate data just as the index of a book helps us quickly
find the information we need.

When you have established the relationships between entities, it’s time to normalize
the design. Normalization is the process of eliminating redundant information from the
entities until you can uniquely identify each occurrence of the entity. This may not always
be practical due to performance and implementation issues. In such cases, you can denor-
malize to some extent.

Physical Model
The physical model is created by taking the logical model and creating a database and data-
base objects to represent the entities and relationships. In the physical model, each entity
becomes a table and attributes of the entity become columns of the table. The relationship
between the entities is part of one or more constraints between the tables. Physical implemen-
tations might force you to combine, separate, or create completely new entities in order to
best realize the logical model. The unique identifiers of an entity become the primary key of
the table. Stored procedures, functions, and triggers may be created to enforce business rules.

8	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

In RDBMS, the physical database storage is independent of the
logical model.

Oracle’s Implementation of RDBMS and ORDBMS
A database server is the key to information management. An Oracle database satisfies all
three major characteristics of the relational model. Oracle lets you define tables, columns,
column characteristics such as datatype, length, whether the values are mandatory, and
default values. Defining foreign key ensures the referential integrity of the data. You can
define primary keys and indexes on the data. The primary key of a relational table uniquely
identifies each record in the table; it may consist of a single attribute (column) or multiple
attributes in combination. A foreign key is a column (or collection of columns) in one table
that uniquely identifies a row of another table, defining the relationship between the tables.

Records in a database table can be seen as instances of the entity. Each occurrence of an
entity is differentiated by the values of the attributes. Oracle stores these records as rows of
the table and the attributes as columns in each row. In the most generic form, a database
table can be seen as a single spreadsheet with unlimited numbers of columns and rows.
The columns are not defined until the user names them and gives them a datatype. Oracle
extends the concept of spreadsheets by defining relationships between multiple spreadsheets,
constraints on columns, and providing mechanisms for multiple users to access the same
database table(s) at the same time.

The data access path is implemented in Oracle using indexes. Indexing allows us
to predefine to the relational database system the most common access paths that will
be used. These indexes decrease the time required to search for data in a table using a
number of algorithms such as B-tree, bitmap, etc.

Oracle implements the RDBMS characteristics using the following set of structures:

■■ Tables are used for data storage.

■■ Views and synonyms are created for data access.

■■ Indexes are used to speed up data retrieval.

■■ Primary keys, foreign keys, and unique keys are called constraints and are created to
enforce data integrity.

■■ Triggers are created to satisfy the business rules.

■■ Roles and privileges are used for security.

■■ Procedures, functions, and packages are used to code the application.

Oracle, since version 8i, is also an Object Relational DBMS. An RDBMS that implements
object-oriented features such as user-defined types, inheritance, and polymorphism is called
ORDBMS. It lets you create user-defined object types in the relational database system.
Object types are structures that consist of built-in or user-defined data types. For example,
Address can be defined as an object type and can be referenced in tables.

	 The Oracle Database 12c	 9

Here’s an example where STREET_TYPE is defined as:

STREET_TYPE
STREET_NUMBER NUMBER (6)
STREET_NAME1 VARCHAR2 (40)
STREET_SUFFIX VARCHAR2 (10)
APARTMENT_NO VARCHAR2 (5)

Here’s an example where ADDRESS_TYPE is an object type defined using another object type as:

ADDRESS_TYPE
STREET STREET_TYPE
CITY VARCHAR2 (30)
STATE CHAR (2)
ZIP NUMBER (5)

In this example for CUSTOMER_TABLE, the object CUST_ADDR is a type.

CUSTOMER_TABLE
CUST_NAME VARCHAR2 (40)
CUST_ADDR ADDRESS_TYPE
CUST_PHONE VARCHAR2 (12)
CUST_FAX VARCHAR2 (12)

Now that the ADDRESS_TYPE is defined, it can be used in any number of tables, where
ADDRESS needs to be stored. This is a small example to show you how objects can be
reused and how the functionality of the RDBMS can be extended to include built-in
complex business rules.

The Oracle Database 12c
An Oracle Database 12c server is a feature-rich RDBMS that extends its capabilities
beyond any other RDBMS in the market, with object relational and cloud capabilities.
In this section, we will discuss the capabilities and features of Oracle Database 12c.

Oracle Database 12c Implementations
Let’s start with the architecture of the database server at a very high level. Detailed
architecture and components are discussed in various chapters in Part II of this book.

The physical structure of an Oracle Database 12c server consists of two major compo-
nents: the database and the instance. The database is a set of physical files saved on the disk
that store information. The instance is a set of memory structures and processes that uses
the physical components to manipulate and retrieve data.

10	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

Figure 1.4 shows the database architecture. The host machine is where the Oracle
instance is running. It has the memory structures and processes. The storage array, or
disk, is where the database resides.

F igur e 1. 4     An Oracle database server

Background
Processes

Instance

PGA

SGA

Host Machine

User

Database

Files

Storage Disk

In the architecture shown in Figure 1.4, one instance communicates with one database.
The host machine is where users and applications connect and interact. If the machine goes
down for some reason, the database will be unavailable. Oracle alleviates this issue by intro-
ducing an architecture named the Real Application Clusters (RAC).

Figure 1.5 shows RAC architecture. In this architecture, more than one instance com-
municates to a single database. Oracle RAC takes reliability a step further by removing the
database server as a single point of failure. If an instance fails, the remaining instances in the
RAC pool remain open and active; and connections from failed instances can be failed-over
to active instances. The RAC load balancer directs the user connection request to the appro-
priate instance.

With RAC, high availability and CPU/memory capacity available to the database is
increased. Oracle manages the connection load balancing and failover automatically.

Many organizations have several hundreds or thousands of Oracle databases. Imagine
if the policy were to have one instance per server, then you would have as many servers as
the number of instances to manage. If you have a high-capacity server or if the database
resource requirements are minimal, you can have more than one instance on the same host
machine. Figure 1.6 shows an architecture in which more than one database is hosted on
the same machine.

	 The Oracle Database 12c	 11

F igur e 1.5     An Oracle database server — RAC

Processes

PGA

SGA

Host Machine–1

Processes

PGA

SGA

Machine–2

Processes

PGA

SGA

Machine–3

User

Database

Files

Shared Storage Disk

RAC

Instance–1 Instance–2 Instance–3

F igur e 1.6     Multiple Oracle databases on same machine

Processes

PGA

SGA

Host Machine

Processes

PGA

SGA

Processes

PGA

SGA

Database B

Files

Storage Disk

Database A

Files

Database C

Files

Instance A Instance B Instance C

12	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

Figure 1.6 clearly shows that even though you consolidated multiple database servers to one
host, you still have the same overhead of managing the database. You need instance memory
structures, processes, and management activities such as backup for each instance or database.

With Oracle 12c, a new architecture feature is introduced known as the multitenant archi-
tecture. The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB) that includes zero, one, or many pluggable databases (PDBs). All
databases created prior to Oracle Database 12c are non-CDB; a pluggable database appears
as a non-CDB to the application, so existing code and application need not be changed when
you move to Oracle Database 12c.

The PDBs belonging to a CDB share the database overhead such as redo, undo, and
memory. Oracle RDBMS is responsible for keeping the pluggable databases separate, private
for the application, and secure. The instance and SGA are assigned to a container database.
Figure 1.7 shows the multitenant database architecture. The databases that are part of the
CDB are known as pluggable databases.

F igure 1.7     Oracle Database 12c — Multitenant architecture with pluggable databases

Processes

PGA

SGA

Host Machine

PDB
Root

Database
A

Database
B

Database
C

Container Database

Storage Disk

CDB Instance

CDB Root

Multitenant Database

Common
Files

Database
A Files

Database
C Files

Database
B Files

	 The Oracle Database 12c	 13

Pluggable databases in the multitenant architecture, as the name suggests, can be
unplugged and plugged to another CDB easily. With the pluggable databases and multitenant
architecture, Oracle Database 12c offers the following benefits:

■■ Increased server utilization: Because the overhead associated with each database is now
shared among all databases, you can consolidate more databases with the same resources.

■■ Cost reduction: By consolidating hardware and sharing database memory and files, the
cost of hardware is less.

■■ Application transparency: Although the architecture changed, each PDB acts and
works as a traditional pre-12c Oracle database. There is no need to change application
code or architecture to start using Oracle Database 12c.

■■ Manage many databases as one: Administrative activities such as patching and upgrade
are performed on the container database so they do not need to be repeated for each
database in the CDB. This drastically reduces the administrative time required.

■■ Less backup configuration: With multiple databases consolidated into one server, you
still have to back up each database separately. With container and pluggable databases,
you only need to back up one multitenant container database.

■■ Easier provisioning: In the container database architecture, it is very easy to clone and
provision pluggable databases.

■■ Less time to upgrade: When you upgrade the container database, all the pluggable
databases are automatically upgraded.

■■ Move databases: It is also possible to move a pluggable database from one container
database to another. This is especially useful if you plan to upgrade all but a few data-
bases to the next release. Before upgrading the container database, you may move a
few pluggable databases to another container database, or move pluggable databases to
another CDB of higher release.

■■ Separation of duties: Database administrators can be defined as a CDB administrator
(common user with administrative privileges on all CDB and PDBs) or a PDB administra-
tor (local user in PDB with administrative privilege only on the PDB).

In the next section, you will learn about users and schema in the database, which is the
basis for connecting to the database.

Connecting to Oracle Database
Before you can connect to an Oracle database, you must create a user. When you create
a new Oracle database, several default users are automatically created. (The preferred
method for creating a database is to use the Database Configuration Assistant [DBCA],
which is discussed in Chapter 9, “Creating and Operating Oracle Database 12c.”)

SYS is the data dictionary or metadata dictionary owner for the database. Using this
account for day-to-day operations is not recommended. You connect to SYS to start and
stop database and other key administrative tasks. SYSTEM is a powerful administrative user
in the database. Initially, you use this user connection to create database users and other

14	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

administrators in the database. Along with SYS and SYSTEM, several other database users are
also created based on the options you choose during the installation and on the components
installed in the database.

In a container database, the users are either common or local. Common users are visible
on the container as well as in all pluggable databases; they have the same username and pass-
word across all pluggable databases and in the container database. The schema for common
user is still local to each pluggable database and the container database.

A schema is a collection of database objects owned by a user account in the database.
The objects in the schema may be related to support a business application. A schema and
user have a one-to-one relationship in a database. A schema is created as a user in the data-
base, but when the user owns database objects, it is called a schema. Schema objects are
discussed in Chapter 7, “Creating Tables and Constraints.”

When an object is created under someone’s schema, the user has full privilege on the object
by default. Using Oracle’s roles and privileges, a schema owner or administrator can grant
privilege on his or her object (such as a table) to another user in the same database. This is
known as object-level privilege. For certain users, you may want to grant privileges on all the
objects in the database; this is accomplished by using the system privileges. Privileges and sys-
tem security are discussed in Chapter 13, “Implementing Security and Auditing.”

The next section will introduce you to the tools available to manage and administer
Oracle Database 12c.

Database Management Tools
Oracle Database 12c comes with multiple feature-rich tools to help administrators manage
and monitor the database and all of its components. In this section, you will review the tools
that are used for everyday administration of Oracle database. Let’s start with the tool that is
equally beneficial to DBAs, developers, and power users.

SQL Developer
SQL Developer is a graphical tool used to perform everyday activities in the Oracle database.
It has several predefined menu functions; therefore, there is no need to remember the syntax
or SQL command to perform basic functions. In addition to Oracle (database versions higher
than 9i Release 2), SQL Developer can also connect to Microsoft Access, Microsoft SQL
Server, MySQL, IBM DB2, and Sybase Adaptive Server databases to view data and metadata.

SQL Developer is installed along with Oracle Database 12c on Windows platforms. For
Linux, you must download and install it outside of an Oracle Database 12c installation. The
distribution usually included in the database software distribution might not be the current
version. It is better to always download the latest version and install SQL Developer from
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads. As
instructed on the download page, you will also need Java JRE installed for SQL Developer
to work.

Once it is installed, you can invoke SQL Developer from /usr/local/bin directory on
Linux or from the Oracle Installation program group on Windows. Figure 1.8 shows the

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads

	 The Oracle Database 12c	 15

initial SQL Developer screen. To get started and learn more about SQL Developer, click the
choices available in the screen.

F igur e 1. 8     The initial SQL Developer screen

The Connections navigation pane is the most commonly used pane, which navigates
through the database objects providing you with information and options to modify the
objects. In Figure 1.9, you can see the various sections and navigations in SQL Developer.
The section marked 1 shows various database connections and the objects in those data-
bases. Section 2 provides you with a set of predefined reports. If you know how to write
SQL, you can define your own reports as well. Section 3 shows the DBA navigation screen,
showing you various DBA tasks.

Section 4 is the SQL worksheet. You use this section to interact directly with the data-
base using SQL language. Output from the SQL commands is listed in section 5; both
query output and script output are visible. Section 6 is the logging pane. This is useful
when you are debugging code.

For simplicity and ease of results capture, the SQL statements used in this
book are using SQL*Plus. All of the SQL commands can also run using the
SQL Worksheet in SQL Developer.

16	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

F igur e 1. 9     SQL Developer navigation windows

1 4

5

6

2

3

SQL*Plus
SQL*Plus is Oracle’s command-line interface to the Oracle database. You run SQL commands
to query the database or to manage the database. SQL*Plus is packaged with the Oracle soft-
ware and can be installed using the client software installation routine on any machine. This
tool is automatically installed when you install the Oracle Database 12c server software.

On Unix/Linux platforms, you can invoke SQL*Plus using the sqlplus executable found
in the $ORACLE_HOME/bin directory. On Windows, SQL*Plus is under the Oracle Home
Group menu. On Windows and Unix/Linux platforms, when you start SQL*Plus, you will
be prompted for a username and password, as shown in Figure 1.10.

Once you are in SQL*Plus, you can connect to another database or change your connec-
tion by using the CONNECT command, with this syntax:

CONNECT <username>/<password>@<connect_string>

The slash separates the username and password. The connect string following @ is the
database alias name known as the net service name. If you omit the password, you will be
prompted to enter it. If you omit the connect string, SQL*Plus tries to connect you to the local
database defined in the ORACLE_SID variable (or the net service name defined by TWO_TASK
variable). You will not be prompted for the <connect_string>. Include <connect_string>
along with <username> as in bthomas@myowndb.

	 The Oracle Database 12c	 17

F igur e 1.10     A SQL*Plus screen

You may replace the connect string with a construct called the easy connect. The syntax
is [//]Host[:Port]/<service_name>]. For example, to connect to database service named
C12DB1 on machine BTLNX63, where the listener is running in port 1521, use

sqlplus system@"btlnx63:1521/C12DB1"

You can invoke and connect to SQL*Plus using the sqlplus command, with this syntax:

sqlplus <username>/<password>@<connectstring>

If you invoke the tool with just sqlplus, you will be prompted for a username and pass-
word, as in Figure 1.10. If you invoke SQL*Plus with a username, you will be prompted for
a password. See Figure 1.11 for an example.

F igur e 1.11     A SQL*Plus screen with a password prompt

18	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

Once you are connected to SQL*Plus, you will get the SQL> prompt. This is the default
prompt, which can be changed using the SET SQLPROMPT command. Type the command you
want to execute at this prompt. With SQL*Plus, you can enter, edit, and execute SQL state-
ments; perform database administration; and execute statements interactively by accepting
user input. You can also format query results and perform calculations.

To exit from SQL*Plus, use the EXIT command. On platforms where a return code is
used, you can provide a return code while exiting. You can also use the QUIT command to
complete the session. EXIT and QUIT are synonymous.

The command sqlplus -help displays a help screen to show the
various options available when starting SQL*Plus. Multiple administrative
connections such as SYSDBA, SYSOPER, SYSBACKUP, SYSASM, SYSKM,
and SYSDG are also available. They are discussed in this book in various
chapters.

Oracle Enterprise Manager Database Express 12c
Oracle Enterprise Manger (OEM) Database Express 12c is a web-based tool that can
be configured using default by Database Configuration Assistant (DBCA, the tool
you use to create and configure databases) when you create an Oracle database. OEM
Database Express by default uses port 5500, hence is invoked using URL https://
database_host_machine:5500/em.

OEM Database Express is designed to manage only one database, and is intended for
database administrators. When you invoke Database Express, you will be prompted for a
username and password to connect to the database. You should provide a user account that
has administrative privileges.

For the SQL section of this book, you will not be using this tool, so we will not discuss
it in more detail here. You can read more information about OEM Database Express in
Chapter 3, “Getting Started with Database Administration,” of “Oracle Database 2 Day
DBA 12c Release 1 (Part E17643-12),” found at http://docs.oracle.com/.

Oracle Enterprise Manager Cloud Control 12c
Oracle Enterprise Manager Cloud Control 12c (OEM 12c) is Oracle’s integrated enterprise
management administrative tool, providing complete cloud management solutions. With
OEM 12c, you can manage multiple databases and all products under the Oracle stack. It
is a complete cloud lifecycle management answer to quickly set up, administer, and support
enterprise clouds and Oracle environments from applications to storage.

OEM 12c is not part of the Oracle Database 12c software install; it must be downloaded
and installed separately. To read more about OEM 12c, please check out “Oracle Enterprise
Manager Cloud Control Introduction 12c Release 3 (Part E25353-14)” at http://docs
.oracle.com/.

https://database_host_machine:5500/em
https://database_host_machine:5500/em
http://docs.oracle.com/
http://docs.oracle.com/
http://docs.oracle.com/

	 Becoming Familiar with SQL*Plus	 19

Oracle Database 12c in the Cloud
Cloud architecture emphasizes sharing resources and maximizing the effectiveness of shared
resources. Cloud resources are shared not only by multiple users, but are also capable of
reallocation based on demand. Cloud computing allows organizations to provision resources
and applications rapidly, with improved manageability and less administrative overhead.

By enabling customers to efficiently use their information technology infrastruc-
ture, Oracle Database 12c was designed for the cloud. The following are the benefits
of having Oracle Database 12c in the cloud architecture:

■■ It consolidates multiple Oracle databases into multitenant container databases.

■■ With multitenant architecture, DBAs can manage multiple databases as one database
for many administrative tasks on the database. DBAs need to perform fewer patches
and upgrades and will not need to configure many backups.

■■ It automatically optimizes database storage and performance based on usage.

■■ Oracle Database 12c supports smart compression and storage tier. The heat map fea-
ture tracks data usage information; administrators can create appropriate policies to
automatically move and compress data based on age and activity of data.

■■ Oracle RAC supports deployment of database instances across a pool of servers, helping
to avoid downtime caused by unplanned server outages.

■■ With Oracle Enterprise Manager Cloud Control 12c, the provisioning and cloning of
databases are simplified.

Oracle Database 12c helps customers reduce IT complexity and cost through private data-
base cloud deployments by consolidation. Cloud computing offers an opportunity for IT orga-
nizations to be more responsive to changes in application workloads and business demands.

Because the test is on SQL and the tool used throughout the book for executing SQL is
SQL*Plus, the next section will discuss some fundamentals of SQL*Plus.

Becoming Familiar with SQL*Plus
SQL*Plus, widely used by DBAs and developers to interact with a database, is a powerful tool
from Oracle. Using SQL*Plus, you can execute all SQL statements and PL/SQL programs,
format results from queries, and administer the database.

Earlier in this chapter, you learned how to connect to the database using SQL*Plus. In
this section, you will learn about entering SQL commands, understanding the difference
between SQL commands and SQL*Plus commands, editing the SQL*Plus buffer, and run-
ning commands in a script.

Entering SQL Statements
A SQL statement can spread across multiple lines, and the commands are not case sensi-
tive. The previously executed SQL statement will always be available in the SQL buffer.

20	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

The buffer can be edited or saved to a file. You can terminate a SQL statement in any of
the following ways:

■■ End with a semicolon (;): The statement is completed and executed.

■■ Enter a slash (/) on a new line by itself: The statement in the buffer is executed.

■■ Enter a blank line: The statement is saved in the buffer.

You can use the RUN command instead of a slash to execute a statement in the buffer.
The SQL prompt returns when the statement has completed execution. You can enter your
next command at the prompt.

Only SQL statements and PL/SQL blocks are stored in the SQL buffer;
SQL*Plus commands are not stored in the buffer.

Entering SQL*Plus Commands
SQL*Plus has its own commands to perform specific tasks on the database, as well as to
format the query results. Unlike SQL statements, which are terminated with a semicolon or
a blank line, SQL*Plus commands are entered on a single line. Pressing Enter executes the
SQL*Plus command.

When you log in to the SQL*Plus session, you get the SQL prompt. By default, the prompt
is SQL>. You can change this prompt using the SET SQLPROMPT SQL*Plus command. When you
continue a SQL command to the next line, a line number appears at the beginning of the line.
As shown here, when you type SELECT USERNAME in the first line (the SQL prompt line) and
press Enter, line number 2 appears where you continue the SQL command FROM DBA_USERS.

SQL> SELECT USERNAME
 2 FROM DBA_USERS

SQL statements can span multiple lines. If you want to continue a SQL*Plus command
onto the next line, you must end the current line with a hyphen (-), which indicates command
continuation. When a command continuation character is entered, SQL*Plus will not show
the line number next, but instead displays the greater than symbol (>). This is in contrast to
SQL statements, which can be continued to the next line without a continuation operator.
For example, the following SQL statement gives an error, because SQL*Plus treats the hyphen
operator (-) as a continuation character instead of a minus operator:

SQL> SELECT 800 -
> 400 FROM dual;
SELECT 800 400 FROM dual
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected
SQL>

	 Becoming Familiar with SQL*Plus	 21

You need to put the hyphen in the next line for the query to succeed:

SQL> SELECT 800
 2 - 400 FROM dual;

 800-400

 400
SQL>

Getting Structural Information with the DESCRIBE Command
You can use the DESCRIBE command to obtain information about the database objects.
Using DESCRIBE on a table or view shows the columns, its datatypes, and whether each
column can be NULL. Using DESCRIBE on a stored program, such as procedure or function,
shows the parameters that need to be passed in/out, their datatype, and whether there is a
default value. You can abbreviate this command to the first four characters or more—DESC,
DESCR, and DESCRIB are all valid.

If you’re connected to the HR schema and need to see the tables and views in this schema,
use the following query:

SQL> SELECT * FROM tab;

TNAME TABTYPE CLUSTERID
------------------------------ ------- ----------
COUNTRIES TABLE
DEPARTMENTS TABLE
EMPLOYEES TABLE
EMP_DETAILS_VIEW VIEW
JOBS TABLE
JOB_HISTORY TABLE
LOCATIONS TABLE
REGIONS TABLE

8 rows selected.

To see the columns or definition of the EMPLOYEES table, execute:

SQL> DESCRIBE employees
 Name Null? Type
 --- -------- --------------------

 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)

22	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

If there are invisible columns in the table, they are not displayed by the DESCRIBE command
unless you use SET COLINVISIBLE ON.

Invisible columns are newly introduced in Oracle Database 12c, where a
column in the table can be hidden from the application. Invisible columns
help to remove a column from the table quickly without actually dropping
the column. Invisible columns are discussed in Chapter 7.

Editing the SQL Buffer
The most recent SQL statement executed or entered is stored in the SQL buffer of
SQL*Plus. You can run the command in this buffer again by simply typing a slash or
using the RUN command.

SQL*Plus provides a set of commands to edit the buffer. Suppose you want to add another
column or add an ORDER BY condition to the statement in the buffer. You do not need to type
the entire SQL statement again. Instead, just edit the existing statement in the buffer.

One way to edit the SQL*Plus buffer is to use the EDIT command to write the buffer
to an operating-system file named afiedt.buf (this is the default filename, which can be
changed) and then use a system editor to make changes.

You can use your favorite text editor by defining it in SQL*Plus. For
example, to make Notepad your favorite editor, just issue the command
DEFINE _EDITOR = NOTEPAD.

To view the editor defined, just execute DEFINE _EDITOR as shown here.

SQL> define _editor
DEFINE _EDITOR = "Notepad" (CHAR)
Provide the entire path if the program is not available in the search path.

Another way to edit the buffer is to use the SQL*Plus editing commands. You can make
changes, delete lines, add text, and list the buffer contents using the commands described in
the following sections. Most editing commands operate on the current line. You can change

	 Becoming Familiar with SQL*Plus	 23

the current line simply by typing the line number. All commands can be abbreviated, except
DEL (which is already abbreviated).

LIST

The LIST command lists the contents of the buffer. The asterisk indicates the current line. The
abbreviated command for LIST is L.

SQL> L
 1 SELECT empno, ename
 2* FROM emp
SQL> LIST LAST
 2* FROM emp
SQL>

The command LIST n displays line n, and LIST * displays the current line. The command
LIST m n displays lines from m through n. If you substitute * for m or n, it implies from or to
the current line. The command LIST LAST displays the last line.

APPEND

The APPEND text command adds text to the end of a line. The abbreviated command is A.

SQL> A WHERE empno <> 7926
 2* FROM emp WHERE empno <> 7926
SQL>

CHANGE

The CHANGE /old/new command changes an old entry to a new entry. The abbreviated
command is C. If you omit new, old will be deleted.

SQL> C /<>/=
 2* FROM emp WHERE empno = 7926
SQL> C /7926
 2* FROM emp WHERE empno =
SQL>

The ellipses (…) can be used as wildcard characters. The following example changes
everything in the line from “fro” to the new value.

SQL> l
 1* select name from v$instance
SQL> c/fro.../from v$database
 1* select name from v$database
SQL>

24	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

The next example shows the substitution of a string in the middle of the line using ellipses.

SQL> l
 1* select owner from dba_tables where table_name like 'HR%'
SQL> c/dba...table/dba_views where view
 1* select owner from dba_views where views where table_name like 'HR%'
SQL>

INPUT

The INPUT text command adds a line of text. Its abbreviation is I. If text is omitted, you
can add as many lines as you want.

SQL> I
 3 7777 AND
 4 empno = 4354
 5
SQL> I ORDER BY 1
SQL> L
 1 SELECT empno, ename
 2 FROM emp WHERE empno =
 3 7777 AND
 4 empno = 4354
 5* ORDER BY 1
SQL>

DEL

The DEL command used alone or with * deletes the current line. The DEL m n command
deletes lines from m through n. If you substitute * for m or n, it implies the current line. The
command DEL LAST deletes the last line.

SQL> 3
 3* 7777 AND
SQL> DEL
SQL> L
 1 SELECT empno, ename
 2 FROM emp WHERE empno =
 3 empno = 4354
 4* ORDER BY 1
SQL> DEL 3 *

	 Becoming Familiar with SQL*Plus	 25

SQL> L
 1 SELECT empno, ename
 2* FROM emp WHERE empno =
SQL>

CLEAR BUFFER

The CLEAR BUFFER command (abbreviated CL BUFF) clears the buffer. This deletes all lines
from the buffer.

SQL> L
 1 SELECT empno, ename
 2* FROM emp WHERE empno =
SQL> CL BUFF
buffer cleared
SQL> L
No lines in SQL buffer.
SQL>

Using Script Files
SQL*Plus provides commands to save the SQL buffer to a file, as well as to run SQL
statements from a file. SQL statements saved in a file are called a script file.

You can work with script files as follows:

■■ To save the SQL buffer to an operating-system file, use the command SAVE filename.
If you do not provide an extension, the saved file will have the extension .sql.

■■ By default, the SAVE command will not overwrite an existing file. If you want to over-
write an existing file, you need to use the keyword REPLACE.

■■ To add the buffer to the end of an existing file, use the SAVE filename APPEND command.

■■ You can edit the saved file using the EDIT filename command.

■■ You can bring the contents of a script file to the SQL buffer using the GET filename
command.

■■ If you want to run a script file, use the command START filename. You can also run a
script file using @filename.

■■ An @@filename used inside a script file looks for the filename in the directory where
the parent script file is saved and executes it.

Exercise 1.1 will familiarize you with the script file commands, as well as the other top-
ics covered so far.

26	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

E x e rcis e 1 .1

Practicing SQL*Plus File Commands

In this exercise, you will learn how to edit the SQL*Plus buffer using various buffer edit
commands.

	 1.	 Enter the following SQL code; the third line is a blank line so that the SQL code is
saved in the buffer:

SQL> SELECT employee_id, first_name, last_name
 2 FROM employees
 3
SQL>

	 2.	 List the SQL buffer:

SQL> L
 1 SELECT employee_id, first_name, last_name
 2* FROM employees
SQL>

	 3.	 Save the buffer to a file named myfile; the default extension will be .sql:

SQL> SAVE myfile
Created file MYFILE.sql
SQL>

	 4.	 Choose to edit the file:

SQL> EDIT myfile
SQL>

	 5.	 Add WHERE EMPLOYEE_ID = 106 as the third line to the SQL statement.

	 6.	 List the buffer:

SQL> LIST
 1 SELECT employee_id, first_name, last_name
 2* FROM employees
SQL>

The buffer listed is still the old buffer. The edited changes are not reflected because
you edited the file MYFILE, which is not yet loaded to the buffer.

	 Becoming Familiar with SQL*Plus	 27

	 7.	 Bring the file contents to the buffer:

SQL> GET myfile
 1 SELECT employee_id, first_name, last_name
 2 FROM employees
 3* WHERE employee_id = 106
SQL>

	 8.	 List the buffer to verify its contents:

SQL> LI
 1 SELECT employee_id, first_name, last_name
 2 FROM employees
 3* WHERE employee_id = 106
SQL>

	 9.	 Change the employee number from 106 to 110:

SQL> C/106/110
 3* WHERE employee_id = 110
SQL>

	10.	 Save the buffer again to the same file:

SQL> SAVE myfile
SP2-0540: File "MYFILE.sql" already exists.
Use "SAVE filename[.ext] REPLACE".
SQL>

An error is returned, because SAVE will not overwrite the file by default.

	11.	 Save the file using the REPLACE keyword:

SQL> SAVE myfile REPLACE
Wrote file MYFILE.sql
SQL>

	12.	 Execute the file:

SQL> START myfile

E x e rcis e 1 .1   (c ont inue d)

28	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

EMPLOYEE_ID FIRST_NAME LAST_NAME
----------- -------------------- ---------
 110 John Chen
SQL>

	13.	 Change the employee number from 110 to 106, and append this SQL code to the file;
then execute it using @:

SQL> C/110/106
 3* WHERE employee_id = 106
SQL> SAVE myfile APPEND
Appended file to MYFILE.sql
SQL> @MYFILE
EMPLOYEE_ID FIRST_NAME LAST_NAME
----------- -------------------- ---------
 110 John Chen

EMPLOYEE_ID FIRST_NAME LAST_NAME
----------- -------------------- ---------
 106 Valli Pataballa
SQL>

Saving Query Results to a File

You can use the SPOOL filename command to save the query results to a file. By default, the
SPOOL command creates a .lst file extension. SPOOL overwrites an existing file by default. If
you include the APPEND option—as in SPOOL filename APPEND—the results are added to an
existing file. A new file will be created if the file does not exist already.

SPOOL OFF stops writing the output to the file. SPOOL OUT stops the writing of output and
sends the output file to the printer. SPOOL with no clauses lists the current spooling status.

Adding Comments to a Script File

Comments in the script file can improve readability and make the code more understandable.
You can enter comments in SQL*Plus using the REMARKS (abbreviated REM) command. Lines in
the script file beginning with the keyword REM are comments and are not executed. You can
also enter a comment between /* and */. Comments can also be entered following -- (double
hyphen); all characters following -- in the line are treated as comments by Oracle.

While a script file with comments is being executed, the remarks entered using the REMARKS
command are not displayed on the screen, but the comments within /* and */ are displayed
on the screen with the prefix DOC> when there is more than one line between /* and */. You
can turn this off by using SET DOCUMENT OFF.

E x e rcis e 1 .1   (c ont inue d)

	 Becoming Familiar with SQL*Plus	 29

Now that you understand the concepts of RDBMS and how Oracle Database 12c
helps organizations achieve the cloud architecture, let’s move on to the core of the Oracle
Database 12c SQL Fundamentals OCA exam in the coming chapters. Before moving on
to Chapter 2, “Introducing SQL,” please make sure you have an Oracle Database 12c to
practice on and try out the examples.

You may perform a quick default install of the database after downloading the software
from OTN (www.technet.oracle.com).

Install Oracle Database 12c for SQL Practice

To be able to practice the examples provided in this book and to familiarize yourself with
Oracle Database 12c SQL, an Oracle Database 12c database must be available to you. If
you do not have such a database, you can follow these instructions to install software
and create databases on a Windows machine.

Download and Install Software

You may download Oracle Database 12c software from Oracle Technology Network (OTN)
or from Oracle Cloud Delivery service (edelivery.oracle.com). After downloading the soft-
ware, you can invoke the setup.exe to install software. For detailed instructions on down-
loading and installing Oracle software, refer to www.bijoos.com/certify/db12csw.pdf. You
can also refer to Chapter 9 to install database software.

Create Oracle Database

Databases are created using the Database Configuration Assistant tool. You can choose the
Create Database With Default Configuration option to create a database quickly. For detailed
instructions on creating a database, refer to www.bijoos.com/certify/db12c_ndb.pdf. You
can also refer to Chapter 9 to create a database.

Create Sample Schema

The sample schema provided by Oracle includes HR, OE, PM, SH, and IX. For the majority of
the SQL used in the book, the HR schema is used. If you did not install the sample schema
during database creation, you can do so using the following procedure.

When you install Oracle software, you can choose the Create Database With Default
Configuration option, but this will not include the sample schemas. The account SYS is the
Oracle dictionary owner, and SYSTEM is a database administrator (DBA) account. Initially, the
sample schema user accounts are locked. You need to log in to the database using SQL*Plus
as the SYSTEM user and then unlock the account using the ALTER USER statement. To unlock
the HR schema, use ALTER USER hr IDENTIFIED BY hrpassword ACCOUNT UNLOCK;. Now
you can log in to the database using the hr user with the password hrpassword. Remember,
the password is case sensitive by default.

http://www.technet.oracle.com
http://www.bijoos.com/certify/db12csw.pdf
http://www.bijoos.com/certify/db12c_ndb.pdf

30	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

To install the sample schemas in an existing Oracle Database 12c, follow the instruc-
tions in the Oracle document “Oracle Database Sample Schemas 12c Release 1 (12.1) Part
E15979-04” at http://docs.oracle.com/. Chapter 2 of this document provides instruc-
tions on how to install the sample schemas using Database Configuration Assistant
(DBCA) as well as on running scripts. The same chapter also gives you steps to reinitialize
the sample schema data.

The manual installation of HR and OE sample data on Linux-based Oracle Database 12c
databases can be quickly summarized as:

Change the directory to $ORACLE_HOME/demo/schema/human_resources.

Connect to database using SQL*Plus as SYSDBA (sqlplus sys@mydb as sysdba).

Run the schema and objects creation script (@hr_main.sql).

Change the directory to $ORACLE_HOME/demo/schema/order_entry.

Connect to the database using SQL*Plus as SYSDBA (sqlplus sys@mydb as sysdba).

Run the schema and objects creation script (@oe_main.sql).

Summary
This chapter reviewed the concepts of relational database systems and Object RDBMS.
You also learned how Oracle implements the RDBMS and relational theory into the Oracle
database. The entity-relationship diagram is a modeling tool used in the beginning stages or
application development.

You also learned about the high-level architecture and various implementations of
Oracle, such as single database, RAC database, and container database.

Oracle Database 12c is cloud enabled. The multitenant architecture of the database helps to
consolidate multiple Oracle databases (pluggable databases) into a single container database.

Various tools are available for the DBA to connect to the Oracle database and administer it.
SQL*Plus is Oracle’s SQL command-line interface tool. SQL Developer is a graphical tool, with
ease of navigation and predefined tasks. You also saw an overview of SQL*Plus in this chapter,
including how to connect to the database using SQL*Plus and basic editing commands.

SQL*Plus supports all SQL statements and has its own formatting and enhancement com-
mands. Using this tool, you can produce interactive SQL statements and formatted reports.
SQL*Plus is the command-line interface to the database widely used by DBAs. SQL*Plus has
its own buffer where SQL statements are buffered. You can edit the buffer using SQL*Plus
editing commands. The DESCRIBE command is used to get information on a table, view, func-
tion, or procedure. Multiple SQL and SQL*Plus commands can be stored in a file and can be
executed as a unit. Such files are called script files.

http://docs.oracle.com/
mailto:(@hr_main.sql
mailto:(@oe_main.sql

	 Exam Essentials	 31

Exam Essentials

Know RDBMS Concepts.    Review the RDBMS concepts. Understand entities and relationships.

Understand what structures make Object RDBMS.    Learn how Oracle implements the
object relational database management system.

Know the tools.    Have an understanding of what tools are available for database manage-
ment in Oracle and their purposes.

Learn the various architectures Oracle Database 12c can implement.    Oracle database can
be installed as a single instance single database, multiple instance RAC database, or multi
tenant container database.

Identify Oracle Database 12c cloud features.    Know the features of Oracle Database 12c
that make cloud implementation easier.

32	 Chapter 1  ■  Introducing Oracle Database 12c RDBMS

Review Questions

	 1.	 Look at the diagram. What kind of relationship exists between MOVIES and
CHARACTERS?

MOVIES

MOVIE_NAME

* RATING
 RELEASE_DATE

ACTORS

ACTOR_NAME

* SEX
 DOB
 PHONE

CHARACTORS

MOVIE_NAME
CHARACTER_NAME

 ACTOR_NAME

	 A.	 Each movie may have one or more characters.

	 B.	 Each movie must have one or more characters.

	 C.	 Many movies may have many characters.

	 D.	 One movie can have only one character.

	 2.	 When the physical model is being designed from the logical model, which element may
be attributed as a table from the ER diagram?

	 A.	 Relationship

	 B.	 Attribute

	 C.	 Unique identifier

	 D.	 Entity

	 3.	 Which statement about the object type is true?

	 A.	 They are structures that consist of built-in or user-defined data types.

	 B.	 They are structures that consist of only built-in data types.

	 C.	 They are structures that consist of only user-defined data types.

	 D.	 Only one column in a table can be object type.

	 4.	 Which of the following is not a benefit of Oracle Database 12c?

	 A. 	Manage multiple databases as one

	 B.	 Fast provisioning of cloned databases

	 C.	 Plug and unplug databases

	 D.	 Patch each pluggable database separately

	 Review Questions	 33

	 5.	 Which one of the following Oracle SQL*Plus command lines is not valid?

	 A.	 sqlplus <username>

	 B.	 sqlplus @<connect_string>

	 C.	 sqlplus <username>@<connect_string>

	 D.	 sqlplus

	 6.	 Which database tools are parts of Oracle Database 12c? Choose two.

	 A. 	Oracle Enterprise Manager Cloud Control 12c

	 B.	 Oracle Enterprise Manager Database Express 12c

	 C.	 SQL Developer

	 D.	 TOAD (Tool for Oracle Application Developers)

	 7.	 In the physical implementation of RDBMS, which database object is used to represent
unique identifiers?

	 A.	 Any constraint

	 B.	 Index

	 C.	 Primary key

	 D.	 Foreign key

	 8.	 SQL Developer is a tool primarily for whom?

	 A.	 Database administrators

	 B.	 End users

	 C.	 Application developers

	 D.	 All of the above

	 9.	 Which architecture in the Oracle Database 12c implementation guards against
unplanned machine downtime?

	 A.	 Multitenancy Container Database

	 B.	 Real Application Clusters

	 C.	 Consolidate multiple databases and instances to one server

	 D.	 None of the above

	10.	 Which connection method to the Oracle database is known as the easy connect?

	 A.	 <username>@<connect_string>

	 B.	 <username>@<host>:<port>/<service_name>

	 C.	 Both A and B

	 D.	 Neither A or B

Chapter

2
Introducing SQL

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Retrieving Data Using the SQL SELECT Statement

■■ Explain the capabilities of SQL SELECT statements.

■■ Execute a basic SELECT statement.

✓✓ Restricting and Sorting Data

■■ Limit the rows that are retrieved by a query.

■■ Sort the rows that are retrieved by a query.

■■ Use ampersand substitution to restrict and sort output

at runtime.

Oracle Database 12c is a very powerful and feature-rich rela-
tional database management system (RDBMS). SQL has been
adopted by most RDBMSs for the retrieval and management

of data, schema creation, and access control. The American National Standards Institute
(ANSI) has been refining standards for the SQL language for more than 25 years. Oracle,
like many other companies, has taken the ANSI standard of SQL and extended it to include
much additional functionality.

SQL is the basic language used to manipulate and retrieve data from Oracle Database 12c.
SQL is a nonprocedural language, meaning it does not have programmatic constructs such as
loop structures. PL/SQL is Oracle’s procedural extension of SQL, and SQLJ allows embedded
SQL operations in Java code. The scope of the Oracle Database 12c SQL Fundamentals test
includes only SQL.

In this chapter, we will discuss Oracle SQL fundamentals such as the various types of
SQL statements, introduce SQL*Plus and a few SQL*Plus commands, and discuss SELECT
statements.

You will learn how to write basic SQL statements to retrieve data from tables. This
will include coverage of SQL SELECT statements, which are used to query data from the
database-storage structures, such as tables and views. You will also learn how to limit
the information retrieved and to display the results in a specific order.

SQL Fundamentals
SQL is the standard language used to query and modify data as well as manage data-
bases. SQL is the common language used by programmers, database administrators,
and users to access and manipulate data as well as to administer databases. To get
started with SQL in this chapter, we will use the sample HR schema supplied with Oracle
Database 12c.

SQL statements are like plain English but with specific syntax. SQL is a simple, yet pow-
erful language used to create, access, and manipulate data and structures in the database.
SQL statements can be categorized as listed in Table 2.1.

	 SQL Fundamentals	 37

Tabl e 2 .1    SQL Statement Categories

SQL Category Description

Data Manipulation Language (DML) Used to access, insert, modify, or delete data in
the existing structures of the database. DML state-
ments include those used to query information
(SELECT), add new rows (INSERT), modify existing
rows (UPDATE), delete existing rows (DELETE), perform
a conditional update or insert operation (MERGE), see
an execution plan of SQL (EXPLAIN PLAN), and lock
a table to restrict access (LOCK TABLE). Including the
SELECT statement in the DML group is debatable
within the SQL community, because SELECT does
not modify data.

Data Definition Language (DDL) Used to define, alter, or drop database objects and
their privileges. DDL statements include those used
to create, modify, drop, or rename objects (CREATE,
ALTER, DROP, RENAME), remove all rows from a database
object without dropping the structure (TRUNCATE),
manage access privileges (GRANT, REVOKE), audit
database use (AUDIT, NOAUDIT), and add a description
about an object to the dictionary (COMMENT).

Transaction Control Used to group a set of DML statements as a single
transaction. Using these statements, you can save
the changes (COMMIT) or discard the changes (ROLL-
BACK) made by DML statements. Also included in the
transaction-control statements are statements to set
a point or marker in the transaction for possible roll-
back (SAVEPOINT) and to define the properties for the
transaction (SET TRANSACTION).

Session Control Used to control the properties of a user session. (A
session is the point from which you are connected to
the database until you disconnect.) Session-control
statements include those to control the session prop-
erties (ALTER SESSION) and to enable/disable roles
(SET ROLE).

System Control Used to manage the properties of the database.
There is only one statement in this category (ALTER
SYSTEM).

38	 Chapter 2  ■  Introducing SQL

Table 2.1 provides an overview of all the statements that will be covered in this book.
Do not worry if you do not understand certain terms, such as role, session, privilege, and
so on. We will cover all the statements in the coming chapters and include many examples.
In this chapter, we will begin by writing simple statements to query the database (SELECT
statements), but we’ll go over some fundamentals first.

This section provided an overview of SQL*Plus, the tool you will be using to enter and
execute SQL statements in Oracle Database 12c. In the next sections, we will discuss some
of the Oracle Database 12c SQL fundamentals before showing you how to write your first
SQL query (a SELECT statement).

Oracle Datatypes
The basic structure of data storage in Oracle Database 12c is a table. A table can be con-
sidered as a spreadsheet with columns and rows. Data is stored in the table as rows. Each
column in the table has storage characteristics such as the type of data contained in the
column. Oracle has several built-in datatypes to store different kinds of data. In this sec-
tion, we will go over the built-in datatypes available in Oracle Database 12c. Chapter 7,
“Creating Tables and Constraints,” includes a detailed discussion of datatypes and how to
create and maintain tables.

When you create a table to store data in the database, you need to specify a datatype
for all the columns you define in that table. Oracle has many datatypes to suit application
requirements. Oracle Database 12c also supports ANSI and DB2 datatypes. The Oracle
built-in datatypes can be broadly classified as shown in Table 2.2.

Tabl e 2 . 2    Oracle Built-in Datatypes

Category Datatypes

Character CHAR, NCHAR, VARCHAR2, NVARCHAR2

Number NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE

Long and raw LONG, LONG RAW, RAW

Date and time DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR
TO MONTH, INTERVAL DAY TO SECOND

Large object CLOB, NCLOB, BCLOB, BFILE

Row ID ROWID, UROWID

In the following sections, we will discuss only a few of the built-in datatypes to get you
started with SQL. We discuss all the datatypes and their usage in detail in Chapter 7.

	 SQL Fundamentals	 39

CHAR(<size>) and VARCHAR2(<size>)
The CHAR datatype is a fixed-length alphanumeric string, which has a maximum length
in bytes (to specify length in characters, use the CHAR keyword inside parentheses along
with a size; see Chapter 7). Data stored in CHAR columns is space-padded to fill the maxi-
mum length. Its size can range from a minimum of 1 byte to a maximum of 2,000 bytes.
The default size is 1.

When you create a column using the CHAR datatype, the database will ensure that all
data placed in this column has the defined length. If the data is shorter than the defined
length, it is space-padded on the right to the specified length. If the data inserted is longer
than the column length, an error is raised.

The VARCHAR2 datatype is a variable-length alphanumeric string, which has a maximum
length in bytes (to specify the length in characters, use the CHAR keyword inside parentheses
along with a size; see Chapter 7). VARCHAR2 columns require only the amount of space
needed to store the data and can store up to 32KB (32,767 bytes). There is no default size for
the VARCHAR2 datatype. An empty VARCHAR2(2000) column takes up as much room in
the database as an empty VARCHAR2(1) column.

VARCHAR2 columns by default allow only 4,000 bytes or characters. To be able to
store more than 4,000 bytes or characters, the MAX_STRING_SIZE database parameter needs
to be set to EXTENDED. The default value of this parameter is STANDARD, which allows only
4,000 bytes in a VARCHAR2 column.

The default size of a CHAR datatype is 1. For a VARCHAR2 datatype, you must
always specify the size.

The VARCHAR2 and CHAR datatypes have different comparison rules for trailing
spaces. With the CHAR datatype, trailing spaces are ignored. With the VARCHAR2
datatype, trailing spaces are not ignored, and they sort higher than no trailing spaces.
Here’s an example:

CHAR datatype: 'Yo' = 'Yo '

VARCHAR2 datatype: 'Yo' < 'Yo '

NUMBER (<p>, <s>)
The NUMBER datatype stores numbers with a precision of <p> digits and a scale of <s> dig-
its. The precision and scale values are optional. Numeric datatypes are used to store negative
and positive integers, fixed-point numbers, and floating-point numbers. The precision can be
between 1 and 38, and the scale has a range between –84 and 127. If the precision and scale
are omitted, Oracle assumes the maximum of the range for both values.

You can have precision and scale digits in the integer part. The scale rounds the value after
the decimal point to <s> digits. For example, if you define a column as NUMBER(5,2), the
range of values you can store in this column is from –999.99 to 999.99—that is, 5 – 2 = 3 for
the integer part, and the decimal part is rounded to two digits. Even if you do not include the
decimal part for the value inserted, the maximum number you can store in a NUMBER(5,2)
definition is 999.

40	 Chapter 2  ■  Introducing SQL

Oracle will round numbers inserted into numeric columns with a scale smaller than the
inserted number. For example, if a column were defined as NUMBER(4,2) and you specified
a value of 12.125 to go into that column, the resulting number would be rounded to 12.13
before it was inserted into the column. If the value exceeds the precision, however, an Oracle
error is returned. You cannot insert 123.1 into a column defined as NUMBER(4,2). Specifying
the scale and precision does not force all inserted values to be a fixed length.

If the scale is negative, the number is rounded to the left of the decimal. Basically, a negative
scale forces <s> number of zeros just to the left of the decimal.

If you specify a scale that is greater than the precision value, the precision defines the
maximum number of digits to the right of the decimal point after the zeros. For example, if
a column is defined as NUMBER(3,5), the range of values you can store is from –0.00999 to
0.00999—that is, it requires two zeros (<s>-<p>) after the decimal point and rounds the deci-
mal part to three digits (<p>) after zeros. Table 2.3 shows several examples of how numeric
data is stored with various definitions.

Tabl e 2 . 3    Precision and Scale Examples

Value Datatype Stored Value Explanation

123.2564 NUMBER 123.2564 The range and precision are set to the max-
imum, so the datatype can store any value.

1234.9876 NUMBER(6,2) 1234.99 Because the scale is only 2, the decimal
part of the value is rounded to two digits.

12345.12345 NUMBER(6,2) Error The range of the integer part is only from
–9999 to 9999.

123456 NUMBER(6,2) Error The precision is larger than specified; the
range is only from –9999 to 9999.

1234.9876 NUMBER(6) 1235 The decimal part is rounded to the
next integer.

123456.1 NUMBER(6) 123456 The decimal part is rounded.

12345.345 NUMBER(5,-2) 12300 The negative scale rounds the number <s>
digits left to the decimal point. –2 rounds
to hundreds.

1234567 NUMBER(5,-2) 1234600 Rounded to the nearest hundred.

12345678 NUMBER(5,-2) Error Outside the range; can have only five dig-
its, excluding the two zeros representing
hundreds, for a total of seven digits:
(s – (–p) = s + p = 5 + 2 = 7).

	 SQL Fundamentals	 41

Value Datatype Stored Value Explanation

123456789 NUMBER(5,-4) 123460000 Rounded to the nearest 10,000.

1234567890 NUMBER(5,-4) Error Outside the range; can have only five dig-
its, excluding the four trailing zeros.

12345.58 NUMBER(*, 1) 12345.6 The use of * in the precision specifies the
default limit (38).

0.1 NUMBER(4,5) Error Requires a zero after the decimal point
(5 – 4 = 1).

0.01234567 NUMBER(4,5) 0.01235 Rounded to four digits after the decimal
point and zero.

0.09999 NUMBER(4,5) 0.09999 Stored as it is; only four digits after the
decimal point and zero.

0.099996 NUMBER(4,5) Error Rounding this value to four digits after the
decimal and zero results in 0.1, which is
outside the range.

DATE
The DATE datatype is used to store date and time information. This datatype can be con-
verted to other forms for viewing, but it has a number of special functions and properties
that make date manipulation and calculations simple. The time component of the DATE
datatype has a resolution of one second—no less. The DATE datatype occupies a storage
space of 7 bytes. The following information is contained within each DATE datatype:

■■ Century

■■ Year

■■ Month

■■ Day

■■ Hour

■■ Minute

■■ Second

DATE datatype does not have fractional seconds or time zone. Date values are inserted
or updated in the database by converting either a numeric value or a character value into a
DATE datatype using the function TO_DATE. Oracle defaults the format to display the date
as DD-MON-YY (the format is determined by parameter NLS_DATE_FORMAT). This format
shows that the default date must begin with a two-digit day, followed by a three-character
abbreviation for the month, followed by a two-digit year. If you specify the date without

42	 Chapter 2  ■  Introducing SQL

including a time component, the time is defaulted to midnight, or 00:00:00 in military
time. The SYSDATE function returns the current system date and time from the database
server to which you’re currently connected.

TIMESTAMP [<precision>]
The TIMESTAMP datatype stores date and time information with fractional precision for
seconds. The only difference between the DATE and TIMESTAMP datatypes is the ability
to store fractional seconds up to a precision of nine digits. The default precision is 6 and
can range from 0 to 9. Similar to the SYSDATE function, the SYSTIMESTAMP function returns
the current system date and time, with fractional precision for seconds.

Operators and Literals
An operator is a manipulator that is applied to a data item in order to return a result. Special
characters represent different operations in Oracle (+ represents addition, for example).
Operators are commonly used in all programming environments, and you should already
be familiar with the following operators, which may be classified into two types:

Unary Operator    A unary operator has only one operand. It has the format
<operator><operand>. Examples are +2 and –5.

Binary Operator    A binary operator has two operands. It has the format
<operand1><operator><operand2>. You can insert spaces between the operand and
operator to improve readability. Examples are 5 + 4 and 7 × 5.

We’ll now discuss the various types of operators available in Oracle.

Arithmetic Operators
Arithmetic operators operate on numeric values. Table 2.4 shows the various arithmetic
operators in Oracle and how to use them.

Tabl e 2 . 4    Arithmetic Operators

Operator Purpose Example

+ - Unary operators: Used to represent positive or negative data
item. For positive items, the + is optional.

-234.44

+ Addition: Used to add two data items or expressions. 2+4

- Subtraction: Used to find the difference between two data
items or expressions.

20.4-2

* Multiplication: Used to multiply two data items or expressions. 5*10

/ Division: Used to divide a data item or expression with another. 8.4/2

	 SQL Fundamentals	 43

Do not use two hyphens (--) to represent double negation; use a space or
parentheses in between, as in -(-20). Two hyphens represent the begin-
ning of a comment in SQL.

Concatenation Operator
The concatenation operator is used to concatenate or join two character (text) strings. The
result of concatenation is another character string. Concatenating a zero-length string ('') or a
NULL with another string results in a string, not a NULL (NULL in Oracle Database 12c represents
unknown or missing data). Two vertical bars (||) are used as the concatenation operator.

Here are two examples:

'Oracle12c' || 'Database' results in 'Oracle12cDatabase'.

'Oracle12c ' || 'Database' results in 'Oracle12c Database'.

Operator Precedence
If multiple operators are used in the same expression, Oracle evaluates them in the order
of precedence set in the database engine. Table 2.5 lists the precedence. Operators with
higher precedence are evaluated before operators with lower precedence. Operators
with the same precedence are evaluated from left to right.

Tabl e 2 .5    SQL Operator Precedence

Precedence Operator Purpose

1 - + Unary operators, negation

2 * / Multiplication, division

3 + - || Addition, subtraction, concatenation

Using parentheses changes the order of precedence. The innermost parenthesis is
evaluated first. In the expression 1+2*3, the result is 7, because 2×3 is evaluated first and
the result is added to 1. In the expression (1+2)*3, 1+2 is evaluated first, and the result is
multiplied by 3, giving 9.

Literals
A literal is a value that represents a fixed value (constant). There are four types of literals:

■■ Text (or character)

■■ Numeric (integer and number)

44	 Chapter 2  ■  Introducing SQL

■■ Datetime

■■ Interval

You can use literals within many of the SQL functions, expressions, and conditions.

Text Literals

A text literal must be enclosed in single quotation marks. Any character between the quotation
marks is considered part of the text value. Oracle treats all text literals as though they were
CHAR datatypes for comparison (blank padded). The maximum length of a text literal is
4,000 bytes if the database parameter MAX_STRING_SIZE is STANDARD. Single quotation marks
can be included in the literal text value by preceding it with another single quotation mark.
Here are some examples of text literals:

'The Quick Brown Fox'

'That man''s suit is black'

'And I quote: "This will never do." '

'12-SEP-2011'

Alternatively, you can use Q or q quoting, which provides a range of delimiters. The syn-
tax for using the Q/q quoting with a quote-delimiter text literal is as follows:

[Q|q]' <quote_delimiter> <text literal> <quote_delimiter>'

<quote_delimiter> is any character except a space, tab, or carriage return. The quote
delimiter can be a single quotation mark, but make sure inside the text literal a single quo-
tation mark is not immediately followed by another single quotation mark. If the opening
quote delimiter is [or { or < or (, then the closing quote must be the corresponding] or }
or > or). For all other quote delimiters, the opening quote delimiter must be the same as
the closing quote delimiter. Here are some examples of text literals using the alternative
quoting mechanism:

q'<The Quick Brown Fox>'

Q'#The Quick Brown Fox#'

q'{That man's suit is black}'

Q'(And I quote: "This will never do.")'

Q'"And I quote: "This will never do." "'

q'[12-SEP-2001]'

Numeric Literals

Integer literals can be any number of numerals, excluding a decimal separator and up to
38 digits long. Here are two examples:

■■ 24

■■ –456

	 SQL Fundamentals	 45

Number literals and floating-point literals can include scientific notation, as well as
digits and the decimal separator. E or e represents a number in scientific notation; the
exponent can be in the range of –130 to 125. If the literal is followed by an F or f, it is
treated as a BINARY_FLOAT datatype. If the literal is followed by a D or d, it is treated as a
BINARY_DOUBLE datatype. Here are some examples:

■■ 24.0

■■ –345.65

■■ 23E-10

■■ 1.5f

■■ –34.567D

■■ –4d

■■ –4.0E+0

Datetime Literals

You can specify a date value as a string literal using the datetime literals. The most com-
mon methods to represent the datetime values are to use the conversion function TO_DATE
or TO_TIMESTAMP with the appropriate format mask. To complete this discussion of literals,
we will discuss the datetime literals briefly.

The DATE literal uses the keyword DATE followed by the date value in single quotes, and the
value must be specified in YYYY-MM-DD format with no time component. The time component
will be defaulted to midnight (00:00:00). The following are examples of the DATE literal:

DATE '2008-03-24'

DATE '1999-12-31'

Similar to the TIMESTAMP datatype, the TIMESTAMP literal can be used to specify the
year, month, date, hour, minute, second, and fractional second. You can also include time-
zone data along with the TIMESTAMP literal. The time zone information can be specified
using the UTC offset or using the time-zone region name. The literal must be in the format
YYYY-MM-DD HH24:MI:SS TZ.

Here are some examples of the TIMESTAMP literal:

TIMESTAMP '2008-03-24 03:25:34.123'

TIMESTAMP '2008-03-24 03:25:34.123 -7:00'

TIMESTAMP '2008-03-24 03:25:34.123 US/Central'

TIMESTAMP '2008-03-24 03:25:34.123 US/Central CDT'

Interval Literals

Interval literals specify a period of time in terms of years and months or in terms of days
and seconds. These literals correspond to the Oracle datatypes INTERVAL YEAR TO
MONTH and INTERVAL DAY TO SECOND. We’ll discuss these datatypes in more
detail in Chapter 7.

46	 Chapter 2  ■  Introducing SQL

Writing Simple Queries
A query is a request for information from the database tables. Queries do not modify
data; they read data from database tables and views. Simple queries are those that
retrieve data from a single table or view. A table is used to store data and is stored in
rows and columns. The basis of a query is the SELECT statement. The SELECT statement
can be used to get data from a single table or from multiple tables. Queries using multiple
tables are discussed in later chapters.

Using the SELECT Statement
The SELECT statement is the most commonly used statement in SQL. It allows you to retrieve
information already stored in the database. The statement begins with the keyword SELECT,
followed by the names of the columns with data you want to query. You can select informa-
tion either from all the columns (denoted by *) or from name-specific columns in the SELECT
clause to retrieve data. When * is used in the column projection, it lists the columns in the
same order as they are defined in the table definition. The FROM clause provides the name of
the table, view, or materialized view to use in the query. These objects are discussed in detail
in later chapters. For simplicity, we will use tables for the rest of this chapter.

The simple SELECT statement at a high level is of the form:

SELECT column_list
FROM table
WHERE filtering_conditions
ORDER BY column_list
OFFSET n_rows
FETCH row_limiting_conditions

The SELECT clause lists the columns from the table you are interested in reading. The FROM
clause identifies the table name. The SELECT and FROM clauses are mandatory, and the rest of
the clauses are optional. The FETCH clause is used to limit rows; the OFFSET clause is used to
skip rows; the WHERE clause is used for filtering; and the ORDER BY clause is for sorting. We
will discuss all of these clauses in detail in the coming sections of this chapter.

Let’s use the JOBS table defined in the HR schema of Oracle Database 12c. You can use
the SQL*Plus tool to connect to the database as discussed earlier in the chapter. The JOBS
table definition is provided in Table 2.6.

Tabl e 2 .6    JOBS Table Definition

Column Name Datatype Length

JOB_ID VARCHAR2 10

JOB_TITLE VARCHAR2 35

	 Writing Simple Queries	 47

Column Name Datatype Length

MIN_SALARY NUMBER 6,0

MAX_SALARY NUMBER 6,0

The simple form of a SELECT statement to retrieve all the columns and rows from the
JOBS table is as follows (only part of output result set is shown here):

SQL> SELECT * FROM jobs;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ------------------------------- ---------- ----------
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
AD_ASST Administration Assistant 3000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountant 4200 9000
… … … … …
IT_PROG Programmer 4000 10000
MK_MAN Marketing Manager 9000 15000
MK_REP Marketing Representative 4000 9000
HR_REP Human Resources Representative 4000 9000
PR_REP Public Relations Representative 4500 10500

19 rows selected.

The keywords, column names, and table names are not case sensitive. Only
literals enclosed in single quotation marks are case sensitive in Oracle.

How do you list only the job title and minimum salary from this table? If you know the
column names and the table name, writing the query is simple. Here, the column names are
JOB_TITLE and MIN_SALARY, and the table name is JOBS. Execute the query by ending the
query with a semicolon. In SQL*Plus, you can execute the query by entering a slash on a
line by itself or by using the RUN command.

SQL> SELECT job_title, min_salary FROM jobs;

JOB_TITLE MIN_SALARY
----------------------------------- ----------
President 20080
Administration Vice President 15000

48	 Chapter 2  ■  Introducing SQL

Administration Assistant 3000
Finance Manager 8200
Accountant 4200
Accounting Manager 8200
Public Accountant 4200
… … … … …
Programmer 4000
Marketing Manager 9000
Marketing Representative 4000
Human Resources Representative 4000
Public Relations Representative 4500

19 rows selected.

Notice that the numeric column (MIN_SALARY) is aligned to the right, and the character
column (JOB_TITLE) is aligned to the left. If you want the column heading MIN_SALARY to
be more meaningful, you can provide a column alias to appear in the query results.

Column Alias Names
The column alias name is defined next to the column name with a space or by using the key-
word AS. If you want a space in the column alias name, you must enclose it in double quota-
tion marks. The case is preserved only when the alias name is enclosed in double quotation
marks; otherwise, the display will be uppercase. The following example demonstrates using
an alias name for the column heading in the previous query:

SELECT job_title AS Title, min_salary AS "Minimum Salary"
FROM jobs;

TITLE Minimum Salary
----------------------------------- --------------
President 20080
Administration Vice President 15000
Administration Assistant 3000
Finance Manager 8200
Accountant 4200
Accounting Manager 8200
… … … … …
Programmer 4000
Marketing Manager 9000
Marketing Representative 4000
Human Resources Representative 4000

	 Writing Simple Queries	 49

Public Relations Representative 4500

19 rows selected.

In this listing, the column alias name Title appears in all capital letters because it was
not enclosed in double quotation marks.

The asterisk (*) is used to select all columns in the table. This is useful
when you do not know the column names or when you are too lazy to type
all the column names. The invisible columns and pseudo columns are not
included in *.

Ensuring Uniqueness
The DISTINCT keyword (or UNIQUE keyword) following SELECT ensures that the resulting
rows are unique. Uniqueness is verified against the complete row, not the first column. If
you need to find the unique departments in the EMPLOYEES table, issue this query:

SELECT DISTINCT department_id
FROM employees;

DEPARTMENT_ID

 100
 30

 90
 20
 70
 110
 50
 80
 40
 60
 10

12 rows selected.

To demonstrate that uniqueness is enforced across the row, let’s do one more query using
the SELECT DISTINCT clause. Notice DEPARTMENT_ID repeating for each JOB_ID value in the
following example:

SELECT DISTINCT department_id, job_id
FROM employees;

50	 Chapter 2  ■  Introducing SQL

DEPARTMENT_ID JOB_ID
------------- ----------
 110 AC_ACCOUNT
 90 AD_VP
 50 ST_CLERK
 80 SA_REP
 110 AC_MGR
… … …
 10 AD_ASST
 20 MK_REP
 40 HR_REP
 30 PU_MAN

20 rows selected.

SELECT * FROM TAB; shows all the tables and views in your schema. Don’t
be alarmed if you see a table name similar to BIN$PJV23QpwQfu0zPN9uaX
w+w==$0. These are tables that belong to the Recycle Bin (or dropped tables).
The tasks of creating tables and managing tables are discussed in Chapter 7.

The DUAL Table
The DUAL table is a special table available to all users in the database. It has one column and
one row. Oracle optimized the database so that it no longer performs physical or logical
input/output on the DUAL table. The DUAL table is mostly used to select system variables or
to evaluate an expression. Here are a few examples. The first query is to show the contents
of the DUAL table.

SQL> SELECT * FROM dual;

D
-
X

SQL> SELECT SYSDATE, USER FROM dual;

SYSDATE USER
--------- ------------------------------
13-JUL-13 HR

	 Writing Simple Queries	 51

SQL> SELECT 'I''m ' || user || ' Today is ' || SYSDATE
 2 FROM dual;

'I''M'||USER||'TODAYIS'||SYSDATE
--
I'm HR Today is 13-JUL-13

SQL>

SYSDATE and USER are built-in functions that provide information about
the environment. These functions are discussed in Chapter 3, “Using
Single-Row Functions.”

Filtering Rows
You can use the WHERE clause in the SELECT statement to restrict the number of rows processed.
Any logical conditions of the WHERE clause use the comparison operators. Rows are returned
or operated upon where the data satisfies the logical condition(s) of the WHERE clause. You can
use column names or expressions in the WHERE clause, but not column alias names. The WHERE
clause follows the FROM clause in the SELECT statement.

How do you list the employees who work for department 90? The following example
shows how to limit the query to only the records belonging to department 90 by using a
WHERE clause:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id = 90;

Name DEPARTMENT_ID
--- -------------
Steven King 90
Neena Kochhar 90
Lex De Haan 90

You need not include the column names in the SELECT clause to use them
in the WHERE clause.

You can use various operators in Oracle Database 12c in the WHERE clause to limit the
number of rows.

52	 Chapter 2  ■  Introducing SQL

Comparison Operators
Comparison operators compare two values or expressions and give a Boolean result
of TRUE, FALSE, or NULL. The comparison operators include those that test for equality,
inequality, less than, greater than, and value comparisons.

= (Equality)

The = operator tests for equality. The test evaluates to TRUE if the values or results of an
expression on both sides of the operator are equal. The following shows an example of find-
ing all the employees belonging to department 90—that is, the department ID is equal to 90:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id = 90;

Name DEPARTMENT_ID
--- -------------
Steven King 90
Neena Kochhar 90
Lex De Haan 90

!=, <>, or ^= (Inequality)

You can use any one of these three operators to test for inequality. The test evaluates to TRUE
if the values on both sides of the operator do not match. The following shows an example
of querying employees whose commission is not the default 35 percent—that is, to find all
employees with a commission percent that is not 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct != .35;

Name COMMISSION_PCT
-- --------------
John Russell .4
Karen Partners .3
Alberto Errazuriz .3
Gerald Cambrault .3
… … … … … …
Jack Livingston .2
Kimberely Grant .15
Charles Johnson .1

32 rows selected.

	 Writing Simple Queries	 53

< (Less Than)

The < operator evaluates to TRUE if the left side (expression or value) of the operator is less
than the right side of the operator. The following shows an example of employees with a
commission percent less than 15:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct < .15;

Name COMMISSION_PCT
-- --------------
Mattea Marvins .1
David Lee .1
Sundar Ande .1
Amit Banda .1
Sundita Kumar .1
Charles Johnson .1

6 rows selected.

> (Greater Than)

The > operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than the right side of the operator. The following shows an example of employees
with a commission percent over 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct > .35;

Name COMMISSION_PCT
-- --------------
John Russell .4

<= (Less Than or Equal To)

The <= operator evaluates to TRUE if the left side (expression or value) of the operator is less
than or equal to the right side of the operator. The following shows an example similar to
the one for less than, but here we include all employees who have a commission percent less
than 15 or equal to 15:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct <= .15;

54	 Chapter 2  ■  Introducing SQL

Name COMMISSION_PCT
-- --------------
Oliver Tuvault .15
Danielle Greene .15
Mattea Marvins .1
David Lee .1
Sundar Ande .1
Amit Banda .1
William Smith .15
Elizabeth Bates .15
Sundita Kumar .1
Kimberely Grant .15
Charles Johnson .1

11 rows selected.

>= (Greater Than or Equal To)

The >= operator evaluates to TRUE if the left side (expression or value) of the operator is
greater than or equal to the right side of the operator. The following shows an example
of employees with commission percent at or over 35:

SELECT first_name || ' ' || last_name "Name", commission_pct
FROM employees
WHERE commission_pct >= .35;

Name COMMISSION_PCT
-- --------------
John Russell .4
Janette King .35
Patrick Sully .35
Allan McEwen .35

ANY or SOME

You can use the ANY or SOME (both are the same and can be used interchangeably) operator
to compare a value to each value in a list or subquery. The ANY and SOME operators always
must be preceded by one of the following comparison operators: =, !=, <, >, <=, or >=.
Consider the following SQL with ANY operator:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id <= ANY (10, 15, 20, 25);

	 Writing Simple Queries	 55

Name DEPARTMENT_ID
--- -------------
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20

Oracle in fact expands the ANY condition to department_id <= 10 OR department_id
<= 15 OR department_id <= 20 OR department_id <= 25. The behavior of ANY with each
comparison operator is

X = ANY (list): Evaluates to TRUE if value of X matches at least one value in the list.

X != ANY (list): Evaluates to TRUE if value of X does not match one or more value
in the list.

X > ANY (list): Evaluates to TRUE if value of X is higher than the smallest value in
the list.

X < ANY (list): Evaluates to TRUE if value of X is lower than the biggest value in
the list.

X >= ANY (list): Evaluates to TRUE if value of X is higher than or equal to the
smallest value in the list.

X <= ANY (list): Evaluates to TRUE if value of X is lower than or equal to the biggest
value in the list.

ALL

You can use the ALL operator to compare a value to every value in a list or subquery. The
ALL operator must always be preceded by one of the following comparison operators: =, !=,
<, >, <=, or >=. The following shows an example of using the ALL operator:

SELECT first_name || ' ' || last_name "Name", department_id
FROM employees
WHERE department_id >= ALL (80, 90, 100);

Name DEPARTMENT_ID
--- -------------
Nancy Greenberg 100
Daniel Faviet 100
John Chen 100
Ismael Sciarra 100
Jose Manuel Urman 100
Luis Popp 100
Shelley Higgins 110
William Gietz 110

8 rows selected.

56	 Chapter 2  ■  Introducing SQL

The SQL code is evaluated by Oracle as department_id >= 80 AND department_id >=
90 AND department_id >= 100. The behavior of ALL with each comparison operator is

X = ALL (list): Evaluates to TRUE if value of X matches all of the values in the list.

X != ALL (list): Evaluates to TRUE if value of X does not match any value in the list.

X > ALL (list): Evaluates to TRUE if value of X is higher than the biggest value in
the list.

X < ALL (list): Evaluates to TRUE if value of X is lower than the smallest value in
the list.

X >= ALL (list): Evaluates to TRUE if value of X is higher than or equal to the high-
est value in the list.

X <= ALL (list): Evaluates to TRUE if value of X is lower than or equal to the small-
est value in the list.

The ANY, SOME, and ALL operators make more sense when used with subqueries rather than
a list of known values. Subqueries are discussed in Chapter 5, “Using Joins and Subqueries.”

For all the comparison operators discussed, if one side of the operator is
NULL, the result is NULL. At least one question with the ANY, ALL operator
will be on the OCA test, so make sure you understand these operators
thoroughly.

Logical Operators
Logical operators are used to combine the results of two comparison conditions (compound
conditions) to produce a single result or to reverse the result of a single comparison. NOT,
AND, and OR are the logical operators. When a logical operator is applied to NULL, the result
is UNKNOWN. UNKNOWN acts similarly to FALSE; the only difference is that NOT FALSE is TRUE,
whereas NOT UNKNOWN is also UNKNOWN.

NOT

You can use the NOT operator to reverse the result. It evaluates to TRUE if the operand is FALSE,
and it evaluates to FALSE if the operand is TRUE. NOT returns NULL if the operand is NULL. The
following shows an example of employees that do not belong to department number greater
or equal to 30—that is, it basically evaluates to department number less than 30:

SELECT first_name, department_id
FROM employees
WHERE not (department_id >= 30);

FIRST_NAME DEPARTMENT_ID
-------------------- -------------
Jennifer 10

	 Writing Simple Queries	 57

Michael 20
Pat 20

AND

The AND operator evaluates to TRUE if both operands are TRUE. It evaluates to FALSE if either
operand is FALSE. Otherwise, it returns NULL. The following shows an example of employees
with the last name Smith and a salary over $7,500. Both conditions must evaluate to TRUE:

SELECT first_name, salary
FROM employees
WHERE last_name = 'Smith'
AND salary > 7500;

FIRST_NAME SALARY
-------------------- ----------
Lindsey 8000

OR

The OR operator evaluates to TRUE if either operand is TRUE. It evaluates to FALSE if both
operands are FALSE. Otherwise, it returns NULL. The following shows an example of
employees whose last name is Smith or whose first name is Kelly. Either one condition
must evaluate to TRUE:

SELECT first_name, last_name
FROM employees
WHERE first_name = 'Kelly'
OR last_name = 'Smith';

FIRST_NAME LAST_NAME
-------------------- -------------------------
Kelly Chung
Lindsey Smith
William Smith

Logical Operator Truth Tables

The following tables are the truth tables for the three logical operators.
Table 2.7 is a truth table for the AND operator.

58	 Chapter 2  ■  Introducing SQL

Tabl e 2 .7    AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 2.8 is the truth table for the OR operator.

Tabl e 2 . 8    OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Table 2.9 is the truth table for the NOT operator.

Tabl e 2 . 9    NOT Truth Table

NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

Other Operators
In the following sections, we will discuss the operators that can be used in the WHERE clause
of the SQL statement that were not discussed earlier.

IN and NOT IN

You can use the IN and NOT IN operators to test a membership condition. IN is equivalent
to the =ANY operator, which evaluates to TRUE if the value exists in the list or the result set

	 Writing Simple Queries	 59

from a subquery. The NOT IN operator is equivalent to the !=ALL operator, which evaluates
to TRUE if the value does not exist in the list or the result set from a subquery. The following
examples demonstrate how to use these two operators:

SELECT first_name, last_name, department_id
FROM employees
WHERE department_id IN (10, 20, 90);

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Jennifer Whalen 10
Michael Hartstein 20
Pat Fay 20
Steven King 90
Neena Kochhar 90
Lex De Haan 90

6 rows selected.

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Hermann Baer 70
Pat Fay 20
Michael Hartstein 20
SQL>

When using the NOT IN operator, if any value in the list or the result
returned from the subquery is NULL, the NOT IN condition is evaluated to
FALSE. For example, last_name not in ('Smith', 'Thomas', NULL)
evaluates to last_name != 'Smith' AND last_name != 'Thomas' AND
last_name != NULL. Any comparison on a NULL value results in NULL. So
the previous condition does not return any row even though there may
be some rows with LAST_NAME as Smith or Thomas.

BETWEEN

You can use the BETWEEN operator to test a range. BETWEEN A AND B evaluates to TRUE if
the value is greater than or equal to A and less than or equal to B. If NOT is used, the result
is the reverse. The following example lists all the employees whose salary is between
$5,000 and $6,000:

SELECT first_name, last_name, salary
FROM employees

60	 Chapter 2  ■  Introducing SQL

WHERE salary BETWEEN 5000 AND 6000;

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Bruce Ernst 6000
Kevin Mourgos 5800
Pat Fay 6000

EXISTS

The EXISTS operator is always followed by a subquery in parentheses. EXISTS evaluates to
TRUE if the subquery returns at least one row. The following example lists the employees
who work for the administration department. Here is an example of using EXISTS:

SELECT last_name, first_name, department_id
FROM employees e
WHERE EXISTS (select 1 FROM departments d
 WHERE d.department_id = e.department_id
 AND d.department_name = 'Administration');

LAST_NAME FIRST_NAME DEPARTMENT_ID
---------------------- -------------------- -------------
Whalen Jennifer 10
SQL>

Don't worry if you do not understand the SQL examples now; subqueries
are discussed in detail in Chapter 5.

IS NULL and IS NOT NULL

To find the NULL values or NOT NULL values, you need to use the IS NULL operator. The = or
!= operator will not work with NULL values. IS NULL evaluates to TRUE if the value is NULL.
IS NOT NULL evaluates to TRUE if the value is not NULL. To find the employees who do not
have a department assigned, use this query:

SELECT last_name, department_id
FROM employees
WHERE department_id IS NULL;

LAST_NAME DEPARTMENT_ID
------------------------- -------------
Grant

	 Writing Simple Queries	 61

SQL>
SELECT last_name, department_id
FROM employees
WHERE department_id = NULL;

No rows selected.

LIKE

Using the LIKE operator, you can perform pattern matching. The pattern-search character % is
used to match any character and any number of characters. The pattern-search character _
is used to match any single character. If you are looking for the actual character % or _ in the
pattern search, you can include an escape character in the search string and notify Oracle
using the ESCAPE clause.

The following query searches for all employees whose first name begins with Su and
whose last name does not begin with S:

SELECT first_name, last_name
FROM employees
WHERE first_name LIKE 'Su%'
AND last_name NOT LIKE 'S%';

FIRST_NAME LAST_NAME
-------------------- -------------------------
Sundar Ande
Sundita Kumar
Susan Mavris

The following example looks for all JOB_ID values that begin with AC_. Because _ is a
pattern-matching character, you must qualify it with an escape character. Oracle does not
have a default escape character.

SELECT job_id, job_title
FROM jobs
WHERE job_id like 'AC_%' ESCAPE '\';

JOB_ID JOB_TITLE
---------- -----------------------------------
AC_MGR Accounting Manager
AC_ACCOUNT Public Accountant

Table 2.10 shows more examples of pattern matching.

62	 Chapter 2  ■  Introducing SQL

Tabl e 2 .10    Pattern-Matching Examples

Pattern Matches Does Not Match

%SONI_1 SONIC1, ULTRASONI21 SONICS1, SONI315

_IME TIME, LIME IME, CRIME

\%SONI_1 ESCAPE '\' %SONIC1, %SONI91 SONIC1, ULTRASONIC1

%ME_ _ _LE ESCAPE '\' CRIME_FILE, TIME_POLE CRIMESPILE, CRIME_ALE

Sorting Rows
The SELECT statement may include the ORDER BY clause to sort the resulting rows in a specific
order based on the data in the columns. Without the ORDER BY clause, there is no guarantee
that the rows will be returned in any specific order. If an ORDER BY clause is specified, by
default the rows are returned in ascending order of the columns specified. If you need to sort
the rows in descending order, use the keyword DESC next to the column name. You can spec-
ify the keyword ASC to explicitly state to sort in ascending order, although it is the default.
The ORDER BY clause follows the FROM clause and the WHERE clause in the SELECT statement.

To retrieve all employee names of department 90 from the EMPLOYEES table ordered by
last name, use this query:

SELECT first_name || ' ' || last_name "Employee Name"
FROM employees
WHERE department_id = 90
ORDER BY last_name;

Employee Name
--
Lex De Haan
Steven King
Neena Kochhar
SQL>

You can specify more than one column in the ORDER BY clause. In this case, the result
set will be ordered by the first column in the ORDER BY clause, then the second, and so on.
Columns or expressions not used in the SELECT clause can also be used in the ORDER BY
clause. The following example shows how to use DESC and multiple columns in the ORDER
BY clause:

SELECT first_name, hire_date, salary, manager_id mid
FROM employees

	 Writing Simple Queries	 63

WHERE department_id IN (110,100)
ORDER BY mid ASC, salary DESC, hire_date;

FIRST_NAME HIRE_DATE SALARY MID
-------------------- --------- ---------- ----------
Shelley 07-JUN-02 12008 101
Nancy 17-AUG-02 12008 101
Daniel 16-AUG-02 9000 108
John 28-SEP-05 8200 108
Jose Manuel 07-MAR-06 7800 108
Ismael 30-SEP-05 7700 108
Luis 07-DEC-07 6900 108
William 07-JUN-02 8300 205

8 rows selected.
SQL>

You can use column alias names in the ORDER BY clause.

If the DISTINCT keyword is used in the SELECT clause, you can use only those columns
listed in the SELECT clause in the ORDER BY clause. If you have used any operators on col-
umns in the SELECT clause, the ORDER BY clause also should use them. Here is an example:

SELECT DISTINCT 'Region ' || region_id
FROM countries
ORDER BY region_id;

ORDER BY region_id
 *
ERROR at line 3:
ORA-01791: not a SELECTed expression

SELECT DISTINCT 'Region ' || region_id
FROM countries
ORDER BY 'Region ' || region_id;

'REGION'||REGION_ID

Region 1
Region 2

64	 Chapter 2  ■  Introducing SQL

Region 3
Region 4

Not only can you use the column name or column alias to sort the result set of a query,
but you can also sort the results by specifying the position of the column in the SELECT clause.
This is useful if you have a lengthy expression in the SELECT clause and you need the results
sorted on this value. The following example sorts the result set using positional values:

SELECT first_name, hire_date, salary, manager_id mid
FROM employees
WHERE department_id IN (110,100)
ORDER BY 4, 2, 3;

FIRST_NAME HIRE_DATE SALARY MID
-------------------- --------- ---------- ----------
Shelley 07-JUN-02 12008 101
Nancy 17-AUG-02 12008 101
Daniel 16-AUG-02 9000 108
John 28-SEP-05 8200 108
Ismael 30-SEP-05 7700 108
Jose Manuel 07-MAR-06 7800 108
Luis 07-DEC-07 6900 108
William 07-JUN-02 8300 205

8 rows selected.

The ORDER BY clause cannot have more than 255 columns or expressions.

Sorting NULLs
By default, in an ascending-order sort, the NULL values appear at the bottom of the result
set—that is, NULLs are sorted higher. For descending-order sorts, NULL values appear at
the top of the result set—again, NULL values are sorted higher. You can change the default
behavior by using the NULLS FIRST or NULLS LAST keyword, along with the column names
(or alias names or positions). The following examples demonstrate how to use NULLS FIRST
in an ascending sort:

SELECT last_name, commission_pct
FROM employees
WHERE last_name LIKE 'R%'
ORDER BY commission_pct ASC, last_name DESC;

	 Writing Simple Queries	 65

LAST_NAME COMMISSION_PCT
------------------------- --------------
Russell .4
Rogers
Raphaely
Rajs

SELECT last_name, commission_pct
FROM employees
WHERE last_name LIKE 'R%'
ORDER BY commission_pct ASC NULLS FIRST, last_name DESC;

LAST_NAME COMMISSION_PCT
------------------------- --------------
Rogers
Raphaely
Rajs
Russell .4
SQL>

Why Do You Limit and Sort Rows?

The power of an RDBMS and SQL lies in getting exactly what you want from the data-
base. The sample tables you considered under the HR schema are small, so even if you
get all the information from the table, you can still find the specific data you're seeking.
But what if you have a huge transaction table with millions of rows?

You know how easy it is to look through a catalog in the library to find a particular book or
to search through an alphabetical listing to find your name. When querying a large table,
make sure you know what you want.

The WHERE clause lets you query for exactly what you’re seeking. The ORDER BY clause
lets you sort rows. The following steps can be used as an approach to query data from a
single table:

	 1.	 Know the columns of the table. You can issue the DESCRIBE command to get the
column names and datatype. Understand which column has what information.

	 2.	 Pick the column names you are interested in including in the query. Use these columns
in the SELECT clause.

66	 Chapter 2  ■  Introducing SQL

	 3.	 Identify the column or columns where you can limit the rows, or the columns that
can show you only the rows of interest. Use these columns in the WHERE clause of
the query, and supply the values as well as the appropriate operator.

	 4.	 If the query returns more than a few rows, you may be interested in having them
sorted in a particular order. Specify the column names and the sorting order in the
ORDER BY clause of the query.

Let’s consider a table named PURCHASE_ORDERS. First, use the DESCRIBE command to list
the columns:

SQL> DESCRIBE purchase_orders

Name Null? Type
--------------------- -------- --------------
ORDER# NOT NULL NUMBER (16)
ORDER_DT NOT NULL DATE
CUSTOMER# NOT NULL VARCHAR2 (12)
BACK_ORDER CHAR (1)
ORD_STATUS CHAR (1)
TOTAL_AMT NOT NULL NUMBER (18,4)
SALES_TAX NUMBER (12,2)

The objective of the query is to find the completed orders that do not have any sales tax.
You want to see the order number and total amount of the order. The corresponding col-
umns that appear in the SELECT clause are ORDER# and TOTAL_AMT. Because you’re inter-
ested in only the rows with no sales tax in the completed orders, the columns to appear in
the WHERE clause are SALES_TAX (checking for zero sales tax) and ORD_STATUS (checking for
the completeness of the order, which is status code C). Because the query returns multiple
rows, you want to order them by the order number. Notice that the SALES_TAX column can
be NULL, so you want to make sure you get all rows that have a sales tax amount of zero
or NULL.

SELECT order#, total_amt
FROM purchase_orders
WHERE ord_status = 'C'
AND (sales_tax IS NULL
OR sales_tax = 0)
ORDER BY order#;

An alternative is to use the NVL function to deal with the NULL values. This function is dis-
cussed in Chapter 3.

	 Writing Simple Queries	 67

Limiting Rows
The row-limiting clause in the SELECT statement follows the ORDER BY clause, if used. Use
the OFFSET and FETCH clauses to limit the number of rows retrieved by specifying a certain
number of rows or certain percent of rows to be retrieved. The WHERE clause and FETCH
clause are used to restrict the amount of rows returned in the query. WHERE is used for filter-
ing the rows; FETCH is used for limiting the rows.

The OFFSET clause is optional and used to skip a specified number of rows before the
retrieval begins. If the offset is higher than the number of rows retrieved or is NULL, no rows
are returned. The ROW and ROWS keywords are optional and used only for readability. You
need not provide the ROW or ROWS keyword when using the FETCH and OFFSET clauses.

The FETCH clause can specify the number of rows to return or a percentage of rows to
return. The FIRST and NEXT keywords can be used interchangeably and are for semantic
clarity only. Either one must be used.

The following examples clarify the use of the row-limiting clauses in SELECT. First, show
the top five salary-earned employees:

SELECT first_name, department_id, salary
FROM employees
ORDER BY salary DESC
FETCH FIRST 5 ROWS ONLY;

FIRST_NAME DEPARTMENT_ID SALARY
-------------------- ------------- ----------
Steven 90 24000
Neena 90 17000
Lex 90 17000
John 80 14000
Karen 80 13500

If there is a tie in the last row, using the WITH TIES clause instead of the ONLY clause
will retrieve all rows with ties. The ONLY or WITH TIES keyword must always be used with
the FETCH clause. In the following example, the top two salaried employees are queried.
Because there is a tie for the second position, all tied records are retrieved:

SELECT first_name, department_id, salary
FROM employees
ORDER BY salary DESC
FETCH FIRST 2 ROWS WITH TIES;

FIRST_NAME DEPARTMENT_ID SALARY
-------------------- ------------- ----------
Steven 90 24000
Neena 90 17000
Lex 90 17000

68	 Chapter 2  ■  Introducing SQL

The OFFSET clause is used to skip rows before the limiting begins. The following example
shows the third through fifth position in salary:

SELECT first_name, department_id, salary
FROM employees
ORDER BY salary DESC
OFFSET 2 ROWS
FETCH NEXT 3 ROWS WITH TIES;

FIRST_NAME DEPARTMENT_ID SALARY
-------------------- ------------- ----------
Lex 90 17000
John 80 14000
Karen 80 13500

There are 107 rows in the EMPLOYEES table; instead of number of rows, you may limit
using a PERCENT. The ONLY or WITH TIES keyword is a must whether using ROWS or PERCENT
in the FETCH clause. The following example shows using PERCENT to retrieve 5 percent rows
from the EMPLOYEES table:

SELECT first_name, salary
FROM employees
FETCH FIRST 5 PERCENT ROWS ONLY;

FIRST_NAME SALARY
-------------------- ----------
Steven 24000
Neena 17000
Lex 17000
Alexander 9000
Bruce 6000
David 4800
type="tip"

Using the ORDER BY clause with the FETCH clause is not mandatory but is highly recom-
mended to achieve a consistent result set.

Using Expressions
An expression is a combination of one or more values, operators, and SQL functions that
result in a value. The result of an expression generally assumes the datatype of its components.

	 Writing Simple Queries	 69

The simple expression 5 + 6 evaluates to 11 and assumes a datatype of NUMBER. Expressions
can appear in the following clauses:

■■ The SELECT clause of queries

■■ The WHERE clause, ORDER BY clause, and HAVING clause

■■ The VALUES clause of the INSERT statement

■■ The SET clause of the UPDATE statement

We will review the syntax of using a HAVING clause and INSERT, UPDATE
statements in later chapters.

You can include parentheses to group and evaluate expressions and then apply the result
to the rest of the expression. When parentheses are used, the expression in the innermost
parentheses is evaluated first. Here is an example of a compound expression:

((2*4)/(3+1))*10.

The result of 2*4 is divided by the result of 3+1. Then the result from the division
operation is multiplied by 10.

The CASE Expression
You can use the CASE expression to derive the IF…THEN…ELSE logic in SQL. Here is the
syntax of the simple CASE expression:

CASE <expression>
WHEN <compare value> THEN <return value> … … …
[ELSE <return value>]
END

The CASE expression begins with the keyword CASE and ends with the keyword END. The
ELSE clause is optional. The maximum number of arguments in a CASE expression is 255.
The following query displays a description for the REGION_ID column based on the value:

SELECT country_name, region_id,
 CASE region_id WHEN 1 THEN 'Europe'
 WHEN 2 THEN 'America'
 WHEN 3 THEN 'Asia'
 ELSE 'Other' END Continent
FROM countries
WHERE country_name LIKE 'I%';

70	 Chapter 2  ■  Introducing SQL

COUNTRY_NAME REGION_ID CONTINE
-------------------- ---------- -------
Israel 4 Other
India 3 Asia
Italy 1 Europe
SQL>

The other form of the CASE expression is the searched CASE, where the values are
derived based on a condition. Oracle evaluates the conditions top to bottom; when a
condition evaluates to true, the rest of the WHEN clauses are not evaluated. This version
has the following syntax:

CASE
WHEN <condition> THEN <return value> … … …
[ELSE <return value>]
END

The following example categorizes the salary as Low, Medium, and High using a
searched CASE expression:

SELECT first_name, department_id, salary,
 CASE WHEN salary < 6000 THEN 'Low'
 WHEN salary < 10000 THEN 'Medium'
 WHEN salary >= 10000 THEN 'High' END Category
FROM employees
WHERE department_id <= 30
ORDER BY first_name;

FIRST_NAME DEPARTMENT_ID SALARY CATEGO
-------------------- ------------- ---------- ------
Alexander 30 3100 Low
Den 30 11000 High
Guy 30 2600 Low
Jennifer 10 4400 Low
Karen 30 2500 Low
Michael 20 13000 High
Pat 20 6000 Medium
Shelli 30 2900 Low
Sigal 30 2800 Low

9 rows selected.

	 Writing Simple Queries	 71

Oracle uses the ampersand (&) character to substitute values at runtime. In the next sec-
tion, we will discuss how to create SQL statements that can be used to get a different set of
results based on values passed during execution time.

Finding the Current Sessions and Program Name

As a DBA, you may have to query the V$SESSION dictionary view to find the current sessions
in the database. This view has several columns that provide information about the session;
often the DBA is interested in finding out the username and which program is connecting to
the database. If the DBA wants to find out what SQL is executed in the session, the SID and
SERIAL# columns can be queried to enable tracing using the DBMS_TRACE package.

This example will review how to query the V$SESSION view using the simple SQL
statements you learned in this chapter.

The following query may return several rows depending on the activity and number of
users connected to the database:

SELECT username, sid, serial#, program
FROM v$session;

If you’re using SQL*Plus, you may have to adjust the column width to fit the output in
one line:

COLUMN program FORMAT a20
COLUMN username FORMAT a20
SELECT username, sid, serial#, program
FROM v$session;

USERNAME SID SERIAL# PROGRAM
-------------------- ---------- ---------- -----------------
 118 6246 ORACLE.EXE (W000)
BTHOMAS 121 963 sqlplus.exe
DBSNMP 124 23310 emagent.exe
DBSNMP 148 608 emagent.exe
 150 1 ORACLE.EXE (FBDA)
 152 7 ORACLE.EXE (SMCO)
 155 1 ORACLE.EXE (MMNL)
 156 1 ORACLE.EXE (DIA0)

72	 Chapter 2  ■  Introducing SQL

 158 1 ORACLE.EXE (MMON)
 159 1 ORACLE.EXE (RECO)
 164 1 ORACLE.EXE (MMAN)
… … … (Output truncated)

As you can see, the background processes do not have usernames. To find out only the
user sessions in the database, you can filter out the rows that do not have valid usernames:

SELECT username, sid, serial#, program
FROM v$session
WHERE username is NOT NULL;

If you’re looking for specific information, you may want to add more filter conditions such
as looking for a specific user or a specific program. The following SQL code returns the
rows in order of their session login time, with the most recent session on the top:

SELECT username, sid, serial#, program
FROM v$session
WHERE username is NOT NULL
ORDER BY logon_time;

USERNAME SID SERIAL# PROGRAM
-------------------- ---------- ---------- ---------------
DBSNMP 148 608 emagent.exe
DBSNMP 124 23310 emagent.exe
BTHOMAS 121 963 sqlplus.exe
SCOTT 132 23 TOAD.EXE
SJACOB 231 32 discoverer.exe

Accepting Values at Runtime
To create an interactive SQL statement, you can define variables in the SQL statement. This
allows the user to supply values at runtime, further enhancing the ability to reuse the SQL
scripts. An ampersand (&) followed by a variable name prompts for and accepts values at
runtime. For example, the following SELECT statement queries the DEPARTMENTS table based
on the department number supplied at runtime:

SELECT department_name
FROM departments

	 Accepting Values at Runtime	 73

WHERE department_id = &dept;

Enter value for dept: 10
old 3: WHERE DEPARTMENT_ID = &dept
new 3: WHERE DEPARTMENT_ID = 10

DEPARTMENT_NAME

Administration

1 row selected.

Using Ampersand Substitution Variables
Suppose that you have defined DEPT as a variable in your script, but you want to avoid the
prompt for the value at runtime. SQL*Plus prompts you for a value only when the variable is
undefined. You can define a substitution variable in SQL*Plus using the DEFINE command to
provide a value. The variable will always have the CHAR datatype associated with it. Here
is an example of defining a substitution variable:

SQL> DEFINE DEPT = 20
SQL> DEFINE DEPT
DEFINE DEPT = "20" (CHAR)
SQL> LIST
 1 SELECT department_name
 2 FROM departments
 3* WHERE department_id = &DEPT
SQL> /
old 3: WHERE DEPARTMENT_ID = &DEPT
new 3: WHERE DEPARTMENT_ID = 20

DEPARTMENT_NAME

Marketing

1 row selected.
SQL>

Using the DEFINE command without any arguments shows all the defined
variables.

74	 Chapter 2  ■  Introducing SQL

SQL> define
DEFINE _DATE = "13-JUL-13" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "o12c01" (CHAR)
DEFINE _USER = "HR" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1201000100" (CHAR)
DEFINE _EDITOR = "Notepad" (CHAR)
DEFINE _O_VERSION = "Oracle Database 12c Enterprise Edition Release 12.1.0.
1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions" (CHAR)
DEFINE _O_RELEASE = "1201000100" (CHAR)
DEFINE _RC = "0" (CHAR)
DEFINE DEPT = "20" (CHAR)
SQL>

A dot (.) is used to append characters immediately after the substitution variable. The
dot separates the variable name and the literal that follows immediately. If you need a dot
to be part of the literal, provide two dots continuously. For example, the following query
appends _REP to the user input when seeking a value from the JOBS table:

SQL> SELECT job_id, job_title FROM jobs
 2* WHERE job_id = '&JOB._REP'
SQL> /
Enter value for job: MK
old 2: WHERE JOB_ID = '&JOB._REP'
new 2: WHERE JOB_ID = 'MK_REP'

JOB_ID JOB_TITLE
---------- ------------------------
MK_REP Marketing Representative

1 row selected.
SQL>

The following example shows the use of a dot as part of the literal.

SQL> SELECT file_name
 2 FROM mytraces
 3 WHERE file_name like '&DB.%&PROCID..trc';
Enter value for db: C12DB1

	 Accepting Values at Runtime	 75

Enter value for procid: 25285
old 3: WHERE file_name like '&DB.%&PROCID..trc'
new 3: WHERE file_name like 'C12DB1%25285.trc'

FILE_NAME

C12DB1_aqpc_25285.trc

The old line with the variable and the new line with the substitution are displayed. You
can turn off this display by using the command SET VERIFY OFF.

Saving a Variable for a Session
Consider the following SQL code, saved to a file named ex01.sql. When you execute this
script file, you will be prompted for the COL1 and COL2 values multiple times:

SQL> SELECT &COL1, &COL2
 2 FROM &TABLE
 3 WHERE &COL1 = '&VAL'
 4 ORDER BY &COL2
 5
SQL> SAVE ex01
Created file ex01.sql
SQL> @ex01
Enter value for col1: FIRST_NAME
Enter value for col2: LAST_NAME
old 1: SELECT &COL1, &COL2
new 1: SELECT FIRST_NAME, LAST_NAME
Enter value for table: EMPLOYEES
old 2: FROM &TABLE
new 2: FROM EMPLOYEES
Enter value for col1: FIRST_NAME
Enter value for val: John
old 3: WHERE &COL1 = '&VAL'
new 3: WHERE FIRST_NAME = 'John'
Enter value for col2: LAST_NAME
old 4: ORDER BY &COL2
new 4: ORDER BY LAST_NAME

76	 Chapter 2  ■  Introducing SQL

FIRST_NAME LAST_NAME
-------------------- ---------
John Chen
John Russell
John Seo

3 rows selected.
SQL>

The user can enter different or wrong values for each prompt. To avoid multiple prompts,
use a double ampersand (&&), where the variable is saved for the session.

To clear a defined variable, you can use the UNDEFINE command. Let’s edit the ex01.sql
file to make it look like this:

SELECT &&COL1, &&COL2
FROM &TABLE
WHERE &COL1 = '&VAL'
ORDER BY &COL2
/
Enter value for col1: first_name
Enter value for col2: last_name
old 1: SELECT &&COL1, &&COL2
new 1: SELECT first_name, last_name
Enter value for table: employees
old 2: FROM &TABLE
new 2: FROM employees
Enter value for val: John
old 3: WHERE &COL1 = '&VAL'
new 3: WHERE first_name = 'John'
old 4: ORDER BY &COL1
new 4: ORDER BY first_name

FIRST_NAME LAST_NAME
-------------------- -------------------------
John Chen
John Russell
John Seo

UNDEFINE COL1 COL2

	 Accepting Values at Runtime	 77

Using Positional Notation for Variables
Instead of variable names, you can use positional notation, where each variable is identi-
fied by &1, &2, and so on. The values are assigned to the variables by position. Do this by
putting an ampersand (&), followed by a numeral, in place of a variable name. Consider
the following query:

SQL> SELECT department_name, department_id
 2 FROM departments
 3 WHERE &1 = &2;
Enter value for 1: DEPARTMENT_ID
Enter value for 2: 10
old 3: WHERE &1 = &2
new 3: WHERE DEPARTMENT_ID = 10

DEPARTMENT_NAME DEPARTMENT_ID
------------------------------ -------------
Administration 10

1 row selected.
SQL>

If you save the SQL as a script file, you can submit the substitution-variable values
while invoking the script (as command-line arguments). Each time you run this command
file, START replaces each &1 in the file with the first value (called an argument) after START
filename, then replaces each &2 with the second value, and so forth. Here is an example
of saving and running the previous query:

SQL> SAVE ex02
Created file ex02.sql
SQL> SET VERIFY OFF
SQL> @ex02 department_id 20

DEPARTMENT_NAME DEPARTMENT_ID
------------------------------ -------------
Marketing 20

1 row selected.
SQL>

Although we did not specify two ampersands for positional substitution variables,
SQL*Plus keeps the values of these variables for the session (because we passed the values
as parameters to a script file). The next time you run any script with positional substitution
variables, Oracle will use these values to execute the script.

78	 Chapter 2  ■  Introducing SQL

Summary
This chapter started off by reviewing the fundamentals of SQL. You got a quick introduc-
tion to the Oracle datatypes, operators, and literals. You learned to write simple queries
using the SELECT statement. You also learned to use the WHERE clause and the ORDER BY
clause in this chapter.

The CHAR and VARCHAR2 datatypes are used to store alphanumeric information.
The NUMBER datatype is used to store any numeric value. Date values can be stored using
the DATE or TIMESTAMP datatypes. Oracle has a wide range of operators: arithmetic,
concatenation, comparison, membership, logical, pattern matching, range, existence, and
NULL checking. The CASE expression is used to bring conditional logic to SQL.

Data in the Oracle database is managed and accessed using SQL. A SELECT statement
is the basic form of querying or reading records from the database table. You can limit the
rows using the FETCH clause and filter the rows using the WHERE clause. You can use the AND
and OR logical operators to join multiple filter conditions. The ORDER BY clause is used to sort
the result set in a particular order. You can use an ampersand (&) character to substitute a
value at runtime.

Exam Essentials

Understand the operators.    Know the various operators that can be used in queries. The
parentheses around an expression change the precedence of the operators.

Understand the WHERE clause.    The WHERE clause specifies a condition by which to filter the
rows returned. You cannot use column alias names in this clause.

Understand the ORDER BY clause.    The ORDER BY clause is used to sort the result set from
a query. You can specify ascending order or descending order for the sort. Ascending order
is the default. Also know that column alias names can be used in the ORDER BY clause. You
can also specify columns by their position.

Know how to specify string literals using the Q/q operator.    You can use the Q or q operator
to specify the quote delimiters in string literals. Understand the difference between using the
(, <, {, and [characters and other delimiters.

Know the order of clauses in the SELECT statement.    The SELECT statement must have a
FROM clause. The WHERE clause, if it exists, should follow the FROM clause and precede the
ORDER BY clause. OFFSET and FETCH clauses should follow ORDER BY.

Know the use of the DUAL table.    The DUAL table is a special table in Oracle with one col-
umn and one row. This table is commonly used to get the values of system variables such
as SYSDATE or USER.

	 Exam Essentials	 79

Know the characters used for pattern matching.    The % character is used to match zero or
more characters. The _ character is used to match one, and only one, character. The SQL
operator used with a pattern-matching character is LIKE.

Know the sort order of NULL values in queries with an ORDER BY clause.    By default, in an
ascending-order sort, the NULL values appear at the bottom of the result set—that is, NULLs
are sorted higher. For descending-order sorts, NULL values appear at the top of the result
set—again, NULL values are sorted higher.

Understand the FETCH clause.    The FETCH clause specifies a value to limit the number or
rows returned. The OFFSET clause may be used along with FETCH to skip a certain number
of rows before returning the result set.

80	 Chapter 2  ■  Introducing SQL

Review Questions

	 1.	 You issue the following query:

SELECT salary "Employee Salary"
FROM employees;

		 How will the column heading appear in the result?

	 A.	 EMPLOYEE SALARY

	 B.	 EMPLOYEE_SALARY

	 C.	 Employee Salary

	 D.	 employee_salary

	 2.	 The EMP table is defined as follows:

Column Datatype Length

EMPNO NUMBER 4

ENAME VARCHAR2 30

SALARY NUMBER 14,2

COMM NUMBER 10,2

DEPTNO NUMBER 2

		 You perform the following two queries:

1. SELECT empno enumber, ename FROM emp ORDER BY 1;
2. SELECT empno, ename FROM emp ORDER BY empno ASC;

		 Which of the following is true?

	 A.	 Statements 1 and 2 will produce the same result in data.

	 B.	 Statement 1 will execute; statement 2 will return an error.

	 C.	 Statement 2 will execute; statement 1 will return an error.

	 D.	 Statements 1 and 2 will execute but produce different results.

	 Review Questions	 81

	 3.	 You issue the following SELECT statement on the EMP table shown in question 2.

SELECT (200+((salary*0.1)/2)) FROM emp;

		 What will happen to the result if all the parentheses are removed?

	 A.	 No difference, because the answer will always be NULL.

	 B.	 No difference, because the result will be the same.

	 C.	 The result will be higher.

	 D.	 The result will be lower.

	 4.	 In the following SELECT statement, which component is a literal? (Choose all that apply.)

SELECT 'Employee Name: ' || ename
FROM emp WHERE deptno = 10;

	 A.	 10

	 B.	 ename

	 C.	 Employee Name:

	 D.	||

	 5.	 What will happen if you query the EMP table shown in question 2 with the following?

SELECT empno, DISTINCT ename, salary
FROM emp;

	 A.	 EMPNO, unique values of ENAME, and then SALARY are displayed.

	 B.	 EMPNO and unique values of the two columns, ENAME and SALARY, are displayed.

	 C.	 DISTINCT is not a valid keyword in SQL.

	 D.	 No values will be displayed because the statement will return an error.

	 6.	 Which clause in a query restricts the rows selected?

	 A.	 ORDER BY

	 B.	 WHERE

	 C.	 SELECT

	 D.	 FROM

82	 Chapter 2  ■  Introducing SQL

	 7.	 The following listing shows the records of the EMP table:

 EMPNO ENAME SALARY COMM DEPTNO
--------- ---------- --------- --------- ---------
 7369 SMITH 800 20
 7499 ALLEN 1600 300 30
 7521 WARD 1250 500 30
 7566 JONES 2975 20
 7654 MARTIN 1250 1400 30
 7698 BLAKE 2850 30
 7782 CLARK 2450 24500 10
 7788 SCOTT 3000 20
 7839 KING 5000 50000 10
 7844 TURNER 1500 0 30
 7876 ADAMS 1100 20
 7900 JAMES 950 30
 7902 FORD 3000 20
 7934 MILLER 1300 13000 10

		 When you issue the following query, which value will be displayed in the first row?

SELECT empno
FROM emp
WHERE deptno = 10
ORDER BY ename DESC;

	 A.	 MILLER

	 B.	 7934

	 C.	 7876

	 D.	 No rows will be returned because ename cannot be used in the ORDER BY clause.

	 8.	 Refer to the listing of records in the EMP table in question 9. How many rows will the
following query return?

SELECT * FROM emp WHERE ename BETWEEN 'A' AND 'C'

	 A.	 4

	 B.	 2

	 C.	 A character column cannot be used in the BETWEEN operator.

	 D.	 3

	 Review Questions	 83

	 9.	 Refer to the EMP table in question 2. When you issue the following query, which line
has an error?

1. SELECT empno "Enumber", ename "EmpName"
2. FROM emp
3. WHERE deptno = 10
4. AND "Enumber" = 7782
5. ORDER BY "Enumber";

	 A.	 1

	 B.	 5

	 C.	 4

	 D.	 No error; the statement will finish successfully.

	10.	 You issue the following query:

SELECT empno, ename
FROM emp
WHERE empno = 7782
OR empno = 7876;

		 Which other operator can replace the OR condition in the WHERE clause?

	 A.	 IN

	 B.	 BETWEEN ... AND ...

	 C.	 LIKE

	 D.	 <=

	 E.	 >=

84	 Chapter 2  ■  Introducing SQL

	11.	 Which statement searches for PRODUCT_ID values that begin with DI_ from the
ORDERS table?

	 A.	 SELECT * FROM ORDERS

WHERE PRODUCT_ID = 'DI%';

	 B.	 SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_' ESCAPE '\';

	 C.	 SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_%' ESCAPE '\';

	 D.	 SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_' ESCAPE '\';

	 E.	 SELECT * FROM ORDERS

WHERE PRODUCT_ID LIKE 'DI_%' ESCAPE '\';

	12.	 COUNTRY_NAME and REGION_ID are valid column names in the COUNTRIES table. Which
one of the following statements will execute without an error?

	 A.	 SELECT country_name, region_id,CASE region_id = 1 THEN 'Europe',
region_id = 2 THEN 'America', region_id = 3 THEN 'Asia', ELSE 'Other'
END ContinentFROM countries;

	 B.	 SELECT country_name, region_id,CASE (region_id WHEN 1 THEN 'Europe',
WHEN 2 THEN 'America', WHEN 3 THEN 'Asia', ELSE 'Other') ContinentFROM
countries;

	 C.	 SELECT country_name, region_id,CASE region_id WHEN 1 THEN 'Europe'
WHEN 2 THEN 'America' WHEN 3 THEN 'Asia' ELSE 'Other' END ContinentFROM
countries;

	 D.	 SELECT country_name, region_id,CASE region_id WHEN 1 THEN 'Europe'
WHEN 2 THEN 'America' WHEN 3 THEN 'Asia' ELSE 'Other' ContinentFROM
countries;

	 Review Questions	 85

	13.	 The EMPLOYEE table has the following data:

EMP_NAME HIRE_DATE SALARY
---------- --------- ----------
SMITH 17-DEC-90 800
ALLEN 20-FEB-91 1600
WARD 22-FEB-91 1250
JONES 02-APR-91 5975
WARDEN 28-SEP-91 1250
BLAKE 01-MAY-91 2850

		 What will be the value in the first row of the result set when the following query
is executed?

SELECT hire_date FROM employee ORDER BY salary, emp_name;

	 A.	 02-APR-91

	 B.	 17-DEC-90

	 C.	 28-SEP-91

	 D. 	The query is invalid, because you cannot have a column in the ORDER BY clause
that is not part of the SELECT clause.

	14.	 Which SQL statement will query the EMPLOYEES table for FIRST_NAME, LAST_NAME, and
SALARY of all employees in DEPARTMENT_ID 40 in the alphabetical order of last name?

	 A.	 SELECT first_name last_name salary FROM employees ORDER BY last_name
WHERE department_id = 40;

	 B.	 SELECT first_name, last_name, salaryFROM employees ORDER BY last_name
ASC WHERE department_id = 40;

	 C.	 SELECT first_name last_name salary FROM employees WHERE department_id
= 40 ORDER BY last_name ASC;

	 D.	 SELECT first_name, last_name, salary FROM employees WHERE
department_id = 40 ORDER BY last_name;

	 E.	 SELECT first_name, last_name, salary FROM TABLE employees WHERE
department_id IS 40 ORDER BY last_name ASC;

	15.	 Column alias names cannot be used in which clause?

	 A.	 SELECT clause

	 B.	 WHERE clause

	 C.	 ORDER BY clause

	 D.	 None of the above

86	 Chapter 2  ■  Introducing SQL

	16.	 What is wrong with the following statements submitted in SQL*Plus?

DEFINE V_DEPTNO = 20
SELECT LAST_NAME, SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = V_DeptNo;

	 A.	 Nothing is wrong. The query lists the employee name and salary of the employees
who belong to department 20.

	 B.	 The DEFINE statement declaration is wrong.

	 C.	 The substitution variable is not preceded with the & character.

	 D.	 The substitution variable in the WHERE clause should be V_DEPTNO instead
of V_DeptNo.

	17.	 Which two statements regarding substitution variables are true?

	 A.	 &variable is defined by SQL*Plus, and its value will be available for the duration
of the session.

	 B.	 &&variable is defined by SQL*Plus, and its value will be available for the duration
of the session.

	 C.	 &n (where n is any integer) variables are defined by SQL*Plus when values are
passed in as arguments to the script, and their values will be available for the dura-
tion of the session.

	 D.	 &&variable is defined by SQL*Plus, and its value will be available only for every
reference to that variable in the current SQL.

	 Review Questions	 87

	18.	 Look at the data in table PRODUCTS. Which SQL statements will list the items on the
BL shelves? (Show the result with the most available quantity at the top row.)

PRODUCT_ID PRODUCT_NAME SHELF AVAILABLE_QTY
---------- -------------------- ------ -------------
 1001 CREST BL36 354
 1002 COLGATE BL36 54
 1003 AQUAFRESH BL37 43
 2002 SUNNY-D LA21 53
 2003 CAPRISUN LA22 45

	 A.	 SELECT * FROM products

WHERE shelf like '%BL'

ORDER BY available_qty SORT DESC;

	 B.	 SELECT * FROM products

WHERE shelf like 'BL%';

	 C.	 SELECT * FROM products

WHERE shelf = 'BL%'

ORDER BY available_qty DESC;

	 D.	 SELECT * FROM products

WHERE shelf like 'BL%'

ORDER BY available_qty DESC;

	 E.	 SELECT * FROM products

WHERE shelf like 'BL%'

ORDER BY available_qty SORT;

88	 Chapter 2  ■  Introducing SQL

	19.	 The EMP table has the following data:

 EMPNO ENAME SAL COMM
---------- ---------- ---------- ----------
 7369 SMITH 800
 7499 ALLEN 1600 300
 7521 WARD 1250 500
 7566 JONES 2975
 7654 MARTIN 1250 1400
 7698 BLAKE 2850
 7782 CLARK 2450
 7788 SCOTT 3000
 7839 KING 5000
 7844 TURNER 1500 0
 7876 ADAMS 1100
 7900 JAMES 950
 7902 FORD 3000
 7934 MILLER 1300

		 Consider the following two SQL statements:

1. SELECT empno, ename, sal, comm
 FROM emp WHERE comm IN (0, NULL);
2. SELECT empno, ename, sal, comm
 FROM emp WHERE comm = 0 OR comm IS NULL;

	 A.	 1 and 2 will produce the same result.

	 B.	 1 will error; 2 will work fine.

	 C.	 1 and 2 will produce different results.

	 D.	 1 and 2 will work but will not return any rows.

	20.	 Consider the EMP table in the previous question. Which SQL code will retrieve the
names of employees whose salary is at the fourth position from top?

	 A.	 SELECT ename, sal FROM emp ORDER BY 2 DESC OFFSET 3 ROWS FETCH NEXT 1
ROW WITH TIES;

	 B.	 SELECT ename, sal FROM emp ORDER BY 2 OFFSET 3 ROWS FETCH NEXT 1 ROW;

	 C.	 SELECT ename, sal FROM emp ORDER BY 2 DESC OFFSET 4 ROWS FETCH NEXT 1
ROW ONLY;

	 D.	 SELECT ename, sal FROM emp ORDER BY 2 FETCH FIRST 4 ROWS ONLY;

Chapter

3
Using Single-Row
Functions

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Using Single-Row Functions to Customize Output

■■ Describe various types of functions available in SQL.

■■ Use character, number, and date functions in SELECT

statements.

✓✓ Using Conversion Functions and Conditional Expressions

■■ Describe various types of conversion functions that are

available in SQL.

■■ Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion

functions.

■■ Apply conditional expressions in a SELECT statement.

Functions are programs that take zero or more arguments
and return a single value. Oracle has built a number of func-
tions into SQL, and these functions can be called from SQL

statements. The functions can be classified into many groups:

■■ Single-row functions

■■ Aggregate functions (also known as group functions)

■■ Analytical functions and regular expression functions

■■ National-language functions

■■ Object-reference functions

■■ Programmer-defined functions

The certification exam focuses on single-row and aggregate functions, so only those
types are covered in this book. Single-row functions are covered in this chapter, and aggre-
gate functions are covered in Chapter 4, “Using Group Functions.”

Single-row functions operate on expressions derived from columns or literals, and they
are executed once for each row retrieved. In this chapter, we will cover which single-row
functions are available, the rules for how to use them, and what to expect on the exam
regarding them.

Single-row functions also include conversion functions. Conversion functions are used
to convert the datatype of the input value to a different datatype. The Oracle database has
conditional expressions and functions. We discussed the conditional expression CASE in
Chapter 2, “Introducing SQL.” In this chapter, we will also discuss the conditional func-
tion DECODE.

Single-Row Function Fundamentals
Many types of single-row functions are built into SQL. They include character, numeric,
date, conversion, and miscellaneous single-row functions, as well as programmer-written
stored functions.

All single-row functions can be incorporated into SQL (and PL/SQL). You can use these
single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT statements. For
example, the following query includes the TO_CHAR, UPPER, and SOUNDEX single-row functions:

SELECT first_name, TO_CHAR(hire_date,'Day, DD-Mon-YYYY')
FROM employees

	 Single-Row Function Fundamentals	 91

WHERE UPPER(first_name) LIKE 'AL%'
ORDER BY SOUNDEX(first_name);

Single-row functions also can appear in other types of statements, such as the SET clause
of an UPDATE statement, the VALUES clause of an INSERT statement, and the WHERE clause of a
DELETE statement. The certification exam tends to focus on using functions in SELECT state-
ments, so we will use examples of SELECT statements in this chapter. For completeness, many
functions are discussed in this chapter, but the certification exam tends to focus on NULL
functions, date functions, and conversion functions.

The built-in functions presented in this chapter are grouped by topic (character functions,
date functions, and so on), and within each topic they appear in alphabetical order. Before
we get into the different types of functions, let’s start with the functions that are used to
handle NULL values.

Functions can be nested so that the output from one function is used as
input to another. Nested functions can include single-row functions nested
within group functions or group functions nested within either single-row
functions or other group functions.

Functions for NULL Handling
One area in which beginners frequently have difficulty and where even veterans sometimes
stumble is the treatment of NULLs. You can expect at least one question on the exam to
address the use of NULLs, but it probably won’t look like a question on the use of NULLs.

NULL values represent unknown data or a lack of data. Any operation on a NULL results in
a NULL. This NULL-in/NULL-out model is followed for most functions as well. Oracle Database
12c has six NULL-handling functions; we’ll give special attention to the NVL, NVL2, and
COALESCE functions because these are commonly used.

NVL
The NVL function is used to replace a NULL value with a literal value. NVL takes two
arguments, NVL(x1, x2), where x1 and x2 are expressions. The NVL function returns x2
if x1 is NULL. If x1 is not NULL, then x1 is returned. The arguments x1 and x2 can be of
any datatype. If x1 and x2 are not of the same datatype, Oracle tries to convert them to
the same datatype before performing the comparison.

For example, suppose you need to calculate the total compensation in the EMPLOYEES
table, which contains SALARY and COMMISSION_PCT columns (NULL values are displayed with
a question mark (?) for readability using the SET NULL ? command of SQL*Plus):

SELECT first_name, salary, commission_pct,
 salary + (salary * commission_pct) compensation
FROM employees
WHERE first_name LIKE 'T%';

92	 Chapter 3  ■  Using Single-Row Functions

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION
-------------------- ---------- -------------- ------------
Tayler 9600 .2 11520
Timothy 2900 ? ?
TJ 2100 ? ?
Trenna 3500 ? ?

As you can see in the table, the total compensation is being calculated only on Tayler; all
others have their total compensation as NULL. This is because any operation on NULL results
in a NULL.

You can use the NVL function to substitute a zero in place of any NULL you encounter,
like this:

SELECT first_name, salary, commission_pct,
 salary + (salary * NVL(commission_pct,0)) compensation
FROM employees
WHERE first_name LIKE 'T%';

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION
-------------------- ---------- -------------- ------------
Tayler 9600 .2 11520
Timothy 2900 ? 2900
TJ 2100 ? 2100
Trenna 3500 ? 3500

When you used the NVL function to substitute zero for NULL, the total compensation
was calculated correctly. For the employees who do not have a commission, the salary
and compensation are the same.

NVL2
The function NVL2 is a variation of NVL. NVL2 takes three arguments, NVL2(x1, x2, x3),
where x1, x2, and x3 are expressions. NVL2 returns x3 if x1 is NULL, and x2 if x1 is not NULL.

For the example presented in the previous section, you could also use the NVL2 function
and write the code a bit differently:

SELECT first_name, salary, commission_pct, NVL2(commission_pct,
 salary + salary * commission_pct, salary) compensation
FROM employees
WHERE first_name LIKE 'T%';

FIRST_NAME SALARY COMMISSION_PCT COMPENSATION
-------------------- ---------- -------------- ------------
TJ 2100 2100

	 Single-Row Function Fundamentals	 93

Trenna 3500 3500
Tayler 9600 .2 11520
Timothy 2900 2900

Using the NVL2 function, if COMMISSION_PCT is not NULL, then salary + salary *
commission_pct is returned. If COMMISSION_PCT is NULL, then just SALARY is returned.

The NVL function allows you to perform some value substitution for NULLs. The NVL2
function, on the other hand, allows you to implement an IF…THEN…ELSE construct based
on the nullity of data. Both are useful tools to deal with NULL values.

Be prepared for a possible exam question that tests your knowledge of
when to use an NVL function in a calculation. Such a question probably
won’t mention NVL and may not look like it is testing your knowledge
of NULLs. If sample data is given as an exhibit, be sure to look for data
columns with NULL values and whether they are used in the SQL code
presented to you.

COALESCE
COALESCE is a generalization of the NVL function. COALESCE(exp_list) takes more than
one argument, where exp_list is a list of arguments separated by commas. This function
returns the first non-NULL value in exp_list. If all expressions in exp_list are NULL, then
NULL is returned. Each expression in exp_list should be the same datatype, or else Oracle
tries to convert them implicitly.

For example, COALESCE(x1, x2, x3) would be evaluated as the following:

If x1 is not NULL, then
 Return x1
Else
 	 Check x2
 If x2 is not NULL, then
 Return x2
 	 Else
 Check x3
 	 If x3 is not NULL, then
 	 Return x3
 Else
 Return NULL
 End If
 End If
End If

Consider the following example. The objective is to find the total salary based on
COMMISSION_PCT. If COMMISSION_PCT is not NULL, calculate SALARY using COMMISSION_PCT.

94	 Chapter 3  ■  Using Single-Row Functions

If COMMISSION_PCT is NULL, then give $100 as commission. If SALARY is not defined (NULL)
for an employee, give the minimum salary of $900.

SELECT last_name, salary, commission_pct AS comm,
 COALESCE(salary+salary*commission_pct,
 salary+100, 900) compensation
FROM employees
WHERE last_name like 'T%';

LAST_NAME SALARY COMM COMPENSATION
------------------------- ---------- ---------- ------------
Taylor 8600 .2 10320
Taylor 3200 3300
Tobias 900
Tucker 10000 .3 13000
Tuvault 7000 .15 8050

As you can see in the example, using the COALESCE function helps you avoid writing several
IF…THEN conditions, as well as avoid writing several nested NVL functions. You could write the
same SQL using the CASE statement you learned about in Chapter 2 as follows:

SELECT last_name, salary, commission_pct AS comm,
 (CASE WHEN salary IS NULL THEN 900
 WHEN commission_pct IS NOT NULL
 THEN salary+salary*commission_pct
 WHEN commission_pct IS NULL THEN salary+100
 ELSE 0 END) AS compensation
 FROM employees
 WHERE last_name like 'T%';

LAST_NAME SALARY COMM COMPENSATION
------------------------- ---------- ---------- ------------
Tayler 8600 .2 10320
Tayler 3200 3300
Tobias 900
Tucker 10000 .3 13000
Tuvault 7000 .15 8050

Try using WHEN salary IS NULL as the third condition in the CASE statement (instead of
the first condition), and find out whether you see any difference in the result.

	 Using Single-Row Character Functions	 95

Using Single-Row Character Functions
Single-row character functions operate on character data. Most have one or more character
arguments, and most return character values. Character functions take the character input
value and return a character or numeric value. If the input to the function is a literal, be
sure to enclose it in single quotes. The exam focuses on many commonly used character
functions such as SUBSTR, INSTR, and LENGTH. When reading about these functions, pay par-
ticular attention to the commonly used functions. Even experienced programmers get con-
fused with the REPLACE and TRANSLATE functions. In the following sections, we will review
the single-row character functions in detail.

Character Function Overview
Table 3.1 summarizes the single-row character functions. We will cover each of these
functions in the “Character Function Descriptions” section.

Tabl e 3 .1    Character Function Summary

Function Description

ASCII Returns the ASCII decimal equivalent of a character

CHR Returns the character given the decimal equivalent

CONCAT Concatenates two strings; same as the operator ||

INITCAP Returns the string with the first letter of each word in uppercase

INSTR Finds the numeric starting position of a string within a string

INSTRB Same as INSTR but counts bytes instead of characters

LENGTH Returns the length of a string in characters

LENGTHB Returns the length of a string in bytes

LOWER Converts a string to all lowercase

LPAD Left-fills a string to a set length using a specified character

LTRIM Strips leading characters from a string

REPLACE Performs substring search and replace

96	 Chapter 3  ■  Using Single-Row Functions

Function Description

RPAD Right-fills a string to a set length using a specified character

RTRIM Strips trailing characters from a string

SOUNDEX Returns a phonetic representation of a string

SUBSTR Returns a section of the specified string, specified by numeric
character positions

SUBSTRB Returns a section of the specified string, specified by numeric
byte positions

TRANSLATE Performs character search and replace

TRIM Strips leading, trailing, or both leading and trailing characters
from a string

UPPER Converts a string to all uppercase

The functions ASCII, INSTR, LENGTH, and REGEXP_INSTR return number values, although
they take character datatype as the input.

Character Function Descriptions
Over the years, Oracle has added several functions to its library to make the lives of
developers easy so that they do not have to write built-in functions. Oracle has a func-
tion for most of the day-to-day programming needs. Before you write your own custom-
developed piece of code, it is always a good idea to scan the Oracle documentation on
built-in functions.

The character functions in the following sections are arranged in alphabetical order,
with descriptions and examples of each one.

ASCII
ASCII(c1) takes a single argument, where c1 is a character string. This function returns
the ASCII decimal equivalent of the first character in c1.

See also CHR() for the inverse operation.

Tabl e 3 .1    Character Function Summary  (continued)

	 Using Single-Row Character Functions	 97

SELECT ASCII('A') Big_A, ASCII('z') Little_Z, ASCII('AMER')
FROM dual;

 BIG_A LITTLE_Z ASCII('AMER')
---------- ---------- -------------
 65 122 65

CHR
CHR(i [USING NCHAR_CS]) takes a single argument, where i is an integer. This function
returns the character equivalent of the decimal (binary) representation of the character. If
the optional USING NCHAR_CS is included, the character from the national character set is
returned. The default behavior is to return the character from the database character set.

SELECT CHR(65), CHR(122), CHR(223)
FROM dual;

CHAR65 CHAR122 CHAR233
------ ------- -------
A z ß

CONCAT
CONCAT(c1,c2) takes two arguments, where c1 and c2 are both character strings. This func-
tion returns c2 appended to c1. If c1 is NULL, then c2 is returned. If c2 is NULL, then c1 is
returned. If both c1 and c2 are NULL, then NULL is returned. CONCAT returns the same results
as using the concatenation operator: c1||c2. In the following example, notice the use of the
nested function—a function inside a function—as an argument:

SELECT CONCAT(CONCAT(first_name, ' '), last_name) employee_name,
 first_name || ' ' || last_name AS alternate_method
FROM employees
WHERE department_id = 30;

EMPLOYEE_NAME ALTERNATE_METHOD
------------------------- ------------------
Den Raphaely Den Raphaely
Alexander Khoo Alexander Khoo
Shelli Baida Shelli Baida
Sigal Tobias Sigal Tobias
Guy Himuro Guy Himuro
Karen Colmenares Karen Colmenares

98	 Chapter 3  ■  Using Single-Row Functions

INITCAP
INITCAP(c1) takes a single argument, where c1 is a character string. This function returns
c1 with the first character of each word in uppercase and all others in lowercase. Words are
delimited by white space or characters that are not alphanumeric.

SELECT data_value, INITCAP(data_value) initcap_example
FROM sample_data;

DATA_VALUE INITCAP_EXAMPLE
-------------------- --------------------
THE three muskETeers The Three Musketeers
ali and*41*thieves Ali And*41*Thieves
mississippi Mississippi
mister INDIA Mister India

INSTR
INSTR(c1,c2[,i[,j]]) takes four arguments, where c1 and c2 are character strings and i
and j are integers. This function returns the numeric character position in c1 where the j
occurrence of c2 is found. The search begins at the i character position in c1. INSTR returns
a 0 when the requested string is not found. If i is negative, the search is performed backward,
from right to left, but the position is still counted from left to right. Both i and j default to 1,
and j cannot be negative.

The following example finds the first occurrence of i in the string starting from the
fourth position of the string:

SELECT data_value, INSTR(data_value,'i',4,1) instr_example
FROM sample_data;

DATA_VALUE INSTR_EXAMPLE Comment
-------------------- ------------- ---
THE three muskETeers 0 There is no "i" in the data value; so "0"
ali and*41*thieves 14 The first "i" is skipped, since we start
 at the 4th position. So the "i" in the 14th
 position is picked
mississippi 5 the first "i" in 2nd position is skipped
mister INDIA 0 INDIA has an "I" (upper case); so no
 match for "i"

Here is another example using a negative argument for the beginning character position.
The search for the is string will start at the fourth position from the end and move to the left.

SELECT data_value, INSTR(data_value,'is',-4,1) instr_example
FROM sample_data;

	 Using Single-Row Character Functions	 99

DATA_VALUE INSTR_EXAMPLE
-------------------- -------------
THE three muskETeers 0
ali and*41*thieves 0
mississippi 5
mister INDIA 2

INSTRB
INSTRB(c1,c2[,i[,j]]) is the same as INSTR(), except it returns bytes instead of characters.
For single-byte character sets, INSTRB() is equivalent to INSTR().

LENGTH
LENGTH(c) takes a single argument, where c is a character string. This function returns the
numeric length in characters of c. If c is NULL, a NULL is returned.

SELECT data_value, LENGTH(data_value) length_example
FROM sample_data;

DATA_VALUE LENGTH_EXAMPLE
-------------------- --------------
THE three muskETeers 20
ali and*41*thieves 18
mississippi 11
mister INDIA 12

LENGTHB
LENGTHB(c) is the same as LENGTH(), except it returns bytes instead of characters. For single-
byte character sets, LENGTHB() is equivalent to LENGTH().

LOWER
LOWER(c) takes a single argument, where c is a character string. This function returns the
character string c with all characters in lowercase.

See also UPPER for the inverse operation.

SELECT data_value, LOWER(data_value) lower_example
FROM sample_data;

100	 Chapter 3  ■  Using Single-Row Functions

DATA_VALUE LOWER_EXAMPLE
-------------------- --------------------
THE three muskETeers the three musketeers
ali and*41*thieves ali and*41*thieves
mississippi mississippi
mister INDIA mister india

LPAD
LPAD(c1, i [,c2]) takes three arguments, where c1 and c2 are character strings and i is
an integer. This function returns the character string c1 expanded in length to i characters,
using c2 to fill in space as needed on the left side of c1. If c1 is more than i characters, it is
truncated to i characters. c2 defaults to a single space.

See also RPAD.

The following example adds * to the SALARY column toward the left side. Because it does
not specify a fill-in character when LPAD is applied to last_name, Oracle uses the default
space as the fill-in character.

SELECT LPAD(last_name,10) lpad_lname,
 LPAD(salary,8,'*') lpad_salary
FROM employees
WHERE last_name like 'J%';

LPAD_LNAME LPAD_SAL
---------- --------
 Johnson ****6200
 Jones ****2800

LTRIM
LTRIM(c1 [,c2]) takes two arguments, where c1 and c2 are character strings. This func-
tion returns c1 without any leading characters that appear in c2. If no c2 characters are
leading characters in c1, then c1 is returned unchanged. c2 defaults to a single space.

See also RTRIM and TRIM.

	 Using Single-Row Character Functions	 101

SELECT LTRIM('Mississippi','Mis') test1
 ,LTRIM('Rpadded ') test2
 ,LTRIM(' Lpadded') test3
 ,LTRIM(' Lpadded', 'Z') test4
FROM dual;

TES TEST2 TEST3 TEST4
--- ----------------- ------- ------------
ppi Rpadded Lpadded Lpadded

In the previous example, all occurrences of the trimmed characters M, i, and s are
trimmed from the input string Mississippi, beginning on the left (with M) and continuing
until the first character that is not an M, i, or s is encountered. Note that the trailing i is not
trimmed; only the leading characters are removed. In TEST4, there is no occurrence of Z, so
the input string is returned unchanged.

REPLACE
REPLACE(c1, c2 [,c3]) takes three arguments, where c1, c2, and c3 are character strings.
This function returns c1 with all occurrences of c2 replaced with c3. c3 defaults to NULL. If
c3 is NULL, all occurrences of c2 are removed. If c2 is NULL, then c1 is returned unchanged.
If c1 is NULL, then NULL is returned.

SELECT REPLACE('uptown','up','down') FROM dual;

REPLACE(

downtown

This function can come in handy when you need to perform some dynamic substitu-
tions. For example, suppose you have a number of indexes that were created in the _DATA
tablespace instead of in the _INDX tablespace:

SELECT index_name, tablespace_name
FROM user_indexes
WHERE tablespace_name like '%DATA%';

INDEX_NAME TABLESPACE_NAME
---------------- ----------------
PK_DEPT HR_DATA
PK_PO_MASTER PO_DATA

You can generate the Data Definition Language (DDL) to rebuild these misplaced indexes
in the correct location. In this scenario, you know your tablespace naming convention has

102	 Chapter 3  ■  Using Single-Row Functions

an INDX tablespace for every DATA tablespace. You use the REPLACE function to generate the
new tablespace name, replacing DATA with INDX. So, the HR index is rebuilt in the HR_INDX
tablespace, and the PO index is rebuilt in the PO_INDX tablespace.

SELECT 'ALTER INDEX '||index_name||
 ' rebuild tablespace '||
REPLACE(tablespace_name, 'DATA', 'INDX')|| '; ' DDL
FROM user_indexes
WHERE tablespace_name LIKE '%DATA%';

DDL

ALTER INDEX PK_DEPT rebuild tablespace HR_INDX;
ALTER INDEX PK_PO_MASTER rebuild tablespace PO_INDX;

RPAD
RPAD(c1, i [, c2]) takes three arguments, where c1 and c2 are character strings and i is
an integer. This function returns the character string c1 expanded in length to i characters,
using c2 to fill in space as needed on the right side of c1. If c1 is more than i characters, it
is truncated to i characters. c2 defaults to a single space.

See also LPAD.

SELECT RPAD(first_name,15,'.') rpad_fname, lpad(job_id,12,'.') lpad_jid
FROM employees
WHERE first_name like 'B%';

RPAD_FNAME LPAD_JID
--------------- ------------
Bruce..........IT_PROG
Britney........SH_CLERK

RTRIM
RTRIM(c1 [,c2]) takes two arguments, where c1 and c2 are character strings. This func-
tion returns c1 without any trailing characters that appear in c2. If no c2 characters are
trailing characters in c1, then c1 is returned unchanged. c2 defaults to a single space.

	 Using Single-Row Character Functions	 103

See also LTRIM and TRIM.

SELECT RTRIM('Mississippi','ip') test1
 ,RTRIM('Rpadded ') test2
 ,RTRIM('Rpadded ', 'Z') test3
 ,RTRIM(' Lpadded') test4
FROM dual;

TEST1 TEST2 TEST3 TEST4
------- ------- ----------- ----------------
Mississ Rpadded Rpadded Lpadded

SOUNDEX
SOUNDEX(c1) takes a single argument, where c1 is a character string. This function returns the
Soundex phonetic representation of c1. The SOUNDEX function is usually used to locate names
that sound alike. The example returns the records with first names that sound like “Stevan.”

SELECT first_name, last_name
FROM employees
WHERE SOUNDEX(first_name) = SOUNDEX('Stevan');

FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
Steven Markle
Stephen Stiles

SUBSTR
SUBSTR(c1, x [, y]) takes three arguments, where c1 is a character string and both x and
y are integers. This function returns the portion of c1 that is y characters long, beginning
at position x. If x is negative, the position is counted backward (that is, right to left). This
function returns NULL if y is 0 or negative. y defaults to the remainder of string c1.

SELECT SUBSTR('The Three Musketeers',1,3) Part1
 ,SUBSTR('The Three Musketeers',5,5) Part2
 ,SUBSTR('The Three Musketeers',11) Part3
 ,SUBSTR('The Three Musketeers',-5) Part4
FROM dual;

104	 Chapter 3  ■  Using Single-Row Functions

PAR PART2 PART3 PART4
--- ----- ---------- -----
The Three Musketeers teers

Parsing the Filename from the Whole Path

Let’s look at a real example from the life of a DBA. Suppose you want to extract only the
filename from dba_data_files without the path name; you could use the following SQL
code. Here the INSTR function is nested inside a SUBSTR function. Single-row functions can
be nested to any level. When functions are nested, the innermost function is evaluated
first. The INSTR function is used to find the character position where the last backslash (\)
appears in the filename string (looking for the first occurrence from the end). This position
is passed into the SUBSTR function as the start position.

SELECT file_name,
 SUBSTR(file_name, INSTR(file_name,'\', -1,1)+1) name
FROM dba_data_files;

FILE_NAME NAME
-- -------------
C:\ORACLE\ORADATA\W11GR1\USERS01.DBF USERS01.DBF
C:\ORACLE\ORADATA\W11GR1\UNDOTBS01.DBF UNDOTBS01.DBF
C:\ORACLE\ORADATA\W11GR1\SYSAUX01.DBF SYSAUX01.DBF
C:\ORACLE\ORADATA\W11GR1\SYSTEM01.DBF SYSTEM01.DBF
C:\ORACLE\ORADATA\W11GR1\EXAMPLE01.DBF EXAMPLE01.DBF

To perform the same operation on Unix or Linux databases, replace the backslash (\) in
the INSTR function with a regular slash (/), because a regular slash (/) is used on Linux/
Unix to separate directories.

Let’s review another example using the Linux or Unix platform. Suppose you want to
find all the file systems (mount points) used by your database; you could use the follow-
ing SQL:

SELECT DISTINCT
 SUBSTR(file_name, 1, INSTR(file_name,'/', 1,2)-1) fs_name
FROM dba_data_files;

	 Using Single-Row Character Functions	 105

FS_NAME

/u01
/u05
/ora_temp
/ora_undo

In this example, you started looking for the second occurrence of / using the INSTR func-
tion and used SUBSTR to extract only the characters from 1 through the location before
the second occurrence of / in the filename (hence the –1).

SUBSTRB
SUBSTRB(c1, i[, j]) takes three arguments, where c1 is a character string and both i
and j are integers. This function is the same as SUBSTR, except i and j are counted in bytes
instead of characters. For single-byte character sets, they are equivalent.

TRANSLATE
TRANSLATE(c1, c2 ,c3) takes three arguments, where c1, c2, and c3 are character strings.
This function returns c1 with all occurrences of characters in c2 replaced with the position-
ally corresponding characters in c3. A NULL is returned if any of c1, c2, or c3 is NULL. If c3
has fewer characters than c2, the unmatched characters in c2 are removed from c1. If c2 has
fewer characters than c3, the unmatched characters in c3 are ignored. TRANSLATE is similar
to the REPLACE function. REPLACE substitutes a single string from another string, whereas
TRANSLATE makes several single-character one-to-one substitutions.

The following example substitutes the asterisk (*) for a, pound sign (#) for e, and dollar
sign ($) for i; and it removes o and u from the last_name column:

SELECT last_name, TRANSLATE(last_name, 'aeiou', '*#$') no_vowel
FROM employees
WHERE last_name like 'S%';

LAST_NAME NO_VOWEL
------------------------- --------------
Sarchand S*rch*nd
Sciarra Sc$*rr*
Seo S#
Smith Sm$th
Sullivan Sll$v*n
Sully Slly

106	 Chapter 3  ■  Using Single-Row Functions

Here is another example where the case is reversed; uppercase letters are converted to
lowercase, and lowercase letters are converted to uppercase:

SELECT data_value, TRANSLATE(data_value,
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz')
FROM sample_data;

DATA_VALUE TRANSLATE(DATA_VALUE
-------------------- --------------------
THE three muskETeers the THREE MUSKetEERS
ali and*41*thieves ALI AND*41*THIEVES
mississippi MISSISSIPPI
mister INDIA MISTER india

TRIM
TRIM([[c1] c2 FROM] c3) can take three arguments, where c2 and c3 are character
strings. If present, c1 can be one of the following literals: LEADING, TRAILING, or BOTH. This
function returns c3 with all c1 (leading, trailing, or both) occurrences of characters in c2
removed. A NULL is returned if any of c1, c2, or c3 is NULL. c1 defaults to BOTH. c2 defaults
to a space character. c3 is the only mandatory argument. If c2 or c3 is NULL, the function
returns a NULL. It is equivalent to applying both LTRIM and RTRIM on the string c3.

SELECT TRIM(' fully padded ') test1
 ,TRIM(' left padded') test2
 ,TRIM('right padded ') test3
FROM dual;

TEST1 TEST2 TEST3
------------ ----------- ------------
fully padded left padded right padded

Another example of using the TRIM function is shown here. It removes (trims) character
“a” from the leading position and the trailing position. For the names Alana and Alyssa,
both the leading and the trailing “a” are removed; notice for the name Aalberto, both
occurrences of the leading “a” are removed.

SELECT first_name, TRIM('a' FROM LOWER(first_name)) A_TRIMMED
FROM employees
WHERE first_name like 'A%';

	 Using Single-Row Character Functions	 107

FIRST_NAME A_TRIMMED
-------------------- --------------------
Amit mit
Alexis lexis
Anthony nthony
Aalberto lberto
Adam dam
Alexander lexander
Alyssa lyss
Alexander lexander
Allan llan
Alana lan

UPPER
UPPER(c) takes a single argument, where c is a character string. This function returns
the character string c with all characters in uppercase. UPPER frequently appears in WHERE
clauses when you’re not sure of the case of the data in the table.

See also LOWER.

SELECT first_name, last_name
FROM employees
WHERE UPPER(first_name) = 'JOHN';

FIRST_NAME LAST_NAME
-------------------- -------------------------
John Chen
John Russell
John Seo

SELECT data_value, UPPER(data_value) upper_data
FROM sample_data;

DATA_VALUE UPPER_DATA
-------------------- --------------------
THE three muskETeers THE THREE MUSKETEERS
ali and*41*thieves ALI AND*41*THIEVES

108	 Chapter 3  ■  Using Single-Row Functions

mississippi MISSISSIPPI
mister INDIA MISTER INDIA

Using Single-Row Numeric Functions
When you think of numeric functions, the tasks that come to mind are finding a total, finding
the average, counting the number of records, and so on. These numeric functions are group
functions that operate on one or more rows. We’ll discuss group functions in Chapter 4.

In the following sections, we will review the numeric functions used on single rows.
Single-row numeric functions operate on numeric data and perform some kind of math-
ematical or arithmetic manipulation. When using a literal in a numeric function, do not
enclose it in single quotes. Literals in single quotes are treated as a character datatype.

Numeric Function Overview
Table 3.2 summarizes the single-row numeric functions in Oracle Database 12c. We will
cover each of these functions in the “Numeric Function Descriptions” section.

Tabl e 3 . 2    Numeric Function Summary

Function Description

ABS Returns the absolute value

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

ATAN2 Returns the arc tangent; takes two inputs

BITAND Returns the result of a bitwise AND on two inputs

CEIL Returns the next higher integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Returns the base of natural logarithms raised to a power

	 Using Single-Row Numeric Functions	 109

Function Description

FLOOR Returns the next smaller integer

LN Returns the natural logarithm

LOG Returns the logarithm

MOD Returns the modulo (remainder) of a division operation

NANVL Returns an alternative number if the value is Not a Number (NaN) for
BINARY_FLOAT and BINARY_DOUBLE numbers

POWER Returns a number raised to an arbitrary power

REMAINDER Returns the remainder in a division operation

ROUND Rounds a number

SIGN Returns an indicator of sign: negative, positive, or zero

SIN Returns the sine

SINH Returns the hyperbolic sine

SQRT Returns the square root of a number

TAN Returns the tangent

TANH Returns the hyperbolic tangent

TRUNC Truncates a number

WIDTH_BUCKET Creates equal-width histograms

Numeric Function Descriptions
Numeric functions have numeric arguments and return numeric values. The trigonometric
functions all operate on radians, not degrees.

The numeric functions are arranged in alphabetical order, with descriptions and examples
of each one.

SIGN, ROUND, and TRUNC are most commonly used numeric functions—pay particular
attention to them. FLOOR, CEIL, MOD, and REMAINDER are also important functions that can
appear on the test. TRUNC and ROUND functions can take numeric input or datetime input.

110	 Chapter 3  ■  Using Single-Row Functions

These two functions are discussed in the “Using Single-Row Date Functions” section to
illustrate their behavior with a datetime datatype input.

ABS
ABS(n) takes a single argument, where n is a numeric datatype (NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE). This function returns the absolute value of n.

SELECT ABS(-52) negative, ABS(52) positive
FROM dual;

 NEGATIVE POSITIVE
---------- ----------
 52 52

ACOS
ACOS(n) takes a single argument, where n is a numeric datatype between –1 and 1. This
function returns the arc cosine of n expressed in radians, accurate to 30 digits of precision.

SELECT ACOS(-1) PI, ACOS(0) ACOSZERO,
 ACOS(.045) ACOS045, ACOS(1) ZERO
FROM dual;

 PI ACOSZERO ACOS045 ZERO
---------- ---------- ---------- ----------
3.14159265 1.57079633 1.52578113 0

ASIN
ASIN(n) takes a single argument, where n is a numeric datatype between –1 and 1. This
function returns the arc sine of n expressed in radians, accurate to 30 digits of precision.

SELECT ASIN(1) high, ASIN(0) middle, ASIN(-1) low
FROM dual;

 HIGH MIDDLE LOW
---------- ---------- ----------
1.57079633 0 -1.5707963

	 Using Single-Row Numeric Functions	 111

ATAN
ATAN(n) takes a single argument, where n is a numeric datatype. This function returns the
arc tangent of n expressed in radians, accurate to 30 digits of precision.

SELECT ATAN(9E99) high, ATAN(0) middle, ATAN(-9E99) low
FROM dual;

 HIGH MIDDLE LOW
---------- ---------- ----------
1.57079633 0 -1.5707963

ATAN2
ATAN2(n1, n2) takes two arguments, where n1 and n2 are numbers. This function returns the
arc tangent of n1 and n2 expressed in radians, accurate to 30 digits of precision. ATAN2(n1,n2)
is equivalent to ATAN(n1/n2) if n1 and n2 are positive integers.

SELECT ATAN2(9E99,1) high, ATAN2(0,3.1415) middle, ATAN2(-9E99,1) low
FROM dual;

 HIGH MIDDLE LOW
---------- ---------- ----------
1.57079633 0 -1.5707963

BITAND
BITAND(n1, n2) takes two arguments, where n1 and n2 are NUMBER datatypes. This func-
tion performs a bitwise AND operation on the two input values and returns the results, also
integers. It is used to examine bit fields.

Here are two examples of BITAND. The first one performs a bitwise AND operation on 6
(binary 0110) and 3 (binary 0011). The result is 2 (binary 0010). Similarly, the bitwise AND
between 8 (binary 1000) and 2 (binary 0010) is 0 (0000).

SELECT BITAND(6,3) T1, BITAND(8,2) T2
FROM dual;

 T1 T2
---------- ----------
 2 0

112	 Chapter 3  ■  Using Single-Row Functions

CEIL
CEIL(n) takes a single argument, where n is a numeric datatype. This function returns the
smallest integer that is greater than or equal to n. CEIL rounds up to a whole number.

See also FLOOR.

SELECT CEIL(9.8), CEIL(-32.85), CEIL(0), CEIL(5)
FROM dual;

CEIL(9.8) CEIL(-32.85) CEIL(0) CEIL(5)
---------- ------------ ---------- ----------
 10 -32 0 5

COS
COS(n) takes a single argument, where n is a numeric datatype in radians. This function
returns the cosine of n, accurate to 36 digits of precision.

SELECT COS(-3.14159) FROM dual;

COS(-3.14159)

 -1

COSH
COSH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic cosine of n, accurate to 36 digits of precision.

SELECT COSH(1.4) FROM dual;

 COSH(1.4)

2.15089847

EXP
EXP(n) takes a single argument, where n is a numeric datatype. This function returns e (the
base of natural logarithms) raised to the n power, accurate to 36 digits of precision.

SELECT EXP(1) "e" FROM dual;

	 Using Single-Row Numeric Functions	 113

 e

2.71828183

FLOOR
FLOOR(n) takes a single argument, where n is a numeric datatype. This function returns the
largest integer that is less than or equal to n. FLOOR rounds down to a whole number.

See also CEIL.

SELECT FLOOR(9.8), FLOOR(-32.85), FLOOR(137)
FROM dual;

FLOOR(9.8) FLOOR(-32.85) FLOOR(137)
---------- ------------- ----------
 9 -33 137

LN
LN(n) takes a single argument, where n is a numeric datatype greater than 0. This function
returns the natural logarithm of n, accurate to 36 digits of precision.

SELECT LN(2.7) FROM dual;

 LN(2.7)

.993251773

LOG
LOG(n1, n2) takes two arguments, where n1 and n2 are numeric datatypes. This function
returns the logarithm base n1 of n2, accurate to 36 digits of precision.

SELECT LOG(8,64), LOG(3,27), LOG(2,1024), LOG(2,8)
FROM dual;

 LOG(8,64) LOG(3,27) LOG(2,1024) LOG(2,8)
---------- ---------- ----------- ----------
 2 3 10 3

114	 Chapter 3  ■  Using Single-Row Functions

MOD
MOD(n1, n2) takes two arguments, where n1 and n2 are any numeric datatype. This func-
tion returns n1 modulo n2, or the remainder of n1 divided by n2. If n1 is negative, the result
is negative. The sign of n2 has no effect on the result. If n2 is zero, the result is n1.

See also REMAINDER.

SELECT MOD(14,5), MOD(8,2.5), MOD(-64,7), MOD(12,0)
FROM dual;

 MOD(14,5) MOD(8,2.5) MOD(-64,7) MOD(12,0)
---------- ---------- ---------- ---------
 4 .5 -1 12

NANVL
This function is used with BINARY_FLOAT and BINARY_DOUBLE datatype numbers to return
an alternative value if the input is NaN.

The following example defines the NULL display as ? to show NULL value. The TO_BINARY_
FLOAT function (discussed later in the chapter) is used to convert input to a BINARY_FLOAT
datatype number.

SET NULL ?
SELECT NANVL(TO_BINARY_FLOAT('NaN'), 0) T1,
 NANVL(TO_BINARY_FLOAT('NaN'), NULL) T2
FROM dual;

 T1 T2
---------- ----------
 0 ?

POWER
POWER(n1, n2) takes two arguments, where n1 and n2 are numeric datatypes. This function
returns n1 to the n2 power (n1n2).

SELECT POWER(2,10), POWER(3,3), POWER(5,3), POWER(2,-3)
FROM dual;

	 Using Single-Row Numeric Functions	 115

POWER(2,10) POWER(3,3) POWER(5,3) POWER(2,-3)
----------- ---------- ---------- -----------
 1024 27 125 .125

REMAINDER
REMAINDER(n1, n2) takes two arguments, where n1 and n2 are any numeric datatype. This
function returns the remainder of n1 divided by n2. If n1 is negative, the result is negative.
The sign of n2 has no effect on the result. If n2 is zero and the datatype of n1 is NUMBER, an
error is returned; if the datatype of n1 is BINARY_FLOAT or BINARY_DOUBLE, NaN is returned.

See also MOD.

SELECT REMAINDER(13,5), REMAINDER(12,5), REMAINDER(12.5, 5)
FROM dual;

REMAINDER(13,5) REMAINDER(12,5) REMAINDER(12.5,5)
--------------- --------------- -----------------
 -2 2 2.5

The difference between MOD and REMAINDER is that MOD uses the FLOOR function, whereas
REMAINDER uses the ROUND function in the formula. If you apply the MOD function to the pre-
vious example, the results are the same except for the first column:

SELECT MOD(13,5), MOD(12,5), MOD(12.5, 5)
FROM dual;

 MOD(13,5) MOD(12,5) MOD(12.5,5)
---------- ---------- -----------
 3 2 2.5

Here is another example of using REMAINDER with a BINARY_FLOAT number, having n2
as zero:

SELECT REMAINDER(TO_BINARY_FLOAT('13.0'), 0) RBF
from dual;

 RBF

 Nan

116	 Chapter 3  ■  Using Single-Row Functions

ROUND
ROUND(n1 [,n2]) takes two arguments, where n1 is a numeric datatype and n2 is an inte-
ger. This function returns n1 rounded to n2 digits of precision to the right of the decimal. If
n2 is negative, n1 is rounded to the left of the decimal. If n2 is omitted, the default is zero.

This function is similar to TRUNC.

SELECT ROUND(123.489), ROUND(123.489, 2),
 ROUND(123.489, -2), ROUND(1275, -2)
FROM dual;

ROUND(123.489) ROUND(123.489,2) ROUND(123.489,-2) ROUND(1275,-2)
-------------- ---------------- ----------------- --------------
 123 123.49 100 1300

SIGN
SIGN(n) takes a single argument, where n is a numeric datatype. This function returns –1
if n is negative, 1 if n is positive, and 0 if n is 0.

SELECT SIGN(-2.3), SIGN(0), SIGN(47)
FROM dual;

SIGN(-2.3) SIGN(0) SIGN(47)
---------- ---------- ----------
 -1 0 1

SIN
SIN(n) takes a single argument, where n is a number in radians. This function returns the
sine of n, accurate to 36 digits of precision.

SELECT SIN(1.57079) FROM dual;

SIN(1.57079)

 1

	 Using Single-Row Numeric Functions	 117

SINH
SINH(n) takes a single argument, where n is a number. This function returns the hyperbolic
sine of n, accurate to 36 digits of precision.

SELECT SINH(1) FROM dual;

 SINH(1)

1.17520119

SQRT
SQRT(n) takes a single argument, where n is a numeric datatype. This function returns the
square root of n.

SELECT SQRT(64), SQRT(49), SQRT(5)
FROM dual;

 SQRT(64) SQRT(49) SQRT(5)
---------- ---------- ----------
 8 7 2.23606798

TAN
TAN(n) takes a single argument, where n is a numeric datatype in radians. This function
returns the tangent of n, accurate to 36 digits of precision.

SELECT TAN(1.57079633/2) "45_degrees"
FROM dual;

45_Degrees

 1

TANH
TANH(n) takes a single argument, where n is a numeric datatype. This function returns the
hyperbolic tangent of n, accurate to 36 digits of precision.

SELECT TANH(ACOS(-1)) hyp_tan_of_pi
FROM dual;

118	 Chapter 3  ■  Using Single-Row Functions

HYP_TAN_OF_PI

 .996272076

TRUNC
TRUNC(n1 [,n2]) takes two arguments, where n1 is a numeric datatype and n2 is an inte-
ger. This function returns n1 truncated to n2 digits of precision to the right of the decimal.
If n2 is negative, n1 is truncated to the left of the decimal.

See also ROUND.

SELECT TRUNC(123.489), TRUNC(123.489, 2),
 TRUNC(123.489, -2), TRUNC(1275, -2)
FROM dual;

TRUNC(123.489) TRUNC(123.489,2) TRUNC(123.489,-2) TRUNC(1275,-2)
-------------- ---------------- ----------------- --------------
 123 123.48 100 1200

WIDTH_BUCKET
You can use WIDTH_BUCKET(n1, min_val, max_val, buckets) to build histograms of equal
width. The first argument, n1, can be an expression of a numeric or datetime datatype. The
second and third arguments, min_val and max_val, indicate the end points for the histo-
gram’s range. The fourth argument, buckets, indicates the number of buckets.

The following example divides the salary into a 10-bucket histogram within the range
2,500 to 11,000. If the salary falls below 2,500, it will be in the underflow bucket (buckets 0),
and if the salary exceeds 11,000, it will be in the overflow bucket (buckets + 1).

SELECT first_name, salary,
 WIDTH_BUCKET(salary, 2500, 11000, 10) hist
FROM employees
WHERE first_name like 'J%';

FIRST_NAME SALARY HIST
-------------------- ---------- ----------
Jennifer 4400 3
John 8200 7
Jose Manuel 7800 7
Julia 3200 1

	 Using Single-Row Date Functions	 119

James 2400 0
James 2500 1
Jason 3300 1
John 2700 1
Joshua 2500 1
John 14000 11
Janette 10000 9
Jonathon 8600 8
Jack 8400 7
Jean 3100 1
Julia 3400 2
Jennifer 3600 2

Using Single-Row Date Functions
Single-row date functions operate on datetime datatypes. A datetime is a coined word
to identify datatypes used to define dates and times. The datetime datatypes in Oracle
Database 12c are DATE, TIMESTAMP, and INTERVAL. Most have one or more date arguments,
and most return a datetime value. Date data is stored internally as numbers. The whole-
number portion is the number of days since January 1, 4712 b.c., and the decimal portion
is the fraction of a day (for example, 0.5=12 hours).

Date Format Conversion
National-language support (NLS) parameters and arguments allow you to internationalize
your Oracle database system. NLS internationalizations include date representations, charac-
ter sets, alphabets, and alphabetical ordering.

Oracle will implicitly or automatically convert its numeric date data to and from char-
acter data using the format model specified with NLS_DATE_FORMAT. The default format is
DD-MON-RR (see Table 3.7). You can change this date format model for each session with
the ALTER SESSION SET NLS_DATE_FORMAT command. Here’s an example:

SQL> SELECT SYSDATE FROM dual;

SYSDATE

13-JUL-13

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD-Mon-YYYY HH24:MI:SS';

120	 Chapter 3  ■  Using Single-Row Functions

Session altered.

SQL> SELECT SYSDATE FROM dual;

SYSDATE

13-Jul-2013 16:01:22

This ALTER SESSION command will set the implicit conversion mechanism to display
date data in the format specified, such as 12-Dec-2002 15:45:32. This conversion works
both ways. If the character string '30-Nov-2002 20:30:00' were inserted, updated, or
assigned to a date column or variable, the correct date would be entered.

If the format model were DD/MM/YY or MM/DD/YY, there could be some ambiguity in the
conversion of some dates, such as 12 April 2000 (04/12/00 or 12/04/00). To avoid problems
with implicit conversions, Oracle provides explicit date/character-conversion functions:
TO_DATE, TO_CHAR, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_DSINTERVAL, and TO_YMINTERVAL.
These explicit conversion functions are covered in the “Using Single-Row Conversion
Functions” section later in this chapter.

Date Function Overview
Table 3.3 summarizes the single-row date functions. We will cover each of these functions
in the “Date Function Descriptions” section.

Tabl e 3 . 3    Date Function Summary

Function Description

ADD_MONTHS Adds a number of months to a date

CURRENT_DATE Returns the current date and time in a DATE datatype

CURRENT_TIMESTAMP Returns the current date and time in a TIMESTAMP datatype

DBTIMEZONE Returns the database’s time zone

EXTRACT Returns a component of a date/time expression

FROM_TZ Returns a timestamp with time zone for a given timestamp

LAST_DAY Returns the last day of a month

LOCALTIMESTAMP Returns the current date and time in the session time zone

	 Using Single-Row Date Functions	 121

Function Description

MONTHS_BETWEEN Returns the number of months between two dates

NEW_TIME Returns the date/time in a different time zone

NEXT_DAY Returns the next day of a week following a given date

ROUND Rounds a date/time

SESSIONTIMEZONE Returns the time zone for the current session

SYS_EXTRACT_UTC Returns the UTC (GMT) for a timestamp with a time zone

SYSDATE Returns the current date and time in the DATE datatype

SYSTIMESTAMP Returns the current timestamp in the TIMESTAMP datatype

TRUNC Truncates a date to a given granularity

TZ_OFFSET Returns the offset from UTC for a time zone name

Date Function Descriptions
The date functions are arranged in alphabetical order except the first three, with descrip-
tions and examples of each one. SYSDATE, SYSTIMESTAMP, and LOCALTIMESTAMP are used in
many examples, so we’ll discuss them first.

SYSDATE
SYSDATE takes no arguments and returns the current date and time to the second for the
operating-system host where the database resides. The value is returned in a DATE datatype.
The format that the value returned is based on NLS_DATE_FORMAT, which can be altered for
the session using the ALTER SESSION SET NLS_DATE_FORMAT command. The format mask
for dates and timestamps are discussed later in the chapter.

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH:MI:SS AM';
Session altered.

SELECT SYSDATE FROM dual;

SYSDATE

13-JUL-2013 04:01:22 PM

122	 Chapter 3  ■  Using Single-Row Functions

SYSDATE is one of the most commonly used Oracle functions. There’s a good
chance you’ll see it on the exam. Because the SYSDATE value is returned
based on the time of the host server where the database resides, the result
will be the same for a user sitting in New York or one in Hong Kong.

SYSTIMESTAMP
SYSTIMESTAMP takes no arguments and returns a TIMESTAMP WITH TIME ZONE for the
current database date and time (the time of the host server where the database resides).
The fractional second is returned with six digits of precision. The format of the value
returned is based on NLS_TIMESTAMP_TZ_FORMAT, which can be altered for the session
using the ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT command.

SQL> SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE
SYSTIMESTAMP

13-JUL-13
13-JUL-13 04.01.22.362000 PM -05:00

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';
Session altered.

ALTER SESSION SET
 NLS_TIMESTAMP_TZ_FORMAT='YYYY-MON-DD HH:MI:SS.FF TZR';
Session altered.

SELECT SYSDATE, SYSTIMESTAMP FROM dual;

SYSDATE
SYSTIMESTAMP

13-JUL-2013 16:01:22
2013-JUL-13 04:01:22.368000 -05:00

LOCALTIMESTAMP
LOCALTIMESTAMP([p]) returns the current date and time in the session’s time zone to p
digits of precision. p can be 0 to 9 and defaults to 6. This function returns the value in the
datatype TIMESTAMP. You can set the client time zone using the ALTER SESSION SET TIME_
ZONE command.

	 Using Single-Row Date Functions	 123

The following example illustrates LOCALTIMESTAMP and how to change the time zone
for the session. The database is in the U.S./Central time zone, and the client is in the
U.S./Eastern time zone.

See also CURRENT_TIMESTAMP.

SQL> SELECT SYSTIMESTAMP, LOCALTIMESTAMP FROM dual;

SYSTIMESTAMP
LOCALTIMESTAMP

12-OCT-13 01.30.44.605577 PM -05:00
12-OCT-13 02.30.44.605584 PM

SQL> ALTER SESSION SET TIME_ZONE = '-8:00';

Session altered.

SQL> SELECT SYSTIMESTAMP, LOCALTIMESTAMP FROM dual;

SYSTIMESTAMP
LOCALTIMESTAMP
--
12-OCT-13 01.30.56.507508 PM -05:00
12-OCT-13 10.30.56.507516 AM

ADD_MONTHS
ADD_MONTHS(d, i) takes two arguments, where d is a date and i is an integer. This func-
tion returns the date d plus i months. If i is a decimal number, the database will implicitly
convert it to an integer by truncating the decimal portion (for example, 3.9 becomes 3). If
<d> is the last day of the month or the resulting month has fewer days, then the result is the
last day of the resulting month.

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -1) PREV_MONTH,
 ADD_MONTHS(SYSDATE, 12) NEXT_YEAR
FROM dual;

124	 Chapter 3  ■  Using Single-Row Functions

SYSDATE PREV_MONTH NEXT_YEAR
-------------------- -------------------- --------------------
13-JUL-2013 16:01:22 13-JUN-2013 16:01:22 13-JUL-2014 16:01:22

CURRENT_DATE
CURRENT_DATE takes no arguments and returns the current date in the Gregorian calendar
for the session’s (client) time zone. This function is similar to SYSDATE, whereas SYSDATE
returns the current date for the database’s (host’s) time zone. You can set the client time
zone using the ALTER SESSION SET TIME_ZONE command.

The following example illustrates CURRENT_DATE and how to change the time zone for
the session. The database is in the U.S./Central time zone, and the client is in the U.S./
Mountain time zone.

ALTER SESSION SET NLS_DATE_FORMAT='DD-Mon-YYYY HH24:MI:SS';
Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE
-------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 13:01:22

ALTER SESSION SET TIME_ZONE = 'US/Eastern';
Session altered.

SELECT SYSDATE, CURRENT_DATE FROM dual;

SYSDATE CURRENT_DATE
-------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 17:01:22

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP([p]) returns the current date and time in the session’s time zone to p
digits of precision. p can be an integer 0 through 9 and defaults to 6.

See also LOCALTIMESTAMP.

	 Using Single-Row Date Functions	 125

This function is similar to CURRENT_DATE. CURRENT_DATE returns the result in the DATE
datatype, whereas CURRENT_TIMESTAMP returns the result in the TIMESTAMP WITH TIME
ZONE datatype.

SQL> SELECT CURRENT_DATE, CURRENT_TIMESTAMP FROM dual;

CURRENT_DATE
CURRENT_TIMESTAMP

13-Jul-2013 17:01:22
2013-JUL-13 05:01:22.386000 US/EASTERN

DBTIMEZONE
DBTIMEZONE returns the database’s time zone, as set by the latest CREATE DATABASE or ALTER
DATABASE SET TIME_ZONE statement. Note that after changing the database time zone with
the ALTER DATABASE statement, the database must be bounced (restarted) for the change to
take effect. The time zone is a character string specifying the hours and minutes offset from
UTC (Coordinated Universal Time, also known as GMT, or Greenwich mean time) or a
time zone region name. The valid time zone region names can be found in the TZNAME col-
umn of the view V$TIMEZONE_NAMES. The default time zone for the database is UTC (00:00)
if you do not explicitly set the time zone during database creation.

SQL> SELECT DBTIMEZONE FROM dual;

DBTIME

-05:00

EXTRACT
EXTRACT(c FROM dt) extracts and returns the specified component c of date/time or
interval expression dt. The valid components are YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION, and TIMEZONE_ABBR. The specified
component must exist in the expression. So, to extract a TIMEZONE_HOUR, the date/time
expression must be a TIMESTAMP WITH TIME ZONE datatype.

Although HOUR, MINUTE, and SECOND exist in the DATE datatype, you can extract only
YEAR, MONTH, and DAY from the DATE datatype expressions.

SELECT SYSDATE, EXTRACT(YEAR FROM SYSDATE) year_d
FROM dual;

126	 Chapter 3  ■  Using Single-Row Functions

SYSDATE YEAR_D
-------------------- ----------
13-Jul-2013 16:01:22 2013

You can extract YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND from the TIMESTAMP
datatype expression. You can extract all the components from the TIMESTAMP WITH
TIMEZONE datatype expression.

SELECT LOCALTIMESTAMP,
 EXTRACT(YEAR FROM LOCALTIMESTAMP) YEAR_TS,
 EXTRACT(DAY FROM LOCALTIMESTAMP) DAY_TS,
 EXTRACT(SECOND FROM LOCALTIMESTAMP) SECOND_TS
FROM dual;

LOCALTIMESTAMP YEAR_TS DAY_TS SECOND_TS
----------------------------- ------- ------- ---------
13-JUL-13 05.01.22.391000 PM 2013 13 22.391

You will be able to get the same result using the TO_CHAR function as well, as shown here.

SELECT LOCALTIMESTAMP,
 TO_CHAR(LOCALTIMESTAMP, 'YYYY') YEAR_TS,
 TO_CHAR(LOCALTIMESTAMP, 'DD') DAY_TS,
 TO_CHAR(LOCALTIMESTAMP, 'SSXFF') SECOND_TS
FROM dual;

LOCALTIMESTAMP YEAR_TS DAY_TS SECOND_TS
----------------------------- ------- ------- ---------
13-JUL-13 05.11.54.777891 PM 2013 13 54.777891

FROM_TZ
FROM_TZ(ts, tz) returns a TIMESTAMP WITH TIME ZONE for the timestamp ts using time
zone value tz. The character string tz specifies the hours and minutes offset from UTC or
is a time zone region name. The valid time zone region names can be found in the TZNAME
column of the view V$TIMEZONE_NAMES.

SELECT LOCALTIMESTAMP, FROM_TZ(LOCALTIMESTAMP, 'Japan') Japan,
FROM_TZ(LOCALTIMESTAMP, '-5:00') Central
FROM dual;

LOCALTIMESTAMP
JAPAN

	 Using Single-Row Date Functions	 127

CENTRAL

13-JUL-13 05.01.22.393000 PM
2013-JUL-13 05:01:22.393000 JAPAN
2013-JUL-13 05:01:22.393000 -05:00

LAST_DAY
LAST_DAY(d) takes a single argument, where d is a date. This function returns the last day
of the month for the date d. The return datatype is DATE.

SELECT SYSDATE,
 LAST_DAY(SYSDATE) END_OF_MONTH,
 LAST_DAY(SYSDATE)+1 NEXT_MONTH
FROM dual;

SYSDATE END_OF_MONTH NEXT_MONTH
-------------------- -------------------- --------------------
13-Jul-2013 16:01:22 31-Jul-2013 16:01:22 01-Aug-2013 16:01:22

MONTHS_BETWEEN
MONTHS_BETWEEN(d1, d2) takes two arguments, where d1 and d2 are both dates. This func-
tion returns the number of months that d2 is later than d1. A whole number is returned if
d1 and d2 are the same day of the month or if both dates are the last day of a month.

SELECT MONTHS_BETWEEN('31-MAR-08', '30-SEP-08') E1,
 MONTHS_BETWEEN('11-MAR-08', '30-SEP-08') E2,
 MONTHS_BETWEEN('01-MAR-08', '30-SEP-08') E3,
 MONTHS_BETWEEN('31-MAR-08', '30-SEP-07') E4
FROM dual;

 E1 E2 E3 E4
---------- ---------- ---------- ----------
 -6 -6.6129032 -6.9354839 6

NEW_TIME
NEW_TIME(d>, tz1, tz2) takes three arguments, where d is a date and both tz1 and tz2
are one of the time zone constants. This function returns the date in time zone tz2 for date
d in time zone tz1.

SELECT SYSDATE Dallas, NEW_TIME(SYSDATE, 'CDT', 'HDT') Hawaii
FROM dual;

128	 Chapter 3  ■  Using Single-Row Functions

DALLAS HAWAII
-------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 12:01:22

Table 3.4 lists the time zone constants.

Tabl e 3 . 4    Time Zone Constants

Code Time Zone

GMT Greenwich mean time

NST Newfoundland standard time

AST Atlantic standard time

ADT Atlantic daylight time

BST Bering standard time

BDT Bering daylight time

CST Central standard time

CDT Central daylight time

EST Eastern standard time

EDT Eastern daylight time

MST Mountain standard time

MDT Mountain daylight time

PST Pacific standard time

PDT Pacific daylight time

YST Yukon standard time

YDT Yukon daylight time

HST Hawaii-Alaska standard time

HDT Hawaii-Alaska daylight time

	 Using Single-Row Date Functions	 129

NEXT_DAY
NEXT_DAY(d, dow) takes two arguments, where d is a date and dow is a text string containing
the full or abbreviated day of the week in the session’s language. This function returns the
next dow following d. The time portion of the return date is the same as the time portion of d.

SELECT SYSDATE, NEXT_DAY(SYSDATE,'Thu') NEXT_THU,
 NEXT_DAY('31-OCT-2014', 'Tue') Election_Day
FROM dual;

SYSDATE NEXT_THU ELECTION_DAY
------------------ ------------------ ------------------
13-JUL-13 16:48:04 18-JUL-13 16:48:04 04-NOV-14 00:00:00

ROUND
ROUND(<d> [,fmt]) takes two arguments, where d is a date and fmt is a character string
containing a date format string. This function returns d rounded to the granularity specified
in fmt. If fmt is omitted, d is rounded to the nearest day.

SELECT SYSDATE, ROUND(SYSDATE,'HH24') ROUND_HOUR,
 ROUND(SYSDATE) ROUND_DATE, ROUND(SYSDATE,'MM') NEW_MONTH,
 ROUND(SYSDATE,'YY') NEW_YEAR
FROM dual;

SYSDATE ROUND_HOUR ROUND_DATE
NEW_MONTH NEW_YEAR
-------------------- -------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 16:00:00 14-Jul-2013 00:00:00
01-Jul-2013 00:00:00 01-Jan-2014 00:00:00

SESSIONTIMEZONE
SESSIONTIMEZONE takes no arguments and returns the database’s time zone offset as per
the last ALTER SESSION statement. SESSIONTIMEZONE will default to DBTIMEZONE if it is not
changed with an ALTER SESSION statement.

SELECT DBTIMEZONE, SESSIONTIMEZONE
FROM dual;

DBTIMEZONE SESSIONTIMEZONE
----------- ---------------
-05:00 US/Eastern

130	 Chapter 3  ■  Using Single-Row Functions

SYS_EXTRACT_UTC
SYS_EXTRACT_UTC(ts) takes a single argument, where ts is a TIMESTAMP WITH TIME ZONE.
This function returns the UTC (GMT) time for the timestamp ts.

SELECT CURRENT_TIMESTAMP local,
 SYS_EXTRACT_UTC(CURRENT_TIMESTAMP) GMT
FROM dual;

LOCAL
GMT

2013-JUL-13 05:01:22.420000 US/EASTERN
13-JUL-13 09.01.22.420000 PM

TRUNC
TRUNC(d [,fmt]) takes two arguments, where d is a date and fmt is a character string
containing a date format string. This function returns d truncated to the granularity
specified in fmt.

See also ROUND.

SELECT SYSDATE, TRUNC(SYSDATE,'HH24') CURR_HOUR,
 TRUNC(SYSDATE) CURR_DATE, TRUNC(SYSDATE,'MM') CURR_MONTH,
 TRUNC(SYSDATE,'YY') CURR_YEAR
FROM dual;

SYSDATE CURR_HOUR CURR_DATE
CURR_MONTH CURR_YEAR
-------------------- -------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 16:00:00 13-Jul-2013 00:00:00
01-Jul-2013 00:00:00 01-Jan-2013 00:00:00

TZ_OFFSET
TZ_OFFSET(tz) takes a single argument, where tz is a time zone offset or time zone name.
This function returns the numeric time zone offset for a textual time zone name. The valid
time zone names can be obtained from the TZNAME column in the V$TIMEZONE_NAMES view.

SELECT TZ_OFFSET(SESSIONTIMEZONE) NEW_YORK,
 TZ_OFFSET('US/Pacific') LOS_ANGELES,

	 Using Single-Row Conversion Functions	 131

 TZ_OFFSET('Europe/London') LONDON,
 TZ_OFFSET('Asia/Singapore') SINGAPORE
FROM dual;

NEW_YOR LOS_ANG LONDON SINGAPO
------- ------- ------- -------
-04:00 -07:00 +01:00 +08:00

Using Single-Row Conversion Functions
Single-row conversion functions operate on multiple datatypes. The TO_CHAR and TO_NUMBER
functions have a significant number of formatting codes that can be used to display date and
number data in a wide assortment of representations.

You can use the conversion functions to convert a numeric value to a character or a char-
acter value to a numeric or datetime value. Character datatypes in Oracle Database 12c are
CHAR, VARCHAR2, NCHAR, NVARCHAR2, and CLOB. Numeric datatypes in Oracle Database 12c
are NUMBER, BINARY_DOUBLE, and BINARY_FLOAT. Datetime datatypes in Oracle Database
12c are DATE, TIMESTAMP, and INTERVAL.

Datatype conversions are required and used extensively in day-to-day SQL use. When a
user enters data, it may be in character format, which you may need to convert to a date or
number. Sometimes the data is in a specific format, and you have to tell Oracle how to treat
the data using conversion functions and format codes. In the following sections, you will
learn the various conversions and how to use them.

The exam may include a question that tests your recollection of some of
the nuances of these formatting codes. General usage in a professional
setting would afford you the opportunity to look them up in a reference.
In the test setting, however, you must recall them on your own.

Conversion Function Overview
Table 3.5 summarizes the single-row conversion functions. We will cover each of these
functions in the “Conversion Function Descriptions” section.

132	 Chapter 3  ■  Using Single-Row Functions

Tabl e 3 .5    Conversion Function Summary

Function Description

ASCIISTR Converts characters to ASCII

BIN_TO_NUM Converts a string of bits to a number

CAST Converts datatypes

CHARTOROWID Casts a character to the ROWID datatype

COMPOSE Converts to Unicode

CONVERT Converts from one character set to another

DECOMPOSE Decomposes a Unicode string

HEXTORAW Casts a hexadecimal to a raw

NUMTODSINTERVAL Converts a number value to an interval day to second literal

NUMTOYMINTERVAL Converts a number value to an interval year to month literal

RAWTOHEX Casts a raw to a hexadecimal

ROWIDTOCHAR Casts a ROWID to a character

SCN_TO_TIMESTAMP Converts an SCN to corresponding timestamp of the change

TIMESTAMP_TO_SCN Converts timestamp to an SCN

TO_BINARY_DOUBLE Converts input into a BINARY_DOUBLE number

TO_BINARY_FLOAT Converts input into a BINARY_FLOAT number

TO_CHAR Converts and formats a date into a string

TO_CLOB Converts character input or NCLOB input to CLOB

TO_DATE Converts a string to a date, specifying the format

TO_DSINTERVAL Converts a character string value to an interval day to
second literal

TO_LOB Converts LONG or LONG RAW values to CLOB or BLOB datatype

	 Using Single-Row Conversion Functions	 133

Function Description

TO_MULTIBYTE Converts a single-byte character to its corresponding multibyte
equivalent

TO_NUMBER Converts a string to a number, specifying the format

TO_SINGLE_BYTE Converts a multibyte character to its corresponding single-byte
equivalent

TO_TIMESTAMP Converts a character string to a TIMESTAMP value

TO_TIMESTAMP_TZ Converts a character string to a TIMESTAMP WITH TIME
ZONE value

TO_YMINTERVAL Converts a character string value to an interval year to
month literal

UNISTR Converts UCS2 Unicode

Conversion Function Descriptions
The conversion functions are arranged in alphabetical order, with descriptions and examples
of each one. Oracle Database 12c includes functions to convert from one datatype to another
datatype. Most of the functions have only one argument. Many functions used to convert
to/from numeric or datetime datatypes have three arguments; the second argument will tell
Oracle what format the input given in the first argument should be. The third argument may
be to specify an NLS string. You can use NLS parameters to tell Oracle what character set or
language should be used when performing the conversion. The format mask and NLS param-
eters are always optional.

Pay particular attention to the TO_CHAR, TO_NUMBER, and TO_DATE functions. The format
codes associated with numbers and dates are always a favorite on OCP certification exams.

ASCIISTR
ASCIISTR(c1) takes a single argument, where c1 is a character string. T is function
returns the ASCII equivalent of all the characters in c1. This function leaves ASCII
characters unchanged, but non-ASCII characters are returned in the format \xxxx
where xxxx represents a UTF-16 code unit.

SELECT ASCIISTR('cañon') E1, ASCIISTR('fa ') E2
FROM dual;

134	 Chapter 3  ■  Using Single-Row Functions

E1 E2
--------- -------
ca\00F1on fa\00DF

BIN_TO_NUM
BIN_TO_NUM(b) takes a single argument, where b is a comma-delimited list of bits. This
function returns the numeric representation of all the bit-field set b. It essentially con-
verts a base 2 number into a base 10 number. Bit fields are the most efficient structure to
store simple yes/no and true/false data. You can combine numerous bit fields into a single
numeric column. Using bit fields departs from a normalized relational model, because one
column represents more than one value, but this encoding can enhance performance and/
or reduce disk-space usage.

See also BITAND.

To understand the number returned from the BIN_TO_NUM function, recall from base 2
(binary) counting that the rightmost digit counts the 1s, the next counts the 2s, the next
counts the 4s, then the 8s, and so on. Therefore, 13 is represented in binary as 1101. There
are one 1, zero 2s, one 4, and one 8, which add up to 13 in base 10.

SELECT BIN_TO_NUM(1,1,0,1) bitfield1,
 BIN_TO_NUM(0,0,0,1) bitfield2,
 BIN_TO_NUM(1,1) bitfield3
FROM dual;

BITFIELD1 BITFIELD2 BITFIELD3
---------- ---------- ----------
 13 1 3

CAST
CAST(c AS t) takes two arguments, where c is an expression, subquery, or MULTISET
clause and t is a datatype. This function converts the expression c into the datatype
t. The CAST function is most frequently used to convert data into programmer-defined
datatypes, but it can also be used to convert data to built-in datatypes. No translation
is performed; only the datatype is converted. Table 3.6 shows the datatypes that can be
converted using CAST.

C
o

n
ve

rt
 F

ro
m

/T
o

B
IN

A
R

Y
_F

LO
A

T,

B
IN

A
R

Y
_D

O
U

B
LE

C
H

A
R

,
V

A
R

C
H

A
R

2
N

C
H

A
R

,
N

V
A

R
C

H
A

R
2

D
A

T
E

, T
IM

E
S

TA
M

P,

IN
T

E
R

V
A

L
N

U
M

B
E

R
R

A
W

R
O

W
ID

,
U

R
O

W
ID

B
IN

A
R

Y
_F

LO
A

T
B

IN
A

R
Y

_
D

O
U

B
LE

Y
es

Y
es

Y
es

N
o

Y
es

N
o

N
o

C
H

A
R

, V
A

R
C

H
A

R
2

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

N
C

H
A

R
, N

V
A

R
C

H
A

R
2

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

D
A

T
E

, T
IM

E
S

TA
M

P,

IN
T

E
R

V
A

L
N

o
Y

es
N

o
Y

es
N

o
N

o
N

o

N
U

M
B

E
R

Y
es

Y
es

N
o

N
o

Y
es

N
o

N
o

R
A

W
N

o
Y

es
N

o
N

o
N

o
Y

es
N

o

R
O

W
ID

, U
R

O
W

ID
N

o
Y

es
N

o
N

o
N

o
N

o
Y

es

Tabl e 3 .6    CAST Datatype Conversions

136	 Chapter 3  ■  Using Single-Row Functions

The following example shows datatype conversion using the CAST function.

SELECT CAST(SYSDATE AS TIMESTAMP WITH LOCAL TIME ZONE) DT_2_TS
FROM dual;

DT_2_TS

13-JUL-13 04.01.22.000000 PM

CHARTOROWID
CHARTOROWID(c) takes a single argument, where c is a character string. This function returns
c as a ROWID datatype. No translation is performed; only the datatype is converted.

SELECT rowid, first_name
FROM employees
WHERE first_name = 'Sarath';

ROWID FIRST_NAME
------------------ --------------------
AAAWWqAAKAAAADNAA9 Sarath

SELECT first_name, last_name
FROM employees
WHERE rowid = CHARTOROWID('AAARAgAAFAAAABYAA9');

FIRST_NAME LAST_NAME
-------------------- -------------------------
Sarath Sewall

Each row in the database is uniquely identified by a ROWID. ROWID shows
the physical location of the row stored in the database. The pseudocolumn
ROWID shows the address of the row.

COMPOSE
COMPOSE(c) takes a single argument, where c is a character string. This function returns c
as a Unicode string in its fully normalized form, in the same character set as c. The COMPOSE
and DECOMPOSE functions support Unicode 3.0. The Unicode 3.0 standard allows you to
combine, or compose, a valid character from a base character and a modifier.

	 Using Single-Row Conversion Functions	 137

CONVERT
CONVERT(c, dset [,sset]) takes three arguments, where c is a character string and dset
and sset are character-set names. This function returns the character string c converted
from the source character set sset to the destination character set dset. No translation is
performed. If the character does not exist in both character sets, the replacement character
for the character set is used. sset defaults to the database character set.

select convert ('vis-à-vis','AL16UTF16','AL32UTF8')
from dual;

CONVERT('VIS-?-VIS','AL16UTF
--
 v i s -?? - v i s

DECOMPOSE
DECOMPOSE(c) takes a single argument, where c is a character string. This function returns c
as a Unicode string after canonical decomposition in the same character set as c. The COMPOSE
and DECOMPOSE functions support Unicode 3.0.

HEXTORAW
HEXTORAW(x) takes a single argument, where x is a hexadecimal string. This function
returns the hexadecimal string x converted to a RAW datatype. No translation is performed;
only the datatype is changed.

NUMTODSINTERVAL
NUMTODSINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL DAY
TO SECOND datatype. Valid units are DAY, HOUR, MINUTE, and SECOND. c can be uppercase,
lowercase, or mixed case.

SELECT SYSDATE,
 SYSDATE+NUMTODSINTERVAL(2,'HOUR') "2 hours later",
 SYSDATE+NUMTODSINTERVAL(30,'MINUTE') "30 minutes later"
FROM dual;

SYSDATE 2 hours later 30 minutes later
-------------------- -------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2013 18:01:22 13-Jul-2013 16:31:22

138	 Chapter 3  ■  Using Single-Row Functions

NUMTOYMINTERVAL
NUMTOYMINTERVAL(x , c) takes two arguments, where x is a number and c is a character
string denoting the units for x. This function converts the number x into an INTERVAL YEAR
TO MONTH datatype. Valid units are YEAR and MONTH. c can be uppercase, lowercase, or
mixed case.

SELECT SYSDATE,
 SYSDATE+NUMTOYMINTERVAL(2,'YEAR') "2 years later",
 SYSDATE+NUMTOYMINTERVAL(5,'MONTH') "5 months later"
FROM dual;

SYSDATE 2 years later 5 months later
-------------------- -------------------- --------------------
13-Jul-2013 16:01:22 13-Jul-2015 16:01:22 13-Dec-2013 16:01:22

RAWTOHEX
RAWTOHEX(x) takes a single argument, where x is a raw string. This function returns the
raw string x converted to a hexadecimal. No translation is performed; only the datatype
is changed.

ROWIDTOCHAR
ROWIDTOCHAR(x) takes a single argument, where x is a character string in the ROWID datatype.
This function returns the ROWID string x converted to a VARCHAR2 datatype. No translation is
performed; only the datatype is changed. The resulting string is always 18 characters long.

SELECT ROWIDTOCHAR(ROWID) Char_RowID, first_name
FROM employees
WHERE first_name = 'Sarath';

CHAR_ROWID FIRST_NAME
------------------ --------------------
AAAWWqAAKAAAADNAA9 Sarath

SCN_TO_TIMESTAMP
SCN_TO_TIMESTAMP (n) takes a single argument, where n is a numeric datatype representing
a system change number (SCN) in the database. This function returns the timestamp asso-
ciated with the SCN. The return datatype is TIMESTAMP.

SELECT SCN_TO_TIMESTAMP(8569432113130) UPD_TIME
from dual;

	 Using Single-Row Conversion Functions	 139

UPD_TIME
--
25-MAR-08 12.16.49.000000000 PM

An SCN is a number that gets incremented when a commit occurs in the database. The
SCN identifies the state of the database uniquely, is recorded in the redo log files, and will
be used in case instance recovery is needed. Please see Chapter 8, “Introducing Oracle
Database 12c Components and Architecture,” for more information.

Oracle provides the ORA_ROWSCN pseudocolumn to identify the SCN when the block con-
taining the row was last modified. Using the ORA_ROWSCN pseudocolumn, you can identify
the approximate time when the row was last modified. The time is approximate because
the SCN is associated with a block, and all the rows in the block will have the same SCN
associated with them. This is useful in identifying the last modified time of a table, because
a block can belong to only one table. Please see Chapter 10, “Understanding Storage and
Space Management,” for more information on blocks.

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) mod_time, last_name
FROM employees
WHERE first_name = 'Lex';

MOD_TIME LAST_NAME
----------------------------------- -----------
28-JUN-13 11.30.39.000000000 AM De Haan

TIMESTAMP_TO_SCN
TIMESTAMP_TO_SCN (<ts>) is used to identify the SCN associated with a particular time-
stamp. The function takes one argument, ts, which is of datatype TIMESTAMP. The return
datatype is NUMBER.

SELECT TIMESTAMP_TO_SCN(SYSTIMESTAMP) DB_SCN
FROM dual;

 DB_SCN

 8569432102308

TO_BINARY_DOUBLE
TO_BINARY_DOUBLE(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that c appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns a
binary double-precision floating-point number of datatype BINARY_DOUBLE represented

140	 Chapter 3  ■  Using Single-Row Functions

by expr. The fmt and nlsparm arguments are valid only if expr is a character expression.
You can also use 'INF', '-INF', and 'NaN' to represent positive infinity, negative infinity,
and NaN in expr.

The valid fmt numeric format conventions are listed in Table 3.9.

SELECT TO_BINARY_DOUBLE('1234.5678','999999.9999') CHR_FMT_DOUBLE,
 TO_BINARY_DOUBLE('1234.5678') CHR_DOUBLE,
 TO_BINARY_DOUBLE(1234.5678) NUM_DOUBLE,
 TO_BINARY_DOUBLE('INF') INF_DOUBLE
FROM dual;

 CHR_FMT_DOUBLE CHR_DOUBLE NUM_DOUBLE INF_DOUBLE
--------------- --------------- --------------- ---------------
 1.2345678E+003 1.2345678E+003 1.2345678E+003 Inf

TO_BINARY_FLOAT
TO_BINARY_FLOAT(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is
a character or numeric string, fmt is a format string specifying the format that c appears in,
and nlsparm specifies language- or location-formatting conventions. This function returns
a binary single-precision floating-point number of datatype BINARY_FLOAT represented
by expr. The fmt and nlsparm arguments are valid only if expr is a character expression.
You can also use 'INF', '-INF' and 'NaN' to represent positive infinity, negative infinity,
and NaN in expr.

SELECT TO_BINARY_FLOAT('1234.5678','999999.9999') CHR_FMT_FLOAT,
 TO_BINARY_FLOAT('1234.5678') CHR_FLOAT,
 TO_BINARY_FLOAT(1234.5678) NUM_FLOAT,
 TO_BINARY_FLOAT('INF') INF_FLOAT
FROM dual;

 CHR_FMT_FLOAT CHR_FLOAT NUM_FLOAT INF_FLOAT
--------------- --------------- --------------- ---------------
1.23456775E+003 1.23456775E+003 1.23456775E+003 Inf

Converting from a character or NUMBER to BINARY_FLOAT and BINARY_
DOUBLE may not be exact because BINARY_FLOAT and BINARY_DOUBLE
use binary precision, whereas NUMBER uses decimal precision. Convert-
ing from BINARY_FLOAT to BINARY_DOUBLE is always exact; converting
BINARY_DOUBLE to BINARY_FLOAT may lose precision if BINARY_DOUBLE
uses more bits of precision.

	 Using Single-Row Conversion Functions	 141

TO_CHAR
TO_CHAR(<expr> [,<fmt >[,<nlsparm>]]) takes three arguments, where expr is a date
or a number or a character datatype, fmt is a format model specifying the format that expr
will appear in, and nlsparm specifies language- or location-formatting conventions. This
function returns expr converted into a character string (the VARCHAR2 datatype).

You can use the TO_CHAR function to convert a datetime or numeric datatype value to
character. When the input is not in the default format expected by the database, you have
to provide the format of the input data as the second argument. In this section, we’ll dem-
onstrate how a datetime datatype value and a numeric datatype value can be converted to
a character datatype.

Date Conversion

If expr is a date or timestamp value, fmt is a date format code, and nlsparm is an NLS_
DATE_LANGUAGE specification, if included. Note that the spelled-out numbers always appear
in English, while the day or month may appear in the NLS language.

SELECT TO_CHAR(SYSDATE,'Day Ddspth,Month YYYY'
 ,'NLS_DATE_LANGUAGE=German') Today_Heute
FROM dual;

TODAY_HEUTE
--
Samstag Thirteenth,Juli 2013

SELECT TO_CHAR(SYSDATE
 ,'"On the "Ddspth" day of "Month, YYYY') Today
FROM dual;

TODAY
--
On the Thirteenth day of July , 2013

Table 3.7 lists the date format codes.

Tabl e 3 .7    Date Format Codes

Date Code Format Code Description

ad or bc Epoch indicator.

a.d. or b.c. Epoch indicator with periods.

AM or PM Meridian indicator.

142	 Chapter 3  ■  Using Single-Row Functions

Date Code Format Code Description

A.M. or P.M. Meridian indicator with periods.

DY Day of week abbreviated.

DAY Day of week spelled out.

D Day of week (1–7).

DD Day of month (1–31).

DDD Day of year (1–366).

DL Long date format.

DS Short date format.

TS Time in short format.

FF Fractional seconds.

J Julian day (days since 4712 b.c.).

W Week of the month (1–5).

WW, IW Week of the year, ISO week of the year.

MM Two-digit month.

MON Month name abbreviated.

MONTH Month name spelled out.

Q Quarter.

RM Roman numeral month (I–XII).

YYYY, YYY, YY, Y Four-digit year; last 3, 2, 1 digits in the year.

YEAR Year spelled out.

SYYYY If b.c., year is shown as negative.

Tabl e 3 .7    Date Format Codes  (continued)

	 Using Single-Row Conversion Functions	 143

Date Code Format Code Description

RR Used for data input with only two digits for the year to store twenti-
eth-century dates in the twenty-first century.

RRRR Used for data input. If a two-digit year is entered, this works like RR.
If a four-digit year is entered, it works like YYYY.

CC, SCC Century.

HH, HH12 Hour of the half-day (1–12).

HH24 Hour of the day (0–23).

MI Minutes of the hour (0–59).

SS Seconds of the minute (0–59).

SSSSS Seconds of the day (0–86399).

TZD Time zone daylight savings; must correspond to TZR.

TZH Time zone hour, together with TZM, is time zone offset.

TZM Time zone minute, together with TZH, is time zone offset.

TZR Time zone region.

, . / - ; : Punctuation.

'text' Quoted text.

FM Returns value with no leading or trailing blanks (fill mode).

FX Requires exact match for the format model.

The RR code is used for data input with only two digits for the year. It is intended to deal
with two-digit years before and after 2000. It rounds the century based on the current year
and the two-digit year, entered as follows:

■■ If the current year is greater than or equal to 50 and the two-digit year is less than 50,
the century is rounded up to the next century.

■■ If the current year is greater than or equal to 50 and the two-digit year is greater than
or equal to 50, the century is unchanged.

144	 Chapter 3  ■  Using Single-Row Functions

■■ If the current year is less than 50 and the two-digit year is less than 50, the century is
unchanged.

■■ If the current year is less than 50 and the two-digit year is greater than or equal to 50,
the century is rounded down to the previous century.

So, if the current year is 2009 (less than 50) and the two-digit year is entered as 62
(greater than or equal to 50), the year is interpreted as 1962.

For any of the numeric codes, the ordinal and/or spelled-out representation can be dis-
played with the modifier codes th (for ordinal) and sp (for spelled out). Here is an example:

SELECT SYSDATE,
 TO_CHAR(SYSDATE,'Mmspth') Month,
 TO_CHAR(SYSDATE,'DDth') Day,
 TO_CHAR(SYSDATE,'Yyyysp') Year
FROM dual;

SYSDATE MONTH DAY YEAR
-------------------- -------- ---- -------------------------
13-Jul-2013 16:01:22 Seventh 13TH Two Thousand Thirteen

For any of the spelled-out words or ordinals, case follows the pattern of the first two
characters in the code. If the first two characters are uppercase, the spelled-out words are all
uppercase. If the first two characters are lowercase, the spelled-out words are all lowercase.
If the first two characters are uppercase and then lowercase, the spelled-out words have the
first letter in uppercase and the remaining characters in lowercase.

SELECT TO_CHAR(SYSDATE,'MONTH') upperCase,
 TO_CHAR(SYSDATE,'Month') mixedCase,
 TO_CHAR(SYSDATE,'month') lowerCase
FROM dual;

UPPERCASE MIXEDCASE LOWERCASE
--------- --------- ---------
APRIL April april

Table 3.8 shows several examples of using the different date format models with the
TO_CHAR function. Please pay close attention to the format model and result to understand the
format-model characteristics. The format model is applied to the date Tuesday 01-APR-2008.

	 Using Single-Row Conversion Functions	 145

Tabl e 3 . 8    Date Format Examples for Tuesday 01-APR-2008

Format Model Result

'CCth "Century" BC' 21ST Century AD

'"On the "DDSpth" Day of "MONTH", "YYYY' On the FIRST Day of APRIL, 2008

'"On the "DdSpth" Day of "FMMonth", "YYYY' On the First Day of April, 2008

'DS TS' 4/1/2008 01:41:32 PM

'"Today is week" WW "and day" DDD' Today is week 14 and day 092

'Year' Two Thousand Eight

'W WW WW D DD DDD Y YY YYY YYYY' 1 14 14 3 01 092 8 08 008 2008

Number Conversion

If expr is a number, fmt is a numeric format code. Table 3.9 lists these codes.

Tabl e 3 . 9    Numeric Format Codes

Numeric Code Format-Code Description

9 Numeric digits with a leading space if positive and a leading – (minus) if
negative.

0 Leading and/or trailing zeros.

, Comma, for use as a group separator. It cannot appear after a period or
decimal code.

G Local group separator; could be comma (,) or period (.).

. Period, for use as the decimal character. It cannot appear more than
once or to the left of a group separator.

D Local decimal character; could be comma (,) or period (.). Only one D is
allowed in the format model.

$ Dollar-sign currency symbol.

146	 Chapter 3  ■  Using Single-Row Functions

Numeric Code Format-Code Description

C ISO currency symbol (USD for $).

L Local currency symbol.

FM No leading or trailing blanks.

EEEE Scientific notation.

MI Negative as a trailing minus. Can appear only in the last position of the
format model.

PR Negative in angle brackets (< >). Can appear only in the last position of
the format model.

S Negative as a leading minus. Can appear only in the first or last position
of the format model.

RN Uppercase Roman numeral.

rn Lowercase Roman numeral.

X Hexadecimal.

V Returns value multiplied by 10n, where n is the number of 9s after the V.

B Returns blanks for a fixed-point number if the integer part is zero.

nlsparm can include NLS_NUMERIC_CHARACTERS for specifying decimal and grouping sym-
bols (format symbols D and G, respectively), NLS_CURRENCY for specifying the currency symbol
(format symbol L), and NLS_ISO_CURRENCY for specifying the ISO international currency
symbol (format symbol C). The NLS_CURRENCY symbol and the NLS_ISO_CURRENCY mnemonic
are frequently different. For example, the NLS_CURRENCY symbol for U.S. dollars is $, but this
symbol is not uniquely American, so the ISO symbol for U.S. dollars is USD.

SELECT TO_CHAR(-1234.56,'L099G999D99MI',
 'NLS_NUMERIC_CHARACTERS='',.''
 NLS_CURRENCY=''DM''
 NLS_ISO_CURRENCY=''GERMANY''
 ') Balance
FROM dual;

Tabl e 3 . 9    Numeric Format Codes  (continued)

	 Using Single-Row Conversion Functions	 147

BALANCE

DM001.234,56-

Table 3.10 shows several examples of using the different numeric format models. To under-
stand the format-model characteristics, pay close attention to the format model and result.

Tabl e 3 .10    Numeric Format Examples

Numeric Format Source Value Result Value

'C099G999D99' -1234.56 -USD001,234.56

'099.99' 1234.56 #######

'09G999V99' 1234.56 01,23456

'09G999D99' 1234.56 01,234.56

'09G999D99PR' -1234.56 <01,234.56>

'999.99EEEE' -1234.56 -1.23E+03

'$9999.999S' -1234.56 $1234.560-

'$9999.999S' 1234.56 $1234.560+

'RN' 141 CXLI

'L99G999D99MI' 1234 $1,234.00

TO_CLOB
TO_CLOB ('<x>') converts input value to a CLOB datatype value. The argument x can be
of type CHAR, VARCHAR2, NCLOB, NCHAR, NVARCHAR2, or CLOB. CLOB datatypes are discussed in
Chapter 7, “Creating Tables and Constraints.”

TO_DATE
TO_DATE(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that c appears in (refer to Table 3.7,
“Date Format Codes”), and nlsparm specifies language- or location-formatting conven-
tions. This function returns c converted into the DATE datatype.

148	 Chapter 3  ■  Using Single-Row Functions

If you omit fmt, c should be in the default date format (as defined in NLS_DATE_FORMAT
or derived from NLS_TERRITORY). It is always a good practice to specify the format mask
when using the TO_DATE function.

alter session set nls_date_format = 'DD-MON-RR HH24:MI:SS';
Session altered.

SELECT TO_DATE('30-SEP-2007', 'DD/MON/YY') DateExample
FROM dual;

DATEEXAMPLE

30-SEP-07 00:00:00

SELECT TO_DATE('SEP-2007 13', 'MON/YYYY HH24') DateExample
FROM dual;

DATEEXAMPLE

01-SEP-07 13:00:00

When you use the TO_DATE function and specify a format mask, Oracle will try some
additional formats if the data in the input string does not match the original format. For
the MM format, Oracle will try the MON and MONTH formats. The MON or MONTH formats can
be used interchangeably. For the YY and RR formats, Oracle will try YYYY and RRRR.

Adding the FX format model to the TO_DATE function will require the input be given in
the exact format, including spaces and punctuation characters.

Table 3.11 shows examples of the TO_DATE function and their resulting dates.

Tabl e 3 .11    Date Conversion Examples

Function Resulting Date

TO_DATE('01-01-08','DD-MM-RR') 01-JAN-2008

TO_DATE('01-01-1908','DD-MM-RR') 01-JAN-1908

TO_DATE('01-MAR-1998','DD-MONTH-YY') 01-MAR-1998

TO_DATE('01-01-98','DD-MM-YY') 01-JAN-2098

TO_DATE('01-01-98','DD-MM-YYYY') 01-JAN-0098

	 Using Single-Row Conversion Functions	 149

Function Resulting Date

TO_DATE('01-01-98','DD-MM-RRRR') 01-JAN-1998

TO_DATE('01-MARCH-98','DD-MM-RRRR') 01-MAR-1998

TO_DATE('01-MAR-08','DD-MONTH-RRRR') 01-MAR-2008

TO_DATE('01-MAR-1998','fxDD/MON/YYYY') ORA-01861 error

TO_DATE('13 MAY 2003','fxDD MON YYYY') ORA-01841 error

Converting Numbers to Words

Once we had to debug a PL/SQL function developed by a programmer to convert numeric
input to words. His program unit was very lengthy; basically, it defined the numbers from
one through twenty, tens, hundreds, thousands, and millions in words. He used a compli-
cated logic to split each digit from the input and assigned a word for each digit. We told him
there is a neat, single-line SQL function that could replace his tens of lines of PL/SQL code.
When he saw the SQL code, he was amazed by the power of simple SQL functions.

Using the J format along with the TO_CHAR and TO_DATE functions, you can display any
number between 1 and 5,373,484 in words. The limit is because Oracle supports dates
between January 1, 4712 b.c., and a.d. December 31, 9999.

The J format is used to display the date in Julian numbers.

SELECT SYSDATE, TO_CHAR(SYSDATE, 'J') Julian
FROM dual;

SYSDATE JULIAN
------------------ -------
13-JUL-13 16:01:22 2456487

150	 Chapter 3  ■  Using Single-Row Functions

The SP format will spell the date. By combining the J and JSP formats, you can spell a
number. Notice the use of & in the SQL code. You run the SQL multiple times to input
different values. Negative numbers cannot be converted to Julian dates.

SQL> SET VERIFY OFF
SQL> SELECT TO_CHAR(TO_DATE(&NUM, 'J'), 'jsp') num_to_spell
 FROM dual;
Enter value for num: 3456

NUM_TO_SPELL

three thousand four hundred fifty-six

SQL> /
Enter value for num: 5023456

NUM_TO_SPELL

five million twenty-three thousand four hundred fifty-six

SQL> /
Enter value for num: -456
SELECT TO_CHAR(TO_DATE(-456, 'J'), 'jsp') num_to_spell
 *
ERROR at line 1:
ORA-01854: julian date must be between 1 and 5373484

TO_DSINTERVAL
TO_DSINTERVAL(<c> [,<nlsparm>]) takes two arguments, where c is a character string
and nlsparm specifies the decimal and group separator characters. This function returns
c converted into an INTERVAL DAY TO SECOND datatype.

SELECT SYSDATE,
 SYSDATE+TO_DSINTERVAL('007 12:00:00') "+7 1/2 days",
 SYSDATE+TO_DSINTERVAL('030 00:00:00') "+30 days"
FROM dual;

	 Using Single-Row Conversion Functions	 151

SYSDATE +7 1/2 days +30 days
------------------ ------------------ ------------------
13-JUL-13 16:01:32 21-JUL-13 04:01:32 12-AUG-13 16:01:32

TO_LOB
TO_LOB (<long>) converts a LONG or LONG RAW datatype to a CLOB or BLOB datatype. LONG val-
ues are converted to a CLOB datatype, and LONG RAW values are converted to a BLOB datatype.

To learn more about CLOB and BLOB datatypes, see Chapter 7.

TO_MULTI_BYTE
TO_MULTI_BYTE(<c>) takes a single argument, where c is a character string. This function
returns a character string containing c, with all single-byte characters converted to their
multibyte counterparts. This function is useful only in databases using character sets with
both single-byte and multibyte characters.

See also TO_SINGLE_BYTE.

TO_NUMBER
TO_NUMBER(<expr> [,<fmt> [,<nlsparm>]]) takes three arguments, where expr is a char-
acter or numeric string, fmt is a format string specifying the format that expr appears in, and
nlsparm specifies language- or location-formatting conventions. This function returns the
numeric value represented by expr. Table 3.9 lists all the format models that can be used with
the TO_NUMBER function. The return datatype is NUMBER.

SELECT TO_NUMBER('234.89'), TO_NUMBER(1E-3) FROM dual;

TO_NUMBER('234.89') TO_NUMBER(1E-3)
------------------- ----------------
 234.89 .001

TO_SINGLE_BYTE
TO_SINGLE_BYTE(<c>) takes a single argument, where c is a character string. This function
returns a character string containing c with all multibyte characters converted to their single-
byte counterparts. This function is useful only in databases using character sets with both
single-byte and multibyte characters.

152	 Chapter 3  ■  Using Single-Row Functions

See also TO_MULTI_BYTE.

TO_TIMESTAMP
TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that c appears in, and nlsparm specifies
language- or location-formatting conventions. If c is in default timestamp format (as defined
in NLS_TIMESTAMP_FORMAT or derived from NLS_TERRITORY), then fmt need not be specified.
The return value is of the TIMESTAMP datatype.

SELECT TO_TIMESTAMP('30-SEP-2007 08:51:23.456',
 'DD-MON-YYYY HH24:MI:SS.FF')
FROM dual;

TO_TIMESTAMP('30-SEP-200708:51:23.456','DD-MON-YYYYHH24:MI:SS.FF')

30-SEP-07 08.51.23.456000000 AM

TO_TIMESTAMP_TZ
TO_TIMESTAMP(<c> [,<fmt> [,<nlsparm>]]) takes three arguments, where c is a character
string, fmt is a format string specifying the format that c appears in, and nlsparm specifies
language- or location-formatting conventions. This function has the same behavior as the TO_
TIMESTAMP function, except you can specify a time zone. The return datatype is TIMESTAMP
WITH TIME ZONE.

SELECT TO_TIMESTAMP_TZ('30-SEP-2007 08:51:23.456',
 'DD-MON-YYYY HH24:MI:SS.FF') TS_TZ_Example
FROM dual;

TS_TZ_EXAMPLE

2007-SEP-30 08:51:23.456000000 US/EASTERN

TO_YMINTERVAL
TO_YMINTERVAL(<c>) takes a single argument, where c is a character string. This function
returns c converted into an INTERVAL YEAR TO MONTH datatype.

SELECT SYSDATE,
 SYSDATE+TO_YMINTERVAL('01-03') "+15 months",

	 Using Single-Row Conversion Functions	 153

 SYSDATE-TO_YMINTERVAL('00-03') "-3 months"
FROM dual;

SYSDATE +15 months -3 months
------------------ ------------------ ------------------
13-JUL-13 16:01:32 13-OCT-14 16:01:32 13-APR-13 16:01:32

Table 3.12 shows examples to demonstrate the difference between using the ADD_MONTHS
function and the TO_YMINTERVAL function.

Tabl e 3 .12    Compare ADD_MONTHS and TO_YMINTERVAL

Expression Result

TO_DATE('28-FEB-2007')+ TO_YMINTERVAL('01-00') 28-FEB-2008

ADD_MONTHS('28-FEB-2007',12) 29-FEB-2008

TO_DATE('29-FEB-2008')+ TO_YMINTERVAL('01-00') Error: ORA-01839

ADD_MONTHS('29-FEB-2008',12) 28-FEB-2009

TO_DATE('30-APR-2008')+ TO_YMINTERVAL('00-04') 30-AUG-2008

ADD_MONTHS('30-APR-2008',04) 31-AUG-2008

TO_DATE('31-JAN-2008')+ TO_YMINTERVAL('00-03') Error: ORA-01839

UNISTR
UNISTR(<c>) takes a single argument, where c is a character string. This function returns
c in Unicode in the database Unicode character set. Include UCS2 characters by prepend-
ing a backslash (\) to the character’s numeric code. Include the backslash character by
specifying two backslashes (\\).

SELECT UNISTR('\00A3'), UNISTR('\00F1'), UNISTR('ca\00F1on')
FROM dual;

UN UN UNISTR('CA
-- -- ----------
 £ ñ c a ñ o n

154	 Chapter 3  ■  Using Single-Row Functions

Using Other Single-Row Functions
This is the catchall category to include all the single-row functions that don’t fit into the other
categories. Some are incredibly useful, such as DECODE. DECODE is a very special function and
the most widely used function. Most likely, you’ll see a question on the certification exam
about the DECODE function.

The NULLIF function is included in this category and not with other NULL-related func-
tions. The NULLIF function returns a NULL value, whereas the NULL-related functions we
discussed earlier take NULL as one of the inputs and give a value as a result.

Miscellaneous Function Overview
Table 3.13 summarizes the single-row miscellaneous functions. We will cover each of these
functions in the “Miscellaneous Function Descriptions” section.

Tabl e 3 .13    Miscellaneous Function Summary

Function Description

BFILENAME Returns the BFILE locator for the specified file and directory

DECODE Acts as an inline CASE statement (emulating IF…THEN…ELSE logic)

DUMP Returns a raw substring in the specified encoding (octal/hex/character/
decimal)

EMPTY_BLOB Returns an empty BLOB locator

EMPTY_CLOB Returns an empty CLOB locator

GREATEST Sorts the arguments and returns the largest

LEAST Sorts the arguments and returns the smallest

NULLIF Returns NULL if two expressions are equal

ORA_HASH Returns the hash value for an expression

SYS_CONTEXT Returns various session attributes, such as IP address, terminal, and
current user

SYS_GUID Generates a globally unique identifier as a RAW value

UID Returns the numeric user ID for the current session

	 Using Other Single-Row Functions	 155

Function Description

USER Returns the username for the current session

USERENV Returns information about the current session

VSIZE Returns the internal size in bytes for an expression

Miscellaneous Function Descriptions
These miscellaneous functions are arranged in alphabetical order, with descriptions and
examples of each one.

BFILENAME
BFILENAME(dir, file) takes two arguments, where dir is a directory and file is a file-
name. This function returns an empty BFILE locator. This function is used to initialize a
BFILE variable or BFILE column in a table. When this function is used, the BFILE is instan-
tiated. Neither dir nor file needs to exist at the time BFILENAME is called, but both must
exist when the locator is used. We’ll discuss the BFILE datatype in Chapter 7.

DECODE
DECODE is a conditional function. We discussed the CASE conditional expression in
Chapter 2.

DECODE(x ,m1, r1 [,m2 ,r2]…[,d]) can use multiple arguments. x is an expression.
m1 is a matching expression to compare with x. If m1 is equivalent to x, then r1 is returned;
otherwise, additional matching expressions (m2, m3, m4, and so on) are compared, if they
are included, and the corresponding result (r2, r3, r4, and so on) is returned. If no match is
found and the default expression d is included, then d is returned. This function acts like a
case statement in C, Pascal, or Ada. DECODE is a powerful tool that can make SQL very effi-
cient—or very dense and nonintuitive. Let’s look at some examples to help clarify its use.

The following example queries the COUNTRIES table and displays a region name based
on the region_id column value. If the region_id column value does not match the values
in the list, you want to display Other. To limit the rows in the output, you use the SUBSTR
function to identify the country codes that begin with I or end with R.

SELECT country_id, country_name, region_id,
 DECODE(region_id, 1, 'Europe',
 2, 'Americas',
 3, 'Asia',
 'Other') Region

156	 Chapter 3  ■  Using Single-Row Functions

FROM countries
WHERE SUBSTR(country_id,1,1) = 'I'
 OR SUBSTR(country_id,2,1) = 'R';

CO COUNTRY_NA REGION_ID REGION
-- ---------- ---------------- --------
AR Argentina 2 Americas
BR Brazil 2 Americas
FR France 1 Europe
IL Israel 4 Other
IN India 3 Asia
IT Italy 1 Europe

DECODE does not have to return a value; it can return NULL if the optional d argument is
not provided. In the previous example, if Other is omitted, the region name for Israel will
be NULL.

SELECT country_id, country_name, region_id,
 DECODE(region_id, 1, 'Europe',
 2, 'Americas',
 3, 'Asia') Region
FROM countries
WHERE SUBSTR(country_id,1,1) = 'I'
 OR SUBSTR(country_id,2,1) = 'R';

In the DECODE function, Oracle treats two NULL values as equal. Hence,
you can represent the NVL function using DECODE, as in DECODE(<string>,
NULL, <new_value>, <string>).

DUMP
DUMP(x [,fmt [,n1 [,n2]]]) can take four arguments, where x is an expression. fmt
is a format specification for octal (8), decimal (10), hexadecimal (16), or single characters
(17). Decimal is the default. If you add 1000 to the format specification, the character set
name is also returned (for example, 1008 for octal). n1 is the starting byte offset within
x, and n2 is the length in bytes to dump. This function returns a character string contain-
ing the datatype of x in numeric notation (for example, 2=number, 12=date), the length in
bytes of x, and the internal representation of x. This function is mainly used for trouble-
shooting data problems.

SELECT last_name, DUMP(last_name) DUMP_EX
FROM employees
WHERE last_name like 'J%';

	 Using Other Single-Row Functions	 157

LAST_NAME DUMP_EX
------------ --
Johnson Typ=1 Len=7: 74,111,104,110,115,111,110
Jones Typ=1 Len=5: 74,111,110,101,115

SELECT last_name, DUMP(last_name, 1017, 3, 3) DUMP_EX
FROM employees
WHERE last_name like 'J%';

LAST_NAME DUMP_EX
------------ --
Johnson Typ=1 Len=7 CharacterSet=WE8MSWIN1252: h,n,s
Jones Typ=1 Len=5 CharacterSet=WE8MSWIN1252: n,e,s

EMPTY_BLOB
EMPTY_BLOB() takes no arguments. This function returns an empty BLOB locator. This
function is used to initialize a BLOB variable or BLOB column in a table. When used, the
BLOB is instantiated but not populated.

EMPTY_CLOB
EMPTY_CLOB() takes no arguments. This function returns an empty CLOB locator. This
function is used to initialize a CLOB variable or CLOB column in a table. When used, the
CLOB is instantiated but not populated.

GREATEST
GREATEST(exp_list) takes one argument, where exp_list is a list of expressions. This
function returns the expression that sorts highest in the datatype of the first expression. If
the first expression is any of the character datatypes, a VARCHAR2 is returned, and the com-
parison rules for VARCHAR2 are used for character-literal strings. A NULL in the expression
list results in a NULL being returned.

The following example shows you that the list was treated as a character list and not a
date, even though you had all date values as input:

SELECT GREATEST('01-ARP-08','30-DEC-01','12-SEP-09')
FROM dual;

GREATEST(

30-DEC-01

158	 Chapter 3  ■  Using Single-Row Functions

In the following example, because the first argument is numeric, Oracle tries to convert
the rest of the list to numeric and encounters an error:

SELECT GREATEST(345, 'XYZ', 2354) FROM dual;
ERROR at line 1:
ORA-01722: invalid number

In the next example, we changed the order to have the character string as the first entry
in the list; hence, Oracle considers the rest of the list to be characters and does not produce
an error:

SELECT GREATEST('XYZ', 345, 2354) FROM dual;

GRE

XYZ

LEAST
LEAST(exp_list) takes one argument, where exp_list is a list of expressions. This func-
tion returns the expression that sorts lowest in the datatype of the first expression. If the
first expression is any of the character datatypes, a VARCHAR2 is returned.

SELECT LEAST(SYSDATE,'15-MAR-2002','17-JUN-2002') oldest
FROM dual;

OLDEST

15-MAR-02

The following SQL is used to calculate a bonus of 15 percent of salary to employees,
with a maximum bonus at 500 and a minimum bonus at 400:

SELECT last_name, salary,
 GREATEST(LEAST(salary*0.15, 500), 400) bonus
FROM employees
WHERE department_id IN (30, 10)
ORDER BY last_name;

LAST_NAME SALARY BONUS
------------ ---------------- ----------------
Baida 2900 435
Colmenares 2500 400
Himuro 2600 400

	 Using Other Single-Row Functions	 159

Khoo 3100 465
Raphaely 11000 500
Whalen 4400 500

The comparison rules used by GREATEST and LEAST on character literals order trailing
spaces higher than no spaces. This behavior follows the nonpadded comparison rules of the
VARCHAR2 datatype. Note the ordering of the leading and trailing spaces: trailing spaces are
greatest and leading spaces are least.

SELECT GREATEST(' Yes','Yes','Yes ')
 ,LEAST(' Yes','Yes','Yes ')
FROM dual;

GREA LEAST
---- -----
Yes Yes

To remember the comparison rules for trailing and leading space in
character literals, think “leading equals least.”

NULLIF
NULLIF(x1 , x2) takes two arguments, where x1 and x2 are expressions. This function
returns NULL if x1 equals x2; otherwise, it returns x1. If x1 is NULL, NULLIF returns NULL.

To facilitate visualizing a NULL, the following example has the NULL indicator set to ?.
So, a ? in the query results that follow represents a NULL:

SET NULL ?
SELECT ename, mgr, comm,
 NULLIF(comm,0) test1,
 NULLIF(0,comm) test2,
 NULLIF(mgr,comm) test3
FROM scott.emp
WHERE empno IN (7844,7839,7654,7369);

ENAME MGR COMM TEST1 TEST2 TEST3
---------- ---- ---- ----- ----- -----
SMITH 7902 ? ? 0 7902
MARTIN 7698 1400 1400 0 7698
KING ? ? ? 0 ?
TURNER 7698 0 ? ? 7698

160	 Chapter 3  ■  Using Single-Row Functions

ORA_HASH
ORA_HASH (expr [,max_bucket [,seed]]) can take three arguments. The first argument,
expr, is an expression whose hash value will be calculated and assigned to a bucket. The
maximum bucket value is determined by the second argument, max_bucket; the default
and maximum is 4,294,967,295. The seed argument enables Oracle to generate many dif-
ferent results for the same sets of data. The hash function is applied to expr and seed. The
seed can be between 0 and 4,294,967,295.

This function is useful for getting a random sample of rows from a table. In the follow-
ing example, you can get a few random rows from the EMPLOYEES table. Notice the differ-
ence in result for each run and with different seed values. The rows in the table are divided
into 20 buckets (0 through 19) based on the hash value, and you are selecting the rows
from bucket 0.

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19, 2) = 0;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 100 Greenberg 12008
 30 Himuro 2600
 50 Nayer 3200
 80 Banda 6200
 80 Fox 9600
? Grant 7000
 10 Whalen 4400
 110 Gietz 8300

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19, 5) = 0;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Tobias 2800

SELECT department_id, last_name, salary
FROM employees
WHERE ORA_HASH(last_name || first_name, 19) = 0;

	 Using Other Single-Row Functions	 161

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 60 Austin 4800
 100 Greenberg 12008
 80 Vishney 10500
? Grant 7000
 50 Geoni 2800

SYS_CONTEXT
SYS_CONTEXT(n , p [, length]) can take three arguments, where n is a namespace, p is
a parameter associated with namespace n, and length is the length of the return value in
bytes. length defaults to 256. The built-in namespace in Oracle is called USERENV, which
describes the current session. The return datatype is VARCHAR2.

SELECT SYS_CONTEXT('USERENV','IP_ADDRESS')
FROM dual;

SYS_CONTEXT('USERENV','IP_ADDRESS')

192.168.1.100

Table 3.14 lists the parameters available in the USERENV namespace for the SYS_CONTEXT
function.

Tabl e 3 .14    Parameters in the USERENV Namespace

Parameter Description

ACTION Returns the position in the module (application).

AUDITED_CURSORID Returns the cursor ID of the SQL code that triggered the
auditing.

AUTHENTICATED_IDENTITY Returns the identity used in the authentication.

AUTHENTICATION_DATA Returns the data used to authenticate a logged-in user.

AUTHENTICATION_METHOD Returns the method used to authenticate a user. The
return value can be DATABASE for database-authenticated
accounts, OS for externally identified accounts, NETWORK for
globally identified accounts, and so on.

162	 Chapter 3  ■  Using Single-Row Functions

Parameter Description

BG_JOB_ID Returns the job ID (that is, DBA_JOBS) if the session was cre-
ated by a background process. Returns NULL if the session
is a foreground session. See also FG_JOB_ID.

CLIENT_IDENTIFIER Returns the client session identifier in the global context. It
can be set with the DBMS_SESSION built-in package.

CLIENT_INFO Returns the 64 bytes of user session information stored by
DBMS_APPLICATION_INFO.

CURRENT_BIND Returns bind variables for fine-grained auditing.

CURRENT_SCHEMA Returns the current schema as set by ALTER SESSION SET
CURRENT_SCHEMA or, by default, the login schema/ID.

CURRENT_SCHEMAID Returns the numeric ID for CURRENT_SCHEMA.

CURRENT_SQL Returns the SQL that triggered fine-grained auditing (use
only within scope inside the event handler for fine-grained
auditing).

CURRENT_SQL_LENGTH Returns the length of the current SQL that triggered fine-
grained auditing.

DB_DOMAIN Returns the contents of the DB_DOMAIN init.ora parameter.

DB_NAME Returns the contents of the DB_NAME init.ora parameter.

DB_UNIQUE_NAME Returns the contents of the DB_UNIQUE_NAME init.ora
parameter.

ENTRYID Returns the auditing entry identifier.

ENTERPRISE_IDENTITY Returns OID DN for enterprise users, for local users NULL.

FG_JOB_ID Returns the job ID of the current session if a foreground
process created it. Returns NULL if the session is a back-
ground session. See also BG_JOB_ID.

GLOBAL_CONTEXT_MEMORY Returns the number in the SGA by the globally accessible
context.

GLOBAL_UID Returns the global user ID from OID.

Tabl e 3 .14    Parameters in the USERENV Namespace  (continued)

	 Using Other Single-Row Functions	 163

Parameter Description

HOST Returns the hostname of the machine from where the client
connected. This is not the same terminal in V$SESSION.

IDENTIFICATION_TYPE Returns how the user is set to authenticate in the database:
LOCAL, EXTERNAL, or GLOBAL.

INSTANCE Returns the instance number for the instance to which
the session is connected. This is always 1 unless you are
running Oracle Real Application Clusters.

INSTANCE_NAME Returns the name of the instance.

IP_ADDRESS Returns the IP address of the machine from where the
client connected.

ISDBA Returns TRUE if the user connected AS SYSDBA.

LANG Returns the ISO abbreviation for the language name.

LANGUAGE Returns a character string containing the language and ter-
ritory used by the session and the database character set
in the form language_territory.characterset.

MODULE Returns the application name set through
DBMS_APPLICATION_INFO.

NETWORK_PROTOCOL Returns the network protocol being used as specified
in the PROTOCOL= section of the connect string or
tnsnames.ora definition.

NLS_CALENDAR Returns the calendar for the current session.

NLS_CURRENCY Returns the currency for the current session.

NLS_DATE_FORMAT Returns the date format for the current session.

NLS_DATE_LANGUAGE Returns the language used for displaying dates.

NLS_SORT Returns the binary or linguistic sort basis.

NLS_TERRITORY Returns the territory for the current session.

OS_USER Returns the operating-system username for the
current session.

164	 Chapter 3  ■  Using Single-Row Functions

Parameter Description

POLICY_INVOKER Returns the invoker of row-level security-policy functions.

PROXY_ENTERPRISE_IDENTITY Returns OID DN when the proxy user is an enterprise user.

PROXY_GOLBAL_UID Returns the global user ID from OID for Enterprise User
Security proxy users.

PROXY_USER Returns the name of the database user who opened the
current session for the session user.

PROXY_USERID Returns the numeric ID for the database user who opened
the current session for the session user.

SERVER_HOST Returns the hostname of the machine where the instance
is running.

SERVICE_NAME Returns the name of the service where the session is con-
nected.

SESSION_USER Returns the database username for the current session.

SESSION_USERID Returns the numeric database user ID for the current
session.

SESSIONID Returns the auditing session identifier AUDSID. This param-
eter is out of scope for distributed queries.

SID Returns the session number (same as the SID from
V$SESSION).

STATEMENT_ID Returns the auditing statement identifier.

TERMINAL Returns the terminal identifier for the current session. This
is the same as the terminal in V$SESSION.

Here are few more examples of SYS_CONTEXT in the USERENV namespace:

SELECT SYS_CONTEXT('USERENV', 'OS_USER'),
 SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA'),
 SYS_CONTEXT('USERENV', 'HOST'),
 SYS_CONTEXT('USERENV', 'NLS_TERRITORY')
FROM dual;

Tabl e 3 .14    Parameters in the USERENV Namespace  (continued)

	 Using Other Single-Row Functions	 165

SYS_CONTEXT('USERENV','OS_USER')
SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
SYS_CONTEXT('USERENV','HOST')
SYS_CONTEXT('USERENV','NLS_TERRITORY')
--
oracle
HR
linux04.mycompany.corp
AMERICA

SYS_GUID
SYS_GUID() generates a globally unique identifier as a RAW value. This function is useful
for creating a unique identifier to identify a row. SYS_GUID() returns a 32-bit hexadecimal
representation of the 16-byte RAW value.

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

CDA78A020D6E43A6AB743A5CE8CB8C55

SELECT SYS_GUID() FROM DUAL;

SYS_GUID()

DC7C19A3AD264CE184C64194E65F83E5

UID
UID takes no parameters and returns the integer user ID for the current user connected
to the session. The user ID uniquely identifies each user in a database and can be selected
from the DBA_USERS view.

SQL> SHOW USER
USER is "BTHOMAS"

SELECT username, account_status
FROM dba_users
WHERE user_id = UID;

166	 Chapter 3  ■  Using Single-Row Functions

USERNAME ACCOUNT_STATUS
---------------- ---------------
BTHOMAS OPEN

USER
USER takes no parameters and returns a character string containing the username for the
current user.

SELECT default_tablespace, temporary_tablespace
FROM dba_users
WHERE username = USER;

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
------------------------------ ---------------------
USERS TEMP

USERENV
USERENV(opt) takes a single argument, where opt is one of the following options:

■■ ISDBA returns TRUE if the SYSDBA role is enabled in the current session.

■■ SESSIONID returns the AUDSID auditing session identifier.

■■ ENTRYID returns the auditing entry identifier if auditing is enabled for the instance (the
init.ora parameter AUDIT_TRAIL is set to TRUE).

■■ INSTANCE returns the instance identifier to which the session is connected. This option
is useful only if you are running the Oracle Parallel Server and have multiple instances.

■■ LANGUAGE returns the language, territory, and database character set. The delimiters are
an underscore (_) between language and territory and a period (.) between the territory
and character set.

■■ LANG returns the ISO abbreviation of the session’s language.

■■ TERMINAL returns a VARCHAR2 string containing information corresponding to the oper-
ating system identifier for the current session’s terminal.

The option can appear in uppercase, lowercase, or mixed case. The USERENV function
has been deprecated since Oracle 9i. It is recommended to use the SYS_CONTEXT function
with the built-in USERENV namespace instead.

VSIZE
VSIZE(x) takes a single argument, where x is an expression. This function returns the size
in bytes of the internal representation of the x.

SELECT last_name, first_name,
 VSIZE(last_name) ln_size, VSIZE(first_name) fn_size

	 Summary	 167

FROM employees
WHERE last_name like 'K%';

LAST_NAME FIRST_NAME LN_SIZE FN_SIZE
------------ -------------------- ---------- ----------
Kaufling Payam 8 5
Khoo Alexander 4 9
King Janette 4 7
King Steven 4 6
Kochhar Neena 7 5
Kumar Sundita 5 7

Because the database character set is single-byte, the byte used for each character is 1;
hence, the size shown here is actually the number of characters in the input. For multibyte
characters, this would be different.

Summary
This chapter introduced single-row functions. It started by discussing the functions avail-
able in Oracle Database 12c to handle NULLs. Then it discussed the single-row functions
available in Oracle Database 12c by grouping them into character, numeric, date, and
conversion functions.

You learned that single-row functions return a value for each row as it is retrieved from
the table. You can use single-row functions to interpret NULL values, format output, convert
datatypes, transform data, perform date arithmetic, give environment information, and
perform trigonometric calculations.

You can use single-row functions in the SELECT, WHERE, and ORDER BY clauses of SELECT
statements. We covered the rich assortment of functions available in each datatype category
and some functions that work on any datatype.

The NVL, NVL2, and COALESCE functions interpret NULL values.
The single-row character functions operate on character input. The INSTR function

returns the position of a substring within the string. The SUBSTR function returns a portion
of the string. INSTR and SUBSTR are great for extracting part of the input string. REPLACE
and TRANSLATE transform the input.

Single-row numeric functions operate on numeric input. FLOOR, CEIL, ROUND, and TRUNC get
the nearest number. FLOOR, CEIL, and ROUND return the nearest integer, whereas ROUND returns
a value rounded to certain digits of precision. REMAINDER and MOD are similar functions.

Date functions operate on datetime values. SYSDATE and SYSTIMESTAMP values return
the current date and time. MONTHS_BETWEEN finds the number of months between two date
values. ADD_MONTHS is a commonly used function and can add months to or subtract months
from a date. You can use ROUND and TRUNC on datetime values to find the nearest date,
month, or year.

168	 Chapter 3  ■  Using Single-Row Functions

Of the conversion functions, TO_CHAR and TO_DATE are the most commonly used. We
also reviewed the format codes that can be used with numeric and datetime values.

The DECODE function evaluates a condition, and you can easily build IF…THEN…ELSE logic
into SQL using the DECODE function.

Exam Essentials

Understand where single-row functions can be used.    Single-row functions can be used in
the SELECT, WHERE, and ORDER BY clauses of SELECT statements.

Know the effects that NULL values can have on arithmetic and other functions.    Any
arithmetic operation on a NULL results in a NULL. This is true of most functions as well.
Use the NVL, NVL2, and COALESCE functions to deal with NULLs.

Review the character-manipulation functions.    Understand the arguments and the results
of using character-manipulation functions such as INSTR, SUBSTR, REPLACE, and TRANSLATE.

Understand the numeric functions.    Know the effects of using TRUNC and ROUND with -n as
the second argument. Also practice using LENGTH and INSTR, which return numeric results,
inside SUBSTR and other character functions.

Know how date arithmetic works.    When adding or subtracting numeric values from
a DATE datatype, whole numbers represent days. Also, the date/time intervals INTERVAL
YEAR TO MONTH and INTERVAL DAY TO SECOND can be added or subtracted from date/time
datatypes. You need to know how to interpret and create expressions that add intervals to
or subtract intervals from dates.

Know the datatypes for the various date/time functions.    Oracle has many date/time
functions to support the date/time datatypes. You need to know the return datatypes for
these functions. SYSDATE and CURRENT_DATE return a DATE datatype. CURRENT_TIMESTAMP
and SYSTIMESTAMP return a TIMESTAMP WITH TIME ZONE datatype. LOCALTIMESTAMP returns
a TIMESTAMP datatype.

Know the format models for converting dates to/from character strings.    In practice, you
can simply look up format codes in a reference. For the certification exam, you must have
them memorized.

Understand the use of the DECODE function.    DECODE acts like a case statement in C, Pascal,
or Ada. Learn how this function works and how to use it.

Learn the COALESCE and the NVL2 functions.    All the NULL-related functions are important.
Pay particular attention to COALESCE and NVL2. Try out various examples.

	 Review Questions	 169

Review Questions

	 1.	 You want to display each project’s start date as the day, week, number, and year.
Which statement will give output like the following?

Tuesday Week 23, 2008

	 A.	 SELECT proj_id, TO_CHAR(start_date, 'DOW Week WOY YYYY')
FROM projects;

	 B.	 SELECT proj_id, TO_CHAR(start_date,'Day'||' Week'||' WOY, YYYY')
FROM projects;

	 C.	 SELECT proj_id, TO_CHAR(start_date, 'Day" Week" WW, YYYY')
FROM projects;

	 D.	 SELECT proj_id, TO_CHAR(start_date, 'Day Week# , YYYY') FROM projects;

	 E.	 You can’t calculate week numbers with Oracle.

	 2.	 What will the following statement return?

SELECT last_name, first_name, start_date
FROM employees
WHERE hire_date < TRUNC(SYSDATE) – 5;

	 A.	 Employees hired within the past five hours

	 B.	 Employees hired within the past five days

	 C.	 Employees hired more than five hours ago

	 D.	 Employees hired more than five days ago

	 3.	 Which assertion about the following statements is most true?

SELECT name, region_code||phone_number
FROM customers;
SELECT name, CONCAT(region_code,phone_number)
FROM customers;

	 A.	 If REGION_CODE is NULL, the first statement will not include that customer’s
PHONE_NUMBER.

	 B.	 If REGION_CODE is NULL, the second statement will not include that customer’s
PHONE_NUMBER.

	 C.	 Both statements will return the same data.

	 D.	 The second statement will raise an error if REGION_CODE is NULL for any customer.

170	 Chapter 3  ■  Using Single-Row Functions

	 4.	 Which single-row function could you use to return a specific portion of a character
string?

	 A.	 INSTR

	 B.	 SUBSTR

	 C.	 LPAD

	 D.	 LEAST

	 5.	 The data in the PRODUCT table is as described here. The bonus amount is calculated as
the lesser of 5 percent of the base price or 20 percent of the surcharge.

sku name division base_price surcharge
1001 PROD-1001 A 200 50
1002 PROD-1002 C 250
1003 PROD-1003 C 240 20
1004 PROD-1004 A 320
1005 PROD-1005 C 225 40

	 	 Which of the following statements will achieve the desired results?

	 A.	 SELECT sku, name, LEAST(base_price * 1.05, surcharge * 1.2)FROM
products;

	 B.	 SELECT sku, name, LEAST(NVL(base_price,0) * 1.05, surcharge * 1.2)FROM
products;

	 C.	 SELECT sku, name, COALESCE(LEAST(base_price*1.05, surcharge * 1.2),
base_price * 1.05)FROM products;

	 D.	 A, B, and C will all achieve the desired results.

	 E.	 None of these statements will achieve the desired results.

	 6.	 Which function(s) accept arguments of any datatype? (Choose all that apply.)

	 A.	SUBSTR

	 B.	NVL

	 C.	ROUND

	 D.	DECODE

	 E.	 SIGN

	 7.	 What will be returned by SIGN(ABS(NVL(-32,0)))?

	 A.	 1

	 B.	 32

	 C.	 –1

	 D.	 0

	 E.	 NULL

	 Review Questions	 171

	 8.	 The SALARY table has the following data:

LAST_NAME FIRST_NAME SALARY
------------ -------------------- ----------
Mavris Susan 6500
Higgins Shelley 12000
Tobias Sigal
Colmenares Karen 2500
Weiss Matthew 8000
Mourgos Kevin 5800
Rogers Michael 2900
Stiles Stephen 3200

		 Consider the following SQL instructions, and choose the best option:

SELECT last_name, NVL2(salary, salary, 0) N1,
 NVL(salary,0) N2
FROM salary;

	 A.	 Column N1 and N2 will have different results.

	 B.	 Column N1 will show zero for all rows, and column N2 will show the correct salary
values, and zero for Tobias.

	 C.	 The SQL will error out because the number of arguments in the NVL2 function is
incorrect.

	 D.	 Columns N1 and N2 will show the same result.

	 9.	 Which two functions could you use to strip leading characters from a character string?
(Choose two.)

	 A.	 LTRIM

	 B.	 SUBSTR

	 C.	 RTRIM

	 D.	 INSTR

	 E.	 STRIP

	10.	 What is the result of MOD(x1, 4) if x1 is 11?

	 A.	 –1

	 B.	 3

	 C.	 1

	 D.	 REMAINDER(11,4)

172	 Chapter 3  ■  Using Single-Row Functions

	11.	 Which SQL statement will replace the last two characters of last_name with 'XX' in
the employees table when executed?

	 A.	 SELECT RTRIM(last_name, SUBSTR(last_name, LENGTH(last_name)-1)) || 'XX'
new_col FROM employees;

	 B.	 SELECT REPLACE(last_name, SUBSTR(last_name, LENGTH(last_name)-1), 'XX')
new_col FROM employees;

	 C.	 SELECT REPLACE(SUBSTR(last_name, LENGTH(last_name)-1), 'XX') new_col
FROM employees;

	 D.	 SELECT CONCAT(SUBSTR(last_name, 1,LENGTH(last_name)-2), 'XX') new_col
FROM employees;

	12.	 Which date components does the CURRENT_TIMESTAMP function display?

	 A.	 Session date, session time, and session time zone offset

	 B.	 Session date and session time

	 C.	 Session date and session time zone offset

	 D.	 Session time zone offset

	13.	 Using the SALESPERSON_REVENUE table described here, which statements will properly
display the TOTAL_REVENUE (CAR_SALES + WARRANTY_SALES) of each salesperson?

Column Name salesperson_id car_sales warranty_sales

Key Type Pk

NULLs/Unique NN NN

FK Table

Datatype NUMBER NUMBER NUMBER

Length 10 11,2 11,2

	 A.	 SELECT salesperson_id, car_sales, warranty_sales, car_sales + warranty_
sales total_salesFROM salesperson_revenue;

	 B.	 SELECT salesperson_id, car_sales, warranty_sales, car_sales +
NVL2(warranty_sales,0) total_salesFROM salesperson_revenue;

	 C.	 SELECT salesperson_id, car_sales, warranty_sales, NVL2(warranty_sales,
car_sales + warranty_sales, car_sales) total_salesFROM salesperson_
revenue;

	 D.	 SELECT salesperson_id, car_sales, warranty_sales, car_sales +
COALESCE(car_sales, warranty_sales, car_sales + warranty_sales) total_
salesFROM salesperson_revenue;

	 Review Questions	 173

	14.	 What would be the result of executing the following SQL, if today’s date were
February 28, 2009?

SELECT ADD_MONTHS('28-FEB-09', -12) from dual;

	 A.	 28-FEB-10

	 B.	 28-FEB-08

	 C.	 29-FEB-08

	 D.	 28-JAN-08

	15.	 Consider the following two SQL statements, and choose the best option:

1. SELECT TO_DATE('30-SEP-07','DD-MM-YYYY') from dual;
2. SELECT TO_DATE('30-SEP-07','DD-MON-RRRR') from dual;

	 A.	 Statement 1 will error; 2 will produce results.

	 B.	 The resulting date value from the two statements will be the same.

	 C.	 The resulting date value from the two statements will be different.

	 D.	 Both statements will generate an error.

	16.	 What will the following SQL statement return?

SELECT COALESCE(NULL,'Oracle ','Certified') FROM dual;

	 A.	 NULL

	 B.	 Oracle

	 C.	 Certified

	 D.	 Oracle Certified

	17.	 Which expression will always return the date one year later than the current date?

	 A.	 SYSDATE + 365

	 B.	 SYSDATE + TO_YMINTERVAL('01-00')

	 C.	 CURRENT_DATE + 1

	 D.	 NEW_TIME(CURRENT_DATE,1,'YEAR')

	 E.	 None of the above

	18.	 Which function will return a TIMESTAMP WITH TIME ZONE datatype?

	 A.	 CURRENT_TIMESTAMP

	 B.	 LOCALTIMESTAMP

	 C.	 CURRENT_DATE

	 D.	 SYSDATE

174	 Chapter 3  ■  Using Single-Row Functions

	19.	 Which statement would change all occurrences of the string 'IBM' to the string 'SUN'
in the DESCRIPTION column of the VENDOR table?

	 A.	 SELECT TRANSLATE(description, 'IBM', 'SUN') FROM vendor

	 B.	 SELECT CONVERT(description, 'IBM', 'SUN') FROM vendor

	 C.	 SELECT EXTRACT(description, 'IBM', 'SUN') FROM vendor

	 D.	 SELECT REPLACE(description, 'IBM', 'SUN') FROM vendor

	20.	 Which function implements IF…THEN…ELSE logic?

	 A.	 INITCAP

	 B.	 REPLACE

	 C.	 DECODE

	 D.	 IFELSE

Chapter

4
Using Group
Functions

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Reporting Aggregated Data Using the Group Functions

■■ Identify the available group functions.

■■ Describe the use of group functions.

■■ Group data by using the GROUP BY clause.

■■ Include or exclude the grouped rows by using the

HAVING clause.

As explained in the previous chapter, functions are programs
that take zero or more arguments and return a single value. The
certification exam focuses on two types of functions: single-row

and aggregate (group) functions. Single-row functions were covered in Chapter 3, “Using
Single-Row Functions.” Group functions are covered in this chapter.

Group functions differ from single-row functions in how they are evaluated. Single-row
functions are evaluated once for each row retrieved. Group functions are evaluated on
groups of one or more rows at a time.

In this chapter, you will explore which group functions are available in SQL, the rules
for how to use them, and what to expect on the exam about aggregating data and group
functions. You will also explore nesting function calls together. SQL allows you to nest
group functions within calls to single-row functions, as well as nest single-row functions
within calls to group functions.

Group Function Fundamentals
Group functions are sometimes called aggregate functions and return a value based on a
number of inputs. The exact number of inputs is not determined until the query is executed
and all rows are fetched. This differs from single-row functions, in which the number of
inputs is known at parse time before the query is executed. Because of this difference, group
functions have slightly different requirements and behavior than single-row functions.

Group functions do not consider NULL values, except the COUNT(*) and GROUPING functions.
You may apply the NVL function to the argument of the group function to substitute a value
for NULL and hence be included in the processing of the group function. If the dataset contains
all NULL values or there are no rows in the dataset, the group function returns NULL (the only
exception to this rule is COUNT—it returns zero).

Most of the group functions can be applied either to ALL values or to only the DISTINCT
values for the specified expression. When ALL is specified, all non-NULL values are applied to
the group function. When DISTINCT is specified, only one of each non-NULL value is applied
to the function. If you do not specify ALL or DISTINCT, the default is ALL.

To better understand the difference between ALL and DISTINCT, let’s look at a few rows
from the EMPLOYEES table:

SELECT first_name, salary
FROM employees
WHERE first_name LIKE 'D%'

	 Utilizing Aggregate Functions	 177

ORDER BY salary;

FIRST_NAME SALARY
-------------------- ----------
Donald 2600
Douglas 2600
Diana 4200
David 4800
David 6800
Daniel 9000
David 9500
Danielle 9500
Den 11000

The SALARY column contains nine values. Two employees have $2,600 and $9,500 each.
When you count unique entries in the SALARY column, there are seven, because two are dupli-
cates. The following SQL code shows a few examples. The COUNT function is used to get a
count, and the SUM function is used to find the total. (We’ll discuss these functions later in the
chapter.) When the UNIQUE keyword is used, the 2,600 and 9,500 are included in the result
only once.

SELECT COUNT(salary) cnt_nu, COUNT(DISTINCT salary) cnt_uq,
 SUM(salary) sum_nu, SUM(DISTINCT salary) sum_uq
FROM employees
WHERE first_name LIKE 'D%';

 CNT_NU CNT_UQ SUM_NU SUM_UQ
---------- ---------- ---------- ----------
 9 7 60000 47900

Unlike with single-row functions, you cannot use programmer-written
functions on grouped data.

Utilizing Aggregate Functions
As with single-row functions, Oracle offers a rich variety of aggregate functions. These func-
tions can appear in the SELECT, ORDER BY, or HAVING clauses of SELECT statements. When used
in the SELECT clause, they usually require a GROUP BY clause as well. If no GROUP BY clause is

178	 Chapter 4  ■  Using Group Functions

specified, the default grouping is for the entire result set. Group functions cannot appear in
the WHERE clause of a SELECT statement. The GROUP BY and HAVING clauses of SELECT state-
ments are associated with grouping data. We’ll discuss the GROUP BY clause before you learn
about the various group functions.

You almost certainly will encounter a certification exam question that tests
whether you will incorrectly put a group function in the WHERE clause.

Grouping Data with GROUP BY
As the name implies, group functions work on data that is grouped. You tell the database
how to group or categorize the data with a GROUP BY clause. Whenever you use a group func-
tion in the SELECT clause of a SELECT statement, you must place all nongrouping/nonconstant
columns in the GROUP BY clause. If no GROUP BY clause is specified (only group functions and
constants appear in the SELECT clause), the default grouping becomes the entire result set.
When the query executes and the data is fetched, it is grouped based on the GROUP BY clause,
and the group function is applied.

The basic syntax of using a group function in the SELECT statement is as follows:

SELECT [column names], group_function (column_name), … … …
FROM table
[WHERE condition]
[GROUP BY column names]
[ORDER BY column names]

In the following example, you find the total number of employees from the EMPLOYEES
table:

SELECT COUNT(*) FROM employees;

 COUNT(*)

 107

Because you did not have any other column in the SELECT clause, you did not need to
specify the GROUP BY clause. Suppose you want to find out the number of employees in each
department; you can include department_id in the SELECT clause:

SELECT department_id, COUNT(*) "#Employees"
FROM employees;
SELECT department_id, COUNT(*) "#Employees"
 *

	 Utilizing Aggregate Functions	 179

ERROR at line 1:
ORA-00937: not a single-group group function

Because you used an aggregate function and nonaggregated column, Oracle generated an
error and is telling you to group the data. Here you have to use the GROUP BY clause. If you
include a group function in the SELECT clause, you cannot select individual results unless
you use the GROUP BY clause. Make sure all the columns in the SELECT clause that are not
part of a group function are included in the GROUP BY clause. The following SQL code lists
the number of employees by their department:

SELECT department_id, COUNT(*) "#Employees"
FROM employees
GROUP BY department_id;

DEPARTMENT_ID #Employees
------------- ----------
 100 6
 30 6
 1
 20 2
 70 1
 90 3
 110 2
 50 45
 40 1
 80 34
 10 1
 60 5

Notice that the rows are returned in no specific order. If you want the rows to be
arranged in the order of the number of employees, you can either specify the aggregate
function in the ORDER BY clause or use the position of the column, like so:

SELECT department_id, COUNT(*) "#Employees"
FROM employees
GROUP BY department_id
ORDER BY count(*) DESC, department_id;

SELECT department_id, COUNT(*) "#Employees"
FROM employees
GROUP BY department_id
ORDER BY 2 DESC, department_id;

180	 Chapter 4  ■  Using Group Functions

DEPARTMENT_ID #Employees
------------- ----------
 50 45
 80 34
 30 6
 100 6
 60 5
 90 3
 20 2
 110 2
 10 1
 40 1
 70 1
 1

You cannot use a column alias name or column position in the GROUP BY clause (as you
can in the ORDER BY clause). The following SQL instructions use the column position in the
GROUP BY clause and hence generate an error:

SELECT department_id, COUNT(*) "#Employees"
FROM employees
GROUP BY 1;
SELECT department_id, COUNT(*) "#Employees"
 *
ERROR at line 1:
ORA-00979: not a GROUP BY expression

The following is another invalid SQL statement. In this example, the GROUP BY clause
uses a column alias, which is not supported. Pay particular attention to GROUP BY ques-
tions on the certification exam, because you might see one with a column alias or column
position used.

SELECT department_id di, COUNT(*) emp_cnt
FROM employees
GROUP BY di;
GROUP BY di
 *
ERROR at line 3:
ORA-00904: "DI": invalid identifier

The GROUP BY column does not have to be in the SELECT clause. In most cases, the
result may not make much sense, but you might need it. In the following example, you
are calculating the average salary of employees in each department; you do not want to

	 Utilizing Aggregate Functions	 181

share which department the average salary belongs to, and you are only interested in
knowing the average salaries in the company by department:

SELECT AVG(salary) average_salary
FROM employees
GROUP BY department_id;

AVERAGE_SALARY

 8601.33333
 4150
 7000
 19333.3333
 9500
 10000
 10154
 3475.55556
 8955.88235
 6500
 5760
 4400

If you have more than one column in the GROUP BY clause, Oracle creates groups within
groups. The order of columns in the GROUP BY clause determines the grouping. Multiple col-
umns in the GROUP BY clause are required when you have more than one nonaggregate column
in the SELECT clause. In the following example, the rows are grouped by the department_id,
and within each department they are grouped by the job_id. The SQL shows the number of
different jobs within each department:

SELECT department_id, job_id, COUNT(*)
FROM employees
GROUP BY department_id, job_id
ORDER BY 1, 2;

DEPARTMENT_ID JOB_ID COUNT(*)
------------- ---------- ----------
 10 AD_ASST 1
 20 MK_MAN 1
 20 MK_REP 1
 30 PU_CLERK 5
 30 PU_MAN 1
 40 HR_REP 1

182	 Chapter 4  ■  Using Group Functions

 50 SH_CLERK 20
 50 ST_CLERK 20
 50 ST_MAN 5
 60 IT_PROG 5
 70 PR_REP 1
 80 SA_MAN 5
 80 SA_REP 29
 90 AD_PRES 1
 90 AD_VP 2
 100 FI_ACCOUNT 5
 100 FI_MGR 1
 110 AC_ACCOUNT 1
 110 AC_MGR 1
 SA_REP 1

The GROUP BY clause groups data, but Oracle does not guarantee the order
of the result set by the grouping order. To order the data in any specific
order, you must use the ORDER BY clause. ORDER BY clause follows the
GROUP BY clause and if the ORDER BY clause is used, it is the last clause
in the SELECT statement.

Group Function Overview
Tables 4.1 and 4.2 summarize the group functions discussed in this chapter. We will cover
each of these functions in the “Group Function Descriptions” sections. Table 4.1 summa-
rizes the group functions that are most likely to appear on the OCP certification exam.

Tabl e 4 .1    Group Function Summary: Part 1

Function Description

AVG Returns the statistical mean

COUNT Returns the number of non-NULL rows

MAX Returns the largest value

MEDIAN Returns a middle value

MIN Returns the smallest value

	 Utilizing Aggregate Functions	 183

Function Description

STDDEV Returns the standard deviation

SUM Adds all values and returns the result

VARIANCE Returns the sample variance, or 1 for sample size 1

LISTAGG Returns multiple rows of data in a single row based for
each group

Table 4.2 summarizes the group functions available in Oracle Database 12c that are not
included in Table 4.1. Although they are less likely to appear on the certification exam, they
are still important to review.

Tabl e 4 . 2    Group Function Summary: Part 2

Function Description

CORR Returns the coefficient of correlation of number pairs

COVAR_POP Returns the population covariance of number pairs

COVAR_SAMP Returns the sample covariance of number pairs

CUME_DIST Returns the cumulative distribution of values within
groupings

DENSE_RANK Returns the ranking of rows within an ordered group,
without skipping ranks on ties

FIRST Modifies other aggregate functions to return expres-
sions based on the ordering of the second-column
expression

GROUP_ID Returns a group identifier used to uniquely identify
duplicate groups

GROUPING Returns 0 for nonsummary rows or 1 for summary rows

GROUPING_ID Helps determine group by levels when CUBE or ROLLUP
is used

KEEP Modifies other aggregate functions to return the first or
last value in a grouping

184	 Chapter 4  ■  Using Group Functions

Function Description

LAST Modifies other aggregate functions to return expressions
based on ordering of the second-column expression

PERCENTILE_CONT Returns the interpolated value that would fall in the
specified percentile position using a continuous model

PERCENTILE_DISC Returns the interpolated value that would fall in the
specified percentile position using a discrete model

PERCENT_RANK Returns the percentile ranking of the specified value

RANK Returns the ranking of rows within an ordered group,
skipping ranks when ties occur

STDDEV_POP Returns the population standard deviation

STDDEV_SAMP Returns the sample standard deviation

VAR_POP Returns the population variance

VAR_SAMP Returns the sample variance

Group Function Descriptions: Part 1
We divided the group functions into two sections. The group functions included in the
following sections are commonly used in everyday SQL and are most likely to appear on
the OCP certification exam. We discuss each of these functions and include descriptions
and examples of each.

For the certification exam, concentrate more on the group functions covered
in the Part 1 discussion than those in the Part 2 discussion.

AVG
AVG function has the syntax AVG([{DISTINCT | ALL}] n), where n is a numeric expression.
The AVG function returns the average of the expression n. The following example finds the
average salary of employees by job, whose job name begins with AC:

SELECT job_id, AVG(salary)
FROM employees

Tabl e 4 . 2    Group Function Summary: Part 2  (continued)

	 Utilizing Aggregate Functions	 185

WHERE job_id like 'AC%'
GROUP BY job_id;

JOB_ID AVG(SALARY)
---------- -----------
AC_ACCOUNT 8300
AC_MGR 12000

You can use an expression or formula in the group functions. In the following example,
the average compensation including commission is calculated for department 30 from the
SCOTT.EMP table. The expression will be evaluated first, and its result will be used to calculate
the mean. To help you better understand the example, the data in department 30 is listed.

SELECT deptno, sal, comm
FROM scott.emp
WHERE deptno = 30;

 DEPTNO SAL COMM
---------- ---------- ----------
 30 1600 300
 30 1250 500
 30 1250 1400
 30 2850
 30 1500 0
 30 950

SELECT deptno, AVG(sal + NVL(comm,0)) avg_comp
FROM scott.emp
WHERE deptno = 30
GROUP BY deptno;

 DEPTNO AVG_COMP
---------- ----------
 30 1933.33333

Remember that group functions ignore NULL values. If the NVL function is not used,
the employees with no commission are not included in the mean calculation. See the
result difference in the following example without the NVL use:

SELECT deptno, AVG(sal + comm) avg_comp
FROM scott.emp
WHERE deptno = 30
GROUP BY deptno;

186	 Chapter 4  ■  Using Group Functions

 DEPTNO AVG_COMP
---------- ----------
 30 1950

COUNT
The COUNT function has the syntax COUNT({* | [DISTINCT | ALL] <x>}), where x is an
expression. The COUNT function returns the number of rows in the query. If an expression is
given and neither DISTINCT nor ALL is specified, the default is ALL. The asterisk (*) is a special
quantity; it counts all rows in the result set, regardless of NULLs.

In the example that follows, you can count the number of rows in the EMPLOYEES table
(the number of employees), the number of departments that have employees in them (DEPT_
COUNT), and the number of employees that have a department (NON_NULL_DEPT_COUNT). You
can see from the results that one employee is not assigned to a department, and the other
106 are assigned to one of 11 departments.

SELECT COUNT(*) emp_count,
 COUNT(DISTINCT department_id) dept_count,
 COUNT(ALL department_id) non_null_dept_count
FROM hr.employees;

EMP_COUNT DEPT_COUNT NON_NULL_DEPT_COUNT
---------- ---------- -------------------
 107 11 106

This next example looks at the number of employees drawing a commission, as well as
the distinct number of commissions drawn. You can see that 35 out of 107 employees draw
a commission and that seven different commission levels are in use.

SELECT COUNT(*),
 COUNT(commission_pct) comm_count,
 COUNT(DISTINCT commission_pct) distinct_comm
FROM hr.employees;

 COUNT(*) COMM_COUNT DISTINCT_COMM
---------- ---------- -------------
 107 35 7

MAX
The MAX function has the syntax MAX([{DISTINCT | ALL}] <x>), where x is an expres-
sion. This function returns the highest value in the expression x. x can be a datetime,

	 Utilizing Aggregate Functions	 187

numeric, or character value. The results of the MAX operation on the three groups of
datatypes are as follows:

■■ If the expression x is a datetime datatype, it returns a DATE. For dates, the maximum is
the latest date.

■■ If the expression x is a numeric datatype, it returns a NUMBER. For numbers, the maxi-
mum is the largest number.

■■ If the expression is a character datatype, it returns a VARCHAR2. For character strings,
the maximum is the one that sorts highest based on the database character set.

Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use does
not affect the calculation of a MAX function; the largest distinct value is the same as the largest
of all values. The following example finds information from the employees table: the latest hire
date, highest salary, and employee whose last name is last when sorted in ascending order:

SELECT MAX(hire_date),
 MAX(salary),
 MAX(last_name)
FROM hr.employees;

MAX(HIRE_ MAX(SALARY) MAX(LAST_NAME)
--------- ----------- -------------------------
21-APR-08 24000 Zlotkey

MIN
The MIN function has the syntax MIN([{DISTINCT | ALL}] <x>), where x is an expression.
This function returns the lowest value in the expression x. Similar to the MAX function, the
x in MIN can also be a numeric, datetime, or character datatype.

■■ If the expression x is a datetime datatype, it returns a DATE. For dates, the minimum is
the earliest date.

■■ If the expression x is a numeric datatype, it returns a NUMBER. For numbers, the minimum
is the smallest number.

■■ If the expression is a character datatype, it returns a VARCHAR2. For character strings,
the minimum is the one that sorts lowest based on the database character set.

Although the inclusion of either DISTINCT or ALL is syntactically acceptable, their use
does not affect the calculation of a MIN function; the smallest distinct value is the same as the
smallest value. The following example finds the oldest hired employee, and the lowest salary
and highest salary for each job category. The rows are filtered for jobs ending with CLERK:

SELECT job_id, MIN(hire_date) oldest, MIN(salary) low_sal,
 MAX(salary) high_sal
FROM hr.employees

188	 Chapter 4  ■  Using Group Functions

WHERE job_id like '%CLERK'
GROUP BY job_id;

JOB_ID OLDEST LOW_SAL HIGH_SAL
---------- --------- ---------- ----------
PU_CLERK 18-MAY-03 2500 3100
SH_CLERK 27-JAN-04 2500 4200
ST_CLERK 14-JUL-03 2100 3600

SUM
The SUM function has the syntax SUM([{DISTINCT | ALL}] <x>), where x is a numeric
expression. This function returns the sum of the expression x. The following example finds
the total salary and average salary of employees by their phone number area code. Notice the
use of group functions and a single-row function in the same SQL instructions:

SELECT SUBSTR(phone_number, 1,3) area_code,
 SUM(salary) total_sal, ROUND(AVG(salary)) avg_sal
FROM employees
GROUP BY SUBSTR(phone_number, 1,3);

AREA_CODE TOTAL_SAL AVG_SAL
------------ ---------- ----------
515 188716 8986
590 28800 5760
603 6000 6000
011 311500 8900
650 156400 3476

MEDIAN
MEDIAN (<x>) is an inverse distribution function that returns a middle value after the values in
the expression are sorted. The argument x is an expression of numeric or datetime value. The
following example finds the median, average, low, and high salary of employees by job cat-
egory. To limit the rows returned, a filter condition is used:

SELECT job_id, MEDIAN(Salary) median, AVG(salary) average,
 MIN(salary) low_sal, MAX(salary) high_sal
FROM hr.employees
WHERE job_id like '%CLERK'
GROUP BY job_id;

	 Utilizing Aggregate Functions	 189

JOB_ID MEDIAN AVERAGE LOW_SAL HIGH_SAL
---------- ---------- ---------- ---------- ----------
PU_CLERK 2800 2780 2500 3100
SH_CLERK 3100 3215 2500 4200
ST_CLERK 2700 2785 2100 3600

STDDEV
This function has the syntax STDDEV([{DISTINCT | ALL}] <x>), where x is a numeric
expression. The STDDEV function returns the numeric standard deviation of the expression x.

The standard deviation is calculated as the square root of the variance:

SELECT department_id,
 COUNT(salary) emp_cnt,
 MIN(salary) minimum,
 MAX(salary) maximum,
 AVG(salary) mean,
 STDDEV(salary) deviation
FROM employees
GROUP BY department_id
ORDER BY department_id;

DEPARTMENT_ID EMP_CNT MINIMUM MAXIMUM MEAN DEVIATION
------------- ---------- ---------- ---------- ---------- ----------
 10 1 4400 4400 4400 0
 20 2 6000 13000 9500 4949.74747
 30 6 2500 11000 4150 3362.58829
 40 1 6500 6500 6500 0
 50 45 2100 8200 3475.55556 1488.00592
 60 5 4200 9000 5760 1925.61678
 70 1 10000 10000 10000 0
 80 34 6100 14000 8955.88235 2033.6847
 90 3 17000 24000 19333.3333 4041.45188
 100 6 6900 12008 8601.33333 1804.13155
 110 2 8300 12008 10154 2621.95194
 1 7000 7000 7000 0

VARIANCE
This function has the syntax VARIANCE([{DISTINCT | ALL}] <x>), where x is a numeric
expression. This function returns the variance of the expression x. The following example

190	 Chapter 4  ■  Using Group Functions

finds the total number of employees in each department and their variance in salary by
department:

SELECT department_id,
 COUNT(*),
 VARIANCE(salary)
FROM hr.employees
GROUP BY department_id
ORDER BY department_id;

DEPARTMENT_ID COUNT(*) VARIANCE(SALARY)
------------- ---------- ----------------
 10 1 0
 20 2 24500000
 30 6 11307000
 40 1 0
 50 45 2214161.62
 60 5 3708000
 70 1 0
 80 34 4135873.44
 90 3 16333333.3
 100 6 3254890.67
 110 2 6874632
 1 0

LISTAGG
The LISTAGG function aggregates data from multiple rows into one row per group. LISTAGG
can be used as an aggregate function or analytic function. The aggregate function syntax is

 LISTAGG(<expression> [, '<delimiter>']) WITHIN GROUP (ORDER BY <columns>)

where expression is a numeric expression or string expression, usually the column you want
to concatenate. The delimiter is optional, with default value NULL. If a delimiter is provided,
the values returned in the expression are separated by this delimiter. The WITHIN GROUP clause
is mandatory and it tells Oracle to produce one row per each distinct value of the GROUP BY
columns, and within that group to sort the results according to the ORDER BY clause. The
ORDER BY clause determines the order in which the aggregated values are ordered. The ORDER
BY clause is mandatory; if you do not want to specify any column order, specify ORDER BY
NULL. Let’s review with an example to help you understand the LISTAGG function.

The following SQL code displays the first names of employees in each department
concatenated and delimited with a comma.

SQL> col employee_names format a60 word
SQL> SELECT LISTAGG(first_name, ', ') WITHIN GROUP (

	 Utilizing Aggregate Functions	 191

 2 ORDER BY first_name) Employee_Names,
 3 department_id
 4 FROM employees
 5 WHERE department_id > 75
 6* GROUP BY department_id;

EMPLOYEE_NAMES DEPARTMENT_ID
-- -------------
Alberto, Allan, Alyssa, Amit, Charles, Christopher, Clara, 80
Danielle, David, David, Eleni, Elizabeth, Ellen, Gerald,
Harrison, Jack, Janette, John, Jonathon, Karen, Lindsey,
Lisa, Louise, Mattea, Nanette, Oliver, Patrick, Peter,
Peter, Sarath, Sundar, Sundita, Tayler, William
Lex, Neena, Steven 90
Daniel, Ismael, John, Jose Manuel, Luis, Nancy 100
Shelley, William 110

SQL>

If the GROUP BY clause is not used, one row result will be returned, similar to any other
group function. The following example shows employee names and their hire date, in the
order of hire date concatenated for department ID over 85. The filtering for this SQL is done
only to restrict the number of rows. This example also shows using an expression as the
first parameter for the LISTAGG function.

SQL> col employee_hire_dates format a60 word
SQL> SELECT LISTAGG(first_name || '('||hire_date||')', '; ')
 2 WITHIN GROUP (ORDER BY hire_date) Employee_Hire_Dates
 3 FROM employees
 4* WHERE department_id > 85;

EMPLOYEE_HIRE_DATES
--
Lex(13-JAN-01); Shelley(07-JUN-02); William(07-JUN-02);
Daniel(16-AUG-02); Nancy(17-AUG-02); Steven(17-JUN-03);
Neena(21-SEP-05); John(28-SEP-05); Ismael(30-SEP-05); Jose
Manuel(07-MAR-06); Luis(07-DEC-07)

SQL>

192	 Chapter 4  ■  Using Group Functions

Exploring DBA Queries Using Aggregate Functions

As a DBA, you often need to find out how much space is allocated for a schema and
how much is free. You might not be interested in seeing the space used by all the tables
or indexes in the schema, but it would be nice to have the summary broken down into
tablespace-wise schema storage space. Let’s write a few SQL statements using the group
functions that you can use to calculate space usage in a database.

The DBA_SEGMENTS dictionary view shows the segments allocated in the database—each
table or index created in the database must have at least one segment created. The columns
you are interested in for the query are tablespace_name, owner (or the schema name), and
bytes (allocated space in bytes).

This first SQL code just gives the total space used by all the objects in the database. This
is a simple SQL statement on all the rows in the view:

SELECT SUM(bytes)/1048576 size_mb
FROM dba_segments;

 SIZE_MB

 1564.8125

Now, let’s break down this space into the next level to see the space used in each
tablespace. Because you are not interested in any aggregate function over the entire
database but want to break it down by tablespaces, you must have the GROUP BY clause:

SELECT tablespace_name, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY tablespace_name;

TABLESPACE_NAME SIZE_MB
------------------------------ ----------
SYSAUX 716.375
UNDOTBS1 48.25
USERS 21.25
SYSTEM 701.625
EXAMPLE 77.3125

	 Utilizing Aggregate Functions	 193

To find the amount of space allocated to each schema owner within the tablespaces, all
you have to do is add the owner column to the query. Remember, because you are not per-
forming an aggregate function on owner, that column also should be part of the GROUP BY
clause. You also need to include an ORDER BY clause so that the rows returned are in the
order of tablespace name.

SELECT tablespace_name, owner, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY tablespace_name, owner
ORDER BY 1, 2;

TABLESPACE_NAME OWNER SIZE_MB
------------------------------ ------------------------------ ----------
EXAMPLE HR 1.5625
EXAMPLE IX 1.625
EXAMPLE OE 6.25
EXAMPLE PM 11.875
EXAMPLE SH 56
SYSAUX CTXSYS 5.4375
… … …
USERS HR .1875
USERS OE 2.625
USERS SCOTT .375
USERS SH 2

If you want to know the amount of space allocated to the objects owned by each schema,
you can run the following query:

SELECT owner, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY owner
ORDER BY 1;

OWNER SIZE_MB
------------------------------ ----------
BTHOMAS 16.0625
CTXSYS 5.4375
DBSNMP 1.5
EXFSYS 3.875

194	 Chapter 4  ■  Using Group Functions

FLOWS_030000 100.6875
FLOWS_FILES .4375
HR 1.75
… … …

Group Function Descriptions: Part 2
The group functions discussed in the following sections are included in this chapter for
completeness of the group functions discussion. The likelihood of these appearing in the
OCP certification exam is minimal, but knowing these functions will help you write better
SQL queries.

Many group functions discussed in this group (and AVG, COUNT, MAX, MIN, STDDEV, SUM,
and VARIANCE) can be used as analytic functions. Analytic functions are commonly used in
data warehouse environments. They compute an aggregate based on a group of rows, called
a window. Because the OCP certification exam does not include analytic functions, we
won’t discuss them in this chapter.

CORR
CORR(y, x) takes two arguments, where y and x are numeric expressions representing the
dependent and independent variables, respectively. This function returns the coefficient of
the correlation of a set of number pairs.

The coefficient of correlation is a measure of the strength of the relationship between
the two numbers. CORR can return a NULL. The coefficient of the correlation is calculated
from those x, y pairs that are both not NULL using the formula COVAR_POP(y,x) / (STDDEV_
POP(y) * STDDEV_POP(x)).

SELECT CORR(list_price,min_price) correlation,
 COVAR_POP(list_price,min_price) covariance,
 STDDEV_POP(list_price) stddev_popy,
 STDDEV_POP(min_price) stddev_popx
FROM oe.product_information
WHERE list_price IS NOT NULL
AND min_price IS NOT NULL;

CORRELATION COVARIANCE STDDEV_POPY STDDEV_POPX
----------- ------------ ----------- -----------
 .99947495 206065.903 496.712198 415.077696

The previous output shows that there is a 99.947 percent chance that the list price depends
on the minimum price. So, when the minimum price moves by x percent, there is a 99.947
percent chance that the list price will also move by x percent.

	 Utilizing Aggregate Functions	 195

COVAR_POP
COVAR_POP(y, x) takes two arguments, where y and x are numeric expressions. This function
returns the population covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The popula-
tion covariance is calculated from those y, x pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(x) / COUNT(x)) / COUNT(x).

SELECT category_id,
 COVAR_POP(list_price,min_price) population,
 COVAR_SAMP(list_price,min_price) sample
FROM oe.product_information
GROUP BY category_id;

CATEGORY_ID POPULATION SAMPLE
----------- ---------- ----------
 25 27670.25 31623.1429
 22 45 67.5
 11 92804.9883 98991.9875
 13 25142.125 26465.3947
 29 3446.75 3574.40741
 14 17982.9924 18800.4012
 31 1424679.17 1709615
 21 21.5306122 25.1190476
 24 109428.285 114639.156
 32 4575.06 4815.85263
 17 5466.14286 5739.45
 33 945 1134
 15 7650.84375 8160.9
 16 431.38 479.311111
 19 417343.887 426038.551
 12 26472.3333 29781.375
 39 1035.14059 1086.89762

COVAR_SAMP
COVAR_SAMP(y, x) takes two arguments, where y and x are numeric expressions represent-
ing the dependent and independent variables, respectively. This function returns the sample
covariance of a set of number pairs, which can be NULL.

The covariance is a measure of how two sets of data vary in the same way. The sample
covariance is calculated from those x, y pairs that are both not NULL using the formula
(SUM(y*x) - SUM(y) * SUM(x) / COUNT(x)) / (COUNT(x)-1).

196	 Chapter 4  ■  Using Group Functions

SELECT SUM(list_price*min_price) sum_xy,
 SUM(list_price) sum_y,
 SUM(min_price) sum_x,
 COVAR_SAMP(list_price,min_price) COVARIANCE
FROM oe.product_information;

 SUM_XY SUM_Y SUM_X COVARIANCE
---------- ---------- ---------- ----------
 73803559 71407 60280 206791.488

CUME_DIST
This function has the syntax

CUME_DIST(<val_list>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of expressions that evaluate to numeric constant
values and col_list is the comma-delimited list of column expressions. CUME_DIST returns
the cumulative distribution of a value in val_list within a distribution in col_list.

The cumulative distribution is a measure of ranking within the ordered group and will
be in the range 0 < CUME_DIST <= 1. See also PERCENT_RANK.

SELECT department_id,
 COUNT(*) emp_count,
 AVG(salary) mean,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY salary DESC) Median,
 CUME_DIST(10000) WITHIN GROUP
 (ORDER BY salary DESC) Cume_Dist_10K
FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID EMP_COUNT MEAN MEDIAN CUME_DIST_10K
------------- ---------- ---------- ---------- -------------
 10 1 4400 4400 .5
 20 2 9500 9500 .666666667
 30 6 4150 2850 .285714286
 40 1 6500 6500 .5
 50 45 3475.55556 3100 .02173913
 60 5 5760 4800 .166666667
 70 1 10000 10000 1
 80 34 8955.88235 8900 .342857143

	 Utilizing Aggregate Functions	 197

 90 3 19333.3333 17000 1
 100 6 8601.33333 8000 .285714286
 110 2 10154 10154 .666666667
 1 7000 7000 .5

DENSE_RANK
This function has the syntax

DENSE_RANK(val_list) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_list is the comma-delimited list of column
expressions. DENSE_RANK returns the row’s rank within an ordered group. The ranks are con-
secutive integers starting with 1. The rank values are the number of unique values returned
by the query. When there are ties, ranks are not skipped. For example, if three items are
tied for first, then the second and third will not be skipped. See also RANK. The following
example finds the number of employees in each department along with their low and high
salary. Use the DENSE_RANK function to figure out the ranking of a $10,000 salary within each
department:

 SELECT department_id,
 COUNT(*) emp_count,
 MAX(salary) highsal,
 MIN(salary) lowsal,
 DENSE_RANK(10000) WITHIN GROUP
 (ORDER BY salary DESC) dense_rank_10K
 FROM hr.employees
 GROUP BY department_id;

DEPARTMENT_ID EMP_COUNT HIGHSAL LOWSAL DENSE_RANK_10K
------------- ---------- ---------- ---------- --------------
 10 1 4400 4400 1
 20 2 13000 6000 2
 30 6 11000 2500 2
 40 1 6500 6500 1
 50 45 8200 2100 1
 60 5 9000 4200 1
 70 1 10000 10000 1
 80 34 14000 6100 7
 90 3 24000 17000 3
 100 6 12008 6900 2
 110 2 12008 8300 2

198	 Chapter 4  ■  Using Group Functions

To understand this ranking, let’s look closer at department 80. You can see that $10,000
is the seventh-highest salary in department 80. Even though there are 11 employees that
make $10,000 or more, the duplicates are not counted for ranking purposes.

SELECT salary, COUNT(*)
FROM hr.employees
WHERE department_id=80
GROUP BY salary
ORDER BY salary DESC;

 SALARY COUNT(*)
---------- ----------
 14000 1
 13500 1
 12000 1
 11500 1
 11000 2
 10500 2
 10000 3
 9600 1
… … … (output truncated)

See also RANK.

FIRST
See KEEP.

GROUP_ID
GROUP_ID() takes no arguments and requires a GROUP BY clause. GROUP_ID returns a
numeric identifier that can be used to uniquely identify duplicate groups. For i duplicate
groups, GROUP_ID will return values 0 through i-1.

GROUPING
GROUPING(x) takes a single argument, where x is an expression in the GROUP BY clause of the
query. The GROUPING function is applicable only for queries that have a GROUP BY clause and
a ROLLUP or CUBE clause. The ROLLUP and CUBE clauses create summary rows (sometimes
called superaggregates) containing NULL in the grouped expressions. The GROUPING function
returns a 1 for these summary rows and a 0 for the nonsummary rows, and it is used to
distinguish the summary rows from the nonsummary rows.

	 Utilizing Aggregate Functions	 199

GROUPING is discussed in detail in the “Creating Superaggregates with CUBE and
ROLLUP” section later in this chapter.

GROUPING_ID
This function has the syntax GROUPING_ID (<col_list>) and is applicable only in SELECT
statements with a GROUP BY clause with CUBE or ROLLUP. If the query contains many expres-
sions in the GROUP BY clause, determining the GROUP BY level will require many GROUPING
functions. The GROUPING_ID eliminates such a need. For a more detailed discussion on
GROUPING_ID, see the section “Creating Superaggregates with CUBE and ROLLUP” later
in this chapter.

KEEP
The KEEP function has the syntax

agg_function KEEP(DENSE_RANK {FIRST|LAST}
ORDER BY col_list [ASC|DESC] [NULLS {first|last}]))

where agg_function is an aggregate function (COUNT, SUM, AVG, MIN, MAX, VARIANCE, or
STDDEV) and col_list is a list of columns to be ordered for the grouping.

This function is sometimes referred to as either the FIRST or LAST function, and it is
actually a modifier for one of the other group functions, such as COUNT or MIN. The KEEP
function returns the first or last row of a sorted group. It is used to avoid the need for a
self-join, looking for the minimum or maximum

SELECT department_id,
 MIN(hire_date) earliest,
 MAX(hire_date) latest,
 COUNT(salary) KEEP
 (DENSE_RANK FIRST ORDER BY hire_date) FIRST,
 COUNT(salary) KEEP
 (DENSE_RANK LAST ORDER BY hire_date) LAST
FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID EARLIEST LATEST FIRST LAST
------------- --------- --------- ---------- ----------
 10 17-SEP-03 17-SEP-03 1 1
 20 17-FEB-04 17-AUG-05 1 1
 30 07-DEC-02 10-AUG-07 1 1
 40 07-JUN-02 07-JUN-02 1 1
 50 01-MAY-03 08-MAR-08 1 1
 60 25-JUN-05 21-MAY-07 1 1
 70 07-JUN-02 07-JUN-02 1 1

200	 Chapter 4  ■  Using Group Functions

 80 30-JAN-04 21-APR-08 1 2
 90 13-JAN-01 21-SEP-05 1 1
 100 16-AUG-02 07-DEC-07 1 1
 110 07-JUN-02 07-JUN-02 2 2
 24-MAY-07 24-MAY-07 1 1

You can see from the previous query that department 80’s earliest and latest anniversary
dates are 30-Jan-2004 and 21-Apr-2008. The FIRST and LAST columns show us that one
employee was hired on the earliest anniversary date (30-Jan-2004) and two were hired on the
latest anniversary date (21-Apr-2008). Likewise, you can see that department 110 has two
employees hired on the earliest anniversary date (07-Jun-2002) and two on the latest anniver-
sary date (07-Jun-2002). If you look at the following detailed data, this becomes clearer:

SELECT department_id,hire_date
FROM hr.employees
WHERE department_id IN (80,110)
ORDER BY 1,2;

DEPARTMENT_ID HIRE_DATE
------------- ---------
 80 30-JAN-04
 80 04-MAR-04
 80 11-MAY-04
 80 01-AUG-04
 80 01-OCT-04
 80 05-JAN-05
 80 30-JAN-05
... … … (output truncated)
 80 21-APR-08
 80 21-APR-08
 110 07-JUN-02
 110 07-JUN-02

LAST
See KEEP.

PERCENT_RANK
The PERCENT_RANK function has the syntax

PERCENT_RANK(<val_list>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

	 Utilizing Aggregate Functions	 201

where val_list is a comma-delimited list of expressions that evaluate to numeric constant
values and col_list is the comma-delimited list of column expressions. PERCENT_RANK
returns the percent ranking of a value in val_list within a distribution in col_list. The
percent rank x will be in the range 0 <= x <= 1.

The main difference between PERCENT_RANK and CUME_DIST is that PERCENT_RANK will
always return a 0 for the first row in any set, while the CUME_DIST function cannot return
a 0. You can use the PERCENT_RANK and CUME_DIST functions to examine the rankings of
employees with salaries of more than $10,000 in the HR.EMPLOYEES table. Notice the differ-
ent results for departments 40 and 70.

SELECT DEPARTMENT_ID DID,
 COUNT(*) emp_count,
 AVG(salary) mean,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY salary DESC) median,
 PERCENT_RANK(10000) WITHIN GROUP
 (ORDER BY salary DESC)*100 pct_rank_10K,
 CUME_DIST(10000) WITHIN GROUP
 (ORDER BY salary DESC)*100 cume_dist_10K
FROM hr.employees
GROUP BY department_id;

 DID EMP_COUNT MEAN MEDIAN PCT_RANK_10K CUME_DIST_10K
---------- ---------- ---------- ---------- ------------ -------------
 10 1 4400 4400 0 50
 20 2 9500 9500 50 66.6666667
 30 6 4150 2850 16.6666667 28.5714286
 40 1 6500 6500 0 50
 50 45 3475.55556 3100 0 2.17391304
 60 5 5760 4800 0 16.6666667
 70 1 10000 10000 0 100
 80 34 8955.88235 8900 23.5294118 34.2857143
 90 3 19333.3333 17000 100 100
 100 6 8601.33333 8000 16.6666667 28.5714286
 110 2 10154 10154 50 66.6666667
 1 7000 7000 0 50

PERCENTILE_CONT
PERCENTILE_CONT has the syntax

PERCENTILE_CONT(<x>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC])

202	 Chapter 4  ■  Using Group Functions

where x is a percentile value in the range 0 < x < 1 and col_list is the sort specification.
PERCENTILE_CONT returns the interpolated value that would fall in percentile position x
within the sorted group col_list.

This function assumes a continuous distribution and is most useful for obtaining the
median value of an ordered group. The median value is defined to be the midpoint in a group
of ordered numbers—half of the values are greater than the median, and half of the values
are less than the median.

The median together with the mean or average are the two most common
measures of a central tendency used to analyze data. See the AVG function
for more information on calculating the mean.

For this example, you will use the SCOTT.EMP table, ordered by department number:

SELECT ename ,deptno ,sal
FROM scott.emp
ORDER BY deptno ,sal;

ENAME DEPTNO SAL
---------- ---------- ----------
MILLER 10 1300
CLARK 10 2450
KING 10 5000
SMITH 20 800
ADAMS 20 1100
JONES 20 2975
SCOTT 20 3000
FORD 20 3000
JAMES 30 950
WARD 30 1250
MARTIN 30 1250
TURNER 30 1500
ALLEN 30 1600
BLAKE 30 2850

You can see that for department 10, there are three SAL values: 1300, 2450, and 5000. The
median would be 2450, because there is one value greater than this number and one value less
than this number. The median for department 30 is not so straightforward, because there are
six values and the middle value is actually between the two data points 1250 and 1500. To
get the median for department 30, you need to interpolate the midpoint.

Two common techniques are used to interpolate this median value: one technique uses a
continuous model, and one uses a discrete model. In the continuous model, the midpoint is

	 Utilizing Aggregate Functions	 203

assumed to be the value halfway between the 1250 and 1500, which is 1375. Using the dis-
crete model, the median must be an actual data point, and depending on whether the data
is ordered ascending or descending, the median would be 1250 or 1500.

SELECT deptno,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY sal DESC) "CONTINUOUS",
 PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY sal DESC) "DISCRETE DESC",
 PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY sal ASC) "DISCRETE ASC",
 AVG(sal) mean
FROM scott.emp
GROUP BY deptno;

DEPTNO CONTINUOUS DISCRETE DESC DISCRETE ASC MEAN
------ ---------- ------------- ------------ ----------
 10 2450 2450 2450 2916.66667
 20 2975 2975 2975 2175
 30 1375 1500 1250 1566.66667

PERCENTILE_DISC
PERCENTILE_DISC has the syntax

PERCENTILE_DISC(<x>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC])

where x is a percentile value in the range 0 < x < 1 and col_list is the sort specification.
PERCENTILE_DISC returns the smallest cumulative distribution value from the col_list set
that is greater than or equal to value x.

This function assumes a discrete distribution. Sometimes data cannot be averaged in
a meaningful way. Date data, for example, cannot be averaged, but you can calculate the
median date in a group of dates. For example, to calculate the median hire date for employ-
ees in each department, you could run the following query:

SELECT department_id did,
 COUNT(*) emp_count,
 MIN(HIRE_DATE) first,
 MAX(HIRE_DATE) last,
 PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY HIRE_DATE) median
FROM hr.employees
GROUP BY department_id;

204	 Chapter 4  ■  Using Group Functions

 DID EMP_COUNT FIRST LAST MEDIAN
---------- ---------- --------- --------- ---------
 10 1 17-SEP-03 17-SEP-03 17-SEP-03
 20 2 17-FEB-04 17-AUG-05 17-FEB-04
 30 6 07-DEC-02 10-AUG-07 24-JUL-05
 40 1 07-JUN-02 07-JUN-02 07-JUN-02
 50 45 01-MAY-03 08-MAR-08 15-MAR-06
 60 5 25-JUN-05 21-MAY-07 05-FEB-06
 70 1 07-JUN-02 07-JUN-02 07-JUN-02
 80 34 30-JAN-04 21-APR-08 23-MAR-06
 90 3 13-JAN-01 21-SEP-05 17-JUN-03
 100 6 16-AUG-02 07-DEC-07 28-SEP-05
 110 2 07-JUN-02 07-JUN-02 07-JUN-02
 1 24-MAY-07 24-MAY-07 24-MAY-07

RANK
RANK function is similar to DENSE_RANK and has the syntax

RANK(<val_list>) WITHIN GROUP (ORDER BY col_list
[ASC|DESC] [NULLS {first|last}])

where val_list is a comma-delimited list of numeric constant expressions (expressions that
evaluate to numeric constant values) and col_list is the comma-delimited list of column
expressions. RANK returns the row’s rank within an ordered group.

When there are ties, ranks of equal value are assigned equal rank, and the number of
tied rows is skipped before the next rank is assigned. For example, if three items are tied for
first, the second and third items will be skipped, and the next will be the fourth. Whereas
when DENSE_RANK is used, ranks are not skipped and only unique values are considered
for ranking. The following example shows the same example we used for DENSE_RANK, but
includes RANK function as well to show the difference in behavior for these functions.

SELECT department_id,
 MAX(salary) highsal,
 MIN(salary) lowsal,
 DENSE_RANK(10000) WITHIN GROUP
 (ORDER BY salary DESC) dense_rank_10K,
 RANK(10000) WITHIN GROUP
 (ORDER BY salary DESC) rank_10K
FROM hr.employees
GROUP BY department_id;

	 Utilizing Aggregate Functions	 205

DEPARTMENT_ID HIGHSAL LOWSAL DENSE_RANK_10K RANK_10K
------------- ---------- ---------- -------------- ----------
 10 4400 4400 1 1
 20 13000 6000 2 2
 30 11000 2500 2 2
 40 6500 6500 1 1
 50 8200 2100 1 1
 60 9000 4200 1 1
 70 10000 10000 1 1
 80 14000 6100 7 9
 90 24000 17000 3 4
 100 12008 6900 2 2
 110 12008 8300 2 2

To help you understand this ranking, let’s look again at department 80. You can see that
10,000 is the seventh-highest salary in department 80. But because there are eight employ-
ees who make more than $10,000, the rank of 10,000 is 9. The duplicates are counted for
ranking purposes when using RANK, but not for DENSE_RANK. Refer to the “DENSE_RANK”
section to see the distinct salaries in department 80.

STDDEV_POP
STDDEV_POP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population standard deviation of the expression x. The population
standard deviation is calculated as the square root of the population variance VAR_POP.

SET NULL ?
SELECT department_id DID,
 STDDEV(salary) STD,
 STDDEV_POP(salary) STDPOP,
 STDDEV_SAMP(salary) STDSAMP
FROM hr.employees
GROUP BY department_id;

 DID STD STDPOP STDSAMP
---------- ---------- ---------- ----------
 100 1804.13155 1646.93925 1804.13155
 30 3362.58829 3069.6091 3362.58829
? 0 0 ?
 90 4041.45188 3299.83165 4041.45188

206	 Chapter 4  ■  Using Group Functions

 20 4949.74747 3500 4949.74747
 70 0 0 ?
 110 2621.95194 1854 2621.95194
 50 1488.00592 1471.37963 1488.00592
 80 2033.6847 2003.55437 2033.6847
 40 0 0 ?
 60 1925.61678 1722.32401 1925.61678
 10 0 0 ?

STDDEV_SAMP
STDDEV_SAMP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample standard deviation of the expression x.

The sample standard deviation is calculated as the square root of the sample variance
VAR_SAMP. STDDEV is similar to the STDDEV_SAMP function, except STDDEV will return 1
when there is only one row of input, while STDDEV_SAMP will return NULL.

See the description of STDDEV_POP for an example.

VAR_POP
VAR_POP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric population variance of x. The population variance is calculated with
the formula (SUM(x*x) – SUM(x) * SUM(x) / COUNT(x)) / COUNT(x).

SELECT department_id,
 VARIANCE(salary),
 VAR_POP(salary),
 VAR_SAMP(salary)
FROM hr.employees
GROUP BY department_id;

DEPARTMENT_ID VARIANCE(SALARY) VAR_POP(SALARY) VAR_SAMP(SALARY)
------------- ---------------- --------------- ----------------
 100 3254890.67 2712408.89 3254890.67
 30 11307000 9422500 11307000
? 0 0 ?
 90 16333333.3 10888888.9 16333333.3
 20 24500000 12250000 24500000
 70 0 0 ?
 110 6874632 3437316 6874632
 50 2214161.62 2164958.02 2214161.62
 80 4135873.44 4014230.1 4135873.44

	 Utilizing Aggregate Functions	 207

 40 0 0 ?
 60 3708000 2966400 3708000
 10 0 0 ?

VAR_SAMP
VAR_SAMP(<x>) takes a single argument, where x is a numeric expression. This function
returns the numeric sample variance of x. The sample variance is calculated with the for-
mula (SUM(x*x) – SUM(x) * SUM(x) / COUNT(x)) / (COUNT(x)-1). When the number of
expressions (COUNT(x)) = 1, VARIANCE returns a 0, whereas VAR_SAMP returns NULL. When
(COUNT(x)) = 0, they both return NULL. See the description of VAR_POP for an example.

Limiting Grouped Data with HAVING
A SELECT statement includes a HAVING clause to filter the grouped data. We discussed the
GROUP BY clause and various group functions earlier in this chapter. The group functions
cannot be used in the WHERE clause. For example, if you wanted to query the total salary by
department, excluding department 50, and return only those rows with more than $10,000
in the total salary column, you would have trouble with the following query:

SELECT department_id, sum(salary) total_sal
FROM employees
WHERE department_id != 50
AND SUM(salary) > 10000
GROUP BY department_id;

The database doesn’t know what the sum is when extracting the rows from the table—
remember that the grouping is done after all the rows have been fetched. You get an exception
when you try to use SUM in the WHERE clause. The correct way to get the requested information
is to instruct the database to group all the rows and then limit the output of those grouped
rows. You can do this by using the HAVING clause. The HAVING clause is used to restrict the
groups of returned rows to those groups where the specified condition is satisfied.

SELECT department_id, sum(salary) total_sal
FROM employees
WHERE department_id != 50
GROUP BY department_id
HAVING SUM(salary) > 10000;

DEPARTMENT_ID TOTAL_SAL
------------- ----------
 100 51608
 30 24900

208	 Chapter 4  ■  Using Group Functions

 90 58000
 20 19000
 110 20308
 80 304500
 60 28800

As you can see in the previous query, a SQL statement can have both a WHERE clause and
a HAVING clause. WHERE filters data before grouping; HAVING filters data after grouping.

If the SELECT statement includes a WHERE clause and a GROUP BY clause, the
GROUP BY (and HAVING) clause should come after the WHERE clause. HAVING
and GROUP BY clauses can appear in any order.

Creating Superaggregates with CUBE and ROLLUP
The CUBE and ROLLUP modifiers to the GROUP BY clause allow you to create aggregations of
aggregates, or superaggregates. These superaggregates, or summary rows, are included with
the result set in a way similar to using the COMPUTE statement on control breaks in SQL*Plus—
that is, they are included in the data and contain NULL values in the aggregated columns:

■■ ROLLUP creates hierarchical aggregates.

■■ CUBE creates aggregates for all combinations of columns specified.

The key advantages of CUBE and ROLLUP are that they will allow more robust aggrega-
tions than COMPUTE and they work with any SQL-enabled tool.

These superaggregations can be visualized with a simple example using the OE.CUSTOMERS
table. For this example, say you are interested in two columns—MARITAL_STATUS, which has
the value single or married, and GENDER, which has the value M or F. Let’s write some SQL
instructions to find the total number of rows by GENDER and MARITAL_STATUS:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY gender, marital_status;

G MARITAL_STATUS NUM_REC
- -------------------- ----------
M married 117
M single 92
F single 47
F married 63

But suppose you want subtotals for each gender—a count of all female customers
regardless of marital status and a count of all male customers regardless of marital status.

	 Utilizing Aggregate Functions	 209

You could remove the MARITAL_STATUS column from the previous query, which would give
you the desired result, but what if you want to display the subtotals along with the original
query? Oracle introduced the ROLLUP modifier to accomplish this task.

Using ROLLUP
ROLLUP is used in SELECT statements with GROUP BY clauses to calculate multiple levels of
subtotals. It also provides a grand total. The ROLLUP extension adds only minimal overhead
to the overall query performance. ROLLUP creates subtotals from the most detailed level to a
grand total based on the grouping list provided with the ROLLUP modifier. It creates subto-
tals moving left to right using the columns provided in ROLLUP. The grand total is provided
only if the ROLLUP modifier includes all the columns in the GROUP BY clause.

Using the previous example, you could use the ROLLUP modifier to roll up the MARITAL_
STATUS column, leaving subtotals on the grouped column GENDER. Here we have not
included GENDER in the ROLLUP; hence, the grand total is not provided:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY gender, ROLLUP(marital_status);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
F single 47
F married 63
F 110 <- Subtotal
M single 92
M married 117
M 209 <- Subtotal

In the previous example, you do not have any NULL values in the MARITAL_STATUS
column. If you added another record with GENDER = 'F' and a NULL value for MARITAL_
STATUS, the result would be as follows:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY gender, ROLLUP(marital_status);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
F single 47
F married 63
F 1 <- Null Marital_Status
F 111 <- Subtotal

210	 Chapter 4  ■  Using Group Functions

M single 92
M married 117
M 209 <- Subtotal

On the OCA certification exam, this can appear as a trick question to confuse you
about which line is the subtotal. You may use an NVL function to display meaningful data
in the result.

Now, if you want to add an aggregation for all genders as well, you put the GENDER
column into the ROLLUP modifier, as follows:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY ROLLUP(gender, marital_status);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
F single 47
F married 63
F 110 <- Subtotal
M single 92
M married 117
M 209 <- Subtotal
 319 <- Grand total

The order of the columns in the ROLLUP modifier is significant, because this order deter-
mines where Oracle produces subtotals. ROLLUP creates hierarchical aggregations, so the
order of the expressions in the ROLLUP clause is significant. The ordering follows the same
conventions used in the GROUP BY clause—most general to most specific. When you reverse
the order in the example, you get different subtotals:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY ROLLUP(marital_status, gender);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
F single 47
M single 92
 single 139 <- Subtotal
F married 63
M married 117
 married 180 <- Subtotal
 319 <- Grand total

	 Utilizing Aggregate Functions	 211

Suppose you want all these subtotals, both by GENDER and by MARITAL_STATUS. This
requirement calls for the CUBE modifier, which will produce all possible aggregations, not
just those in the hierarchy of columns specified.

Using CUBE
The CUBE modifier in the GROUP BY clause creates subtotals for all possible combinations of
grouping columns. Let’s try the previous example using the CUBE modifier:

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
 319 <- Grand total
 single 139 <- Subtotal Marital_Status
 married 180 <- Subtotal Marital_Status
F 110 <- Subtotal Gender
F single 47
F married 63
M 209 <- Subtotal Gender
M single 92
M married 117

The number of aggregations created by the CUBE modifier is the number of distinct
combinations of data values in all the columns that appear in the CUBE clause. CUBE creates
aggregations for all combinations of columns, so unlike ROLLUP, the order of expressions
in a CUBE is not significant. As you can see, the result set is the same, but the order of rows
(grouping) is different (Note: a question mark in the result indicates a NULL value, due to
the SET NULL ? setting):

SELECT gender, marital_status, count(*) num_rec
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC
- -------------------- ----------
? ? 319
F ? 110
M ? 209
? single 139
F single 47

212	 Chapter 4  ■  Using Group Functions

M single 92
? married 180
F married 63
M married 117

More DBA Queries

In the “Exploring DBA Queries Using Aggregate Functions” sidebar, you saw some
queries written to determine the space allocated by tablespace, the space allocated by
schema, and the space allocated by tablespace and schema. The queries were written
using three different SQL statements. In the following SQL instructions, you can see the
power of CUBE. The results from all three of the SQL statements you tried before are in
this summary report, showing the different levels of aggregation.

SELECT tablespace_name, owner, SUM(bytes)/1048576 size_mb
FROM dba_segments
GROUP BY CUBE (tablespace_name, owner);

TABLESPACE_NAME OWNER SIZE_MB
----------------- --------------- ----------
 1564.8125 <- Grand Total
 HR 1.75 <- Subtotal HR schema
 IX 1.625 <- Subtotal IX schema
 OE 8.875
… … …
 FLOWS 100.6875 <- Subtotal FLOWS schema
USERS 21.25 <- Subtotal USERS tablespace
USERS HR .1875 <- HR schema in USERS tablespace
USERS OE 2.625 <- OE schema in USERS tablespace
USERS SH 2
USERS SCOTT .375
USERS BTHOMAS 16.0625
SYSAUX 716.375 <- Subtotal SYSAUX tablespace
… … …
SYSAUX FLOWS 100.6875
SYSTEM 701.625 <- Subtotal SYSTEM tablespace
SYSTEM SYS 685.1875

	 Utilizing Aggregate Functions	 213

SYSTEM OUTLN .5625
SYSTEM SYSTEM 15.875
EXAMPLE 77.3125
EXAMPLE HR 1.5625
… … …

As you can see in the result, the space used by each schema in each tablespace is
shown as well as the total space used in each tablespace and the total space used by
each schema. The total space used in the database (including all tablespaces) is also
shown in the very first line.

Three functions (GROUPING, GROUP_ID, and GROUPING_ID) can come in very handy when
you’re using the ROLLUP and CUBE modifiers of the GROUP BY clause.

In the examples you have seen using the ROLLUP and CUBE modifiers, there was no way
of telling which row was a subtotal and which row was a grand total. You can use the
GROUPING function to overcome this problem. Review the following SQL example:

SELECT gender, marital_status, count(*) num_rec,
 GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP
- -------------------- ---------- ---------- ----------
 319 1 1
F 110 0 1
M 209 0 1
 single 139 1 0
F single 47 0 0
M single 92 0 0
 married 180 1 0
F married 63 0 0
M married 117 0 0

The G_GRP column has a 1 for NULL values generated by the CUBE or ROLLUP modifier for
GENDER column. Similarly, the MS_GRP column has a 1 when NULL values are generated in the
MARITAL_STATUS column. By using a DECODE function on the result of the GROUPING function,
you can produce a more meaningful result set, as in the following example:

SELECT DECODE(GROUPING (gender), 1, 'Multi-Gender',
 gender) gender,
 DECODE(GROUPING (marital_status), 1,

214	 Chapter 4  ■  Using Group Functions

 'Multi-MaritalStatus', marital_status) marital_status,
 count(*) num_rec
FROM oe.customers
GROUP BY CUBE(marital_status, gender);

GENDER MARITAL_STATUS NUM_REC
------------ -------------------- ----------
Multi-Gender Multi-MaritalStatus 319
F Multi-MaritalStatus 110
M Multi-MaritalStatus 209
Multi-Gender single 139
F single 47
M single 92
Multi-Gender married 180
F married 63
M married 117

You can use the GROUPING function in the HAVING clause to filter out
rows. You can display only the summary results using the GROUPING
function in the HAVING clause.

The GROUPING_ID function returns the exact level of the group. It is derived from the
GROUPING function by concatenating the GROUPING levels together as bits, and it gives the
GROUPING_ID. To help you understand this, closely review the following example:

SELECT gender, marital_status, count(*) num_rec,
 GROUPING (gender) g_grp, GROUPING (marital_status) ms_grp,
 GROUPING_ID (gender, marital_status) groupingid
FROM oe.customers
GROUP BY CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC G_GRP MS_GRP GROUPINGID
- -------------------- ---------- ---------- ---------- ----------
 319 1 1 3
 single 139 1 0 2
 married 180 1 0 2
F 110 0 1 1
F single 47 0 0 0
F married 63 0 0 0
M 209 0 1 1
M single 92 0 0 0
M married 117 0 0 0

	 Utilizing Aggregate Functions	 215

In this example, you can clearly identify the level of grouping using the GROUPING_ID
function. The GROUP_ID function is used to distinguish the duplicate groups. In the follow-
ing example, the GROUP_ID() value is 1 for duplicate groups. When writing complex aggre-
gates, you can filter out the duplicate rows by using the HAVING GROUP_ID = 0 clause in the
SELECT statement.

SELECT gender, marital_status, count(*) num_rec,
 GROUPING_ID (gender, marital_status) groupingid,
 GROUP_ID() groupid
FROM oe.customers
GROUP BY gender, CUBE(gender, marital_status);

G MARITAL_STATUS NUM_REC GROUPINGID GROUPID
- -------------------- ---------- ---------- ----------
F single 47 0 0
F married 63 0 0
M single 92 0 0
M married 117 0 0
F single 47 0 1
F married 63 0 1
M single 92 0 1
M married 117 0 1
F 110 1 0
M 209 1 0
F 110 1 1
M 209 1 1

Nesting Functions
Functions can be nested so that the output from one function is used as input to another.
Operators have an inherent precedence of execution such as * before +, but function pre-
cedence is based on position only. Functions are evaluated innermost to outermost and
left to right. This nesting technique is common with some functions, such as DECODE (cov-
ered in Chapter 3), where it can be used to implement limited IF…THEN…ELSE logic within
a SQL statement.

For example, the V$SYSSTAT view contains one row for each of three interesting sort
statistics. If you want to report all three statistics on a single line, you can use DECODE com-
bined with SUM to filter out data in the SELECT clause. This filtering operation is usually
done in the WHERE or HAVING clause, but if you want all three statistics on one line, you can
issue this command:

SELECT SUM (DECODE
 (name,'sorts (memory)',value,0)) in_memory,

216	 Chapter 4  ■  Using Group Functions

 SUM (DECODE
 (name,'sorts (disk)', value,0)) on_disk,
 SUM (DECODE
 (name,'sorts (rows)', value,0)) rows_sorted
FROM v$sysstat;

IN_MEMORY ON_DISK ROWS_SORTED
--------- ------- -----------
 728 12 326714

What happens in the previous statement is a single pass through the V$SYSSTAT table.
The presummary result set would have the same number of rows as V$SYSSTAT (232, for
instance). Of these 232 rows, all rows and columns have zeros, except for one row in each
column that has the data of interest. Table 4.3 shows the data that was used in this example.
The summation operation then adds all the zeros to your interesting data and gives you the
results you want.

Tabl e 4 . 3    Presummarized Result Set

in_memory on_disk rows_sorted

0 0 0

0 12 0

0 0 0

0 0 326714

728 0 0

0 0 0

Nesting Single-Row Functions with Group Functions

Nested functions can include single-row functions nested within group functions, as you’ve
just seen, or group functions nested within either single-row functions or other group func-
tions. For example, suppose you need to report on the departments in the EMP table, show-
ing either the number of jobs or the number of managers, whichever is greater. You would
enter the following:

SELECT deptno, GREATEST(
 COUNT(DISTINCT job),

	 Utilizing Aggregate Functions	 217

 COUNT(DISTINCT mgr)) cnt,
 COUNT(DISTINCT job) jobs,
 COUNT(DISTINCT mgr) mgrs
FROM scott.emp
GROUP BY deptno;

 DEPTNO CNT JOBS MGRS
---------- ---------- ---------- ----------
 10 3 3 2
 20 4 3 4
 30 3 3 2

Nesting Group Functions
You can also nest group functions within group functions. Only one level of nesting is
allowed when nesting a group function within a group function. To report the maximum
number of jobs in a single department, you would query the following:

SELECT MAX(COUNT (DISTINCT job_id))
FROM employees
GROUP BY department_id;

MAX(COUNT(DISTINCTJOB_ID))

 3

Group functions can be nested only one level. If you try to nest more than one level of
group functions, you will encounter an error. Also, there is no reason to do so. Here is an
example to show the error, though the SQL does not mean much:

SELECT MIN (MAX (COUNT (DISTINCT job_id)))
FROM employees
GROUP BY department_id;

SELECT MIN (MAX (COUNT (DISTINCT job_id)))
 *
ERROR at line 1:
ORA-00935: group function is nested too deeply

218	 Chapter 4  ■  Using Group Functions

Summary
Although this is a small chapter in terms of OCA certification exam content, this chapter
is very important for the test. It is important to understand the concept of grouping data,
where GROUP BY and HAVING clauses can be used, and the rules associated with using these
clauses. We began this chapter by discussing the group function fundamentals and reviewed
the group functions by concentrating on the functions that are important for the test.

We also discussed how group functions can be used in the SELECT, HAVING, and ORDER
BY clauses of SELECT statements. Most group functions can be applied to all data values
or only to the distinct data values. Except for COUNT(*), group functions ignore NULLs.
Programmer-written functions cannot be used as group functions. COUNT, SUM, and AVG
are the most commonly used group functions.

When group functions or aggregate functions are being used in a query, the columns
that do not have any aggregate function applied to them must appear in the GROUP BY
clause of the query. The HAVING clause is used to filter out data after the aggregates are
calculated. Group functions cannot be used in the WHERE clause.

You can create superaggregates using the CUBE and ROLLUP modifiers in the GROUP BY clause.

Exam Essentials

Understand the usage of DISTINCT in group functions.    When DISTINCT is specified, only
one of each non-NULL value is applied to the function. To apply all non-NULL values, the
keyword ALL should be used.

Know where group functions can be used.    Group functions can be used in GROUP BY,
ORDER BY, and HAVING clauses. They cannot be used in WHERE clauses.

Know how MIN and MAX sort date and character data.    Older dates evaluate to lower
values, while newer dates evaluate to higher values. Character data, even if it contains
numbers, is sorted according to the NLS_SORT specification.

Know which expressions in a SELECT list must appear in a GROUP BY clause.    If any grouping
is performed, all nongroup function expressions and nonconstant expressions must appear in
the GROUP BY clause.

Know the order of precedence for evaluating nested functions.    You may need to evaluate
an expression containing nested functions. Make sure you understand the left-to-right order
of precedence used to evaluate these expressions.

	 Review Questions	 219

Review Questions

	 1.	 How will the results of the following two statements differ?

Statement 1:
SELECT MAX(longitude), MAX(latitude)
FROM zip_state_city;

Statement 2:
SELECT MAX(longitude), MAX(latitude)
FROM zip_state_city
GROUP BY state;

	 A.	 Statement 1 will fail because it is missing a GROUP BY clause.

	 B.	 Statement 2 will return one row, and statement 1 may return more than one row.

	 C.	 Statement 2 will fail because it does not have the columns used in the GROUP BY
clause in the SELECT clause.

	 D.	 Statement 1 will display one row, and statement 2 will display two columns for
each state.

	 2.	 Using the SALES table described here, you need to report the following:

■■ Gross, net, and earned revenue for the second and third quarters of 1999

■■ Gross, net, and earned revenue for sales in the states of Illinois, California, and
Texas (codes IL, CA, and TX)

Column Name state_code sales_date gross net earned

Key Type PK PK

Nulls/Unique NN NN NN NN NN

FK Table

Datatype VARCHAR2 DATE NUMBER NUMBER NUMBER

Length 2 11,2 11,2 11,2

		 Will all the requirements be met with the following SQL statement?

SELECT state_code, SUM(ALL gross), SUM(net), SUM(earned)
FROM sales_detail
WHERE TRUNC(sales_date,'Q') BETWEEN

220	 Chapter 4  ■  Using Group Functions

 TO_DATE('01-Apr-1999','DD-Mon-YYYY')
 AND TO_DATE('01-Sep-1999','DD-Mon-YYYY')
 AND state_code IN ('IL','CA','TX')
GROUP BY state_code;

	 A.	 The statement meets all three requirements.

	 B.	 The statement meets two of the three requirements.

	 C.	 The statement meets one of the three requirements.

	 D.	 The statement meets none of the three requirements.

	 E.	 The statement will raise an exception.

	 3.	 Which line in the following SQL has an error?

1 SELECT department_id, SUM(salary)
2 FROM employees
3 WHERE department_id <> 40
4 ORDER BY department_id;

	 A.	 1

	 B.	 3

	 C.	 4

	 D.	 No errors in SQL

	 4.	 John is trying to determine the average salary of employees in each department. He
noticed that the SALARY column can have NULL values, and he does not want the NULLs
included when the average is calculated. Identify the correct SQL statements that will
produce the desired results.

	 A.	 SELECT department_id, AVG(salary)

	 FROM employees

	 GROUP BY department_id;

	 B.	 SELECT department_id, AVG(NVL(salary,0))

	 FROM employees

	 GROUP BY department_id;

	 C.	 SELECT department_id, NVL(AVG(salary), 0)

	 FROM employees

	 GROUP BY department_id;

	 D.	 SELECT department_id, AVG(salary)

	 FROM employees

	 GROUP BY department_id

	 HAVING salary IS NOT NULL;

	 Review Questions	 221

	 5.	 Review the following two SQL statements, and choose the appropriate option.

1. SELECT department_id, COUNT(*)
FROM employees
HAVING COUNT(*) > 10
GROUP BY department_id;
2. SELECT department_id, COUNT(*)
FROM employees
WHERE COUNT(*) > 10
GROUP BY department_id;

	 A.	 Statement 1 and statement 2 will produce the same results.

	 B.	 Statement 1 will succeed, and statement 2 will fail.

	 C.	 Statement 2 will succeed, and statement 1 will fail.

	 D.	 Both statements fail.

	 6.	 Carefully read the following SQL instructions, and choose the appropriate option. The
JOB_ID column shows the various jobs.

SELECT MAX(COUNT(*))
FROM employees
GROUP BY job_id, department_id;

	 A.	 Aggregate functions cannot be nested.

	 B.	 The columns in the GROUP BY clause must appear in the SELECT clause for the query
to work.

	 C.	 The GROUP BY clause is not required in this query.

	 D.	 The SQL code will produce the highest number of jobs within a department.

222	 Chapter 4  ■  Using Group Functions

	 7.	 Choose the SQL statement that has no syntax error and is valid.

	 A.	 SELECT department_id, SUM(salary)

	 FROM employees

	 WHERE department_id <> 50

	 GROUP BY department_id

	 HAVING COUNT(*) > 30;

	 B.	 SELECT department_id, SUM(salary) sum_sal

	 FROM employees

	 WHERE department_id <> 50

	 GROUP BY department_id

	 HAVING sum_sal > 3000;

	 C.	 SELECT department_id, SUM(salary) sum_sal

	 FROM employees

	 WHERE department_id <> 50

	 AND sum_sal > 3000

	 GROUP BY department_id;

	 D.	 SELECT department_id, SUM(salary)

	 FROM employees

	 WHERE department_id <> 50

	 AND SUM(salary) > 3000

	 GROUP BY department_id;

	 8.	 Consider the following SQL code, and choose the most appropriate option.

SELECT COUNT(DISTINCT SUBSTR(first_name, 1,1))
FROM employees;

	 A.	 A single-row function nested inside a group function is not allowed.

	 B.	 The GROUP BY clause is required to successfully run this query.

	 C.	 Removing the DISTINCT qualifier will fix the error in the query.

	 D.	 The query will execute successfully without any modifications.

	 Review Questions	 223

	 9.	 The sales order number (ORDER_NO) is the primary key in the table SALES_ORDERS.
Which query will return the total number of orders in the SALES_ORDERS table?

	 A.	 SELECT COUNT(ALL order_no) FROM sales_orders;

	 B.	 SELECT COUNT(DISTINCT order_no) FROM sales_orders;

	 C.	 SELECT COUNT(order_no) FROM sales_orders;

	 D.	 SELECT COUNT(NVL(order_no,0) FROM sales_orders;

	 E.	 All of the above

	 F.	 A and C

	10.	 Sheila wants to find the highest salary within each department of the EMPLOYEES table.
Which query will help her get what she wants?

	 A.	 SELECT MAX(salary) FROM employees;

	 B.	 SELECT MAX(salary BY department_id) FROM employees;

	 C.	 SELECT department_id, MAX(salary) max_sal FROM employees;

	 D.	 SELECT department_id, MAX(salary) FROM employees GROUP BY department_id;

	 E.	 SELECT department_id, MAX(salary) FROM employees USING department_id

	11.	 Which assertion about the following queries is true?

SELECT COUNT(DISTINCT mgr), MAX(DISTINCT salary)
FROM emp;

SELECT COUNT(ALL mgr), MAX(ALL salary)
FROM emp;

	 A.	 They will always return the same numbers in columns 1 and 2.

	 B.	 They may return different numbers in column 1 but will always return the same
number in column 2.

	 C.	 They may return different numbers in both columns 1 and 2.

	 D.	 They will always return the same number in column 1 but may return different
numbers in column 2.

	12.	 Which clauses in the SELECT statement can use single-row functions nested in aggregate
functions? (Choose all that apply.)

	 A.	 SELECT

	 B.	 ORDER BY

	 C.	 WHERE

	 D.	 GROUP BY

224	 Chapter 4  ■  Using Group Functions

	13.	 Consider the following two SQL statements. Choose the most appropriate option.

	 1.	 select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
first_name;

	 2.	 select substr(first_name, 1,1) fn, SUM(salary) FROM employees GROUP BY
substr(first_name, 1,1);

	 A.	 Statement 1 and 2 will produce the same result.

	 B.	 Statement 1 and 2 will produce different results.

	 C.	 Statement 1 will fail.

	 D.	 Statement 2 will fail, but statement 1 will succeed.

	14.	 How will the results of the following two SQL statements differ?

Statement 1:
SELECT COUNT(*), SUM(salary)
FROM hr.employees;

Statement 2:
SELECT COUNT(salary), SUM(salary)
FROM hr.employees;

	 A.	 Statement 1 will return one row, and statement 2 may return more than one row.

	 B.	 Both statements will fail because they are missing a GROUP BY clause.

	 C.	 Both statements will return the same results.

	 D.	 Statement 2 might return a smaller COUNT value than statement 1.

	15.	 Why does the following SELECT statement fail?

SELECT colorname Colour, MAX(cost)
FROM itemdetail
WHERE UPPER(colorname) LIKE '%WHITE%'
GROUP BY colour
HAVING COUNT(*) > 20;

	 A.	 A GROUP BY clause cannot contain a column alias.

	 B.	 The condition COUNT(*) > 20 should be in the WHERE clause.

	 C.	 The GROUP BY clause must contain the group functions used in the SELECT list.

	 D.	 The HAVING clause can contain only the group functions used in the SELECT list.

	 Review Questions	 225

	16.	 What will the following SQL statement return?

select max(prod_pack_size)
from sh.products
where min(prod_weight_class) = 5;

	 A.	 An exception will be raised.

	 B.	 The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5 or higher.

	 C.	 The largest PROD_PACK_SIZE for rows containing PROD_WEIGHT_CLASS of 5.

	 D.	 The largest PROD_PACK_SIZE in the SH.PRODUCTS table.

	17.	 Why will the following query raise an exception?

select dept_no, avg(distinct salary),
 count(job) job_count
from emp
where mgr like 'J%'
 or abs(salary) > 10
having count(job) > 5
order by 2 desc;

	 A.	 The HAVING clause cannot contain a group function.

	 B.	 The GROUP BY clause is missing.

	 C.	 ABS() is not an Oracle function.

	 D.	 The query will not raise an exception.

	18.	 Which clause will generate an error when the following query is executed?

SELECT department_id, AVG(salary) avg_sal
FROM employees
GROUP BY department_id
HAVING TRUNC(department_id) > 50;

	 A.	 The GROUP BY clause, because it is missing the group function.

	 B.	 The HAVING clause, because single-row functions cannot be used.

	 C.	 The HAVING clause, because the AVG function used in the SELECT clause is not used
in the HAVING clause.

	 D.	 None of the above. The SQL statement will not return an error.

226	 Chapter 4  ■  Using Group Functions

	19.	 Which statements are true? (Choose all that apply.)

	 A.	 A group function can be used only if the GROUP BY clause is present.

	 B.	 Group functions along with nonaggregated columns can appear in the SELECT
clause as long as a GROUP BY clause and a HAVING clause are present.

	 C.	 The HAVING clause is optional when the GROUP BY clause is used.

	 D.	 The HAVING clause and the GROUP BY clause are mutually exclusive; you can use
only one clause in a SELECT statement.

	20.	 Read the following two statements, and choose the best option.

	 1.	 A HAVING clause should always appear after the GROUP BY clause.

	 2.	 A GROUP BY clause should always appear after the WHERE clause.

	 A.	 Statement 1 and 2 are false.

	 B.	 Statement 1 is true, and statement 2 is false.

	 C.	 Statement 1 is false, and statement 2 is true.

	 D.	 Statements 1 and 2 are true.

Chapter

5
Using Joins and
Subqueries

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Displaying Data from Multiple Tables Using Joins

■■ Write SELECT statements to access data from more than one

table using equijoins and nonequijoins.

■■ Join a table to itself by using a self-join.

■■ View data that generally does not meet a join condition by

using outer joins.

■■ Generate a Cartesian product of all rows from two or

more tables.

✓✓ Using Subqueries to Solve Queries

■■ Define subqueries.

■■ Describe the types of problems that the subqueries can solve.

■■ List the types of subqueries.

■■ Write single-row and multiple-row subqueries.

■■ Use the set operators.

■■ Describe set operators.

■■ Use a set operator to combine multiple queries into a

single query.

■■ Control the order of rows returned.

A database has many tables that store data. In Chapter 2,
“Introducing SQL,” you learned how to write simple queries
that select data from one table. Although this information is

essential to passing the certification exam, the ability to join two or more related tables and
access information is the core strength of relational databases. Using the SELECT statement,
you can write advanced queries that satisfy end-user requirements.

This chapter focuses on querying data from more than one table using table joins and
subqueries. When you use two or more tables or views in a single query, it is a join query.
You’ll need to understand how the various types of joins and subqueries work, as well as
the proper syntax, for the certification exam.

Set operators in Oracle let you combine results from two or more SELECT statements. The
results of each SELECT statement are considered a set, and Oracle provides UNION, INTERSECT,
and MINUS operators to get the desired results. You will learn how these operators work in
this chapter.

Writing Multiple-Table Queries
In relational database management systems (RDBMSs), related data can be stored in multiple
tables. You use the power of SQL to relate the information and query data. A SELECT state-
ment has a mandatory SELECT clause and FROM clause. The SELECT clause can have a list of
columns, expressions, functions, and so on. The FROM clause tells you in which table(s) to look
for the required information. In Chapter 2, you learned to query data using simple SELECT
statements from a single table. In this chapter, you will learn how to retrieve data from more
than one table.

To query data from more than one table, you need to identify common columns that
relate the two tables. Here’s how you do it:

	 1.	 In the SELECT clause, you list the columns you are interested in from all the related tables.
If the same column name exist in more than one table, such columns must be qualified
with the table name or table alias.

	 2.	 In the FROM clause, you include all the table names separated by commas.

	 3.	 In the WHERE clause, you define the relationship between the tables listed in the FROM
clause using comparison operators.

You can also specify the relationship using a JOIN clause instead of the WHERE clause.
The JOIN clause introduced by Oracle in Oracle 9i was added to conform to the ANSI/ISO
SQL1999 standard. Throughout this section, you’ll see examples of queries using the Oracle

	 Writing Multiple-Table Queries	 229

native syntax as well as the ANSI/ISO SQL1999 standard. A query from multiple tables
without a relationship or common column is known as a Cartesian join or cross join and is
discussed later in this chapter.

A join is a query that combines rows from two or more tables or views. Oracle performs
a join whenever multiple tables appear in the query’s FROM clause. The query’s SELECT clause
can have the columns or expressions from any or all of these tables.

If multiple tables have the same column names, the duplicate column names
should be qualified in the queries with their table name or table alias.

Inner Joins
Inner joins return only the rows that satisfy the join condition. The most common operator
used to relate two tables is the equality operator (=). If you relate two tables using an equality
operator, it is an equality join, also known as an equijoin. This type of join combines rows
from two tables that have equivalent values for the specified columns.

Simple Inner Joins
A simple inner join has only the join condition specified, without any other filtering conditions.
For example, let’s consider a simple join between the DEPARTMENTS and LOCATIONS tables of the
HR schema. The common column in these tables is LOCATION_ID. You will query these tables to
get the location ID, city name, and department names in that city:

SELECT locations.location_id, city, department_name
FROM locations, departments
WHERE locations.location_id = departments.location_id;

Here, you are retrieving data from two tables—two columns from the LOCATIONS table
and one column from the DEPARTMENTS table. These two tables are joined in the WHERE clause
using an equality operator on the LOCATION_ID column. It is not necessary for the column
names in both tables to have the same name to have a join. Notice that the LOCATION_ID
column is qualified with its table name for every occurrence. This is to avoid ambiguity; it is
not necessary to qualify each column, but it increases the readability of the query. If the same
column name appears in more than one table used in the query, you must qualify the column
name with the table name or table alias.

To execute a join of three or more tables, Oracle takes these steps:

	 1.	 Oracle joins two of the tables based on the join conditions, comparing their columns.

	 2.	 Oracle joins the result to another table, based on join conditions.

	 3.	 Oracle continues this process until all tables are joined into the result.

230	 Chapter 5  ■  Using Joins and Subqueries

Complex Inner Joins
Apart from specifying the join condition in the WHERE clause, you may have another condition
to limit the rows retrieved. Such joins are known as complex joins. For example, to continue
with the example in the previous section, if you are interested only in the departments that
are outside the United States, use this query:

SELECT locations.location_id, city, department_name
FROM locations, departments
WHERE locations.location_id = departments.location_id
AND country_id != 'US';

LOCATION_ID CITY DEPARTMENT_NAME
----------- -------------------- -----------------
 1800 Toronto Marketing
 2400 London Human Resources
 2700 Munich Public Relations
 2500 Oxford Sales

Using Table Aliases
Like columns, tables can have alias names. Table aliases increase the readability of the
query. You can also use them to shorten long table names with shorter alias names. Specify
the table alias name next to the table, separated with a space. You can rewrite the query
in the previous section using alias names, as follows:

SELECT l.location_id, city, department_name
FROM locations l, departments d
WHERE l.location_id = d.location_id
AND country_id != 'US';

When tables (or views or materialized views) are specified in the FROM clause, Oracle
looks for the object in the schema (or user) connected to the database. If the table belongs
to another schema, you must qualify it with the schema name. (You can avoid this by using
synonyms, which are discussed in Chapter 7, “Creating Tables and Constraints.”) You can
use the schema owner to qualify a table; you can also use the table owner and schema owner
to qualify a column. Here is an example:

SELECT locations.location_id, hr.locations.city,
 department_name
FROM hr.locations, hr.departments
WHERE locations.location_id = departments.location_id;

	 Writing Multiple-Table Queries	 231

Keep in mind that you can qualify a column name with its schema and table only when
the table name is qualified with the schema. In the previous SQL, you qualified the column
CITY with the schema HR. This is possible only if you qualify the LOCATIONS table with the
schema. The following SQL will produce an error:

SELECT locations.location_id, hr.locations.city
 ,department_name
FROM locations, hr.departments
WHERE locations.location_id = departments.location_id;

SELECT locations.location_id, hr.locations.city
 *
ERROR at line 1:
ORA-00904: "HR"."LOCATIONS"."CITY": invalid identifier

When you use table alias names, you must qualify the column names with the alias name
only; qualifying the columns with the table name will produce an error, as in this example:

SELECT locations.location_id, city, department_name
FROM locations l, hr.departments d
WHERE locations.location_id = d.location_id;

WHERE locations.location_id = d.location_id
 *
ERROR at line 3:
ORA-00904: "LOCATIONS"."LOCATION_ID": invalid identifier

The correct syntax is to replace locations.location_id with l.location_id in the
SELECT and WHERE clauses.

If there are no common column names between the two tables used in the join (the FROM
clause), you don’t need to qualify the columns. However, if you qualify the columns, you
are telling the Oracle database engine where exactly to find the column; hence, you are
improving the performance of the query.

If there are column names common to multiple tables used in a join query, you must qualify
the column name with a table name or table alias. This is true for column names appearing
in SELECT, WHERE, ORDER BY, GROUP BY, and HAVING clauses. When using the ANSI syntax, the
rule is different. The ANSI syntax is discussed in the next section.

When joining columns using the traditional syntax or ANSI syntax, if
the column datatypes are different, Oracle tries to perform an implicit
datatype conversion. This may affect your query performance. It is better
if the columns used in the join condition have the same datatype or if you
use the explicit conversion functions you learned in Chapter 3, “Using
Single-Row Functions.”

232	 Chapter 5  ■  Using Joins and Subqueries

Using the ANSI Syntax
The difference between traditional Oracle join syntax and the ANSI/ISO SQL1999 syntax is
that in ANSI, the join type is specified explicitly in the FROM clause. Using the ANSI syntax
is clearer and is recommended over the traditional Oracle syntax. Simple joins can have the
following forms:

<table name> NATURAL [INNER] JOIN <table name>

<table name> [INNER] JOIN <table name> USING (<columns>)

<table name> [INNER] JOIN <table name> ON <condition>

The following sections discuss each of the syntax forms in detail. In all three syntaxes,
the keyword INNER is optional and is the default.

NATURAL JOIN

The NATURAL keyword indicates a natural join, where the join is based on all columns that
have the same name in both tables. In this type of join, you should not qualify the column
names with the table name or table alias name. Let’s return to the example of querying the
DEPARTMENTS and LOCATIONS tables using LOCATION_ID as the join column. The new Oracle
syntax is as follows:

SELECT location_id, city, department_name
FROM locations NATURAL JOIN departments;

The common column in these two tables is LOCATION_ID, and that column is used to join
the tables. When specifying NATURAL JOIN, the columns with the same name in both tables
should also have the same datatype. The following query will return the same results:

SELECT location_id, city, department_name
FROM departments NATURAL JOIN locations;

Notice that even though the LOCATION_ID column is in both tables, you did not qualify
this column in the SELECT clause. You cannot qualify the column names used for the join
when using the NATURAL JOIN clause. The following query will result in an error:

SELECT l.location_id, city, department_name
FROM departments NATURAL JOIN locations l;
SELECT l.location_id, city, department_name
 *
ERROR at line 1:
ORA-25155: column used in NATURAL join cannot have qualifier

	 Writing Multiple-Table Queries	 233

The following query will not return an error because the qualifier is used on a column
that’s not part of the join condition:

SELECT location_id, city, d.department_name
FROM departments d NATURAL JOIN locations l;

If you use SELECT *, common columns are listed only once in the result set. The follow-
ing example demonstrates this. The common column in the COUNTRIES table and the REGIONS
table is the REGION_ID.

SQL> DESCRIBE regions
 Name Null? Type
 ----------------------- -------- ------------
 REGION_ID NOT NULL NUMBER
 REGION_NAME VARCHAR2(25)

SQL> DESCRIBE countries
 Name Null? Type
 ----------------------- -------- ------------
 COUNTRY_ID NOT NULL CHAR(2)
 COUNTRY_NAME VARCHAR2(40)
 REGION_ID NUMBER

SELECT *
FROM regions NATURAL JOIN countries;

REGION_ID REGION_NAME CO COUNTRY_NAME
---------- ------------------------- -- --------------------
 2 Americas AR Argentina
 3 Asia AU Australia
 1 Europe BE Belgium
 2 Americas BR Brazil
 2 Americas CA Canada
… … …

Here is another example, which joins three tables:

SELECT region_id, region_name, country_id, country_name,
 location_id, city
FROM regions
NATURAL JOIN countries
NATURAL JOIN locations;

234	 Chapter 5  ■  Using Joins and Subqueries

When you’re specifying more than two tables using NATURAL JOIN syntax, it is a good idea
to use parentheses to increase readability. The previous SQL can be interpreted in two ways:

■■ Join the REGIONS table and the COUNTRIES table, and join the result to the LOCATIONS table.

■■ Join the COUNTRIES table to the LOCATIONS table, and join the result to the REGIONS table.

If you do not use parentheses, Oracle uses left associativity by pairing the tables from
left to right (as in the first scenario). By using parentheses, you can make the query less
ambiguous, as shown here:

SELECT region_id, region_name, country_id, country_name,
 location_id, city
FROM locations
NATURAL JOIN (regions
NATURAL JOIN countries);

The same query written in traditional Oracle syntax is as follows:

SELECT regions.region_id, region_name, countries.country_id, country_name,
 location_id, city
FROM regions, countries, locations
WHERE regions.region_id = countries.region_id
AND countries.country_id = locations.country_id;

NATURAL JOIN syntax is easy to read and use; however, its usage should
be discouraged in good coding practice. Because NATURAL JOIN joins the
tables by all the identical column names, you could end up having a wrong
join condition if you’re not careful. It is always better to explicitly specify
the join condition using the syntaxes available.

JOIN…USING

If the tables you are joining have columns with the same name but not all are used in the
join condition between tables or if they do not have the same datatype, you can specify
the columns that should be considered for an equijoin using the JOIN…USING syntax. The
USING clause specifies the column names that should be used to join the tables. Here is
an example:

SELECT location_id, city, department_name
FROM locations JOIN departments USING (location_id);

The column names used in the USING clause should not be qualified with a table name
or table alias. The column names not appearing in the USING clause can be qualified. If
there are other common column names in the tables and if those column names are used
in the query, they must be qualified.

	 Writing Multiple-Table Queries	 235

Let’s consider this syntax with joining more than two tables:

SELECT region_name, country_name, city
FROM regions
JOIN countries USING (region_id)
JOIN locations USING (country_id);

Here, the REGIONS table is joined with the COUNTRIES table using the REGION_ID column,
and its result is joined with the LOCATIONS table using the COUNTRY_ID column.

The following query will result in an error because there is no common column between
the REGIONS and LOCATIONS tables:

SELECT region_name, country_name, city
FROM regions
JOIN locations USING (country_id)
JOIN countries USING (region_id);

JOIN locations USING (country_id)
 *
ERROR at line 3:
ORA-00904: "REGIONS"."COUNTRY_ID": invalid identifier

You can add a WHERE clause to limit the number of rows and an ORDER BY clause to sort
the rows retrieved along with any type of join operation:

SELECT region_name, country_name, city
FROM regions
JOIN countries USING (region_id)
JOIN locations USING (country_id)
WHERE country_id = 'US'
ORDER BY 1;

When you’re using the NATURAL JOIN or JOIN USING syntax, you can’t use
alias or table names to qualify the column names on the columns used in
the join operation anywhere in the query. You may see questions in the
certification exam testing this rule.

JOIN…ON

When you do not have common column names between tables to make a join or if you
want to specify arbitrary join conditions, you can use the JOIN…ON syntax. This syntax
specifically defines the join condition using the column names. You can qualify column
names with a table name or an alias name. If the column name is common to multiple
tables involved in the query, those column names must be qualified.

236	 Chapter 5  ■  Using Joins and Subqueries

Using the JOIN ON syntax over the traditional join method separates the table joins from the
other conditions. Because this syntax explicitly states the join condition, it is easier to read and
understand. Here is the three-table example you used in the previous section, written using
the JOIN…ON syntax. Notice the use of a qualifier on the COUNTRY_ID column; this is required
because COUNTRY_ID appears in COUNTRIES and LOCATIONS tables.

SELECT region_name, country_name, city
FROM regions r
JOIN countries c ON r.region_id = c.region_id
JOIN locations l ON c.country_id = l.country_id
WHERE c.country_id = 'US';

Multitable Joins
A multitable join is a join of more than two tables. In the ANSI syntax, joins are performed
from left to right. The first join condition can reference columns from only the first and second
tables; the second join condition can reference columns from the first, second, and third tables;
and so on. Consider the following example:

SELECT first_name, department_name, city
FROM employees e
JOIN departments d
ON (e.department_id = d.department_id)
JOIN locations l
ON (d.location_id = l.location_id);

The first join to be performed is EMPLOYEES and DEPARTMENTS. The first join condition can
reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns in LOCATIONS.
The second join condition can reference columns from all three tables.

How Do You Specify Join Conditions When You Have More Than
One Column to Join?

Company XYZ keeps detailed information about customer geography in its purchase-
orders database. Consider the tables and data shown here. For simplicity, only the inter-
esting columns in the tables are used for this example. For this demonstration, you are
interested in three tables: COUNTRY, STATE, and CITY.

SQL> SELECT * FROM country;

	 Writing Multiple-Table Queries	 237

 CNT_CODE CNT_NAME CONTINENT
---------- ---------------------- ----------
 1 UNITED STATES N.AMERICA
 91 INDIA ASIA
 65 SINGAPORE ASIA

SQL> SELECT * FROM state;

 CNT_CODE ST ST_NAME
---------- -- ---------------
 1 TX TEXAS
 1 CA CALIFORNIA
 1 TN TENNESSE
 91 TN TAMIL NADU
 91 KL KERALA

SQL> SELECT * FROM city;

 CNT_CODE ST CTY_CODE CTY_NAME
---------- -- ---------- --------------------
 1 TX 1001 DALLAS
 1 CA 8099 LOS ANGELES
 91 TN 2243 CHENNAI

SQL>

The CNT_CODE column relates the COUNTRY table and the STATE table. The ST_CODE and
CNT_CODE columns relate the STATE table and CITY table. The following examples show
how to join the STATE and CITY tables to get information on the country code, state name,
and city name.

Traditional Oracle Join

SQL> SELECT s.cnt_code, st_name, cty_name
 FROM state s, city c
 WHERE s.cnt_code = c.cnt_code
 AND s.st_code = c.st_code
 AND s.cnt_code = 1;

238	 Chapter 5  ■  Using Joins and Subqueries

 CNT_CODE ST_NAME CTY_NAME
---------- -------------------- -------------
 1 CALIFORNIA LOS ANGELES
 1 TEXAS DALLAS
SQL>

ANSI Natural Join

SQL> SELECT cnt_code, st_name, cty_name
 FROM state NATURAL JOIN city
 WHERE cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME
---------- -------------------- --------------
 1 TEXAS DALLAS
 1 CALIFORNIA LOS ANGELES
SQL>

ANSI Using JOIN…USING

SQL> SELECT cnt_code, st_name, cty_name
 FROM state JOIN city USING (cnt_code, st_code)
 WHERE cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME
---------- -------------------- ----------------
 1 TEXAS DALLAS
 1 CALIFORNIA LOS ANGELES
SQL>

ANSI Using JOIN…ON

SQL> SELECT s.cnt_code, s.st_name, c.cty_name
 FROM state s
 JOIN city c ON s.cnt_code = c.cnt_code
 AND s.st_code = c.st_code
 WHERE s.cnt_code = 1;

 CNT_CODE ST_NAME CTY_NAME
---------- -------------------- -----------------
 1 CALIFORNIA LOS ANGELES
 1 TEXAS DALLAS
SQL>

	 Writing Multiple-Table Queries	 239

Cartesian Joins
A Cartesian product occurs when data is selected from two or more tables and no common
relationship is specified in the WHERE clause. If you do not specify a join condition for the
tables listed in the FROM clause, Oracle joins each row from the first table to every row in
the second table. If the first table has 3 rows and the second table has 4 rows, the result will
have 12 rows. If you add another table with 2 rows without specifying a join condition, the
result will have 24 rows.

For the most part, Cartesian joins happen when there are many tables in the FROM clause
and developers forget to include the join condition or they specify a wrong join condition.
You should, therefore, avoid them. To avoid a Cartesian join, there should be at least n–1
join conditions when joining n tables. Sometimes you intentionally use Cartesian joins to
generate large amounts of data, especially when testing applications.

Consider the following example:

SELECT region_name, country_name
FROM regions, countries
WHERE countries.country_id LIKE 'I%';

REGION_NAME COUNTRY_NAME
------------------------- -------------
Europe Israel
Americas Israel
Asia Israel
Middle East and Africa Israel
Europe India
Americas India
Asia India
Middle East and Africa India
Europe Italy
Americas Italy
Asia Italy
Middle East and Africa Italy

Although there is a WHERE clause, you did not specify a join condition between the
COUNTRIES and REGIONS tables. The query returns all the matching rows from the COUNTRIES
table based on the WHERE clause and retrieves one row from the REGIONS table for every row
from the COUNTRIES table. There are four rows in the REGIONS table and three rows in the
COUNTRIES table with a country name beginning with I.

If a Cartesian join is made between a table having m rows and another
table having n rows, the resulting query will have m × n rows.

240	 Chapter 5  ■  Using Joins and Subqueries

Using the ANSI Syntax
A Cartesian join in ANSI syntax is known as a cross join. A cross join is represented in
ANSI/ISO SQL1999 syntax using the CROSS JOIN keywords. You can code the previous
example using the ANSI syntax as follows:

SELECT region_name, country_name
FROM countries
CROSS JOIN regions
WHERE countries.country_id LIKE 'I%';

REGION_NAME COUNTRY_NAME
------------------------- -------------
Europe Israel
Americas Israel
Asia Israel
Middle East and Africa Israel
Europe India
Americas India
Asia India
Middle East and Africa India
Europe Italy
Americas Italy
Asia Italy
Middle East and Africa Italy

Outer Joins
So far, you have seen only inner joins, which return just the matched rows. Sometimes,
however, you might want to see the data from one table, even if there is no corresponding
row in the joining table. Oracle provides the outer join mechanism for this. An outer join
returns results based on the inner join condition, as well as the unmatched rows from one
or both of the tables.

In traditional Oracle syntax, the plus symbol surrounded by parentheses, (+), denotes
an outer join in the query. Enter (+) beside the column name of the table in the WHERE clause
where there may not be a corresponding row. For example, to write a query that performs
an outer join of tables A and B and returns all rows from A, apply the outer join operator
(+) to all columns of B in the join condition. For all rows in A that have no matching rows
in B, the query returns NULL values for the columns in B.

Consider an example using the COUNTRIES and LOCATIONS tables. Say you want to list the
country name and location city, and you also want to see all the countries in the COUNTRIES

	 Writing Multiple-Table Queries	 241

table. To perform this outer join, place an outer join operator beside all columns referencing
LOCATIONS in the WHERE clause:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE c.country_id = l.country_id (+);

COUNTRY_NAME CITY
-- --------------------
Australia Sydney
Brazil Sao Paulo
Canada Toronto
Canada Whitehorse
Switzerland Geneva
Switzerland Bern
China Beijing
Germany Munich
India Bombay
Italy Rome
Italy Venice
Japan Tokyo
Japan Hiroshima
Mexico Mexico City
Netherlands Utrecht
Singapore Singapore
United Kingdom London
United Kingdom Oxford
United Kingdom Stretford
United States of America Southlake
United States of America South San Francisco
United States of America South Brunswick
United States of America Seattle
Argentina
Israel
Nigeria
Egypt
Kuwait
France
Hong Kong
Belgium
Zimbabwe
Zambia
Denmark

242	 Chapter 5  ■  Using Joins and Subqueries

The order of tables in the query’s FROM clause determines whether the join is a left outer
join or a right outer join. In the previous example, you are selecting all the rows from the
table appearing on the left (COUNTRIES); therefore, this query is using a left outer join.

If tables A and B are outer-joined (FROM A, B) and you need all rows from B, the outer
join operator is placed beside all columns of A. This is a right outer join, because you are
retrieving all rows from the table on the right side (table B). In outer-join syntax using the
(+) operator, the placement of the outer join operator, (+), is what determines the table
from where all the rows are retrieved, not the order of tables; the order of tables determines
whether it is a left or right outer join. When using the ANSI syntax, the left outer join and
right outer join syntaxes depend on the table order.

The outer join operator, (+), can appear only in the WHERE clause. If there are multiple
join conditions between the tables, the outer join operator should be used against all the
conditions. Consider the following query:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE c.country_id = l.country_id (+)
AND l.city LIKE 'B%';

COUNTRY_NAME CITY
----------------------------------- --------
China Beijing
India Bombay
Switzerland Bern

Even though you included the outer join operator, Oracle just ignored it, and did not
provide unmatched rows in the query result. This is because you did not place the outer
join operator beside all the columns from the LOCATIONS table. The following query will
return the desired result:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE c.country_id = l.country_id (+)
AND l.city (+) LIKE 'B%';

An outer join (containing the (+) operator) cannot be combined with another condition
using the OR or IN logical operators. For example, the following query is not valid:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE c.country_id = l.country_id (+)
OR l.city (+) LIKE 'B%';

	 Writing Multiple-Table Queries	 243

OR l.city (+) LIKE 'B%'
 *
ERROR at line 4:
ORA-01719: outer join operator (+) not allowed in operand of OR or IN

The following query works because the outer join operator is used on the LOCATIONS
table and the IN condition is used on the column from the COUNTRIES table:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE c.country_id = l.country_id (+)
AND c.country_name IN ('India','Israel');

COUNTRY_NAME CITY
---------------------------------- --------
Israel
India Bombay

Using the ANSI Syntax
The ANSI syntax allows you to specify three types of outer joins:

■■ Left outer join

■■ Right outer join

■■ Full outer join

Left Outer Joins

A left outer join is a join between two tables that returns rows based on the matching con-
dition, as well as unmatched rows from the table to the left of the JOIN clause. For example,
the following query returns the country name and city name from the COUNTRIES and
LOCATIONS tables, as well as the entire country name from the COUNTRIES table.

SELECT c.country_name, l.city
FROM countries c LEFT OUTER JOIN locations l
ON c.country_id = l.country_id;

The keyword OUTER between LEFT and JOIN is optional. LEFT JOIN will return the same
result, as in the following example:

SELECT country_name, city
FROM countries LEFT JOIN locations
USING (country_id);

244	 Chapter 5  ■  Using Joins and Subqueries

The same query can be written using a NATURAL JOIN, because COUNTRY_ID is the only
column common to both tables.

SELECT country_name, city
FROM countries NATURAL LEFT JOIN locations;

In traditional Oracle outer join syntax, the query is written as follows:

SELECT c.country_name, l.city
FROM countries c, locations l
WHERE l.country_id (+) = c.country_id;

Right Outer Joins

A right outer join is a join between two tables that returns rows based on the matching
condition, as well as unmatched rows from the table to the right of the JOIN clause. Let’s
rewrite the previous example using RIGHT OUTER JOIN:

SELECT country_name, city
FROM locations NATURAL RIGHT OUTER JOIN countries;

or:

SELECT c.country_name, l.city
FROM locations l RIGHT JOIN countries c
ON c.country_id = l.country_id;

You cannot specify the traditional outer join operator, (+), in a query when
the ANSI JOIN syntax is used.

Full Outer Joins

A full outer join is possible when using the ANSI syntax. It is not available using the (+)
operator. This is a join between two tables that returns rows based on the matching con-
dition, as well as unmatched rows from the table on the right and left of the JOIN clause.
Suppose you want to list all the employees’ last names with their department names. You
want to include all the employees, even if they have not been assigned a department. You
also want to include all the departments, even if no employees are working for that depart-
ment. Here’s the query:

SELECT e.employee_id, e.last_name,
 d.department_id, d.department_name
FROM employees e FULL OUTER JOIN departments d
ON e.department_id = d.department_id;

	 Writing Multiple-Table Queries	 245

Trying to perform a similar query with the outer join operator will produce an error:

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id (+) = d.department_id (+);

WHERE e.department_id (+) = d.department_id (+)
 *
ERROR at line 3:
ORA-01468: a predicate may reference only one outer-joined table

You can achieve the full outer join using the UNION operator and the outer join operator,
as in the following query:

SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id (+) = d.department_id
UNION
SELECT e.employee_id, e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id (+);

If you do not specify a join type before the JOIN keyword, Oracle assumes
the default value of INNER. To specify an outer join, you must use the LEFT,
RIGHT, or FULL keyword.

Other Multiple-Table Queries
In this section, you will consider other methods used to retrieve data from more than
one table. These methods include using self-joins and using nonequality joins. Using set
operators in queries can also retrieve rows from multiple tables. Set operators are dis-
cussed in the next section.

Self-Joins
A self-join joins a table to itself. The table name appears in the FROM clause twice, with dif-
ferent alias names. The two aliases are treated as two different tables, and they are joined as
you would join any other tables, using one or more related columns. The following example
lists the employees’ names and their manager names from the EMPLOYEES table:

SELECT e.last_name Employee, m.last_name Manager
FROM employees e, employees m
WHERE m.employee_id = e.manager_id;

246	 Chapter 5  ■  Using Joins and Subqueries

When performing self-joins in the ANSI syntax, you must always use the JOIN…ON
syntax. You cannot use NATURAL JOIN and JOIN…USING. In the following example, the
keyword INNER is optional. The certification example also includes an additional WHERE
clause to filter the records.

SELECT e.last_name Employee, m.last_name Manager
FROM employees e INNER JOIN employees m
ON m.employee_id = e.manager_id
WHERE e.last_name like 'R%';

EMPLOYEE MANAGER
------------------------- -------------------------
Russell King
Raphaely King
Rogers Kaufling
Rajs Mourgos

Nonequality Joins
If the query is relating two tables using an equality operator (=), it is an equality join, also
known as an inner join or an equijoin, as discussed earlier in this chapter. If any other opera-
tor is used to join the tables in the query, it is a nonequality join. Let’s consider an example
of a nonequality join. The EMPLOYEES table has a column named SALARY; the GRADES table has
the range of salary values that correspond to each grade.

SELECT * FROM grades;

GRADE LOW_SALARY HIGH_SALARY
------ ---------- -----------
P5 0 3000
P4 3001 5000
P3 5001 7000
P2 7001 10000
P1 10001

To find out which grade each employee belongs to, use the following query. You limit the
rows returned by using last_name LIKE 'R%'.

SELECT last_name, salary, grade
FROM employees, grades
WHERE last_name LIKE 'R%'
AND salary >= low_salary
AND salary <= NVL(high_salary, salary);

	 Using Set Operators	 247

LAST_NAME SALARY GR
------------------------- ---------- --
Russell 14000 P1
Raphaely 11000 P1
Rajs 3500 P4
Rogers 2900 P5

You can write the same query using the ANSI syntax as follows:

SELECT last_name, salary, grade
FROM employees JOIN grades
ON salary >= low_salary
AND salary <= NVL(high_salary, salary)
WHERE last_name LIKE 'R%';

Using Set Operators
You can use set operators to select data from multiple tables. Set operators basically combine
the results of two queries into one. These queries are known as compound queries. All set
operators have equal precedence. When multiple set operators are present in the same query,
they are evaluated from left to right, unless another order is specified by using parentheses.
The datatypes of the resulting columns, as well as the number of columns, should match in
both queries. Oracle has four set operators, which are listed in Table 5.1.

Tabl e 5 .1    Oracle Set Operators

Operator Description

UNION Returns all unique rows selected by either query

UNION ALL Returns all rows, including duplicates selected by
either query

INTERSECT Returns rows selected from both queries

MINUS Returns unique rows selected by the first query but not
the rows selected from the second query

248	 Chapter 5  ■  Using Joins and Subqueries

We’ll discuss all of these in a bit, but let’s first consider the EMPLOYEE table and the
following two queries to illustrate the use of set operators:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90;

LAST_NAME HIRE_DATE
------------------------- ---------
King 17-JUN-03
Kochhar 21-SEP-05
De Haan 13-JAN-01

SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
------------------------- ---------
Kaufling 01-MAY-03
Khoo 18-MAY-03
King 30-JAN-04
King 17-JUN-03
Kochhar 21-SEP-05
Kumar 21-APR-08

The UNION Operator
The UNION operator is used to return rows from either query, without any duplicate rows.

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90
UNION
SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
------------------------- ---------
De Haan 13-JAN-01

	 Using Set Operators	 249

Kaufling 01-MAY-03
Khoo 18-MAY-03
King 17-JUN-03
King 30-JAN-04
Kochhar 21-SEP-05
Kumar 21-APR-08

Notice that even though there is a total of nine rows in both queries, the UNION query
returned only unique values. The employees with the last name King appear twice, but
their hire dates are different.

The UNION ALL Operator
The UNION ALL operator does not sort or filter the result set; it returns all rows from both
queries. Let’s consider this SQL code:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90
UNION ALL
SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
------------------------- ---------
King 17-JUN-03
Kochhar 21-SEP-05
De Haan 13-JAN-01
Kaufling 01-MAY-03
Khoo 18-MAY-03
King 30-JAN-04
King 17-JUN-03
Kochhar 21-SEP-05
Kumar 21-APR-08

UNION Operator reads data from both queries and sorts them to get unique
rows. If you are joining queries that produce unique results, using UNION
ALL instead of UNION operator avoids unnecessary sort operation and thus
improves the performance of the query.

250	 Chapter 5  ■  Using Joins and Subqueries

The INTERSECT Operator
The INTERSECT operator is used to return the rows returned by both queries. Let’s find the
employees common to both queries:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90
INTERSECT
SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
------------------------- ---------
King 17-JUN-03
Kochhar 21-SEP-05

The MINUS Operator
Now, let’s find the employees from the first query but not in the second query. You can use
the MINUS operator here:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90
MINUS
SELECT last_name, hire_date
FROM employees
WHERE last_name LIKE 'K%';

LAST_NAME HIRE_DATE
------------------------- ---------
De Haan 13-JAN-01

Putting It All Together
Each query appearing with the set operators is an independent query and will work by itself.
You can have join conditions and all the SQL options and functions in these independent que-
ries. There can be only one ORDER BY clause in the query at the very end; you cannot specify an

	 Using Set Operators	 251

ORDER BY clause for each query appearing with the set operators. For example, the following
query will produce an error:

SELECT last_name, hire_date
FROM employees
WHERE department_id = 90
ORDER BY last_name
UNION ALL
SELECT first_name, hire_date
FROM employees
WHERE first_name LIKE 'K%'
ORDER BY first_name;

UNION ALL
*
ERROR at line 5:
ORA-00933: SQL command not properly ended

You can use the column name or alias name used in the first query or positional notation
in the ORDER BY clause. Here are two examples (the result is the same for both queries):

SELECT last_name, hire_date "Join Date"
FROM employees
WHERE department_id = 90
UNION ALL
SELECT first_name, hire_date
FROM employees
WHERE first_name LIKE 'K%'
ORDER BY last_name, "Join Date";

SELECT last_name, hire_date "Join Date"
FROM employees
WHERE department_id = 90
UNION ALL
SELECT first_name, hire_date
FROM employees
WHERE first_name LIKE 'K%'
ORDER BY 1, 2;

LAST_NAME Join Date
------------------------- ---------
De Haan 13-JAN-01
Karen 05-JAN-05

252	 Chapter 5  ■  Using Joins and Subqueries

Karen 10-AUG-07
Kelly 14-JUN-05
Kevin 23-MAY-06
Kevin 16-NOV-07
Ki 12-DEC-07
Kimberely 24-MAY-07
King 17-JUN-03
Kochhar 21-SEP-05

When using set operators, the number of columns in the SELECT clause
of the queries appearing on either side of the set operator should be the
same. The column datatypes should be compatible. If the datatypes are
different, Oracle tries to do an implicit conversion of data.

Using Subqueries
A subquery is a query within a query. A subquery answers the queries that have multiple
parts; the subquery answers one part of the question, and the parent query answers the other
part. When you nest several subqueries, the innermost query is evaluated first. Subqueries
can be used with all Data Manipulation Language (DML) statements.

Using subqueries in the FROM clause of a top-level query is known as an inline view. You
can nest any number of such queries; Oracle does not have a limit. Using the inline view,
you can write queries to find top-n values. This is possible because Oracle allows an ORDER
BY clause in the inline view.

There are three types of subqueries:

■■ A subquery in the WHERE clause of a query is called a nested subquery. You can have
255 levels of nested subqueries.

■■ When a column from the table used in the parent query is referenced in the subquery,
it is known as a correlated subquery. For each row processed in the parent query, the
correlated subquery is evaluated once.

■■ A scalar subquery returns a single row and a single column value. Scalar subqueries
can be used anywhere a column name or expression can be used.

If the columns in the subquery have the same name as the columns in the containing SQL
statement, it is a good idea to qualify the column names with table names or table aliases to
avoid ambiguity. A subquery must be enclosed in parentheses and must be placed on the right
side of the comparison operator when used in the WHERE clause.

	 Using Subqueries	 253

Single-Row Subqueries
Single-row subqueries return only one row of results. A single-row subquery uses a single-
row operator; the common operator is the equality operator (=). Consider an example using
the tables from the HR schema. To find the name of the employee with the highest salary,
you first need to find the highest salary using a subquery. Then you can execute the parent
query with the result from the subquery.

SELECT last_name, first_name, salary
FROM employees
WHERE salary = (SELECT MAX(salary) FROM employees);

LAST_NAME FIRST_NAME SALARY
------------------------- -------------------- ----------
King Steven 24000

The parent query of a single-row subquery can return more than one row. For example,
to find the names and salaries of employees who work in the accounting department, you
need to find the department number for accounting in a subquery and then execute the
parent query:

SELECT last_name, first_name, salary
FROM employees
WHERE department_id = (SELECT department_id
 FROM departments
 WHERE department_name = 'Accounting');

LAST_NAME FIRST_NAME SALARY
------------------------- -------------------- ----------
Higgins Shelley 12008
Gietz William 8300

All single-row comparison operators can be used in the single-row subquery (=, >, >=, <,
<=, or <>). The following example uses two subqueries. So, there are three query blocks in
total. The two inner query blocks (subqueries) are executed first, and their result is passed
on to the outer query (parent query) to complete its processing.

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id < (SELECT MAX(department_id)
 FROM departments
 WHERE location_id = 1500)
AND hire_date >= (SELECT MIN(hire_date)
 FROM employees
 WHERE department_id = 30);

254	 Chapter 5  ■  Using Joins and Subqueries

Similar to the WHERE clause, a subquery can be used in the HAVING clause. The following
query lists the latest hire dates by departments that have hired an employee after the first
employee was hired in department 80:

SELECT department_id, MAX(hire_date)
FROM employees
GROUP BY department_id
HAVING MAX(hire_date) > (SELECT MIN(hire_date)
 FROM employees
 WHERE department_id = 80);

DEPARTMENT_ID MAX(HIRE_
------------- ---------
 100 07-DEC-07
 30 10-AUG-07
 24-MAY-07
 90 21-SEP-05
 20 17-AUG-05
 50 08-MAR-08
 80 21-APR-08
 60 21-MAY-07

Multiple-Row Subqueries
Multiple-row subqueries return more than one row of results from the subquery. It is safer
to provide the multiple-row operators in the subqueries if you are not sure of the results. In
the previous query, if there is more than one department ID with the name accounting, the
query will fail.

The following query returns three rows from the subquery. It lists all the employees who
work for the same department as John does.

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id = (SELECT department_id
 FROM employees
 WHERE first_name = 'John');

WHERE department_id = (SELECT department_id
 *
ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

	 Using Subqueries	 255

The query failed because you used a single-row operator with a multiple-row subquery.
Change the = to a multiple-row operator to make the query work:

SELECT last_name, first_name, department_id
FROM employees
WHERE department_id IN (SELECT department_id
 FROM employees
 WHERE first_name = 'John');

IN is the most commonly used multiple-row subquery operator. Other operators are
EXISTS, ANY, SOME, and ALL. You may use NOT with the IN and EXISTS operators.

ANY and SOME are synonymous operators. ANY, SOME, and ALL operators must always be
preceded by any of the single-row conditional operators (=, >, >=, <, <=, or <>) and are used
to compare a value to each value returned by the subquery. Table 5.2 lists the meanings of
the ANY and ALL operators when used with different conditional operators.

Tabl e 5 . 2    ANY and ALL Operator Meanings

Operation Meaning

<ANY Less than the maximum

<=ANY Less than or equal to the maximum

>ANY More than the minimum

=ANY Equivalent to the IN operator

<ALL Less than the minimum

>ALL More than the maximum

<>ALL Equivalent to the NOT IN operator

Let’s review the ANY and ALL operators using examples. The following query will be used
in the next subquery using the ANY operator. The subquery returns the 12000 and 8300 values.
The minimum is 8300. The second query returns salaries equal to or above 8300 that do not
belong to department 80.

SELECT salary FROM employees WHERE department_id = 110;

 SALARY

 12008
 8300

256	 Chapter 5  ■  Using Joins and Subqueries

SELECT last_name, salary, department_id
FROM employees
WHERE salary >= ANY (SELECT salary FROM employees
 WHERE department_id = 110)
AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID
------------------------- ---------- -------------
King 24000 90
De Haan 17000 90
Kochhar 17000 90
Hartstein 13000 20
Higgins 12008 110
Greenberg 12008 100
Raphaely 11000 30
Baer 10000 70
Faviet 9000 100
Hunold 9000 60
Gietz 8300 110

The following example lists only the salaries that are more than the maximum (12008)
returned from the subquery:

SELECT last_name, salary, department_id
FROM employees
WHERE salary > ALL (SELECT salary FROM employees
 WHERE department_id = 110)
AND department_id != 80;

LAST_NAME SALARY DEPARTMENT_ID
------------------------- ---------- -------------
Hartstein 13000 20
De Haan 17000 90
Kochhar 17000 90
King 24000 90

You can use the DISTINCT keyword in the subquery when using ANY or ALL operators to
prevent rows from being selected multiple times.

Subquery Returns No Rows
If the subquery returns no rows, a NULL value is returned to the parent query. Because
NULL is not equal to another NULL, the parent query may not return any row even if there
are NULL values in the column used in the WHERE clause of the subquery.

	 Using Subqueries	 257

As shown in the following SQL, there is one record in the EMPLOYEES table where you
have a NULL DEPARTMENT_ID:

SQL> SELECT last_name, first_name, salary
 FROM employees
 WHERE department_id IS NULL;

LAST_NAME FIRST_NAME SALARY
------------------------- -------------------- ----------
Grant Kimberely 7000

Let’s use this column in the subquery and see what happens:

SQL> SELECT last_name, first_name, salary
 FROM employees
 WHERE department_id = (SELECT department_id
 FROM departments
 WHERE department_name = 'JustDummy');

no rows selected

SQL>

In the previous example, the outer query will return a value only if the DEPARTMENT_ID
column matches some value. Although the inner query returned NULL, the outer query will
not match for NULL, since NULL ≠ NULL. Let’s review another example. In the following query,
only Tobias has a NULL salary value:

SQL> SELECT last_name, salary
 FROM employees
 WHERE department_id = 30;

LAST_NAME SALARY
------------------------- ----------
Raphaely 11000
Khoo 3100
Baida 2900
Tobias
Himuro 2600
Colmenares 2500

When you use this subquery, you expect to see some results, because you know the
EMPLOYEES table has more than five different salary values:

SQL> SELECT first_name, last_name, salary
 FROM employees

258	 Chapter 5  ■  Using Joins and Subqueries

 WHERE salary NOT IN (
 SELECT salary
 FROM employees
 WHERE department_id = 30);

no rows selected

SQL>

The SQL code does not return any rows because one of the rows returned by the inner
query is NULL. So, be careful when using NOT IN conditions with subqueries that could have a
NULL value. This is not a problem when you use the IN operator. The IN operator is equivalent
to =ANY, and the NOT IN operator is equivalent to <> ALL. If you include one more condition in
the WHERE clause of the inner query, the SQL would work as expected:

SELECT first_name, last_name, salary
FROM employees
WHERE salary NOT IN (
 SELECT salary
 FROM employees
 WHERE department_id = 30
 AND salary is NOT NULL);

If the subquery used with the ANY operator returns no rows, the condition
evaluates to False. If the query used with the ALL operator returns no rows,
the condition evaluates to True.

Correlated Subqueries
Oracle performs a correlated subquery when the subquery references a column from a
table referred to in the parent statement. A correlated subquery is evaluated once for each
row processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement. In the following example, the highest-paid employee of each department
is selected. The subquery is executed for each row returned in the parent query. Notice that
the parent table column is used inside the subquery.

SELECT department_id, last_name, salary
FROM employees e1
WHERE salary = (SELECT MAX(salary)
 FROM employees e2
 WHERE e1.department_id = e2.department_id)
ORDER BY 1, 2, 3;

	 Using Subqueries	 259

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 10 Whalen 4400
 20 Hartstein 13000
 30 Raphaely 11000
 40 Mavris 6500
 50 Fripp 8200
 60 Hunold 9000
 70 Baer 10000
 80 Russell 14000
 90 King 24000
 100 Greenberg 12008
 110 Higgins 12008

The following example shows a correlated subquery using the EXISTS operator. The
EXISTS operator checks for the existence of a row in the subquery based on the condition.
The column results of the SELECT clause in the subquery are ignored when using the EXISTS
operator. The query lists the names of employees who work with John (in the same depart-
ment). The subquery selects a dummy value of 'x', which is ignored.

SELECT last_name, first_name, department_id
FROM employees e1
WHERE EXISTS (SELECT 'x'
 FROM employees e2
 WHERE first_name = 'John'
 AND e1.department_id = e2.department_id);

The column names in the parent queries are available for reference in
subqueries. The column names from the tables in the subquery cannot be
used in the parent queries. The scope is only the current query level and
its subqueries.

Scalar Subqueries
A scalar subquery returns exactly one column value from one row. You can use scalar sub-
queries in most places where you would use a column name or expression, such as in a single-
row function as an argument, in the VALUES clause of an INSERT statement, in an ORDER BY
clause, in a WHERE clause, and in a SELECT clause. You can also use scalar subqueries in CASE
expressions. Scalar subqueries cannot be used in GROUP BY or HAVING clauses. The following
sections review a few examples of using scalar subqueries.

260	 Chapter 5  ■  Using Joins and Subqueries

A Scalar Subquery in a CASE Expression
To list the city name, the country code, and whether the city is in India, you use a CASE
expression with a subquery to return the country code for India from the COUNTRIES table.
To limit the rows, let’s select only the cities that begin with B:

SELECT city, country_id, (CASE
 WHEN country_id IN (SELECT country_id
 FROM countries
 WHERE country_name = 'India')
 THEN 'Indian'
 ELSE 'Non-Indian'
 END) "INDIA?"
FROM locations
WHERE city LIKE 'B%';

CITY CO INDIA?
------------------------------ -- ----------
Beijing CN Non-Indian
Bombay IN Indian
Bern CH Non-Indian

A Scalar Subquery in a SELECT Clause
To report the employee name, the department, and the highest salary in that department,
you use a subquery in the SELECT clause. This is also a correlated subquery.

SELECT last_name, department_id,
 (SELECT MAX(salary)
 FROM employees sq
 WHERE sq.department_id = e.department_id) HSAL
FROM employees e
WHERE last_name like 'R%';

LAST_NAME DEPARTMENT_ID HSAL
------------------------- ------------- ----------
Raphaely 30 11000
Rogers 50 8200
Rajs 50 8200
Russell 80 14000

	 Using Subqueries	 261

A Scalar Subquery in SELECT and WHERE Clauses
The following query may be confusing, but pay close attention to the flexibility of using sub-
queries to solve your queries. A scalar subquery is used in the SELECT clause as well as in the
WHERE clause. A multiple-row subquery is also used in the WHERE clause, after the IN operator.
The purpose of the query is to find the department names and their manager names for all
departments that are in the United States or Canada. Because the country information is not
available in the DEPARTMENTS table, you need to get this information from the LOCATIONS table.
Also, you do not know the country IDs of the United States and Canada, so you use a sub-
query to get them. The query also limits the number of rows retrieved by checking whether
a manager is assigned to the department (d.manager_id IS NOT NULL).

SELECT department_name, manager_id, (SELECT last_name
 FROM employees e
 WHERE e.employee_id = d.manager_id) MGR_NAME
FROM departments d
WHERE ((SELECT country_id FROM locations l
 WHERE d.location_id = l.location_id)
 IN (SELECT country_id FROM countries c
 WHERE c.country_name = 'United States of America'
 OR c.country_name = 'Canada'))
AND d.manager_id IS NOT NULL;

DEPARTMENT_NAME MANAGER_ID MGR_NAME
-------------------- ---------- --------------
Administration 200 Whalen
Marketing 201 Hartstein
Purchasing 114 Raphaely
Shipping 121 Fripp
IT 103 Hunold
Executive 100 King
Finance 108 Greenberg
Accounting 205 Higgins

A Scalar Subquery in an ORDER BY Clause
You can also use scalar subqueries in the ORDER BY clause. The following example sorts
the city names by their country name order. Notice that the country name is not included
in the SELECT clause.

SELECT country_id, city, state_province
FROM locations l

262	 Chapter 5  ■  Using Joins and Subqueries

ORDER BY (SELECT country_name
 FROM countries c
 WHERE l.country_id = c.country_id);

If the scalar subquery returns more than one row, the query will fail. If the scalar subquery
returns no rows, the value is NULL.

Finding Total Space and Free Space Using Dictionary Views

The following dictionary views are best friends of a DBA. They show the most critical aspect
of the database from the user perspective—the space allocated and free. If the DBA is not
monitoring the growth and free space available in the database, they will probably get calls
from the user community saying they ran out of space in the tablespace. Let's build a query
using four dictionary views (you may need the SELECT_CATALOG_ROLE privilege to query
these views).

■■ DBA_TABLESPACES: Shows the tablespace name, type, and so on.

■■ DBA_DATA_FILES: Shows the data files associated with a permanent or undo
tablespace and the size of the data file. The total size of all data files associated
with a tablespace gives the total size of the tablespace.

■■ DBA_TEMP_FILES: Shows the temporary files associated with a temporary tablespace
and their sizes.

■■ DBA_FREE_SPACE: Shows the unallocated space (free space) in each tablespace.

The query to get the tablespace names and type of tablespace would be as follows:

column tablespace_name format a18
SELECT tablespace_name, contents
FROM dba_tablespaces;

TABLESPACE_NAME CONTENTS
------------------ ---------
SYSTEM PERMANENT
SYSAUX PERMANENT
UNDOTBS1 UNDO
TEMP TEMPORARY
USERS PERMANENT
EXAMPLE PERMANENT

	 Using Subqueries	 263

To find the total space allocated to each tablespace, you need to query DBA_DATA_FILES
and DBA_TEMP_FILES. Because you are using a group function (SUM) along with a nonag-
gregated column (tablespace_name), the GROUP BY clause is a must. Notice the use of an
arithmetic operation on the aggregated result to display the bytes in megabytes.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_data_files
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES
------------------ ----------
UNDOTBS1 730
SYSAUX 800.1875
USERS 201.75
SYSTEM 710
EXAMPLE 100

SELECT tablespace_name, SUM(bytes)/1048576 MBytes
FROM dba_temp_files
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES
------------------ ----------
TEMP 50.0625

You can find the total amount of free space in each tablespace using the DBA_FREE_SPACE
view. Notice that the free space from temporary tablespace is not shown in this query.

SELECT tablespace_name, SUM(bytes)/1048576 MBytesFree
FROM dba_free_space
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTESFREE
------------------ ----------
SYSAUX 85.25
UNDOTBS1 718.6875
USERS 180.4375
SYSTEM 8.3125
EXAMPLE 22.625

264	 Chapter 5  ■  Using Joins and Subqueries

Let's try to display the total size of the tablespaces and their free space side-by-side using a
UNION ALL query. UNION ALL is used to avoid sorting. UNION will produce the same result.

SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0 MBytesFree
FROM dba_data_files
GROUP BY tablespace_name
UNION ALL
SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0
FROM dba_temp_files
GROUP BY tablespace_name
UNION ALL
SELECT tablespace_name, 0, SUM(bytes)/1048576
FROM dba_free_space
GROUP BY tablespace_name;

TABLESPACE_NAME MBYTES MBYTESFREE
------------------ ---------- ----------
UNDOTBS1 730 0
SYSAUX 800.1875 0
USERS 201.75 0
SYSTEM 710 0
EXAMPLE 100 0
TEMP 50.0625 0
SYSAUX 0 85.25
UNDOTBS1 0 718.6875
USERS 0 180.4375
SYSTEM 0 8.3125
EXAMPLE 0 22.625

The result is not exactly what you expected. You want to see the free-space information
beside each tablespace. Let’s join the results of the total space with the free space and
see what happens. Here you are creating two subqueries (inline views totalspace
and freespace) and joining them together using the tablespace_name column.

SELECT tablespace_name, MBytes, MBytesFree
FROM
 (SELECT tablespace_name, SUM(bytes)/1048576 MBytes
 FROM dba_data_files
 GROUP BY tablespace_name

	 Using Subqueries	 265

 UNION ALL
 SELECT tablespace_name, SUM(bytes)/1048576 MBytes
 FROM dba_temp_files
 GROUP BY tablespace_name) totalspace
JOIN
 (SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree
 FROM dba_free_space
 GROUP BY tablespace_name) freespace
USING (tablespace_name);

TABLESPACE_NAME MBYTES MBYTESFREE
------------------ ---------- ----------
SYSAUX 800.1875 85.25
UNDOTBS1 730 718.6875
USERS 201.75 180.4375
SYSTEM 710 8.3125
EXAMPLE 100 22.625

You are almost there; the only item missing is information about the temporary
tablespace. Because the temporary-tablespace free-space information is not included
in the freespace subquery and you used an INNER join condition, the result set did not
include temporary tablespaces. Now if you change the INNER JOIN to an OUTER JOIN,
you’ll get the desired result:

SELECT tablespace_name, MBytes, MBytesFree
FROM
 (SELECT tablespace_name, SUM(bytes)/1048576 MBytes
 FROM dba_data_files
 GROUP BY tablespace_name
 UNION ALL
 SELECT tablespace_name, SUM(bytes)/1048576 MBytes
 FROM dba_temp_files
 GROUP BY tablespace_name) totalspace
LEFT OUTER JOIN
 (SELECT tablespace_name, 0, SUM(bytes)/1048576 MBytesFree
 FROM dba_free_space
 GROUP BY tablespace_name) freespace
USING (tablespace_name)
ORDER BY 1;

266	 Chapter 5  ■  Using Joins and Subqueries

TABLESPACE_NAME MBYTES MBYTESFREE
------------------ ---------- ----------
EXAMPLE 100 22.625
SYSAUX 800.1875 85.0625
SYSTEM 710 8.3125
TEMP 50.0625
UNDOTBS1 730 718.6875
USERS 201.75 180.4375

Another method to write the same query would be to use the query you built earlier and
aggregate its result using an outer query, as shown here:

SELECT tsname, sum(MBytes) MBytes, sum(MBytesFree) MBytesFree
FROM (
 SELECT tablespace_name tsname, SUM(bytes)/1048576 MBytes, 0 MBytesFree
 FROM dba_data_files
 GROUP BY tablespace_name
 UNION ALL
 SELECT tablespace_name, SUM(bytes)/1048576 MBytes, 0
 FROM dba_temp_files
 GROUP BY tablespace_name
 UNION ALL
 SELECT tablespace_name, 0, SUM(bytes)/1048576
 FROM dba_free_space
 GROUP BY tablespace_name)
GROUP BY tsname
ORDER BY 1;

TSNAME MBYTES MBYTESFREE
------------------------------ ---------- ----------
EXAMPLE 100 22.625
SYSAUX 800.1875 85.0625
SYSTEM 710 8.3125
TEMP 50.0625 0
UNDOTBS1 730 718.6875
USERS 201.75 180.4375

	 Using Subqueries	 267

Multiple-Column Subqueries
A subquery is multiple-column when you have more than one column in the SELECT clause of
the subquery. Multiple-column subqueries are generally used to compare column conditions
or in an UPDATE statement. Let’s consider a simple example using the STATE and CITY tables
shown here:

SQL> SELECT * FROM state;

 CNT_CODE ST_CODE ST_NAME
---------- ------- ------------
 1 TX TEXAS
 1 CA CALIFORNIA
 91 TN TAMIL NADU
 1 TN TENNESSE
 91 KL KERALA

SQL> SELECT * FROM city;

 CNT_CODE ST_CODE CTY_CODE CTY_NAME
---------- ------- -------- --------------
 1 TX 1001 DALLAS
 91 TN 2243 MADRAS
 1 CA 8099 LOS ANGELES

List the cities in Texas using a subquery on the STATE table:

SELECT cty_name
FROM city
WHERE (cnt_code, st_code) IN
 (SELECT cnt_code, st_code
 FROM state
 WHERE st_name = 'TEXAS');

CTY_NAME

DALLAS

268	 Chapter 5  ■  Using Joins and Subqueries

Subqueries in Other DML Statements
You can use subqueries in DML statements such as INSERT, UPDATE, DELETE, and MERGE.
DML statements and their syntax are discussed in Chapter 6, “Manipulating Data.” The
following are some examples of subqueries in DML statements:

■■ To update the salary of all employees to the maximum salary in the corresponding
department (correlated subquery), use this:

UPDATE employees e1
SET salary = (SELECT MAX(salary)
 FROM employees e2
 WHERE e1.department_id = e2.department_id);

■■ To delete the records of employees whose salary is less than the average salary in the
department (using a correlated subquery), use this:

DELETE FROM employees e
WHERE salary < (SELECT AVG(salary) FROM employees
 WHERE department_id = e.department_id);

■■ To insert records to a table using a subquery, use this:

INSERT INTO employee_archive
SELECT * FROM employees;

■■ To specify a subquery in the VALUES clause of the INSERT statement, use this:

INSERT INTO departments
 (department_id, department_name)
VALUES ((SELECT MAX(department_id)
 +10 FROM departments), 'EDP');

You can also have a subquery in the INSERT, UPDATE, and DELETE statements in place of
the table name. Here is an example:

DELETE FROM
(SELECT * FROM departments
 WHERE department_id > 200)
WHERE department_id = 280;

The subquery can have an optional WITH clause. WITH READ ONLY specifies that the subquery
cannot be updated. WITH CHECK OPTION specifies that if the subquery is used in place of a table
in an INSERT, UPDATE, or DELETE statement, Oracle will not allow any changes to the table that
would produce rows that are not included in the subquery. Let’s look at an example:

INSERT INTO (SELECT department_id, department_name
 FROM departments

	 Summary	 269

 WHERE department_id < 20)
VALUES (35, 'MARKETING');

1 row created.

INSERT INTO (SELECT department_id, department_name
 FROM departments
 WHERE department_id < 20 WITH CHECK OPTION)
VALUES (45, 'EDP')
SQL> /
 FROM departments
 *
ERROR at line 2:
ORA-01402: view WITH CHECK OPTION where-clause violation
SQL>

Summary
In this chapter, you learned to retrieve data from multiple tables. We began by discussing
table joins. You also learned how to use subqueries and set operators.

Joins are used to relate two or more tables (or views). In a relational database, it is com-
mon to have a requirement to join data. The tables are joined by using a common column in
the tables in the WHERE clause of the query. Oracle supports ANSI/ISO SQL1999 syntax for
joins. Using this syntax, the tables are joined using the JOIN keyword, and a condition can
be specified using the ON clause.

 If the join condition uses the equality operator (= or IN), it is known as an equality join.
If any other operator is used to join the tables, it is a nonequality join. If you do not specify
any join condition between the tables, the result will be a Cartesian product: each row from
the first table joined to every row in the second table. To avoid Cartesian joins, there should
be at least n-1 join conditions in the WHERE clause when there are n tables in the FROM clause.
A table can be joined to itself. If you want to select the results from a table, even if there are
no corresponding rows in the joined table, you can use the outer join operator: (+). In the
ANSI syntax, you can use the NATURAL JOIN, CROSS JOIN, LEFT JOIN, RIGHT JOIN, and FULL
JOIN keywords to specify the type of join.

A subquery is a query within a query. Writing subqueries is a powerful way to manipulate
data. You can write single-row and multiple-row subqueries. Single-row subqueries must
return zero or one row; multiple-row subqueries return zero or more rows. IN and EXISTS are
the most commonly used subquery operators. Subqueries can appear in the WHERE clause or
in the FROM clause. They can also replace table names in SELECT, DELETE, INSERT, and UPDATE
statements. Subqueries that return one row and one column result are known as scalar sub-
queries. Scalar subqueries can be used in most places where you would use an expression.

270	 Chapter 5  ■  Using Joins and Subqueries

Set operators are used to combine the results of more than one query into one. Each
query is separate and will work on its own. Four set operators are available in Oracle:
UNION, UNION ALL, MINUS, and INTERSECT.

Exam Essentials

Understand joins.    Make sure you know the different types of joins. Understand the
difference between natural, cross, simple, complex, and outer joins.

Know the different outer join clauses.    You can specify outer joins using LEFT, RIGHT, or
FULL. Know the syntax of each type of join.

Be sure of the join syntax.    Spend time practicing each type of join using the ANSI syntax.
Understand the restrictions of using each ANSI keyword in the JOIN and their implied
column-naming conventions.

Know how to write subqueries.    Understand the use and flexibility of subqueries. Practice
using scalar subqueries and correlated subqueries.

Understand the use of the ORDER BY clause in the subqueries.    You can use the ORDER BY
clause in all subqueries, except the subqueries appearing in the WHERE clause of the query.
You can use the GROUP BY clause in the subqueries.

Know the set operators.    Understand the set operators that can be used in compound queries.
Know the difference between the UNION and UNION ALL operators.

Understand where you can specify the ORDER BY clause when using set operators.    When
using set operators to join two or more queries, the ORDER BY clause can appear only at the
very end of the query. You can specify the column names as they appear in the top query or
use positional notation.

	 Review Questions	 271

Review Questions

	 1.	 Which line of code has an error?

	 A.	SELECT dname, ename

	 B.	FROM emp e, dept d

	 C.	WHERE emp.deptno = dept.deptno

	 D.	ORDER BY 1, 2;

	 2.	 What will be the result of the following query?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id
FROM customers c, orders o
WHERE c.cust_id = o.cust_id (+);

	 A.	 List all the customer names in the CUSTOMERS table and the orders they made from
the ORDERS table, even if the customer has not placed an order.

	 B.	 List only the names of customers from the CUSTOMERS table who have placed an
order in the ORDERS table.

	 C.	 List all orders from the ORDERS table, even if there is no valid customer record in
the CUSTOMERS table.

	 D.	 For each record in the CUSTOMERS table, list the information from the ORDERS table.

	 3.	 The CUSTOMERS and ORDERS tables have the following data:

SQL> SELECT * FROM customers;

CUST_ CUST_NAME PHONE CITY
----- -------------------- --------------- -----------
A0101 Abraham Taylor Jr. Fort Worth
B0134 Betty Baylor 972-555-5555 Dallas
B0135 Brian King Chicago

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ID QUANTITY PRICE
--------- ---------- ------- ---------- ----------
20-FEB-00 1741 B0134 5 65.5
02-FEB-00 1001 B0134 25 2065.85
02-FEB-00 1001 B0135 3 247.9

272	 Chapter 5  ■  Using Joins and Subqueries

		 When the following query is executed, what will be the value of PROD_ID and ORD_DATE
for the customer Abraham Taylor, Jr.?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id
FROM customers c, orders o
WHERE c.cust_id = o.cust_id (+);

	 A.	NULL, 01-JAN-01

	 B.	NULL, NULL

	 C.	 1001, 02-FEB-00

	 D.	 The query will not return customer Abraham Taylor, Jr.

	 4.	 When using ANSI join syntax, which clause is used to specify a join condition?

	 A.	JOIN

	 B.	USING

	 C.	ON

	 D.	WHERE

	 5.	 The EMPLOYEES table has EMPLOYEE_ID, DEPARTMENT_ID, and FULL_NAME columns. The
DEPARTMENTS table has DEPARTMENT_ID and DEPARTMENT_NAME columns. Which two of the
following queries return the department ID, name, and employee name, listing depart-
ment names even if there is no employee assigned to that department? (Choose two.)

	 A.	SELECT d.department_id, d.department_name, e.full_name FROM
departments d NATURAL LEFT OUTER JOIN employees e;

	 B.	SELECT department_id, department_name, full_name FROM departments
NATURAL LEFT JOIN employees;

	 C.	SELECT d.department_id, d.department_name, e.full_name FROM
departments d LEFT OUTER JOIN employees eUSING (d.department_id);

	 D.	SELECT d.department_id, d.department_name, e.full_name FROM
departments d LEFT OUTER JOIN employees eON (d.department_id =
e.department_id);

	 6.	 Which two operators are not allowed when using an outer join operator in the query?
(Choose two.)

	 A.	OR

	 B.	AND

	 C.	IN

	 D.	=

	 Review Questions	 273

	 7.	 Which SQL statements do not give an error? (Choose all that apply.)

	 A.	 SELECT last_name, e.hire_date, department_id
FROM employees e
JOIN (SELECT max(hire_date) max_hire_date
 FROM employees ORDER BY 1) me
ON (e.hire_date = me.max_hire_date)

	 B.	 SELECT last_name, e.hire_date, department_id
	FROM employees e
	WHERE hire_date =
	(SELECT max(hire_date) max_hire_date
	 FROM employees ORDER BY 1)

	 C.	 SELECT last_name, e.hire_date, department_id
FROM employees e
WHERE (department_id, hire_date) IN
(SELECT department_id, max(hire_date) hire_date
 FROM employees GROUP BY department_id)

	 D.	 SELECT last_name, e.hire_date, department_id
FROM employees e JOIN
(SELECT department_id, max(hire_date) hire_date
FROM employees GROUP BY department_id) me
	USING (hire_date)

274	 Chapter 5  ■  Using Joins and Subqueries

	 8.	 The columns of the EMPLOYEES, DEPARTMENTS, and JOBS tables are shown here:

Table Column Names Datatype

EMPLOYEES EMPLOYEE_ID NUMBER (6)

FIRST_NAME VARCHAR2 (25)

LAST_NAME VARCHAR2 (25)

SALARY NUMBER (8,2)

JOB_ID VARCHAR2 (10)

MANAGER_ID NUMBER (6)

DEPARTMENT_ID NUMBER (2)

DEPARTMENTS DEPARTMENT_ID NUMBER (2)

DEPARTMENT_NAME VARCHAR2 (30)

MANAGER_ID NUMBER (6)

LOCATION_ID NUMBER (4)

JOBS JOB_ID VARCHAR2 (10)

JOB_TITLE VARCAHR2 (30)

		 Which assertion about the following query is correct?

1 SELECT e.last_name, d.department_name, j.job_title
2 FROM jobs j
3 INNER JOIN employees e
4 ON (e.department_id = d.department_id)
5 JOIN departments d
6 ON (j.job_id = e.job_id);

	 A.	 The query returns all the rows from the EMPLOYEE table, where there is a
corresponding record in the JOBS table and the DEPARTMENTS table.

	 B.	 The query fails with an invalid column name error.

	 C.	 The query fails because line 3 specifies INNER JOIN, which is not a valid syntax.

	 D.	 The query fails because line 5 does not specify the keyword INNER.

	 E.	 The query fails because the column names are qualified with the table alias.

	 Review Questions	 275

	 9.	 The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Consider
the following three queries using those tables.

1. SELECT last_name, department_name
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;
2. SELECT last_name, department_name
 FROM employees NATURAL JOIN departments;
3. SELECT last_name, department_name
 FROM employees JOIN departments
 USING (department_id);

		 Which of the following assertions best describes the results?

	 A.	 Queries 1, 2, and 3 produce the same results.

	 B.	 Queries 2 and 3 produce the same result; query 1 produces a different result.

	 C.	 Queries 1, 2, and 3 produce different results.

	 D.	 Queries 1 and 3 produce the same result; query 2 produces a different result.

	10.	 The data in the STATE table is shown here:

SQL> SELECT * FROM state;

 CNT_CODE ST_CODE ST_NAME
---------- ------- ------------
 1 TX TEXAS
 1 CA CALIFORNIA
 91 TN TAMIL NADU
 1 TN TENNESSE
 91 KL KERALA

		 Consider the following query.

SELECT cnt_code
FROM state
WHERE st_name = (SELECT st_name FROM state
 WHERE st_code = 'TN');

		 Which of the following assertions best describes the results?

	 A.	 The query will return the CNT_CODE for the ST_CODE value 'TN'.

	 B.	 The query will fail and will not return any rows.

	 C.	 The query will display 1 and 91 as CNT_CODE values.

	 D.	 The query will fail because an alias name is not used.

276	 Chapter 5  ■  Using Joins and Subqueries

	11.	 The data in the STATE table is shown in question 10. The data in the CITY table is as
shown here:

SQL> SELECT * FROM city;

 CNT_CODE ST_CODE CTY_CODE CTY_NAME
---------- ------- ---------- -------------
 1 TX 1001 DALLAS
 91 TN 2243 MADRAS
 1 CA 8099 LOS ANGELES

		 What is the result of the following query?

SELECT st_name "State Name"
FROM state
WHERE (cnt_code, st_code) =
 (SELECT cnt_code, st_code
 FROM city
 WHERE cty_name = 'DALLAS');

	 A.	 TEXAS

	 B.	 The query will fail because CNT_CODE and ST_CODE are not in the WHERE clause of
the subquery.

	 C.	 The query will fail because more than one column appears in the WHERE clause.

	 D.	 TX

	12.	 Which line of the code has an error?

1 SELECT department_id, count(*)
2 FROM employees
3 GROUP BY department_id
4 HAVING COUNT(department_id) =
5 (SELECT max(count(department_id))
6 FROM employees
7 GROUP BY department_id);

	 A.	 Line 3

	 B.	 Line 4

	 C.	 Line 5

	 D.	 Line 7

	 E.	 No error

	 Review Questions	 277

	13.	 Which of the following is a correlated subquery?

	 A.	 select cty_name from city where st_code in (select st_code from state
where st_name = 'TENNESSEE' and city.cnt_code = state.cnt_code);

	 B.	 select cty_name from city where st_code in (select st_code from state
where st_name = 'TENNESSEE');

	 C.	 select cty_name from city, state where city.st_code = state.st_code and
city.cnt_code = state.cnt_code and st_name = 'TENNESSEE';

	 D.	 select cty_name from city, state where city.st_code = state.st_code
(+) and city.cnt_code = state.cnt_code (+) and st_name = 'TENNESSEE';

	14.	 The COUNTRY table has the following data:

SQL> SELECT * FROM country;

 CNT_CODE CNT_NAME CONTINENT
---------- ----------------- ----------
 1 UNITED STATES N.AMERICA
 91 INDIA ASIA
 65 SINGAPORE ASIA

		 What value is returned from the subquery when you execute the following?

SELECT CNT_NAME
FROM country
WHERE CNT_CODE =
(SELECT MAX(cnt_code) FROM country);

	 A.	 INDIA

	 B.	 65

	 C.	 91

	 D.	 SINGAPORE

	15.	 Which line in the following query contains an error?

1 SELECT deptno, ename, sal
2 FROM emp e1
3 WHERE sal = (SELECT MAX(sal) FROM emp
4 WHERE deptno = e1.deptno
5 ORDER BY deptno);

	 A.	 Line 2

	 B.	 Line 3

	 C.	 Line 4

	 D.	 Line 5

278	 Chapter 5  ■  Using Joins and Subqueries

	16.	 Consider the following query:

SELECT deptno, ename, salary salary, average,
 salary-average difference
FROM emp,
(SELECT deptno dno, AVG(salary) average FROM emp
 GROUP BY deptno)
WHERE deptno = dno
ORDER BY 1, 2;

		 Which of the following statements is correct?

	 A.	 The query will fail because no alias name is provided for the subquery.

	 B.	 The query will fail because a column selected in the subquery is referenced outside
the scope of the subquery.

	 C.	 The query will work without errors.

	 D.	GROUP BY cannot be used inside a subquery.

	17.	 The COUNTRY table has the following data:

SQL> SELECT * FROM country;

 CNT_CODE CNT_NAME CONTINENT
---------- -------------------- ----------
 1 UNITED STATES N. AMERICA
 91 INDIA ASIA
 65 SINGAPORE ASIA

		 What will be result of the following query?

INSERT INTO (SELECT cnt_code FROM country
 WHERE continent = 'ASIA')
VALUES (971, 'SAUDI ARABIA', 'ASIA');

	 A.	 One row will be inserted into the COUNTRY table.

	 B.	 WITH CHECK OPTION is missing in the subquery.

	 C.	 The query will fail because the VALUES clause is invalid.

	 D.	 The WHERE clause cannot appear in the subqueries used in INSERT statements.

	 Review Questions	 279

	18.	 Review the SQL code, and choose the line number that has an error.

1 SELECT DISTINCT department_id
2 FROM employees
3 ORDER BY department_id
4 UNION ALL
5 SELECT department_id
6 FROM departments
7 ORDER BY department_id

	 A.	 1

	 B.	 3

	 C.	 6

	 D.	 7

	 E.	 No error

	19.	 Consider the following queries:

1. SELECT last_name, salary,
 (SELECT (MAX(sq.salary) - e.salary)
 FROM employees sq
 WHERE sq.department_id = e.department_id) DSAL
FROM employees e
WHERE department_id = 20;
2. SELECT last_name, salary, msalary - salary dsal
FROM employees e,
 (SELECT department_id, MAX(salary) msalary
 FROM employees
 GROUP BY department_id) sq
WHERE e.department_id = sq.department_id
AND e.department_id = 20;
3. SELECT last_name, salary, msalary - salary dsal
FROM employees e INNER JOIN
 (SELECT department_id, MAX(salary) msalary
 FROM employees
 GROUP BY department_id) sq
ON e.department_id = sq.department_id
WHERE e.department_id = 20;
4. SELECT last_name, salary, msalary - salary dsal
FROM employees INNER JOIN
 (SELECT department_id, MAX(salary) msalary
 FROM employees
 GROUP BY department_id) sq
USING (department_id)
WHERE department_id = 20;

280	 Chapter 5  ■  Using Joins and Subqueries

		 Which of the following assertions best describes the results?

	 A.	 Queries 1 and 2 produce identical results, and queries 3 and 4 produce identical
results, but queries 1 and 3 produce different results.

	 B.	 Queries 1, 2, 3, and 4 produce identical results.

	 C.	 Queries 1, 2, and 3 produce identical results; query 4 will produce errors.

	 D.	 Queries 1 and 3 produce identical results; queries 2 and 4 will produce errors.

	 E.	 Queries 1, 2, 3, and 4 produce different results.

	 F.	 Queries 1 and 2 are valid SQL; queries 3 and 4 are not valid.

	20.	 The columns of the EMPLOYEES and DEPARTMENTS tables are shown in question 8. Which
query will show you the top five highest-paid employees in the company?

	 A.	 SELECT last_name, salaryFROM employeesWHERE ROWNUM <= 5ORDER BY
salary DESC;

	 B.	 SELECT last_name, salaryFROM (SELECT *FROM employeesWHERE ROWNUM <=
5ORDER BY salary DESC)WHERE ROWNUM <= 5;

	 C.	 SELECT * FROM(SELECT last_name, salaryFROM employeesORDER BY salary)
WHERE ROWNUM <= 5;

	 D.	 SELECT * FROM(SELECT last_name, salaryFROM employeesORDER BY salary
DESC)WHERE ROWNUM <= 5;

Chapter

6
Manipulating Data

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Managing Tables Using DML Statements

■■ Truncate data.

■■ Insert rows into a table.

■■ Update rows in a table.

■■ Delete rows from a table.

■■ Control transactions.

In this chapter, we will cover how to manipulate data in the
Oracle 12c database; this means we’ll be using SQL Data
Manipulation Language (DML) statements. You will also learn

how to coordinate multiple changes using transactions. We will discuss how to insert new
data into a table, update existing data, and delete existing data from a table.

Because Oracle is a multiuser database and more than one user or session can change data
at the same time, we will cover locks and how they are used to control this concurrency. We
will also cover another effect of a multiuser database, which is that data can change during
the execution of statements. You can exercise some control over the consistency or visibility of
these changes within a transaction, which is covered later in the chapter.

The certification exam will assess your knowledge of how to change data and control
these changes. This chapter will solidify your understanding of these concepts in preparation
for the certification exam.

Using DML Statements
DML is a subset of SQL that is employed to change data in a database table. Because SQL
is English-like, meaning it’s not cryptic like C or Perl, the statements used to perform data
manipulation are easy to remember. The INSERT statement is used to add new rows to a
table. The UPDATE statement is used to modify existing rows in a table, and the DELETE
statement is used to remove rows from a table.

Oracle also has the MERGE statement to perform an insert or update on the table
from an existing source of data (table or view). MERGE also can include an optional clause
to delete rows when certain conditions are met. Table 6.1 summarizes the DML state-
ments that Oracle supports.

Tabl e 6 .1    DML Statements Supported by Oracle

Statement Purpose

INSERT Adds rows to a table

UPDATE Changes the value stored in a table

DELETE Removes rows from a table

MERGE Updates or inserts rows from one table into another

	 Using DML Statements	 283

Table 6.1 lists the SQL statements that alter data in the database. LOCK
TABLE, CALL, and EXPLAIN PLAN statements are also classified as DML
statements.

Inserting Rows into a Table
The INSERT statement is used to add rows to one or more tables. The syntax for a simple
INSERT statement is as follows:

INSERT INTO [schema.]table_name [(column_list)]
VALUES (data_values)

In the syntax, table_name is the name of the table where you want to add new rows.
table_name may be qualified with the schema name. column_list is the name of the columns
in the table, separated by commas, that you want to populate. data_values represents the
corresponding values separated by commas. Using this syntax, you can add only one row at
a time.

column_list is optional. If column_list is not included, Oracle includes all columns
in the order specified when the table was created. data_values in the VALUES clause must
match the number of columns and datatype in column_list (or the number of columns and
datatype in the table if column_list is omitted). For clarity, it is a good practice to include
column_list when using the INSERT statement.

If you omit columns in column_list, those columns will have NULL values if no default
value is defined for the column. If a default value is defined for the column, the column will
get the default value. You can insert the default value using the DEFAULT keyword. The SQL
statements in the following example show two methods to insert the default value into the
MYACCOUNTS table if a default value of C is defined on the DR_CR column:

DESCRIBE MYACCOUNTS
Name Null? Type
------------- -------- -------------------
ACC_NO NOT NULL NUMBER(5)
ACC_DT NOT NULL DATE
DR_CR CHAR
AMOUNT NUMBER(15,2)

INSERT INTO myaccounts (acc_no, acc_dt, amount)
VALUES (120003, TRUNC(SYSDATE), 400);

INSERT INTO myaccounts (acc_no, acc_dt, dr_cr, amount)
VALUES (120003, TRUNC(SYSDATE), DEFAULT, 400);

284	 Chapter 6  ■  Manipulating Data

When you’re specifying data_values, enclose character and datetime values in single
quotes. For date values, if the value is not in the default date format, you may have to use the
TO_DATE function. When you enclose a value in single quotes, Oracle considers it character
data and performs an implicit conversion if the column datatype is not a character; therefore,
do not enclose numeric values in single quotes.

You can determine the order of columns in a table by using the USER_TAB_
COLUMNS view. The COLUMN_ID column shows the order of columns in the
table. When you use the DESCRIBE command to list the table columns,
the columns are listed in that order.

We’ll use the ACCOUNTS table to demonstrate the INSERT statements. The column names,
their order, and their datatype can be displayed using the DESCRIBE statement, as shown here:

SQL> DESCRIBE accounts
 Name Null? Type
 ---------------------- -------- -------------
 CUST_NAME VARCHAR2(20)
 ACC_OPEN_DATE DATE
 BALANCE NUMBER(15,2)

To insert rows into the ACCOUNTS table, you can use the INSERT statement in its simplest
form, as shown here:

SQL> INSERT INTO accounts VALUES ('John', '13-MAY-68', 2300.45);
1 row created.

The following are some more examples of using INSERT statements. When you use the
column list, they can appear in any order. If the DATE value is not in the default date format
specified by the NLS_DATE_FORMAT parameter, you should use the TO_DATE function with the
format mask. To help you understand the statement rules, the examples also include some
errors generated from INSERT. Notice that you can explicitly insert a NULL value, or if you
omit a column in the column list, a NULL value is inserted into that column, provided the
column is nullable—in other words, a NOT NULL constraint is not defined on the column.

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
 2 VALUES (Shine, 'April-23-2001');
VALUES (Shine, 'April-23-2001')
 *
ERROR at line 2:
ORA-00984: column not allowed here

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
 2 VALUES ('Shine', 'April-23-2001');

	 Using DML Statements	 285

VALUES ('Shine', 'April-23-2001')
 *
ERROR at line 2:
ORA-01858: a non-numeric character was found where a numeric was expected

SQL> INSERT INTO hr.accounts (cust_name, acc_open_date)
 2 VALUES ('Shine', TO_DATE('April-23-2001','Month-DD-YYYY'));
1 row created.

SQL> INSERT INTO accounts VALUES ('Jishi', '4-AUG-72');
INSERT INTO accounts VALUES ('Jishi', '4-AUG-72')
 *
ERROR at line 1:
ORA-00947: not enough values

You can also use functions like SYSDATE or USER in the INSERT statement. See these
examples:

SQL> SHOW USER
USER is "HR"
SQL> INSERT INTO accounts VALUES (USER, SYSDATE, 345);
1 row created.

SQL> SELECT * FROM accounts;
CUST_NAME ACC_OPEN_ BALANCE
-------------------- --------- ----------
John 13-MAY-68 2300.45
Shine 23-APR-01
Jishi 12-SEP-99
HR 23-APR-08 345

You can add rows with specific data values, as you have seen in the examples, or you can
create rows from existing data using a subquery.

Inserting Rows from a Subquery
You can insert data into a table from an existing table or view using a subquery. To perform
the subquery insert, replace the VALUES clause with the subquery. You cannot have both a
VALUES clause and a subquery. The columns in the column list should match the number of
columns selected in the subquery as well as their datatype. Here are a few examples:

SQL> INSERT INTO accounts
 2 SELECT first_name, hire_date, salary
 3 FROM hr.employees

286	 Chapter 6  ■  Manipulating Data

 4 WHERE first_name like 'R%';
3 rows created.

SQL> INSERT INTO accounts (cust_name, balance)
 2 SELECT first_name, hire_date, salary
 3 FROM hr.employees
 4 WHERE first_name like 'T%';
INSERT INTO accounts (cust_name, balance)
 *
ERROR at line 1:
ORA-00913: too many values

SQL> INSERT INTO accounts (cust_name, acc_open_date)
 2 SELECT UPPER(first_name), ADD_MONTHS(hire_date,2)
 3 FROM hr.employees
 4 WHERE first_name like 'T%';
4 rows created.

SQL> SELECT * FROM accounts;
CUST_NAME ACC_OPEN_ BALANCE
-------------------- --------- ----------
John 13-MAY-68 2300.45
Shine 23-APR-01
Jishi 04-AUG-72
Renske 14-JUL-95 3600
Randall 15-MAR-98 2600
Randall 19-DEC-99 2500
TJ 10-JUN-99
TRENNA 17-DEC-95
TAYLER 24-MAR-98
TIMOTHY 11-SEP-98
10 rows selected.

You can use SELECT * FROM if the source and destination table have the same structure,
as shown in the following example:

INSERT INTO old_employees
SELECT * FROM employees;

107 rows created.

	 Using DML Statements	 287

Inserting Rows into Multiple Tables
You can also use the INSERT statement to add rows to more than one table at a time.
This multiple-table insert is useful for efficiently loading data, because you can add the
data to multiple target tables via a single pass through the source table, with a minimum
of database calls. The syntax for the multiple-table INSERT statement is shown here:

INSERT [ALL | FIRST] {WHEN <condition> THEN INTO <insert_clause> … … …} [ELSE
<insert_clause>}

The keyword ALL tells Oracle to evaluate each and every WHEN clause, whether or not any
evaluate to TRUE. In contrast, the FIRST keyword tells Oracle to stop evaluating WHEN clauses
after encountering the first one that evaluates to TRUE. The WHEN clause and the INTO clause
can be repeated.

Suppose that your company, Sales Inc., sells books, videos, and audio CDs. You have a
SALES_DETAIL table that contains information about all the sales and is used by the selling
system. You need to load this information into three other tables that focus specifically on the
three product categories: Book, Audio, and Video. These category-specific tables are used by
the analysis systems. Here are the structure and contents of the source SALES_DETAIL table:

Name Null? Type
----------------------------- -------- -------------
TXN_ID NOT NULL NUMBER
PRODUCT_ID NUMBER
PROD_CATEGORY VARCHAR2(2)
CUSTOMER_ID VARCHAR2(10)
SALE_DATE DATE
SALE_QTY NUMBER
SALE_PRICE NUMBER

SELECT * FROM sales_detail;

TXN_ID PRODUCT_ID PR CUST SALE_DATE SALE_QTY SALE_PRICE
------ ---------- -- ---- ---------- -------- ----------
 1 304329743 B 43 17-JUN-02 2 19.1
 2 304943209 B 22 17-JUN-02 1 8.95
 3 211524098 A 16 17-JUN-02 1 11.4
 4 413354981 V 41 17-JUN-02 1 12.95
 5 304957315 B 48 17-JUN-02 1 38.5
 6 304183648 B 32 17-JUN-02 2 17.9
 7 211681559 A 32 18-JUN-02 1 11.4
 8 211944553 A 21 18-JUN-02 1 11.4
 9 304155687 B 26 18-JUN-02 1 8.95

288	 Chapter 6  ■  Manipulating Data

 10 304776352 B 18 18-JUN-02 3 48.45
 11 413753861 V 30 18-JUN-02 1 12.95
 12 413159654 V 29 18-JUN-02 1 19.99
 13 304357689 B 11 18-JUN-02 2 72.3
 14 211153246 A 14 18-JUN-02 2 26.4
 15 304852369 B 44 18-JUN-02 1 15.95

The target table structures are described in the following output:

DESC book_sales

Name Null? Type
----------------------------- -------- ------------
SALE_DATE NOT_NULL DATE
PROD_ID NOT NULL NUMBER
CUST_ID NOT NULL VARCHAR2(10)
QTY_SOLD NOT NULL NUMBER
AMT_SOLD NOT NULL NUMBER
ISBN VARCHAR2(24)

DESC video_sales
Name Null? Type
----------------------------- -------- ------------
SALE_DATE NOT_NULL DATE
PROD_ID NOT NULL NUMBER
CUST_ID NOT NULL VARCHAR2(10)
QTY_SOLD NOT NULL NUMBER
AMT_SOLD NOT NULL NUMBER
RATING VARCHAR2(5)
YEAR_RELEASED NUMBER

DESC audio_sales
Name Null? Type
----------------------------- -------- ------------
SALE_DATE NOT_NULL DATE
PROD_ID NOT NULL NUMBER
CUST_ID NOT NULL VARCHAR2(10)
QTY_SOLD NOT NULL NUMBER
AMT_SOLD NOT NULL NUMBER
ARTIST VARCHAR2(64)

	 Using DML Statements	 289

The following multiple-table insert selects from the SALES_DETAIL table and, based on
the value of PROD_CATEGORY, inserts a row into the BOOK_SALES, VIDEO_SALES or AUDIO_
SALES table:

INSERT ALL
WHEN prod_category='B' THEN
 INTO book_sales(prod_id,cust_id,qty_sold,amt_sold)
 VALUES(product_id,customer_id,sale_qty,sale_price)
WHEN prod_category='V' THEN
 INTO video_sales(prod_id,cust_id,qty_sold,amt_sold)
 VALUES(product_id,customer_id,sale_qty,sale_price)
WHEN prod_category='A' THEN
 INTO audio_sales(prod_id,cust_id,qty_sold,amt_sold)
 VALUES(product_id,customer_id,sale_qty,sale_price)
SELECT prod_category ,product_id ,customer_id ,sale_qty
 ,sale_price
FROM sales_detail;

This multiple-table insert will create a total of 15 rows: eight rows in the BOOK_SALES
table, four rows in the AUDIO_SALES table, and three rows in the VIDEO_SALES table.

In most SQL statements, you can prefix column names with a table alias.
In fact, this aids readability even if it's not strictly required for parsing. If
you try to use an alias for the table name and then prefix the column names
with either this alias or the schema-qualified table name in a multiple-table
insert, you may raise an exception.

Updating Rows in a Table
The UPDATE statement is used to modify existing rows in a table. The basic syntax for the
UPDATE statement is as follows:

UPDATE <table_name>
SET <column> = <value>
 [,<column> = <value> … … …]
[WHERE <condition>]

You can update more than one row at a time. If the WHERE clause is omitted, all the rows
in the table are updated.

If an employee named Jennifer was transferred to another department, you can
change the department_id column in the employees table for that employee. Because

290	 Chapter 6  ■  Manipulating Data

you know the employee ID for Jennifer, you can use the employee ID to identify
Jennifer’s row in the table.

SELECT first_name, last_name, department_id
FROM employees
WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Jennifer Whalen 10

UPDATE employees
SET department_id = 20
WHERE employee_id = 200;

1 row updated.

SELECT first_name, last_name, department_id
FROM employees
WHERE employee_id = 200;

FIRST_NAME LAST_NAME DEPARTMENT_ID
-------------------- ------------------------- -------------
Jennifer Whalen 20

You can update more than one column in the same row by including the columns and
values in the SET clause separated by commas. To remove a value from the column, you
can update the column as NULL. The following example demonstrates how to update more
than one column of the same row as well as update using NULL. Because no WHERE clause is
included, all rows in the table are updated.

UPDATE book_sales
SET qty_sold = NULL,
 amt_sold = 0;

8 rows updated.

Updating Rows Using a Subquery
When a column is updated in the table, the value can be derived using a subquery. In the
following example, the job_id values of all employees in department 30 are changed to
match the job_id of employee 114:

SELECT first_name, last_name, job_id
FROM employees

	 Using DML Statements	 291

WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID
-------------------- ------------------------- ----------
Den Raphaely PU_MAN
Alexander Khoo PU_CLERK
Shelli Baida PU_CLERK
Sigal Tobias PU_CLERK
Guy Himuro PU_CLERK
Karen Colmenares PU_CLERK

6 rows selected.

UPDATE employees
SET job_id = (SELECT job_id
 FROM employees
 WHERE employee_id = 114)
WHERE department_id = 30;

6 rows updated.

SELECT first_name, last_name, job_id
FROM employees
WHERE department_id = 30;

FIRST_NAME LAST_NAME JOB_ID
-------------------- ------------------------- ----------
Den Raphaely PU_MAN
Alexander Khoo PU_MAN
Shelli Baida PU_MAN
Sigal Tobias PU_MAN
Guy Himuro PU_MAN
Karen Colmenares PU_MAN

6 rows selected.

You may have more than one column in the SET clause to update more than one column of
the same row using a subquery. If you specify more than one column, they must be enclosed in
parentheses, and the subquery should have the same number of columns in the SELECT clause.

UPDATE book_sales a
SET (qty_sold, amt_sold) = (SELECT SUM(sale_qty), SUM(sale_price)

292	 Chapter 6  ■  Manipulating Data

 FROM sales_detail b
 WHERE b.prod_category = 'B'
 AND b.product_id = a.prod_id AND b.customer_id = a.cust_id
AND b.sale_date = a.sale_date
 GROUP BY sale_date, prod_category, product_id, customer_id)
WHERE sale_date = TO_DATE('18-JUN-02','DD-MON-YY');

4 rows updated

Using a Correct WHERE Clause in UPDATE

The developer had a problem. He was trying to update one row in a table, and it was tak-
ing forever. He was sure he was using the primary key of the table in the WHERE clause and
expected the result to come back in seconds.

The table he was updating had the following columns (some columns have been omitted):

ORDER_HEADER

ORDER# VARCHAR2 (20) - Primary Key
ORDER_DT DATE
CUSTOMER# VARCHAR2 (12)
TOTAL_AMOUNT NUMBER

The update was performed using the value derived from another table named ORDER_
TRANSACTIONS. It had the following structure:

ORDER_TRANSACTIONS

ORDER# VARCHAR2 (20) - Primary Key
ITEM# VARCHAR2 (20) - Primary Key
SHIP_DATE DATE
ITEM_AMOUNT NUMBER

The developer was trying to update the TOTAL_AMOUNT column in the ORDER_HEADER table
with the sum of all the order items from the ORDER_TRANSACTIONS table using a subquery.
This was the SQL code he used:

UPDATE order_header oh
SET total_amount = (SELECT SUM(item_amount)

	 Using DML Statements	 293

 FROM order_transactions ot
 WHERE oh.order# = ot.order#
 AND oh.order# = 'W2H3004FU');

Can you see what is wrong with this statement? By the way, the table had about two
million rows.

Although the developer thought he was updating only one row in the ORDER_HEADER table
and querying only three rows from the ORDER_TRANSACTIONS table, Oracle was in fact
updating all two million rows in the table. Why?

Look carefully at the UPDATE statement; it is missing a WHERE clause for the UPDATE state-
ment. The WHERE clause is present as part of the correlated subquery. So, the result of this
update would have been the TOTAL_AMOUNT column updated to NULL for all rows except for
order W2H3004FU. When executing the correct SQL statement, the update completed in less
than one second.

UPDATE order_header oh
SET total_amount = (SELECT SUM(item_amount)
 FROM order_transactions ot
 WHERE oh.order# = ot.order#
 AND ot.order# = 'W2H3004FU')
WHERE oh.order# = 'W2H3004FU';

Because we are updating a specific ORDER# in the table and we are using the order num-
ber in the WHERE clause, it is safe to remove the join condition inside the subquery as in
the following code.

UPDATE order_header oh
SET total_amount = (SELECT SUM(item_amount)
 FROM order_transactions ot
 WHERE ot.order# = 'W2H3004FU')
WHERE oh.order# = 'W2H3004FU';

The moral of this story is to be careful when you’re updating tables using subqueries.
Always make sure you have the correct WHERE clause for the UPDATE statement.

294	 Chapter 6  ■  Manipulating Data

Deleting Rows from a Table
The DELETE statement is used to remove rows from a table. The syntax for a basic DELETE
statement is as follows:

DELETE [FROM] <table>
[WHERE <condition>]

The FROM keyword is optional; it is included to add readability to the statement. Similar to
the UPDATE statement, if the WHERE clause is omitted, all the rows in the table will be deleted.

Here are some examples of the DELETE statement. The two hyphens (--) are used to
indicate comments.

-- Remove records from job history for start date in 2001
SELECT * FROM job_history
WHERE start_date BETWEEN TO_DATE('01JAN01','DDMONYY')
 and TO_DATE('31DEC012359','DDMONYYHH24MI')
/
DELETE FROM job_history
WHERE start_date BETWEEN TO_DATE('01JAN01','DDMONYY')
 and TO_DATE('31DEC012359','DDMONYYHH24MI');

-- Remove employee with first name Alana
-- Note FROM keyword is optional
DELETE employees
WHERE first_name = 'Alana';

If foreign keys are enabled in the table and child records exist for the row, you will not
be able to delete rows. See the following example, where the employees table has a foreign
key to itself and employee John (ID 145) is a manager with employees reporting to him.

SQL> SELECT employee_id, first_name, job_id, manager_id
 2 FROM employees
 3* WHERE employee_id = 145
SQL> /

EMPLOYEE_ID FIRST_NAME JOB_ID MANAGER_ID
----------- -------------------- ---------- ----------
 145 John SA_MAN 100

The following are the employees reporting to John.

SQL> SELECT employee_id, first_name, job_id, manager_id

	 Using DML Statements	 295

 2 FROM employees
 3* WHERE manager_id = 145
SQL> /

EMPLOYEE_ID FIRST_NAME JOB_ID MANAGER_ID
----------- -------------------- ---------- ----------
 150 Peter SA_REP 145
 151 David SA_REP 145
 152 Peter SA_REP 145
 153 Christopher SA_REP 145
 154 Nanette SA_REP 145
 155 Oliver SA_REP 145

6 rows selected.

SQL>

If you try to delete employee John without deleting all the employees reporting to him,
you will get an error. However, you can delete an employee who does not have any other
employee reporting to him. See the following examples.

SQL> DELETE FROM employees
 2 WHERE employee_id = 145;
DELETE FROM employees
*
ERROR at line 1:
ORA-02292: integrity constraint (HR.DEPT_MGR_FK) violated - child record found

SQL> DELETE FROM employees
 2 WHERE employee_id = 153;

1 row deleted.

SQL>

Subqueries can be used in DELETE statements to identify the rows to delete. Following
is a generic example to remove duplicate rows from the ALL_SALES table, where a unique
row is supposed to be uniquely identified by the combination of txn_id and customer_id
(imaginative primary key for this example). Here only one row of the combination (arbi-
trary pick) and other rows are deleted (MIN or MAX functions may be used).

SQL> DELETE sales_detail
 2 WHERE rowid NOT IN (SELECT MAX(rowid)

296	 Chapter 6  ■  Manipulating Data

 3 FROM sales_detail
 4 GROUP BY txn_id, customer_id);

Sometimes it is required to delete all the rows from a table. You can do this by not
providing any WHERE clause conditions. The following example deletes all records from
the VIDEO_SALES table.

SQL> DELETE video_sales;

Removing all the rows from a large table can take a long time and can require significant
rollback segment space. If you are deleting all rows from a table, consider using the TRUNCATE
statement, as described in the next section.

Truncating a Table
If you’re deleting all the rows from a table, truncating a table can accomplish the same task
as deleting, although deleting is sometimes a better choice. If you want to empty a table of
all rows, consider using the Data Definition Language (DDL) statement TRUNCATE. Like
a DELETE statement without a WHERE clause, TRUNCATE will remove all rows from a table.
However, TRUNCATE is not DML; it is DDL. Therefore, it has different characteristics from the
DELETE statement. DDL is the subset of SQL that is employed to define database objects. One
of the key differences between DML and DDL is that DDL statements will implicitly perform
a commit, not only affecting the change in object definition but also committing any pending
DML. A DDL statement cannot be rolled back; only DML statements can be rolled back.

For example, to remove all rows from the SALES_DETAIL table, truncate the table as follows:

SQL> TRUNCATE TABLE sales_detail;

TRUNCATE vs. DELETE

The TRUNCATE statement is similar to a DELETE statement without a WHERE clause, except
for the following:

■■ TRUNCATE is very fast on both large and small tables. DELETE will generate undo infor-
mation if a rollback is issued, but TRUNCATE will not generate undo information.

■■ TRUNCATE is DDL and, like all DDL, performs an implicit commit.

■■ You cannot roll back a TRUNCATE. Any uncommitted DML changes within the session
will also be committed with the TRUNCATE operation.

■■ TRUNCATE resets the high-water mark in the table and all indexes. Because full-table
scans and index fast-full scans read all data blocks up to the high-water mark, full-scan
performance will not improve after a DELETE; after a TRUNCATE, it will be very fast.

■■ TRUNCATE does not fire any DELETE triggers.

■■ There is no object privilege that can be granted to allow a user to truncate another
user’s table. The DROP ANY TABLE system privilege is required to truncate a table in
another schema. See Chapter 13, “Implementing Security and Auditing,” for more
information about getting around this limitation.

	 Using DML Statements	 297

■■ When a table is truncated, the storage for the table and all indexes can be reset to the
initial size. A DELETE will never shrink the size of a table or its indexes.

■■ By default you cannot truncate the parent table with an enabled referential integrity
constraint. You must first disable the foreign key constraints that reference the parent
table, and then you can truncate the parent table. If the constraint is defined with the
ON DELETE CASCADE option (discussed in Chapter 7 “Creating Tables and Constraints”),
then you can use CASCADE option in TRUNCATE to truncate the child tables as well.

Merging Rows
To complete the DML discussion, we will introduce you to the MERGE statement even
though it is not part of the test objectives.

Available in Oracle since its 9i version, MERGE is a very powerful statement that can insert
or update rows based on a condition. The statement also has an option to delete rows when
certain conditions are met. The MERGE statement has a join specification that describes how to
determine whether an update or insert should be executed. MERGE is a convenient way to com-
bine multiple operations in one statement instead of writing a complex PL/SQL program.

The basic syntax of the MERGE statement is as follows:

MERGE INTO <table_or_view>
USING <table_or_view_or_subquery>
ON <join_condition>
WHEN MATCHED THEN UPDATE SET <update_clause> [<where clause>] [DELETE where_
clause]
WHEN NOT MATCHED THEN INSERT <insert_columns> VALUES <insert_columns>

The INTO clause specifies the target table where the update/insert/delete operation
will be performed. The USING clause specifies the data source. The ON clause has the join
condition between the source and target tables. The WHEN MATCHED THEN UPDATE SET
clause specifies which columns to update when the ON condition is matched. You can
also include an optional WHERE clause. The optional DELETE clause can delete the row if
the WHERE condition specified in the DELETE clause is met. The WHEN NOT MATCHED THEN
INSERT clause is used to add rows to the target table from the source table.

Let’s look at a few examples. Consider two tables, ORDERS1 and ORDERS2. The rows in
the tables are listed using the following SQL statements:

SQL> SELECT * FROM orders1;

 ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL
---------- -------- ----------- -----------
 2414 channel 102 10794.6
 2397 direct 102 42283.2
 2432 channel 102 10523
 2431 direct 102 5610.6

298	 Chapter 6  ■  Manipulating Data

 2454 direct 103 6653.4
 2415 direct 103 310
 2433 channel 103 78
 2437 direct 103 13550

8 rows selected.

SQL> SELECT * FROM orders2;

 ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
 2414 102 35982
 2397 102 140944
 2432 102 35076.67
 2431 102 0
 2450 147 1636
 2425 147 1500.8
 2385 147 295892
 2451 148 10474.6
 2386 148 21116.9

9 rows selected.

SQL>

The task before you is to merge the rows in ORDERS2 into ORDERS1. If ORDER_ID and
CUSTOMER_ID match between the two tables, you need to update the ORDER_TOTAL value
with the value from the ORDERS2 table and update the ORDER_MODE value to modified. For
the rows in ORDERS2 where ORDER_ID and CUSTOMER_ID do not match with existing rows
in ORDERS1, you need to insert the values from ORDERS2 to ORDERS1. For such rows, the
ORDER_MODE value should be merged. You also want to delete the row from ORDERS1 if
the new order’s total value is zero. The following SQL code can accomplish all these
tasks using the MERGE statement:

MERGE INTO orders1 o1
USING orders2 o2
ON (o1.order_id = o2.order_id
 AND o1.customer_id = o2.customer_id)
WHEN MATCHED THEN UPDATE SET o1.order_total = o2.order_total,
 o1.order_mode = 'modified'
 DELETE WHERE o2.order_total = 0
WHEN NOT MATCHED THEN INSERT
 VALUES (o2.order_id, 'merged', o2.customer_id, o2.order_total);

	 Understanding Transaction Control	 299

9 rows merged.

select * from orders1;

 ORDER_ID ORDER_MO CUSTOMER_ID ORDER_TOTAL
---------- -------- ----------- -----------
 2414 modified 102 35982
 2397 modified 102 140944
 2432 modified 102 35076.67
 2454 direct 103 6653.4
 2415 direct 103 310
 2433 channel 103 78
 2437 direct 103 13550
 2450 merged 147 1636
 2385 merged 147 295892
 2386 merged 148 21116.9
 2451 merged 148 10474.6
 2425 merged 147 1500.8

12 rows selected.

As you can see from the result, Oracle updated four rows that matched the ON condition
and inserted five new rows that did not match the ON condition, which is why you get the
“9 rows merged” feedback. Because you had the DELETE clause to delete any rows that had
order total zero (of the four rows that matched the ON condition), one of them matched the
DELETE condition and hence was removed from the table.

Understanding Transaction Control
Transaction control involves coordinating multiple concurrent accesses to the same data.
When one session is changing data that another session is accessing, Oracle uses transactions
to control which users have visibility to changing data and when they can see the changed
data. Transactions represent an atomic unit of work. All changes to data in a transaction are
applied together or rolled back (undone) together. Transactions provide data consistency in
the event of a user-process failure or system failure.

A transaction can include one or more DML statements. A transaction ends when you
save the transaction (COMMIT) or undo the changes (ROLLBACK). When DDL statements are
executed, Oracle implicitly ends the previous transaction by saving the changes. It also
begins a new transaction for the DDL and ends the transaction after the DDL is completed.
Therefore, DDL statements cannot be undone.

300	 Chapter 6  ■  Manipulating Data

A number of statements in SQL let the programmer control transactions. Using transaction-
control statements, the programmer can do the following:

■■ Explicitly begin a transaction, choosing statement-level consistency or transaction-level
consistency

■■ Set undo savepoints and undo changes back to a savepoint

■■ End a transaction by making the changes permanent or undoing the changes

Table 6.2 summarizes the transaction-control statements.

Tabl e 6 . 2    Transaction-Control Statements

Statement Purpose

COMMIT Ends the current transaction, making data changes per-
manent and visible to other sessions.

ROLLBACK Undoes all data changes in the current transaction.

ROLLBACK TO SAVEPOINT Undoes all data changes in the current transactions
going chronologically backward to the optionally
named savepoint.

SAVEPOINT Sets an optional marker within the transaction to be
able to go back to this position if needed.

SET TRANSACTION Enables transaction or statement consistency.

SET CONSTRAINT Controls when deferrable constraint checking is per-
formed for a transaction. Constraints are discussed in
Chapter 7.

Throughout this section, we will use a banking example to clarify transactional concepts
and the control statements used to ensure that data is changed as designed. In this example,
say you have a banking customer named Sara, who has a checking account and a brokerage
account with her bank.

When Sara transfers $5,000 from her checking account to her brokerage account, the
balance in her checking account is reduced by $5,000, and the cash balance in her broker-
age account is increased by $5,000. You cannot allow only one account to change—either
both must change or neither must change.

Consider the following statements to complete the transaction. All the statements in the
group must be completed, or no changes should be recorded in the database. The INSERT
statements are used to log the transaction in the log table.

UPDATE checking
SET balance = balance - 5000
WHERE account = 'SARA1001';

	 Understanding Transaction Control	 301

INSERT INTO checking_log (action_date, action, amount)
VALUES (SYSDATE, 'Withdrawal', 5000);

UPDATE brokerage
SET balance = balance + 5000
WHERE account = 'SARA1001';

INSERT INTO brokerage_log (action_date, action, amount)
VALUES (SYSDATE, 'Deposit', 5000);

You issued the two UPDATE statements and the two INSERT statements in a single transac-
tion. If there is any failure in one of these four statements (say, perhaps, the CHECKING_LOG
table ran out of room in the tablespace), then none of the changes should go through. When
all the previous statements are successful, you can issue a COMMIT statement to save the work to
the database. The changes will be committed and made permanent only if all four statements
succeed. If only part of the SQL statements were successful, you can issue a ROLLBACK state-
ment to undo the changes.

A transaction will implicitly begin with a DML statement. The transaction will always
end with either an implicit or explicit commit or rollback. A ROLLBACK TO SAVEPOINT state-
ment will not end a transaction. The scenarios for commit or rollback of transaction are
described here.

An implicit commit is issued when:

■■ You issue a DDL command.

■■ You exit out of the SQL*Plus session (with the default setting of SET EXITCOMMIT ON).

An implicit rollback is issued when:

■■ Your program is abnormally terminated.

■■ The database crashes.

■■ You exit out of the SQL*Plus session (with the setting of SET EXITCOMMIT OFF).

■■ To roll back any failed DML statement, an implicit savepoint is marked before executing
an INSERT, UPDATE, or DELETE statement. If the statement fails, a rollback to this implicit
savepoint is performed.

An explicit commit is issued when:

■■ You issue the COMMIT command.

An explicit rollback is issued when:

■■ You issue the ROLLBACK command.

If a DML statement fails, the transaction is not rolled back. The changes
made from the successful DML statements before the failed statement
are still valid. To undo those changes, you have to explicitly execute a
ROLLBACK statement.

302	 Chapter 6  ■  Manipulating Data

Savepoints and Partial Rollbacks
A ROLLBACK statement will undo all the changes made in the transaction. If you have
to undo part of the changes in a transaction, you can set up savepoints or markers in the
transaction and go back to a savepoint when needed. Savepoints are intermediate fallback
positions in SQL code. The ROLLBACK TO SAVEPOINT statement is used to undo changes
chronologically back to the last savepoint or to the named savepoint. Savepoints are not
labels for goto statements, and ROLLBACK TO SAVEPOINT is not a goto. The code after a
savepoint does not get re-executed after a ROLLBACK TO SAVEPOINT; only the data changes
made since that savepoint are undone.

Savepoints are not used extensively by programmers. However, you must
understand them because there will likely be a question related to savepoints
on the certification exam.

Consider a transaction with various DML statements and savepoints, as in Figure 6.1.

F igur e 6 .1     Transaction control

COMMIT;

INSERT INTO EMPLOYEES...;

UPDATE SALARIES SET...;

SAVEPOINT A1;

UPDATE SALARIES...;

DELETE FROM...;

SAVEPOINT A2;

INSERT INTO JOBS...;

COMMIT;

ROLLBACK TO SAVEPOINT A2;

ROLLBACK TO SAVEPOINT A1;

ROLLBACK;

A new transaction begins after a COMMIT statement. Various DML statements are exe-
cuted in the transaction. You have also set savepoints in between. After all the statements

	 Understanding Transaction Control	 303

are successfully executed, the user has the option to issue the ROLLBACK TO SAVEPOINT,
ROLLBACK, or COMMIT statement. The arrows in the figure show the effects of issuing the
transaction-control statements.

If you create a second savepoint with the same name as an earlier savepoint,
the earlier savepoint is deleted. Oracle keeps only the latest savepoint.

Again, an example will help clarify. Sara tries to withdraw $100 from her checking
account. You want to log her request in the ATM activity log, but if she has insufficient
funds, you don’t want to change her balance and will deny her request (part of a PL/SQL
block is shown here; the IF statement is PL/SQL).

INSERT INTO ATM_LOG(who, when, what, where)
 VALUES('Kiesha', SYSDATE, 'Withdrawal of $100','ATM54');
SAVEPOINT ATM_logged;

UPDATE checking
 SET balance = balance – 100
 WHERE account = 'SARA1001';

SELECT balance INTO new_balance
 FROM checking
 WHERE account = 'SARA1001';

IF new_balance < 0
THEN
 ROLLBACK TO ATM_logged; -- undo update
 COMMIT; -- keep changes prior to savepoint (insert)
 RAISE insufficient_funds; -- Raise error/deny request
END IF;
COMMIT; -- keep insert and update

The keyword SAVEPOINT is optional, so the following two statements are equivalent:

ROLLBACK TO ATM_logged;
ROLLBACK TO SAVEPOINT ATM_logged;

Because savepoints are not frequently used, always include the keyword
SAVEPOINT in any ROLLBACK TO SAVEPOINT statement. That way, anyone
reading the code will be reminded of the keyword SAVEPOINT, making it
easier to recognize that a partial rollback has occurred.

304	 Chapter 6  ■  Manipulating Data

Data Visibility
When DML operations are performed in a transaction, the changes are visible only to the
session performing the DML operations. The changes are visible to other users in the data-
base only when a COMMIT is issued (or a DDL statement causes an implicit commit).

All data changes made in a transaction are temporary until the transaction is committed.
Oracle Database 12c has a read-consistency mechanism to ensure that each user sees the
data as it existed at the last commit.

When DML operations are performed on existing rows (through UPDATE, DELETE, or
MERGE operations), the affected rows are locked by Oracle; therefore, no other user can
perform a DML operation on those rows. The rows updated or deleted by a transaction
can be queried by another session.

When changes are committed, they are made permanent to the database. All locks on
the affected rows are released, and all savepoints are removed. The previous state of the
data is lost (the undo segments may be overwritten). All users can view the changed data.

When changes are rolled back, data changes are undone and the previous state of data is
restored. All locks on the affected rows are released.

Oracle uses read consistency to make sure you do not see the changes made to data after
your query is started. Also, Oracle uses a locking mechanism to make sure that two different
user sessions can’t modify data in the same row at the same time. Data consistency and the
locking mechanism are discussed in the next sections.

Consistency and Transactions
Data consistency is one of the key concepts underlying the use of transaction-control
statements. Understanding Oracle’s consistency model will enable you to employ transac-
tion control appropriately and answer exam questions about transaction control correctly.
Oracle implements consistency to guarantee that the data seen by a statement or transac-
tion does not change until that statement or transaction completes. This support is germane
only to multiuser databases, where one database session can change (and commit) data that
is being read by another session.

Oracle always uses statement-level consistency, which ensures that the data visible to
a statement does not change during the life of that statement. Transactions can consist of
one or more statements. When used, transaction-level consistency will ensure that the data
visible to all statements in a transaction does not change for the life of the transaction. The
banking example will help clarify.

Matt starts running a total-balance report against the checking account table at 10:00 a.m.;
this report takes five minutes. During those five minutes, the data he is reporting on changes
when Sara transfers $5,000 from her checking account to her brokerage account. When Matt’s
session gets to Sara’s checking-account record, it will need to reconstruct what the record
looked like at 10:00 a.m. Matt’s session will examine the undo segment that Sara used during
her account-transfer transaction and will re-create the image of what the checking-account
table looked like at 10:00 a.m.

	 Understanding Transaction Control	 305

Next, at 10:05 a.m., Matt runs a total balance report on the cash in the brokerage
account table. If he is using transaction-level consistency, his session will re-create what
the brokerage account table looked like at 10:00 a.m. (and exclude Sara’s transfer). If
Matt’s session is using the default statement-level consistency, his session will report on
what the brokerage account table looked like at 10:05 a.m. (and include Sara’s transfer).

Oracle never uses locks for reading operations, because reading operations will never
block writing operations. Instead, the undo segments (also known as rollback segments) are
used to re-create the image needed. Undo segments are released for reuse when the transac-
tion writing to them commits or if undo_management is set to auto and the undo_retention
period is exceeded, so sometimes a consistent image cannot be re-created. When this hap-
pens, Oracle raises a “snapshot too old” exception. Using this example, if Matt’s transaction
can’t locate Sara’s transaction in the rollback segments because it was overwritten, Matt’s
transaction will not be able to re-create the 10:00 a.m. image of the table and will fail.

Oracle implements consistency internally through the use of system change numbers
(SCNs). An SCN is a time-oriented, database-internal key. The SCN only increases, never
decreases, and represents a point in time for comparison purposes. So, in the previous
example, Oracle internally assigns Matt’s first statement the current SCN when it starts
reading the checking-account table. This starting SCN is compared to each data block’s
SCN. If the data-block SCN is higher (newer), the rollback segments are examined to find
the older version of the data.

Undo segments, concurrency, and SCN are discussed in detail in Chapter 11, “Managing
Data and Undo.”

Locking Mechanism
Locks are implemented by Oracle Database 12c to prevent destructive interaction
between concurrent transactions. Locks are acquired automatically by Oracle when a
DML statement is executed; no user intervention or action is needed. Oracle uses the
lowest level of restrictiveness when locking data for DML statements—only the rows
affected by the DML operation are locked.

Locks are held for the duration of the transaction. A commit or rollback will release all
the locks. There are two types of locks: explicit and implicit.

The locks acquired by Oracle automatically when DML operations are performed are
called implicit locks. There is no implicit lock for SELECT statements.

If the user locks data manually, it is called explicit locking. The LOCK TABLE statement
and SELECT…FOR UPDATE statements are used for explicitly locking the data.

The SELECT…FOR UPDATE statement is used to lock specific rows, preventing other sessions
from changing or deleting those locked rows. When the rows are locked, other sessions can
select these rows, but they cannot change or lock these rows. The syntax for this statement
is identical to a SELECT statement, except you append the keywords FOR UPDATE to the state-
ment. The locks acquired for a SELECT FOR UPDATE will not be released until the transaction
ends with a COMMIT or ROLLBACK, even if no data changes.

SELECT product_id, warehouse_id, quantity_on_hand
FROM oe.inventories

306	 Chapter 6  ■  Manipulating Data

WHERE quantity_on_hand < 5
FOR UPDATE;

Optional WAIT clause can be included along with FOR UPDATE clause to tell Oracle to wait
a certain number of seconds if the rows in the table are locked by another session before it
gives the unable to lock error.

The LOCK statement is used to lock an entire table, preventing other sessions from perform-
ing most or all DML on it. Locking can be in either shared or exclusive mode. Shared mode
prevents other sessions from acquiring an exclusive lock but allows other sessions to acquire a
shared lock. Exclusive mode prevents other sessions from acquiring either a shared lock or an
exclusive lock. The following is an example of using the LOCK statement:

LOCK TABLE inventories IN EXCLUSIVE MODE;

Oracle employs both table and row locks. Table locks can be obtained in either share or
exclusive mode. Share locks prevent other exclusive locks but allow other share locks on the
resource. As the name indicates, this mode allows the affected resource to be shared, depend-
ing on the operation involved. Multiple sessions can perform DML operations on the same
table, but on different rows. Each such session will hold a share lock on the table, to prevent
someone from changing the table structure by performing a DDL on the table (DDL requires
exclusive lock). Several transactions can acquire share locks on the same resource. Exclusive
locks prevent other share locks and other exclusive locks from being used on the resource.
The first transaction to lock a resource exclusively is the only transaction that can modify the
resource until the exclusive lock is released through a commit or rollback. However, no DML
locks prevent read access. To change data, Oracle must acquire an exclusive row-level lock on
the rows that are changed. INSERT, UPDATE, DELETE, MERGE, and SELECT FOR UPDATE statements
implicitly acquire the necessary exclusive locks. The LOCK TABLE x IN SHARE MODE state-
ment acquires a share lock. Even if the DML operation affects all the rows in a table, Oracle
Database 12c never escalates the row-level lock to a table-level lock; furthermore, neither users
nor developers should explicitly lock unless there is a very good reason—Oracle handles it
automatically 99.9% of the time.

Summary
We started this chapter discussing DML statements in Oracle. Then we reviewed the
INSERT, UPDATE, DELETE, and MERGE statements to add, modify, and delete data in tables.
You also learned how transactions and locking work in Oracle.

The INSERT statement is used to add new rows to a table. The VALUES clause in the INSERT
statement is used to add a single row at a time. Subqueries can be used to add rows to a table
from an existing row source.

The UPDATE statement is used to change existing data in a table. The DELETE statement is
used to remove rows from a table. Both the UPDATE and DELETE statements can have WHERE
clauses to limit the data changes to specific rows. The MERGE statement allows you to insert
or update rows based on a condition.

	 Exam Essentials	 307

When an update or delete operation is performed on a table, the previous state of data
is written to undo segments to build a read-consistent image of data. Oracle shows only
committed data to users.

DML operations lock the affected rows of the table. The locks are held until the transac-
tion is either committed or rolled back. Until the changes are committed, data changes are
not visible to other users in the database.

Exam Essentials

Know the syntax for the INSERT statement.    When a subquery is used to add rows to a
table, the VALUES clause should not be used.

Practice UPDATE statements.    The UPDATE statement can update multiple columns in the
same row using a subquery. Multiple subqueries can also be used to update columns in a
single row.

Understand what will begin and end a transaction.    A transaction will begin with an
INSERT, UPDATE, DELETE, MERGE, or SELECT FOR UPDATE statement. A COMMIT or ROLLBACK
will end a transaction. A DDL statement can also end a transaction.

Know how to set and roll back to savepoints.    Savepoints are set with the SAVEPOINT
statement. Data changes made after a savepoint are undone when a ROLLBACK TO
SAVEPOINT statement is executed. ROLLBACK TO SAVEPOINT is a partial undo operation.

Understand the scope of data changes and consistency.    Statement-level consistency is
automatic and will ensure that each SELECT will see an image of the database consistent
with the beginning of the statement’s execution. Transaction-level consistency will ensure
that all SELECT statements within a transaction will see an image of the database consistent
with the beginning of the transaction.

308	 Chapter 6  ■  Manipulating Data

Review Questions

	 1.	 Jim is trying to add records from the ORDER_DETAILS table to ORDER_DETAIL_HISTORY
for orders placed before the current year. Which INSERT statement would accomplish
his task?

	 A.	 INSERT INTO ORDER_DETAIL_HISTORY
	VALUES (SELECT * FROM ORDER_DETAIL
	WHERE ORDER_DATE < TRUNC(SYSDATE,'YY'));

	 B.	 INSERT FROM ORDER_DETAIL
	INTO ORDER_DETAIL_HISTORY
	WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');

	 C.	 INSERT INTO ORDER_DETAIL_HISTORY
	FROM ORDER_DETAIL
	WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');

	 D.	 INSERT INTO ORDER_DETAIL_HISTORY
	SELECT * FROM ORDER_DETAIL
	WHERE ORDER_DATE < TRUNC(SYSDATE,'YY');

	 2.	 Which of the following statements will not implicitly begin a transaction?

	 A.	 INSERT

	 B.	 UPDATE

	 C.	 DELETE

	 D.	 SELECT FOR UPDATE

	 E.	 None of the above; they all implicitly begin a transaction, if not started already.

	 Review Questions	 309

	 3.	 Consider the following UPDATE statement. Which UPDATE statements from the following
options will accomplish the same task? (Choose two.)

UPDATE ACCOUNTS
SET LAST_UPDATED = SYSDATE,
 UPDATE_USER = USER;

	 A.	 UPDATE ACCOUNTS
	SET (LAST_UPDATED, UPDATE_USER) =
	 (SYSDATE, USER);

	 B.	 UPDATE ACCOUNTS
	SET LAST_UPDATED =
	 (SELECT SYSDATE FROM DUAL),
	UPDATE_USER = (SELECT USER FROM DUAL);

	 C.	 UPDATE ACCOUNTS
	SET (LAST_UPDATED, UPDATE_USER) =
	(SELECT SYSDATE, USER FROM DUAL);

	 D.	 UPDATE ACCOUNTS
	SET LAST_UPDATED = SYSDATE
	AND UPDATE_USER = USER;

	 4.	 Which of the following statements do not end a transaction? (Choose two.)

	 A.	 SELECT

	 B.	 COMMIT

	 C.	 TRUNCATE TABLE

	 D.	 UPDATE

310	 Chapter 6  ■  Manipulating Data

	 5.	 Sara wants to update the SALARY column in the OLD_EMPLOYEES table with the value
from the EMPLOYEES table for employees in department 90. Which SQL code will
accomplish the task?

	 A.	 UPDATE old_employees a
	SET salary = (SELECT salary FROM employees b
	 WHERE a.employee_id = b.employee_id)
	WHERE department_id = 90;

	 B.	 UPDATE old_employees
	SET salary = (SELECT salary FROM employees)
	WHERE department_id = 90;

	 C.	 UPDATE old_employees a
	FROM employees b
	SET a.salary = b.salary
	WHERE department_id = 90;

	 D.	 UPDATE old_employees a
	SET salary = (SELECT salary FROM employees b
	 WHERE a.employee_id = b.employee_id
	AND department_id = 90);

	 6.	 Review the following code snippet. Which line has an error?

 1. UPDATE EMPLOYEES
 2. WHERE EMPLOYEE_ID = 127
 3. SET SALARY = SALARY * 1.25,
 4. COMMISSION_PCT = 0

	 A.	 1

	 B.	 2

	 C.	 4

	 D.	 There is no error.

	 7.	 Jim executes the following SQL statement. What will be the result?

DELETE salary, commission_pct
FROM employees
WHERE department_id = 30;

	 A.	 The salary and commission_pct columns for all records with department_id 30
will be deleted (changed to NULL).

	 B.	 All the rows belonging to department_id 30 will be deleted from the table.

	 C.	 The salary and commission_pct columns will be deleted from the employees table.

	 D.	 The statement will produce an error.

	 Review Questions	 311

	 8.	 Consider the following three SQL statements. Choose the most appropriate option.

1. DELETE FROM CITY WHERE CNT_CODE = 1;
2. DELETE CITY WHERE CNT_CODE = 1;
3. DELETE (SELECT * FROM CITY WHERE CNT_CODE = 1);

	 A.	 Statements 1 and 2 will produce the same result; statement 3 will error out.

	 B.	 Statements 1 and 2 will produce the same result; statement 3 will produce a
different result.

	 C.	 Statements 1, 2, and 3 will produce the same result.

	 D.	 Statements 1, 2, and 3 will produce different results.

	 9.	 Consider the following code segment. How many rows will be in the CARS table after
all these statements are executed?

SELECT COUNT(*) FROM CARS;
COUNT(*)

 30

DELETE FROM CARS WHERE MAKE = 'TOYOTA';
2 rows deleted.

SAVEPOINT A;
Savepoint created.

INSERT INTO CARS VALUES ('TOYOTA','CAMRY',4,220);
1 row created.

SAVEPOINT A;

INSERT INTO CARS VALUES ('TOYOTA','COROLLA',4,180);
1 row created.

ROLLBACK TO SAVEPOINT A;
Rollback complete.

	 A.	 30

	 B.	 29

	 C.	 28

	 D.	 32

312	 Chapter 6  ■  Manipulating Data

	10.	 Jim noticed that the HIRE_DATE and START_DATE columns in the EMPLOYEES table had date
and time values. When he tries to find employees hired on a certain date, he does not get
the desired results. Which SQL statement will update all the rows in the EMPLOYEES table
with no time portion in the HIRE_DATE and START_DATE columns (00:00:00)?

	 A.	 UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE) AND START_DATE =
TRUNC(START_DATE);

	 B.	 UPDATE TABLE EMPLOYEES SET TRUNC(HIRE_DATE) AND TRUNC(START_DATE);

	 C.	 UPDATE EMPLOYEES SET HIRE_DATE = TRUNC(HIRE_DATE), START_DATE =
TRUNC(START_DATE);

	 D.	 UPDATE HIRE_DATE = TRUNC(HIRE_DATE), START_DATE = TRUNC(START_DATE) IN
EMPLOYEES;

	11.	 Sara wants to update the SALARY column in the EMPLOYEE table from the SALARIES
table, based on the JOB_ID value for all employees in department 22. The SALARIES
table and the EMPLOYEE table have the following structure. Which of the following
options is the correct UPDATE statement?

DESC EMPLOYEE
EMPLOYEE_ID NUMBER (3),
EMP_NAME VARCHAR2 (40),
JOB_ID VARCHAR2 (4),
DEPT_ID NUMBER
SALARY NUMBER

DESC SALARIES
JOB_ID VARCHAR2 (4),
SALARY NUMBER

	 A.	 UPDATE SALARIES A SET SALARY = (SELECT SALARY FROM EMPLOYEES B WHERE
A.JOB_ID = B.JOB_ID WHERE DEPT_ID = 22);

	 B.	 UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB AND DEPT_ID = 22);

	 C.	 UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) AND DEPT_ID = 22;

	 D.	 UPDATE EMPLOYEE E SET SALARY = (SELECT SALARY FROM SALARIES S WHERE
E.JOB_ID = S.JOB_IB) WHERE DEPT_ID = 22;

	 Review Questions	 313

	12.	 The FIRED_EMPLOYEE table has the following structure:

EMPLOYEE_ID NUMBER (4)
FIRE_DATE DATE

		 How many rows will be counted from the last SQL statement in the code segment?

SELECT COUNT(*) FROM FIRED_EMPLOYEES;
COUNT(*)

 105

INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);
SAVEPOINT A;
INSERT INTO FIRED_EMPLOYEE VALUES (106, TRUNC(SYSDATE);
SAVEPOINT B;
INSERT INTO FIRED_EMPLOYEE VALUES (108, TRUNC(SYSDATE);
ROLLBACK TO A;
INSERT INTO FIRED_EMPLOYEE VALUES (104, TRUNC(SYSDATE);
COMMIT;
SELECT COUNT(*) FROM FIRED_EMPLOYEES;

	 A.	 109

	 B.	 106

	 C.	 105

	 D.	 107

314	 Chapter 6  ■  Manipulating Data

	13.	 The following table describes the DEPARTMENTS table:

Column Name dept_id dept_name mgr_id location_id

Key Type pk

Nulls/Unique NN

FK Table

Datatype NUMBER VARCHAR2 NUMBER NUMBER

Length 4 30 6 4

Default Value None None None 99

		 Which of the following INSERT statements will raise an exception?

	 A.	 INSERT INTO departments (dept_id, dept_name, location_id)
VALUES(280,'Security',1700);

	 B.	 INSERT INTO departments VALUES(280,'Security',1700);

	 C.	 INSERT INTO departments VALUES(280,'Corporate Giving',266,1700);

	 D.	 None of these statements will raise an exception.

	14.	 Refer to the DEPARTMENTS table structure in question 13. Two SQL statements are
shown here. Choose the option that best describes the SQL statements.

1. INSERT INTO departments (dept_id, dept_name, mgr_id)
VALUES(280,'Security',1700);
2. INSERT INTO departments (dept_id, dept_name, mgr_id, location_id)
VALUES(280,'Security',1700, NULL);

	 A.	 Statements 1 and 2 insert the same values to all columns in the table.

	 B.	 Statements 1 and 2 insert different values to at least one column in the table.

	 C.	 The location_id column must be included in the column list of statement 1.

	 D.	 A NULL value cannot be inserted explicitly in statement 2.

	 Review Questions	 315

	15.	 The SALES table contains the following data:

SELECT channel_id, COUNT(*)
FROM sales
GROUP BY channel_id;

C COUNT(*)
- ----------
T 12000
I 24000

		 How many rows will be inserted into the NEW_CHANNEL_SALES table with the following
SQL statement?

INSERT FIRST
 WHEN channel_id ='C' THEN
 INTO catalog_sales (prod_id,time_id,promo_id
 ,amount_sold)
 VALUES (prod_id,time_id,promo_id,amount_sold)
 WHEN channel_id ='I' THEN
 INTO internet_sales (prod_id,time_id,promo_id
 ,amount_sold)
 VALUES (prod_id,time_id,promo_id,amount_sold)
 WHEN channel_id IN ('I','T') THEN
 INTO new_channel_sales (prod_id,time_id,promo_id
 ,amount_sold)
 VALUES (prod_id,time_id,promo_id,amount_sold)
SELECT channel_id,prod_id,time_id,promo_id,amount_sold
FROM sales;

	 A.	 0

	 B.	 12,000

	 C.	 24,000

	 D.	 36,000

316	 Chapter 6  ■  Manipulating Data

	16.	 In the following SQL code, how many rows will be counted in the last statement?

SELECT COUNT(*) FROM emp;
120 returned

INSERT INTO emp (emp_id)
 VALUES (140);
SAVEPOINT emp140;

INSERT INTO emp (emp_id)
 VALUES (141);
INSERT INTO emp (emp_id)
 VALUES (142);
INSERT INTO emp (emp_id)
 VALUES (143);
TRUNCATE TABLE employees;
INSERT INTO emp (emp_id)
 VALUES (144);

ROLLBACK;

SELECT COUNT(*) FROM emp;

	 A.	 121

	 B.	 0

	 C.	 124

	 D.	 143

	17.	 Which of the following options best describes the following SQL statement?

1. UPDATE countries
2. CNT_NAME = UPPER(CNT_NAME)
3. WHERE country_code BETWEEN 1 and 99;

	 A.	 The statement is missing the keyword SET, but the statement will work just fine
because SET is an optional keyword.

	 B.	 The BETWEEN operator cannot be used in the WHERE clause used in an UPDATE state-
ment.

	 C.	 The function UPPER(CNT_NAME) should be changed to UPPER('CNT_NAME').

	 D.	 The statement is missing keyword SET; therefore, the statement will fail.

	 Review Questions	 317

	18.	 The ORDERS table has 35 rows. The following UPDATE statement updates all 35 rows.
Which option best describes what will happen?

UPDATE orders
SET ship_date = TRUNC(ship_date)
WHERE ship_date != TRUNC(ship_date)

	 A.	 When all rows in a table are updated, the LOCK TABLE orders IN EXCLUSIVE MODE
statement must be executed before the UPDATE statement.

	 B.	 No other session can query from the table until the transaction ends.

	 C.	 Because all rows are updated, there is no need for any locking; therefore, Oracle
does not lock the records.

	 D.	 The statement locks all the rows until the transaction ends.

	19.	 Which of the following INSERT statements will raise an exception?

	 A.	 INSERT INTO EMP SELECT * FROM NEW_EMP;

	 B.	 INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INSERT INTO EMP SELECT * FROM
NEW_EMP;

	 C.	 INSERT FIRST WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT * FROM
NEW_EMP;

	 D.	 INSERT ALL WHEN DEPT_NO IN (12,14) THEN INTO EMP SELECT * FROM NEW_EMP;

318	 Chapter 6  ■  Manipulating Data

	20.	 After the following SQL statements are executed, what will be the salary of
employee Arsinoe?

UPDATE emp
 SET salary = 1000
 WHERE name = 'Arsinoe';
SAVEPOINT Point_A;

UPDATE emp
 SET salary = salary * 1.1
 WHERE name = 'Arsinoe';
SAVEPOINT Point_B;

UPDATE emp
 SET salary = salary * 1.1
 WHERE name = 'Berenike';
SAVEPOINT point_C;

ROLLBACK TO SAVEPOINT point_b;
COMMIT;
UPDATE emp
 SET salary = 1500
 WHERE name = 'Arsinoe';
SAVEPOINT point_d;

ROLLBACK TO point_d;

COMMIT;

	 A.	 1000

	 B.	 1100

	 C.	 1111

	 D.	 1500

Chapter

7
Creating Tables and
Constraints

Oracle Database 12c: SQL
Fundamentals exam objectives
covered in this chapter:

✓✓ Introduction to Data Definition Language

■■ Categorize the main database objects.

■■ Explain the table structure.

■■ Describe the data types that are available for columns.

■■ Create a simple table.

■■ Explain how constraints are created at the time of

table creation.

■■ Describe how schema objects work.

An Oracle database has many different types of objects.
Related objects are logically grouped together in a schema,
which consists of various types of objects. The basic types of

objects in an Oracle database are tables, indexes, constraints, sequences, and synonyms.
Although this chapter discusses tables and constraints, we will begin it with an overview
of the main database objects in Oracle.

The table is the basic structure of data storage in Oracle. A table has columns as part
of the definition and stores rows of data. In a relational database, the data in various tables
may be related. A constraint can be considered as a rule or policy defined in the database to
enforce data integrity and business rules. In this chapter, we will discuss creating tables and
using constraints. Because the table is the most important type of object in an Oracle data-
base, knowing how to create tables and constraints on tables is important.

Database Objects Overview
Data in an Oracle database is stored in tables. A table is the main database object. Many
other database objects, whether or not they store data, are generally based on the tables.

Figure 7.1 shows a screenshot from SQL Developer. The left side shows the various
object types available in Oracle Database 12c.

Let’s review the main database objects in Oracle that are relevant for this
certification exam:

Table    A table is defined with columns, and it stores rows of data. A table should have
at least one column. In Oracle, a table normally refers to a relational table. You can also
create object tables. Object tables are created with user-defined datatypes. Temporary
tables (called global temporary tables in Oracle) are used to hold temporary data specific
to a transaction or session. A table can store a wide variety of data. Apart from storing
text and numeric information, you can store date, timestamp, binary, or raw data (such
as images, documents, and information about external files). A table can have virtual
columns. As the name indicates, these types of columns do not consume storage space on
disk; the database derives values in virtual columns from normal columns. Tables are dis-
cussed in the next sections of this chapter.

View    A view is a customized representation of data from one or more tables and/or views.
Views are used as windows to show information from tables in a certain way or to restrict
the information. Views are queries stored in the database that select data from one or more
tables. Unlike tables, views do not store data—they can be considered as stored queries.

	 Database Objects Overview	 321

They also provide a way to restrict data from certain users, thereby providing an additional
level of security.

Sequence    A sequence is a way to generate continuous sequential numbers. Sequences are
useful for generating unique serial numbers or key values. The sequence definition is stored
in the data dictionary. Sequence numbers are generated independently of other database
objects. Because a sequence can be used as part of table definition, we will discuss sequence
briefly before you learn to create a table.

Synonym    A synonym is an alias for any table, view, sequence, or other accessible database
object. Because a synonym is simply an alias, it requires no storage other than its definition
in the data dictionary. Synonyms are useful because they hide the identity of the underlying
object. The object can even be part of another database. A public synonym is accessible to
all users of the database, and a private synonym is accessible only to its owner.

Index    An index is a structure associated with tables used to speed up the queries. An index is
an access path to reach the desired row faster. Oracle has B-tree and bitmap indexes. Creating/
dropping indexes does not affect the storage of data in the underlying tables. You can create
unique or nonunique indexes. Unique indexes are created automatically by Oracle when you
create a primary key or a unique key constraint in a table. A composite index has more than
one column in the index.

F igur e 7.1     SQL Developer screen showing database objects

322	 Chapter 7  ■  Creating Tables and Constraints

Oracle Database 12c has a wide array of database objects to suit various application
requirements. These objects are not discussed in this book because they are not part of
the certification exam at this time. Some of the other database objects that may be used
in application development are clusters, dimensions, directories, functions, Java sources/
classes, libraries, materialized views, and types.

Schema Objects
A schema is a collection of database objects owned by a single user. For example, a schema
can have tables, views, triggers, synonyms, and PL/SQL programs such as procedures. A
schema is owned by a database user and has the same name as the user. If the database user
does not own any database objects, then no schema is associated with the user. A schema is
a logical grouping of database objects.

There can be only one schema associated with a database user, and a schema is created
when you create any database object under the user. A schema may include any or all of the
basic database objects discussed earlier. Oracle Database 12c may also include the following
types of structures in the schema. These objects are listed here only to give you an overview
of schemas; creating and managing these objects are not part of the certification exam at this
time. For the certification exam, prepare to know the schema objects discussed in this chapter.

Materialized View    Materialized views are objects used to summarize and replicate
data. They are similar to views but occupy storage space. Materialized views are mainly
used in data-warehouse environments where data needs to be aggregated and stored so
that queries and reports run faster. Materialized views can also be used to replicate data
from another database.

Dimension    A dimension is a logical structure to define the relationship between columns in
a table. Dimensions are defined in the data dictionary and do not occupy any storage space.
The columns in a dimension can be from a single table or from multiple tables. An example
of a dimension would be the relationship between country, state, and city in a table that
stores address information.

Cluster    A cluster is a method of storing data from related tables at a common physical loca-
tion. The tables in the cluster share one or more common columns. The rows of the tables in
a cluster are stored together with just one copy of the common clustered columns. You can
share the storage of rows in related tables for performance reasons if the access to the rows in
the tables always involves join operations on the tables. For example, if you have an ORDERS
table and a CUSTOMERS table in the schema, you can query the ORDERS table always joining the
CUSTOMERS table, because that’s where you get the customer name associated with the customer
ID. A cluster may be created for the ORDERS and CUSTOMERS tables so that the rows associated
with the same customer are stored in the same physical storage area (block).

Database Links    A database link is a schema object that enables you to access an object
from a different database. SQL queries can reference tables and views belonging to the remote
database by appending @db_link_name to the table or view. For example, to access the

	 Database Objects Overview	 323

CUSTOMER_ORDERS table using a database link named LONDON_SALES, you would use CUSTOMER_
ORDERS@LONDON_SALES.

Triggers    A trigger is a stored PL/SQL program that is executed when a specified condition
occurs. A trigger can be defined on a table to “fire” when an insert, update, or delete opera-
tion occurs on the table. A trigger may also be defined on the database to “fire” when certain
database conditions occur, such as starting the database, or when a database error occurs.

Java Objects    Oracle Database 12c includes Java objects such as Java classes, Java sources,
and Java resources. Java stored programs can be created using the different Java object types.

PL/SQL Programs    PL/SQL stored programs include procedures, functions, and packages.
A procedure is a PL/SQL programmatic construct. A function is similar to a procedure but
always returns a value. A package is a grouping of related PL/SQL objects.

Understanding Namespaces
A namespace is an important concept to understand when talking about schema objects.
A namespace defines a group of object types, within which all names must be uniquely
identified within a schema. Objects in different namespaces can share the same name.

When you refer an object in the SQL statement, Oracle locates the object in the appropri-
ate namespace. A table can have the same name as an index or a constraint. The namespace is
simply the domain of allowable names for the set of schema objects that it serves. The follow-
ing are some of the namespaces available in Oracle Database 12c:

■■ Tables, views, private synonyms, sequences, PL/SQL procedures, PL/SQL functions,
PL/SQL packages, materialized views

■■ Constraints

■■ Indexes

■■ Clusters

■■ Database triggers

■■ Private database links

■■ Dimensions

■■ Roles

■■ Public synonyms

■■ Public database links

■■ Tablespaces

■■ Profiles

For example, if you have a view named BOOKS, you cannot name a table BOOKS (tables
and views share a namespace), although you can create an index named BOOKS (indexes and
tables have separate namespaces) and a constraint named BOOKS (constraints and tables have
separate namespaces).

324	 Chapter 7  ■  Creating Tables and Constraints

To help you understand which object types belong to the same namespace, you can use
the following query in your database.

SQL> SELECT DISTINCT namespace, object_type
 FROM DBA_OBJECTS
 ORDER BY namespace;

Although it is not explicitly specified as an exam objective, we will discuss the schema
object sequence in the next section, as it is possible to use the sequence values in table defi-
nition for default values of columns.

Using Sequences
An Oracle sequence is a named sequential-number generator. Sequence numbers are serial
numbers incremented with a specific interval. Sequences are often used for artificial keys
or to order rows that otherwise have no order. Sequences exist only in the data dictionary,
and they do not take up any special storage space as tables. Sequences can be configured to
increase or decrease without bounds or to repeat (cycle) upon reaching a boundary value.

Sequences are created with the CREATE SEQUENCE statement. The following statement
creates a sequence in the HR schema:

CREATE SEQUENCE hr.employee_identity START WITH 2001;

To access the next number in the sequence, you simply select from it, using the pseudo-
column NEXTVAL. To get the last sequence number your session has generated, you select
from it using the pseudocolumn CURRVAL. If your session has not yet generated a new
sequence number, CURRVAL will be undefined.

The syntax for accessing the next sequence number is as follows:

sequence_name.nextval

Here is the syntax for accessing the last-used sequence number:

sequence_name.currval

Sequence Initialization
The sequence is initialized in the session when you select the NEXTVAL from the sequence.
One problem that you may encounter using sequences involves selecting CURRVAL from the
sequence before initializing it within your session by selecting NEXTVAL from it. Here is an
example:

CREATE SEQUENCE emp_seq NOMAXVALUE NOCYCLE;

Sequence created.

	 Built-in Datatypes	 325

SELECT emp_seq.currval FROM dual;

ERROR at line 1:
ORA-08002: sequence POLICY_SEQ.CURRVAL is not yet defined
in this session

Make sure your code initializes a sequence within your session by selecting its NEXTVAL
before you try to reference CURRVAL:

SELECT emp_seq.nextval FROM dual;

 NEXTVAL

 1

SELECT emp_seq.currval FROM dual;

 CURRVAL

 1

Sequences can be used in the SET clause of the UPDATE statement to assign a value to a col-
umn in an existing row. They can be used in the VALUES clause of the INSERT statement also.

Built-in Datatypes
When creating tables, you must specify a datatype for each column you define. Oracle
Database 12c is rich with various datatypes to store different kinds of information. By
choosing the appropriate datatype, you will be able to store and retrieve data without com-
promising its integrity. A datatype associates a predefined set of properties with the column.

The built-in datatypes in Oracle Database 12c can be classified into five major categories.
Figure 7.2 shows the categories and the datatype names.

Chapter 2, “Introducing SQL,” introduced four basic datatypes: CHAR, VARCHAR2,
NUMBER, and DATE. Here, we will review those datatypes and describe the other datatypes
that you can specify while creating a table.

Character Datatypes
Seven character datatypes can be used to define columns in a table:

■■ CHAR

■■ NCHAR

326	 Chapter 7  ■  Creating Tables and Constraints

■■ VARCHAR2

■■ NVARCHAR2

■■ CLOB

■■ NCLOB

■■ LONG

F igur e 7. 2     Oracle built-in datatypes

Character

CHAR
VARCHAR2
CLOB
LONG
NCHAR
NVARCHAR2
NCLOB

Numeric

NUMBER
BINARY_FLOAT
BINARY_DOUBLE
FLOAT

Binary

RAW
LONG RAW
BLOB
BFILE

Date and Time

DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Row ID

ROWID
UROWID

Character datatypes store alphanumeric data in the database character set or in the
Unicode character set. You define the database character set when you create the database.

The character set determines which languages can be represented in the database. For
example, US7ASCII is a 7-bit ASCII character set that can represent the English language and
any other language that uses the English alphabet set. WE8ISO8859P1 is an 8-bit character set
that can support multiple European languages such as English, German, French, Albanian,
Spanish, Portuguese, Irish, and so on, because they all use a similar writing script. Unicode,
the Universal Character Set, allows you to store any language character using a single char-
acter set. The Unicode character set supported by Oracle is either 16-bit encoding (UTF-16) or
8-bit encoding (UTF-8). You can choose the Unicode datatypes to be used in the database while
creating the database. The CHAR, VARCHAR2, CLOB datatype values are stored in the
database default character set.

You can also define an alternative character set in the database, known as the National
Character Set. This is useful when the database character set cannot accommodate multi-
byte languages and you need to store multibyte language in the database. The NCHAR,
NVARCHAR2, and NCLOB datatype values use the National Character Set.

	 Built-in Datatypes	 327

CHAR
The syntax for the CHAR datatype is as follows:

CHAR [(<size> [BYTE | CHAR])]

The CHAR datatype is fixed-length, with the maximum size of the column specified in
parentheses. You can also include the optional keyword BYTE or CHAR inside the parentheses
along with the size to indicate whether the size is in bytes or in characters. BYTE is the default.

For single-byte-database character sets (such as US7ASCII), the size specified in bytes
and the size specified in characters are the same. If the column value is shorter than the
size defined, trailing spaces are added to the column value. Specifying the size is optional,
and the default size is 1 byte. The maximum allowed size in a CHAR datatype column is
2,000 bytes. Here are few examples of specifying a CHAR datatype column:

employee_id CHAR (5)
employee_name CHAR (100 CHAR)
employee_sex CHAR

NCHAR
The syntax for the NCHAR datatype is as follows:

NCHAR [(<size>)]

The NCHAR datatype is similar to CHAR, but it is used to store Unicode character-set
data. The NCHAR datatype is fixed-length, with a maximum size of 2,000 bytes and a
default size of a character.

The size in the NCHAR datatype definition is always specified in characters. Trailing
spaces are added if the value inserted into the column is shorter than the column’s maximum
length. Here is an example of specifying an NCHAR datatype column:

emp_name NCHAR (100)

Several built-in Oracle Database 12c functions have options to represent NCHAR data.
An NCHAR string may be represented by prefixing the string with N, as in this example:

SELECT emp_name FROM employee_records
WHERE emp_name = N'John Smith';

VARCHAR2
The syntax for the VARCHAR2 datatype is as follows:

VARCHAR2 (<size> [BYTE | CHAR])

VARCHAR2 and VARCHAR are synonymous datatypes. VARCHAR2 specifies variable-
length character data. A maximum size for the column should be defined; Oracle Database

328	 Chapter 7  ■  Creating Tables and Constraints

12c will not assume any default value. Unlike CHAR columns, VARCHAR2 columns are not
blank-padded with trailing spaces if the column value is shorter than its maximum specified
length. You can specify the size in bytes or characters; by default, the size is in bytes. The
range of values allowed for size is from 1 to 4,000 bytes by default. If the database parameter
MAX_STRING_SIZE is set to EXTENDED, the VARCHAR2 column can store up to 32,767 bytes.

NVARCHAR2
The syntax for the NVARCHAR2 datatype is as follows:

NVARCHAR2 (<size>)

The NVARCHAR2 datatype is used to store Unicode variable-length data. The
size is specified in characters, and the maximum size allowed is 4,000 bytes. Similar to
VARCHAR2, if the database parameter MAX_STRING_SIZE is set to EXTENDED, then the
NVARCHAR2 column can store up to 32,767 bytes.

If you try to insert a value into a character datatype column that is larger
than its maximum specified size, Oracle will return an error. Oracle will not
chop or truncate the inserted value to store it in the database column.

CLOB
The syntax for the CLOB datatype is as follows:

CLOB

CLOB is one of the Large Object datatypes provided to store variable-length character
data. The maximum amount of data you can store in a CLOB column is based on the block
size of the database. CLOB can store up to (4GB–1)*(database block size). You do not specify
a maximum size with this datatype definition.

NCLOB
The syntax for the NCLOB datatype is as follows:

NCLOB

NCLOB is one of the Large Object datatypes and stores variable-length Unicode character
data. The maximum amount of data you can store in a NCLOB column is (4GB–1)*(database
block size). You do not specify the size with this datatype definition.

LONG
The syntax for the LONG datatype is as follows:

LONG

	 Built-in Datatypes	 329

Using the LONG datatype is discouraged in Oracle Database 12c. It is provided only for
backward compatibility. You should use the CLOB datatype instead of LONG. LONG columns
can store up to 2GB–1 of character data. There can be only one LONG column in the table def-
inition. A LONG datatype column can be used in the SELECT clause of a query, the SET clause
of the UPDATE statement, and the VALUES clause of the INSERT statement. You can also create
a NOT NULL constraint on a LONG column.

LONG datatype columns cannot appear in the following:

■■ The WHERE, GROUP BY, or ORDER BY clauses

■■ A SELECT clause if the DISTINCT operator is used

■■ A SELECT list of subqueries used in INSERT statements

■■ A SELECT list of subqueries used with the UNION, INTERSECT, or MINUS operator

■■ A SELECT list of queries with the GROUP BY clause

Numeric Datatypes
Four built-in numeric datatypes can be used for defining numeric columns in a table:

■■ NUMBER

■■ BINARY_FLOAT

■■ BINARY_DOUBLE

■■ FLOAT

Numeric datatypes are used to store integer and floating-point numbers. The NUMBER
datatype can store all types of numeric data, but BINARY_FLOAT and BINARY_DOUBLE
give better performance with floating-point numbers. FLOAT is a subtype of NUMBER.

NUMBER
The syntax for the NUMBER datatype is as follows:

NUMBER [(<precision> [, <scale>])]

You can represent all non-Oracle numeric datatypes such as FLOAT, INTEGER,
DECIMAL, DOUBLE, and so on, using the NUMBER datatype. The NUMBER
datatype can store both fixed-point and floating-point numbers. Oracle Database
12c introduced two new datatypes to support floating-point numbers—specifically,
BINARY_FLOAT and BINARY_DOUBLE.

BINARY_FLOAT
The syntax for the BINARY_FLOAT datatype is as follows:

BINARY_FLOAT

330	 Chapter 7  ■  Creating Tables and Constraints

The BINARY_FLOAT datatype represents a 32-bit floating-point number. No precision is
defined in the definition of this datatype because it uses binary precision. BINARY_FLOAT
uses 5 bytes for storage.

A floating-point number can have a decimal point anywhere or can have no decimal point.
Oracle stores NUMBER datatype values using decimal precision, whereas floating-point
numbers (BINARY_FLOAT and BINARY_DOUBLE) are stored using binary precision.
Oracle has three special values that can be used with floating-point numbers:

INF: Positive infinity

-INF: Negative infinity

NaN: Not a Number (NaN is not the same as NULL)

BINARY_DOUBLE
The syntax for the BINARY_DOUBLE datatype is as follows:

BINARY_DOUBLE

The BINARY_DOUBLE datatype represents a 64-bit floating-point number. BINARY_
DOUBLE uses 9 bytes for storage. All the characteristics of BINARY_FLOAT are applicable
to BINARY_DOUBLE.

FLOAT
The syntax for the FLOAT datatype is as follows:

FLOAT [(precision)]

The FLOAT datatype is a subtype of NUMBER and is internally represented as NUMBER.
There is no scale for FLOAT numbers, only the precision can be optionally included. The pre-
cision can range from 1 to default binary digits. In the NUMBER datatype, the precision
and scale are represented in decimal digits; whereas in FLOAT, the precision is represented
in binary digits. In Oracle Database 12c, you should use BINARY_FLOAT or BINARY_
DOUBLE instead of the FLOAT datatype.

Date and Time Datatypes
In pre–Oracle9i databases, the only datetime datatype available was DATE, which stores the
date and time. Oracle9i Database introduced the TIMESTAMP and INTERVAL datatypes
to enhance the storage and manipulation of date and time data. Six datetime datatypes in
Oracle Database 12c can be used for defining columns in a table:

■■ DATE

■■ TIMESTAMP

■■ TIMESTAMP WITH TIME ZONE

	 Built-in Datatypes	 331

■■ TIMESTAMP WITH LOCAL TIME ZONE

■■ INTERVAL YEAR TO MONTH

■■ INTERVAL DAY TO SECOND

The interval datatypes are used to represent a measure of time. They store the number
of months or number of days/hours between two time points. All interval components are
integers except the seconds, which may have fractional seconds represented.

DATE
The syntax for the DATE datatype is as follows:

DATE

The DATE datatype stores date and time information. You can store the dates from
January 1, 4712 b.c., to a.d. December 31, 9999. If you specify a date value without the
time component, the default time is 12:00 a.m. (midnight, 00:00:00 hours). If you specify
a date value without the date component, the default value is the first day of the current
month. The DATE datatype stores century, year, month, date, hour, minute, and seconds
internally. You can display the dates in various formats using the NLS_DATE_FORMAT param-
eter or by specifying a format mask with the TO_CHAR function. The various date-format
masks are discussed in Chapter 3, “Using Single-Row Functions.”

TIMESTAMP
The syntax for the TIMESTAMP datatype is as follows:

TIMESTAMP [(<precision>)]

The TIMSTAMP datatype stores date and time information with fractional-seconds preci-
sion. The only difference between the DATE and TIMESTAMP datatypes is the ability to
store fractional seconds up to a precision of nine digits. The default precision is 6 and can
range from 0 to 9.

TIMESTAMP WITH TIME ZONE
The syntax for the TIMESTAMP WITH TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE datatype is similar to the TIMESTAMP
datatype, but it stores the time-zone displacement. Displacement is the difference between
the local time and the Coordinated Universal Time (UTC, also known as Greenwich mean
time). The displacement is represented in hours and minutes. Two TIMESTAMP WITH
TIME ZONE values are considered identical if they represent the same time in UTC. For
example, 5 p.m. CST is equal to 6 p.m. EST or 3 p.m. PST.

332	 Chapter 7  ■  Creating Tables and Constraints

TIMESTAMP WITH LOCAL TIME ZONE
The syntax for the TIMESTAMP WITH LOCAL TIME ZONE datatype is as follows:

TIMESTAMP [(<precision>)] WITH LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE datatype is similar to the TIMESTAMP
datatype; but like the TIMESTAMP WITH TIME ZONE datatype, it also includes the time-
zone displacement. TIMESTAMP WITH LOCAL TIME ZONE does not store the displace-
ment information in the database but stores the time as a normalized form of the database
time zone. The data is always stored in the database time zone, but when the user retrieves
data, it is shown in the user’s local-session time zone.

The following example demonstrates how the DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE datatypes store
data. The NLS_xx_FORMAT parameter is explicitly set to display the values in the nondefault
format. The data is inserted at Central Daylight Time (CDT), which is seven hours behind
UTC. (The output shown in the example was reformatted for better readability.)

CREATE TABLE date_time_demo (
r_no NUMBER (2),
c_date DATE DEFAULT SYSDATE,
c_timezone TIMESTAMP DEFAULT SYSTIMESTAMP,
c_timezone2 TIMESTAMP (2) DEFAULT SYSTIMESTAMP,
c_ts_wtz TIMESTAMP (0) WITH TIME ZONE
 DEFAULT SYSTIMESTAMP,
c_ts_wltz TIMESTAMP (9) WITH LOCAL TIME ZONE
 DEFAULT SYSTIMESTAMP);

Table created.

INSERT INTO date_time_demo (r_no) VALUES (1);
1 row created.

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';
Session altered.

ALTER SESSION SET NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FF';
Session altered.

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FFTZH:TZM';
Session altered.

SELECT * FROM date_time_demo;

	 Built-in Datatypes	 333

R_NO C_DATE C_TIMEZONE
--------------------- ---------------------------
1 2013-08-18 16:05:52 2013-08-18 16:05:52.188000

C_TIMEZONE2 C_TS_WTZ
---------------------- --------------------------
2013-08-18 16:05:52.19 2013-08-18 16:05:52.-05:00

C_TS_WLTZ

2013-08-18 16:05:52.188000000

INTERVAL YEAR TO MONTH
The syntax for the INTERVAL YEAR TO MONTH datatype is as follows:

INTERVAL YEAR [(precision)] TO MONTH

The INTERVAL YEAR TO MONTH datatype is used to represent a period of time as
years and months. The precision value specifies the precision needed for the year field, and
its default is 2. Valid precision values are from 0 to 9. This datatype can be used to store
the difference between two datetime values, where the only significant portions are the year
and month.

INTERVAL DAY TO SECOND
The syntax for the INTERVAL DAY TO SECOND datatype is as follows:

INTERVAL DAY [(precision)] TO SECOND

The INTERVAL DAY TO SECOND datatype is used to represent a period of time as days,
hours, minutes, and seconds. The precision variable specifies the precision needed for the
day field, and its default is 6. Valid precision values are from 0 to 9. Larger precision values
allow a greater difference between the dates; for example, a precision of 2 allows values from
0 through 99, and a precision of 4 allows values from 0 through 9,999. This datatype can be
used to store the difference between two datetime values, including seconds.

The following example demonstrates the INTERVAL datatypes. It creates a table with
the INTERVAL datatype, inserts data into it, and selects data from the table.

CREATE TABLE interval_demo (
ts1 TIMESTAMP (2),
iy2m INTERVAL YEAR (3) TO MONTH,
id2s INTERVAL DAY (4) TO SECOND);
Table created.

INSERT INTO interval_demo VALUES (

334	 Chapter 7  ■  Creating Tables and Constraints

TO_TIMESTAMP('080101-102030.45', 'YYMMDD-HH24MISS.FF'),
TO_YMINTERVAL('3-7'),
TO_DSINTERVAL('4 02:20:30.30'));
1 row created.

SELECT * FROM interval_demo;
TS1 IY2M ID2S
------------------------- -------- ---------------------
2008-01-01 10:20:30.45 +003-07 +0004 02:20:30.300000

Date Arithmetic
Datetime datatypes can be used in expressions with the plus (+) or minus (-) operator. You
can use the +, -, *, and / operators with the INTERVAL datatypes. Dates are stored in the
database as Julian numbers with a fraction component for the time. A Julian date refers to
the number of days since January 1, 4712 B.C. Because of the time component of the date,
comparing dates can result in fractional differences, even though the date is the same. Oracle
provides a number of functions, such as TRUNC, that help you remove the time component
when you want to compare only the date portions.

Adding 1 to the date simply moves the date ahead one day. You can add time to the date
by adding a fraction of a day. One day equals 24 hours, or 24 × 60 minutes, or 24 × 60 × 60
seconds. Table 7.1 shows the numbers used to add or subtract time for a datetime datatype.

Tabl e 7.1    Date Arithmetic

Time to Add or Subtract Fraction Date Difference

1 day 1 1

1 hour 1/24 1/24

1 minute 1/(24 × 60) 1/1440

1 second 1/(24 × 60 × 60) 1/86400

Subtracting two dates gives you the difference between the dates in days. This usually
results in a fractional component that represents the time difference. If the time compo-
nents are the same, there will be no fractional results.

A datetime value operation using a numeric value results in a datetime value. The following
example adds two days and 12 hours to a date value:

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';

	 Built-in Datatypes	 335

SELECT TO_DATE('2013-10-24 13:09:14') + 2.5 EXAMP
FROM dual;

EXAMP

2013-10-27 01:09:14

This example subtracts six hours from a timestamp value:

SELECT TO_TIMESTAMP('2013-10-24 13:09:14.05') - 0.25 EXAMP
FROM dual;

EXAMP

2013-10-24 07:09:14

A datetime value subtracted from another datetime value results in a numeric value (the
difference in days). You cannot add two datetime values. Here is an example that results in
the difference between dates as a fraction of a day:

SELECT SYSDATE,
 SYSDATE - TO_DATE('2012-10-24 13:09:14')
FROM dual;

SYSDATE SYSDATE-TO_DATE('2012-10-2413:09:14')
------------------- -------------------------------------
2013-08-18 16:05:52 298.122662

This example converts the fraction of days to hours, minutes, and seconds using the
NUMTODSINTERVAL function:

SELECT SYSDATE,
 NUMTODSINTERVAL(SYSDATE - TO_DATE('2012-10-24 13:09:14'), 'DAY')
FROM DUAL;

SYSDATE NUMTODSINTERVAL(SYSDATE
-------------------- -----------------------------
2013-08-18 16:05:52 + 000000298 02:56:38.000000000

A datetime value operation using an interval value results in a datetime value. The
following example adds one year and three months to today’s date:

SELECT TRUNC(SYSDATE),
 TRUNC(SYSDATE) + TO_YMINTERVAL('1-3')
FROM dual;

336	 Chapter 7  ■  Creating Tables and Constraints

TRUNC(SYSDATE) TRUNC(SYSDATE) + TO_Y
------------------- -------------------
2013-08-18 00:00:00 2014-11-18 00:00:00

An interval datatype operation on another interval or numeric value results in an inter-
val value. You can use + and – between two interval datatypes and use * and / between
interval and numeric values. The following example converts a string (which represents
1 day, 3 hours, and 30 minutes) to an INTERVAL DAY TO SECOND datatype and multi-
plies that value by 2, which results in 2 days and 7 hours:

SELECT TO_DSINTERVAL('1 03:30:00.0') * 2 FROM dual;

TO_DSINTERVAL('103:30:00.0')*2

+000000002 07:00:00.000000000

The following example shows arithmetic between two INTERVAL DAY TO SECOND
datatype values. The interval value of 3 hours and 30 minutes is subtracted from 1 day,
3 hours, and 30 minutes, resulting in 1 day.

SELECT TO_DSINTERVAL('1 03:30:00.0')
 - TO_DSINTERVAL('0 03:30:00.0')
FROM dual;

TO_DSINTERVAL('103:30:00.0') - TO_DSINTERVAL('003:30:00.0')

+000000001 00:00:00.000000000

Binary Datatypes
Binary datatypes store information without converting it to the database’s character set.
This type of storage is required to store images, audio/video, executable files, and similar
data. Four datatypes are available to store binary data:

■■ RAW

■■ LONG RAW

■■ BLOB

■■ BFILE

RAW
The syntax for the RAW datatype is as follows:

RAW (<size>)

	 Built-in Datatypes	 337

RAW is used to store binary information up to 2,000 bytes. You must specify the
maximum size of the column in bytes. RAW is a variable-length datatype.

LONG RAW
The syntax for the LONG RAW datatype is as follows:

LONG RAW

It’s the same as RAW, but with up to 2GB of storage, and you can’t specify a maximum
size. LONG RAW is supported in Oracle Database 12c for backward compatibility. Use
BLOB instead. You can have only one LONG RAW or LONG column in a table.

BLOB
The syntax for the BLOB datatype is as follows:

BLOB

BLOB can store binary data up to 4GB. There is no size specification for this datatype.

BFILE
The syntax for the BFILE datatype is as follows:

BFILE

BFILE is used to store information on external files. The external file size can be up
to 4GB. Oracle stores only the file pointer in the database. The actual file is stored on
the operating system. Of the four Large Object datatypes (CLOB, BLOB, NCLOB, and
BFILE), only BFILE stores actual data outside the Oracle database.

Row ID Datatypes
Physical storage of each row in a table can be represented using a unique value called the
ROWID. Every table has a pseudocolumn called the ROWID. To store such values, Oracle
provides two datatypes:

■■ ROWID

■■ UROWID

ROWID
The syntax for the ROWID datatype is as follows:

ROWID

ROWID can store the physical address of a row. Physical ROWIDs store the addresses of
rows in ordinary tables (excluding index-organized tables), clustered tables, table partitions

338	 Chapter 7  ■  Creating Tables and Constraints

and subpartitions, indexes, and index partitions and subpartitions. Logical ROWIDs store
the addresses of rows in index-organized tables. Physical ROWIDs provide the fastest possible
access to a row of a given table.

UROWID
The syntax for the UROWID datatype is as follows:

UROWID

UROWID can store the logical ROWIDs of index-organized tables or non-Oracle data-
base tables. Oracle creates logical ROWIDs based on an index-organized table’s primary
key. The logical ROWIDs do not change as long as the primary key does not change.

Creating Tables
Now that you have learned about the various datatypes you can use to store table data, you
are ready to create a table. You can think of a table as a spreadsheet with columns and rows.
It is a structure that holds data in a relational database. The table is created with a name
to identify it and columns defined with valid column names and column attributes, such as
the datatype and size. CREATE TABLE is a comprehensive statement with many options. The
certification exam only covers creating and managing a simple relational table. Here is the
simplest format to use to create a table:

CREATE TABLE products
(prod_id NUMBER (4),
 prod_name VARCHAR2 (20),
 stock_qty NUMBER (15,3)
);

Table created.

You specify the table name following the keywords CREATE TABLE. The previous
example creates a table named PRODUCTS under the user (schema) connected to the data-
base. The table name can be qualified with the username; you must qualify the table
when creating a table in another user’s schema. Table and column names are discussed
in more detail in the next section.

The column definitions are enclosed in parentheses. The table created by the previous
code has three columns, each identified by a name and datatype. Commas separate the col-
umn definitions. This table has two columns with the NUMBER datatype and one column
with the VARCHAR2 datatype. A datatype must be specified for each column.

When creating tables, you can specify the following:

■■ Default values for columns

■■ Whether the column is visible or invisible

	 Creating Tables	 339

■■ Constraints for the columns and/or table (discussed later in this chapter in the
“Managing Constraints” section)

■■ The type of table: relational (heap), temporary, index-organized, external, or object
(Index-organized and object tables are not covered on the certification exam.)

■■ Table storage, including any index storage and storage specification for the Large
Object columns (LOBs) in the table

■■ The tablespace where the table/index should be stored

■■ Any partitioning and subpartitioning information

Naming Tables and Columns
Table names are used to identify each table. You should make table names as descriptive as
possible. Table and column names are identifiers and can be up to 30 characters long. An
identifier name should begin with a letter and can contain numeric digits. The only special
characters allowed in an identifier name are the dollar sign ($), the underscore (_), and the
number sign (#). The underscore can be used for meaningful separation of the words in an
identifier name. These names are case insensitive. If, however, you enclose the identifier
name in double quotation marks ("), it will be case sensitive in the Oracle dictionary.

Creating table names enclosed in quotation marks with mixed case can
cause serious problems when you query the database if you do not know
the exact case of the table name.

You can use the DESCRIBE or DESC (SQL*Plus) command to list all the columns in the table,
along with their datatype, size, nullity, and order. The syntax is DESCRIBE <table name>. The
case sensitivity of names and describing tables are illustrated in the following examples:

CREATE TABLE MyTable (
 Column_1 NUMBER,
 Column_2 CHAR);
Table created.

DESC mytable
 Name Null? Type
 ------------------- -------- --------
 COLUMN_1 NUMBER
 COLUMN_2 CHAR(1)

SELECT table_name FROM user_tables
WHERE table_name = 'MyTable';
no rows selected

340	 Chapter 7  ■  Creating Tables and Constraints

CREATE TABLE "MyTable" (
 "Column1" number,
 "Column2" char);
Table created.

DESC "MyTable"
 Name Null? Type
 ------------------- -------- --------
 Column1 NUMBER
 Column2 CHAR(1)

SELECT table_name FROM user_tables
WHERE upper(table_name) = 'MYTABLE';

TABLE_NAME

MYTABLE
MyTable

It is a good practice to give the other objects directly related to a table a
name that reflects the table name. For example, consider the EMPLOYEE table.
The primary key of the table may be named PK_EMPLOYEE, indexes might
be named EMPLOYEE_NDX1 and EMPLOYEE_NDX2, a check constraint could be
named CK_EMPLOYEE_STATUS, a trigger could be named TRG_EMPLOYEE_HIRE,
and so on.

Creating a Temporary Table

When you create a table without any specific keywords to indicate the type of the table,
the table created is a relational table that is permanent. If you include the keywords GLOBAL
TEMPORARY, Oracle creates a temporary relational table known as the global temporary
table (GTT); its definition is available to all sessions in the database; however, the data is
available only to the session that inserted data into it. The GTT is truly a temporary table.
On other flavors of RDBMS, a permanent table created to hold temporary data is called
a temporary table. You can do the same with Oracle, but Oracle provides true temporary
tables with GTT.

	 Creating Tables	 341

The data inserted by a session is visible only to that session. Normally, when you commit
the data changes or new rows added to a table, the data is visible to all other sessions.
When you’re using GTTs, the data is truly temporary—it is not written permanently
anywhere. The ON COMMIT clause can be included to specify whether the data in the
temporary table is session-specific (ON COMMIT PRESERVE ROWS) or transaction-specific (ON
COMMIT DELETE ROWS). ON COMMIT DELETE ROWS is the default. If the definition is for session-
specific data, the inserted data will be available throughout the session. If the GTT is defined
as transaction-specific, then when a COMMIT or ROLLBACK is performed, the data in the table
is cleared. Here is an example of creating a temporary table with inserted data that will be
available throughout the session:

CREATE GLOBAL TEMPORARY TABLE emp_bonus_temp (
emp_id NUMBER (10),
bonus NUMBER (15,2))
ON COMMIT PRESERVE ROWS;

Specifying Default Values for Columns
When creating or altering a table, you can specify default values for columns. The default
value specified will be used when you do not specify any value for the column while insert-
ing data. The default value specified in the definition should satisfy the datatype and length
of the column. If a default value is not explicitly set, the default for the column is implicitly
set to NULL. If you want to substitute another value for the explicitly set NULL value, you can
use the DEFAULT ON NULL clause. The following is the syntax to use the DEFAULT clause in
column definition.

column datatype [DEFAULT [ON NULL] expr | identity_clause]

The expr should be an expression or constant that is of the same data type as the column.
The identity_clause is discussed under “Using Sequence Values as Default Values.”

Default values cannot refer to another column, and they cannot have the pseudocolumns
LEVEL, ROWNUM, or PRIOR. The default values can include SYSDATE, USER, USERENV, and UID.
The DEFAULT expression can include any SQL function as long as the function does not return
a literal argument, a column reference, or a nested function invocation.

In the following example, the table ORDERS is created with a column STATUS that has a
default value of PENDING:

CREATE TABLE orders (
order_number NUMBER (8),
status VARCHAR2 (10) DEFAULT 'PENDING');

342	 Chapter 7  ■  Creating Tables and Constraints

Table created.

INSERT INTO orders (order_number) VALUES (4004);

1 row created.

SELECT * FROM orders;

ORDER_NUMBER STATUS
------------ ----------
 4004 PENDING

Here is an example of creating a table that includes default values for two columns:

CREATE TABLE emp_punch (
emp_id NUMBER (6) NOT NULL,
time_in DATE,
time_out DATE,
updated_by VARCHAR2 (30) DEFAULT USER,
update_time TIMESTAMP WITH LOCAL TIME ZONE
 DEFAULT SYSTIMESTAMP
);

Table created.

DESCRIBE emp_punch
 Name Null? Type
 -------------------------- -------- ------------------
 EMP_ID NOT NULL NUMBER(6)
 TIME_IN DATE
 TIME_OUT DATE
 UPDATED_BY VARCHAR2(30)
 UPDATE_TIME TIMESTAMP(6) WITH
 LOCAL TIME ZONE

INSERT INTO emp_punch (emp_id, time_in)
VALUES (1090, TO_DATE('081813-2121','MMDDYY-HH24MI'));

1 row created.

SELECT * FROM emp_punch;

	 Creating Tables	 343

EMP_ID TIME_IN TIME_OUT UPDATED_BY UPDATE_TIME
------ ------------------- --------- ---------- ------------------
1090 2013-08-18 21:21:00 HR 2013-08-18 16:05:52.349000

This example uses a NOT NULL constraint in the table definition. A NOT
NULL constraint prevents NULL values from being entered into the column.
Constraints are discussed in detail in the "Managing Constraints" section
later in this chapter.

If you explicitly insert a NULL value for a column with the DEFAULT defined, the value in
the DEFAULT clause will not be used. You can explicitly specify DEFAULT in the INSERT state-
ment to use the DEFAULT value, as in the following example:

INSERT INTO emp_punch
VALUES (104, TO_DATE('062801-2121','MMDDYY-HH24MI'),
 DEFAULT, DEFAULT, NULL);

1 row created.

SELECT * FROM emp_punch;

EMP_ID TIME_IN TIME UPDATED UPDATE_TIME
 _OUT _BY
------ ----------------- ------ -------- ----------------------------
1090 2013-08-18 21:21:00 HR 29-JUN-01 02.55.58.000000 PM
 104 2013-08-18 21:21:00 HR
SQL>

The DEFAULT ON NULL option lets you define values when an explicit NULL value is inserted
in a column, or no value is specified during INSERT. If you specify the ON NULL clause, then
Oracle Database 12c assigns the DEFAULT column value when an INSERT statement attempts
to assign a value that evaluates to NULL.

The following example demonstrates this.

SQL> CREATE TABLE orders2 (
 2 ORD_ID NUMBER,
 3 ord_date date default on null sysdate,
 4 memo varchar2 (20));

Table created.

SQL> insert into orders2 (ord_id, ord_date, memo)
 VALUES (234, NULL, 'Test 1');

344	 Chapter 7  ■  Creating Tables and Constraints

1 row created.

SQL> insert into orders2 (ord_id, memo) VALUES (345,'Test 2');

1 row created.

SQL> SELECT * FROM orders2;

 ORD_ID ORD_DATE MEMO
---------- ------------------- --------------------
 234 2013-08-18 16:05:52 Test 1
 345 2013-08-18 16:05:52 Test 2

SQL>

Using Sequence Values as Default Values
The pseudocolumns NEXTVAL and CURRVAL can be used as DEFAULT [ON NULL] values for
numeric columns. The sequence_name.NEXTVAL or sequence_name.CURRVAL pseudocolumns
are used to retrieve the value from sequence. The sequence must exist before it can be used
in the table definition. If the sequence is in some other schema, you should have read privi-
lege on the sequence.

We will show you how to use an existing sequence generator to populate the values
in a column. In the following example, a sequence is created first and is used in the table
definition to populate the ID column if no value is specified for the ID column during
insert. If a value is specified, that value is used. If an explicit NULL value is used, a default
value is not assigned. By default, sequences start from 1 and increment by 1.

SQL> CREATE SEQUENCE ocaex1;

Sequence created.

SQL> CREATE TABLE ocaexample1 (
 2 ID NUMBER DEFAULT ocaex1.NEXTVAL,
 3* NAME VARCHAR2 (20))
SQL> /

Table created.

SQL> INSERT INTO ocaexample1 (name) VALUES ('Joshua');

1 row created.

	 Creating Tables	 345

SQL> INSERT INTO ocaexample1 (id, name) VALUES (44, 'Jenna');

1 row created.

SQL> INSERT INTO ocaexample1 (name) VALUES ('Alan');

1 row created.

SQL> INSERT INTO ocaexample1 (id, name) VALUES (NULL, 'Chris');

1 row created.

SQL> SELECT * FROM ocaexample1;

 ID NAME
---------- --------------------
 1 Joshua
 4 Jenna
 2 Alan
 Chris

SQL>

Although using CURRVAL in the column as a default is allowed, the sequence must
have initialized in the same session using the NEXTVAL for you to be able to use CURRVAL.
Instead of using an existing sequence for default value, you can define a sequence gen-
erator within the column definition; this feature is called the identity column and is dis-
cussed in the next section.

Defining Identity Column
An identity column is used to uniquely identify each row value in a column. An implicitly
defined sequence generator is used to generate the values for the column. All of the options
available while defining a sequence generator are also available in defining an identity column.

The syntax of defining an identity column is as follows:

column datatype GENERATED [ALWAYS | BY DEFAULT [ON NULL]]
AS IDENTITY [(identity_options)]

 The GENERATED keyword tells Oracle that this column value is generated. ALWAYS is the
default and specifies that the column value is never assigned; during INSERT/UDPATE state-
ment execution, this column will always be evaluated to NULL—the value will be populated
by Oracle based on the “identity_options.”

346	 Chapter 7  ■  Creating Tables and Constraints

BY DEFAULT specifies that the column value is generated by Oracle (similar to ALWAYS),
but you can explicitly assign values to the column using INSERT/UPDATE statements. If you
specify ON NULL with BY DEFAULT, the generated value is assigned to the column only when
the column value is evaluated to NULL during INSERT/UPDATE.

The “identity_options” is basically the syntax for sequence generator, which is the same
as the CREATE SEQUENCE options.

You can have only one identity column per table. The identity column has a
NOT NULL constraint automatically created.

The following example shows the SQL code used to define a table with a GENERATED BY
DEFAULT identity column. The example also shows data added to the table and the results.
You may also use the DEFAULT ON NULL here.

SQL> CREATE TABLE oca_ident1 (
 2 id NUMBER GENERATED BY DEFAULT AS IDENTITY,
 3* memo VARCHAR2 (30));

Table created.

SQL> INSERT INTO oca_ident1 (id, memo) VALUES (454, 'Test 1');

1 row created.

SQL> INSERT INTO oca_ident1 (id, memo) VALUES (NULL, 'Test 2');
INSERT INTO oca_ident1 (id, memo) VALUES (NULL, 'Test 2')
 *
ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."OCA_IDENT1"."ID")

SQL> INSERT INTO oca_ident1 (memo) VALUES ('Test 3');

1 row created.

SQL> SELECT * FROM oca_ident1;

 ID MEMO
---------- ------------------------------
 454 Test 1
 1 Test 3

	 Creating Tables	 347

SQL> UPDATE oca_ident1 SET ID = NULL where ID = 454;
UPDATE oca_ident1 SET ID = NULL where ID = 454
 *
ERROR at line 1:
ORA-01407: cannot update ("HR"."OCA_IDENT1"."ID") to NULL

SQL> UPDATE oca_ident1 SET ID = 30 where ID = 454;

1 row updated.

SQL>

The next example shows the SQL code used to define a table with a GENERATED ALWAYS
identity column. Here you can see that the generated value is always used, and you are not
allowed to explicitly assign a value.

SQL> CREATE TABLE oca_ident2 (
 2 id NUMBER GENERATED ALWAYS AS IDENTITY,
 3* memo VARCHAR2 (30));

Table created.

SQL> INSERT INTO oca_ident2 (id, memo) VALUES (454, 'Test 1');
INSERT INTO oca_ident2 (id, memo) VALUES (454, 'Test 1')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

SQL> INSERT INTO oca_ident2 (id, memo) VALUES (NULL, 'Test 2');
INSERT INTO oca_ident2 (id, memo) VALUES (NULL, 'Test 2')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

SQL> INSERT INTO oca_ident2 (memo) VALUES ('Test 3');

1 row created.

348	 Chapter 7  ■  Creating Tables and Constraints

SQL> SELECT * FROM oca_ident2;

 ID MEMO
---------- ------------------------------
 1 Test 3

SQL> UPDATE oca_ident2 SET ID = 30 where ID = 1;
UPDATE oca_ident2 SET ID = 30 where ID = 1
 *
ERROR at line 1:
ORA-32796: cannot update a generated always identity column

SQL>

Adding Comments
It is a good practice to document the purpose of and any information on the type of data
stored in the table in the database itself so that developers and administrators working on
the database know the importance of the table/data. Oracle provides the COMMENT statement
to add documentation to a table or a column.

Comments on tables are added using the COMMENT ON TABLE statement, and comments on
table columns are added using the COMMENT ON COLUMN statement. The following example
provides comments for the sample table:

COMMENT ON TABLE mytable IS
 'Oracle Database 12c Study Guide Example Table';
Comment created.

COMMENT ON COLUMN mytable.column_1 is
 'First column in MYTABLE';
Comment created.

You can query the table and column information from the Oracle dictionary
using the following views: USER_TABLES, ALL_TABLES, USER_TAB_COLUMNS,
and ALL_TAB_COLUMNS.

Creating a Table from Another Table
You can create a table using a query based on one or more existing tables or views. The
column datatype and width will be determined by the query result. A table created in this

	 Creating Tables	 349

fashion can select all the columns from another table (you can use *) or a subset of columns
or expressions and functions applied on columns (these are called derived columns). The
syntax for creating a table using an existing table is as follows:

CREATE TABLE <table characteristics> AS SELECT <query>

This syntax is generally known as CTAS (the abbreviated form of CREATE TABLE AS
SELECT). The table characteristics include the new table name and its storage properties.

For example, suppose you need to duplicate the structure and data of the EMPLOYEES
table in the EMPLOYEES_COPY table. You can use CTAS, like this:

CREATE TABLE employees_copy
AS SELECT * FROM employees;

Table created.

You can have complex query statements in the CREATE TABLE statement. The table is
created with no rows if the query returned no rows. If you just want to copy the structure
of the table, make sure the query returns no rows:

CREATE TABLE employees_norows
AS SELECT * FROM employees
WHERE 1 = 2;

You can provide column alias names to have different column names in the newly created
table. The following example shows a table structure, displays the data, and then creates a
new table with the data and displays it:

DESCRIBE city

 Name Null? Type
 ------------------- -------- -------------
 CNT_CODE NOT NULL NUMBER(4)
 ST_CODE NOT NULL VARCHAR2(2)
 CTY_CODE NOT NULL NUMBER(4)
 CTY_NAME VARCHAR2(20)

SELECT COUNT(*) FROM city;

 COUNT(*)

 3
CREATE TABLE new_city AS
SELECT cty_code CITY_CODE, cty_name CITY_NAME
FROM city;

350	 Chapter 7  ■  Creating Tables and Constraints

Table created.

SELECT COUNT(*) FROM new_city;

 COUNT(*)

 3
DESC new_city
 Name Null? Type
 ------------------- -------- -------------
 CITY_CODE NOT NULL NUMBER(4)
 CITY_NAME VARCHAR2(20)

The CREATE TABLE … AS SELECT … statement will not work if the query
refers to columns of the LONG datatype.

When you create a table using the subquery, only the NOT NULL con-
straints associated with the columns are copied to the new table. Other
constraints and column default definitions are not copied. This almost
certainly will be an OCA certification exam question.

Modifying Tables
After you’ve created a table, you might want to modify it for several reasons. You can
modify a table to change its column definition or default values, add a new column, rename
a column, or drop an existing column. You can also drop and rename tables.

You might also modify a table if you need to change or add constraint definitions. You
can make a table read-only so that no modifications are possible on the data in the table.
The ALTER TABLE statement is used to change table definitions. Similar to the CREATE TABLE
statement, the ALTER TABLE statement has several options. In the following sections, we will
concentrate on the options that are pertinent to the OCA certification exam.

Adding Columns
Sometimes it is necessary to add a column to an existing table because enhancements
were made to the application or because the developer just did not plan it well. To add
a column to an existing table, you don’t need to drop and re-create the table. Using the

	 Modifying Tables	 351

ALTER TABLE statement, you can easily add a column to the table. All columns added to
the table using the ALTER TABLE … ADD … statement are added to the end of the table defi-
nition. Here is the syntax to add a new column to an existing table:

ALTER TABLE [<schema>.]<table_name> ADD <column_definitions>;

When a new column is added, it is always at the bottom of the table. For the existing
rows, the new column value will be NULL.

Let’s add a new column, ORDER_AMT, to the ORDERS table. Notice that the column is added
to the end of the table definition. You cannot insert a new column between other columns in
a table. If you have such a requirement, the table has to be dropped and re-created.

DESCRIBE orders
 Name Null? Type
 ------------------- -------- -------------
 ORDER_NUMBER NOT NULL NUMBER(8)
 STATUS VARCHAR2(10)

SELECT * FROM orders;

ORDER_NUMBER STATUS
------------ ----------
 4004 PENDING
 5005 COMPLETED

ALTER TABLE orders ADD order_amt NUMBER (15,2);

Table altered.

DESC orders
 Name Null? Type
 ------------------- -------- ---------------
 ORDER_NUMBER NOT NULL NUMBER(8)
 STATUS VARCHAR2(10)
 ORDER_AMT NUMBER (15,2)

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_AMT
------------ ---------- ---------
 4004 PENDING
 5005 COMPLETED

352	 Chapter 7  ■  Creating Tables and Constraints

If you are adding more than one column, the column definitions should be enclosed in
parentheses and separated by commas. If you specify a DEFAULT value for a newly added
column, no value is updated in the existing rows, but value is provided from the dictionary.
The following example adds two more columns to the ORDERS table:

ALTER TABLE orders ADD
 (quantity NUMBER (13,3),
 update_dt DATE DEFAULT SYSDATE,
 memo VARCHAR2 (50));

Table altered.

SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_AMT QUANTITY UPDATE_DT
------------ ---------- --------- ---------- ---------
 4004 PENDING 23-MAR-13
 5005 COMPLETED 23-MAR-13

When adding a new column, you can specify the NOT NULL constraint even if the table
already has rows, only when used with the DEFAULT clause. Here is an example:

ALTER TABLE orders
 ADD entered_by VARCHAR2 (30) NOT NULL;

ERROR at line 1:
ORA-01758: table must be empty to add mandatory
(NOT NULL) column

ALTER TABLE orders ADD entered_by VARCHAR2 (30)
 DEFAULT 'JOHN' NOT NULL;

Table altered.

In Oracle Database 12c, when you add a column with the DEFAULT value,
Oracle Database 12c does not update all the existing rows in the table with
the default value. Oracle Database 12c simply updates the dictionary and
gets you the value from the dictionary when you query the newly added
column. In Oracle Database 11g, this behavior was only applicable when
the DEFAULT clause was used with the NOT NULL constraint.

	 Modifying Tables	 353

Modifying Columns
On many occasions, you may need to change the table definition. The commonly used
definition changes include adding or removing a NOT NULL constraint to/from a column,
changing the datatype of a column, and changing the length of the column. The syntax
to modify an existing column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>
MODIFY <column_name> <new_attributes>;

If you omit any of the parts of the column definition (datatype, default value, or column
constraint), the omitted parts remain unchanged. If you are modifying more than one column
at a time, enclose the column definitions in parentheses. For example, to modify the ORDERS
table, increasing the MEMO column to 25 and reducing the QUANTITY column to 10,3, do this:

ALTER TABLE orders MODIFY (quantity NUMBER (10,3),
 memo VARCHAR2 (25));

You can add or drop constraints in the column and modify the DEFAULT values for the col-
umn. The DEFAULT value included in the MODIFY clause affects only the new rows inserted to
the table; the existing rows with NULL column values are not affected. To remove the DEFAULT
value for a column, redefine the DEFAULT clause with a NULL value. For example, the following
statement removes the default SYSDATE value from the UPDATE_DT column of the ORDERS table:

ALTER TABLE orders
MODIFY update_dt DEFAULT NULL;

These are the rules for modifying column definitions:

■■ You can increase the length of the character column and precision of the numeric col-
umn. If your table has many rows, increasing the length of a CHAR column will require
a lot of resources, because the column data for all the rows needs to be blank-padded
with the additional length.

■■ You can decrease the length of a VARCHAR2 column and reduce the precision or increase
the scale of a numeric column if all the data in the column fits the new length.

■■ You can decrease the length of a nonempty CHAR column if the parameter BLANK_
TRIMMING is set to TRUE.

■■ The column values must be NULL to change the column’s datatype. If you do not reduce
the length, you can change the datatype from CHAR to VARCHAR2, or vice versa,
even if the column is not empty.

When a table is modified, the dependent objects using the table could
become invalid. For each dependent of an object, if a change is made to
the definition of any element involved in the dependency (including drop-
ping the element), the dependent object is invalidated. If changes are made
only to definitions of elements that are not involved in the dependency, the
dependent object remains valid.

354	 Chapter 7  ■  Creating Tables and Constraints

Renaming Columns
Renaming a column is not a common task, but sometimes you may have to change the
name of a column because there was a typo in the script or the developers decided to store
different data in the column. Renaming a column does not affect its data or datatype. The
syntax to rename an existing column in a table is as follows:

ALTER TABLE [<schema>.]<table_name>
RENAME COLUMN <column_name> TO <new_name>;

When renaming a column, the column name must not be the same as an existing column
in the table. The following example renames the DATA_VALUE column of the SAMPLE_DATA
table to SAMPLE_VALUE:

DESCRIBE sample_data
 Name Null? Type
 --- -------- ---------------
 DATA_VALUE VARCHAR2(20)
 DATA_TYPE VARCHAR2(10)

ALTER TABLE sample_data
RENAME COLUMN data_value to sample_value;

Table altered.

DESCRIBE sample_data
 Name Null? Type
 --- -------- ---------------
 SAMPLE_VALUE VARCHAR2(20)
 DATA_TYPE VARCHAR2(10)

When a column in a table is renamed, dependent views and PL/SQL
programs are invalidated. You cannot rename a column that is used to
define a join index. You must drop the index, rename the column, and
recreate the index.

Dropping Columns
Similar to renaming columns, dropping columns is not a common activity for the DBA, but
you should know how to drop a column in case you need to do it. You can drop a column

	 Modifying Tables	 355

that is not used, or you can mark the column as not used and drop it later. Here is the syntax
for dropping a column:

ALTER TABLE [<schema>.]<table_name>
DROP {COLUMN <column_name> | (<column_names>)}
[CASCADE CONSTRAINTS]

DROP COLUMN drops the column name specified from the table. You can provide more
than one column name separated by commas inside parentheses. The indexes and con-
straints on the column are also dropped. You must specify CASCADE CONSTRAINTS if the
dropped column is part of a multicolumn constraint; the constraint will be dropped.

The syntax for marking a column as unused is as follows:

ALTER TABLE [<schema>.]<table_name>
SET UNUSED {COLUMN <column_name> | (<column_names>)}
[CASCADE CONSTRAINTS]

Because it takes a lot of resources, you will usually mark a column as unused instead of
dropping it immediately, especially at peak hours, if the table is very large. In such cases, you
would mark the column as unused and drop it later. Once the column is marked as unused,
you will not see it as part of the table definition. Let’s mark the UPDATE_DT column in the
ORDERS table as unused:

ALTER TABLE orders SET UNUSED COLUMN update_dt;

Table altered.

DESCRIBE orders
 Name Null? Type
 ------------------- -------- -------------
 ORDER_NUMBER NOT NULL NUMBER(8)
 STATUS VARCHAR2(15)
 ORDER_DATE DATE
 QUANTITY NUMBER(10,3)

Here is the syntax for dropping a column already marked as unused:

ALTER TABLE [<schema>.]<table_name>
DROP {UNUSED COLUMNS | COLUMNS CONTINUE}

Use the COLUMNS CONTINUE clause to continue a DROP operation that was previously
interrupted. The DROP UNUSED COLUMNS clause will drop all the columns that are marked
as unused. You cannot selectively drop column names after marking them as unused. The
following example clears data from the UPDATE_DT column in the ORDERS table:

ALTER TABLE orders DROP UNUSED COLUMNS;

356	 Chapter 7  ■  Creating Tables and Constraints

The data dictionary views DBA_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS,
and USER_UNUSED_COL_TABS provide the names of tables in which you have
columns marked as unused.

Hiding Columns from Table
Dropping columns is an expensive operation; therefore, if you just want to hide the column for
now, either to test the application impact or to drop at a later time, the column can be made
invisible using the ALTER TABLE statement. You can also create tables with invisible columns.

The following example creates a table named MYACCOUNT with the COMMENT column as
not visible. Then we describe the table to view the columns and find out that the invisible
column is not listed. Using the SET COLINVISIBLE option, we display the invisible column,
and then use the ALTER TABLE option to make the column visible.

SQL> CREATE TABLE myaccount (
 2 accno NUMBER (8) PRIMARY KEY,
 3 drcr CHAR,
 4 openbal NUMBER (15,2),
 5 comments VARCHAR2 (20) INVISIBLE);

Table created.

SQL> desc myaccount
 Name Null? Type
 -------------------------- -------- --------------------
 ACCNO NOT NULL NUMBER(8)
 DRCR CHAR(1)
 OPENBAL NUMBER(15,2)

SQL> SET COLINVISIBLE ON
SQL> desc myaccount
 Name Null? Type
 -------------------------- -------- --------------------
 ACCNO NOT NULL NUMBER(8)
 DRCR CHAR(1)
 OPENBAL NUMBER(15,2)
 COMMENTS (INVISIBLE) VARCHAR2(20)

SQL> ALTER TABLE myaccount MODIFY comments VISIBLE;

	 Modifying Tables	 357

Table altered.

SQL>

Dropping Tables
When application designs change, some tables can become orphaned or unused. You can
use the DROP TABLE statement to drop an existing table. The syntax of the DROP TABLE
statement is as follows:

DROP TABLE [schema.]table_name [CASCADE CONSTRAINTS]

When you drop a table, you remove the data and definition of the table. The indexes,
constraints, triggers, and privileges on the table are also dropped. Once you drop a table,
you cannot undo the action.

Oracle does not drop the views, materialized views, or other stored programs that refer-
ence the table, but it marks them as invalid. You must specify the CASCADE CONSTRAINTS
clause if there are referential integrity constraints referring to the primary key or unique
key of this table. Here’s how to drop the table TEST owned by the user SCOTT:

DROP TABLE scott.test;

A method for emptying a table of all rows is to use the TRUNCATE statement. This is different
from dropping and re-creating a table, because TRUNCATE does not invalidate dependent objects
or drop indexes, triggers, or referential integrity constraints. See Chapter 6, “Manipulating
Data,” for more information about using TRUNCATE.

Renaming Tables
Tables and other database schema objects can be renamed in Oracle. The RENAME statement
is used to rename a table and other database objects, such as views, private synonyms, or
sequences. The syntax for the RENAME statement is as follows:

RENAME old_name TO new_name;

Here, old_name and new_name are the names of a table, view, private synonym, or sequence.
When you rename a table, Oracle automatically transfers integrity constraints, indexes,

and grants on the old table to the new table. Oracle invalidates all objects that depend on
the renamed table, such as views, synonyms, stored procedures, and functions.

The following example renames the ORDERS table to PURCHASE_ORDERS:

RENAME orders TO purchase_orders;

Table renamed.

DESCRIBE purchase_orders

358	 Chapter 7  ■  Creating Tables and Constraints

 Name Null? Type
 ------------------ -------- ---------------
 ORDER_NUMBER NOT NULL NUMBER(8)
 STATUS VARCHAR2(15)
 ORDER_DATE DATE
 QUANTITY NUMBER(10,3)

You can use the RENAME statement to rename only the objects you own. You
cannot rename an object owned by another user.

You can also use the RENAME TO clause of the ALTER TABLE statement to rename a table.
Using this technique, you can qualify the table name with the schema. You must use the
ALTER TABLE statement to rename a table owned by another user (and you need the ALTER
privilege on the table or the ALTER ANY TABLE system privilege). Here is an example:

ALTER TABLE hr.purchase_orders
RENAME TO orders;

Table altered.

Making Tables Read-Only
DBAs frequently receive user requests to make tables read-only. Many configuration tables
can be made read-only after the initial application setup is completed so that accidental
changes can be avoided. To place a table in read-only mode, use the READ ONLY clause of
the ALTER TABLE statement.

The following statement makes the PRODUCTS table read-only:

ALTER TABLE products READ ONLY;

Table altered.

Once the table is marked as read-only, no operation on the table that would change its
data is allowed. Many DDL operations on the table are allowed. The following operations
are not allowed on a read-only table:

■■ INSERT, UPDATE, DELETE, or MERGE statements

■■ The TRUNCATE operation

■■ Adding, modifying, renaming, or dropping a column

■■ Flashing back a table

■■ SELECT FOR UPDATE

The following operations are allowed on a read-only table:

■■ SELECT
■■ Creating or modifying indexes

	 Modifying Tables	 359

■■ Creating or modifying constraints

■■ Changing the storage characteristics of the table

■■ Renaming the table

■■ Dropping the table

The following examples demonstrate some operations that are not allowed on a read-
only table:

TRUNCATE TABLE products;
TRUNCATE TABLE products
 *
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

DELETE FROM products;
DELETE FROM products
 *
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

INSERT INTO products VALUES (200, 'TESTING', 'X1',0);
INSERT INTO products VALUES (200, 'TESTING', 'X1',0)
 *
ERROR at line 1:
ORA-12081: update operation not allowed on table "HR"."PRODUCTS"

To change a read-only table to read-write, use the READ WRITE clause of the ALTER TABLE
statement. The following example makes the PRODUCTS table writable:

ALTER TABLE products READ WRITE;

Table altered.

Using SQL Developer to Learn and Explore Schema Objects

SQL Developer is a good friend of developers and DBAs. SQL Developer offers complete
end-to-end development of PL/SQL applications, helps run queries and scripts, acts as
an administrator console for managing the database, runs various reports, and even has
tools to migrate a non-Oracle database to Oracle. SQL Developer also supports a number
of SQL*Plus commands. All the SQL examples you see in this book can be performed
using SQLDeveloper in the Worksheet screen.

360	 Chapter 7  ■  Creating Tables and Constraints

When you are creating or modifying a database object using SQL Developer, even though it
is GUI-based, you can utilize the option to see the DDL behind it. This is a great tool that can
help certification candidates learn DDL and the various options to create and alter objects.
Right-click on the object type on the browser, and you will be able to choose to create a new
object of that type. For example, if you right-click on Tables, you will be given a choice with
New Table. If you right-click on an existing table, you will see various options to modify the
table properties and characteristics.

For example, the following image shows a Create Table dialog screen with the options
available to create a basic table.

When you click on the DDL tab in the same screen, you will see the code behind the table
creation, as in the following image.

	 Managing Constraints	 361

Most of the object creation dialogs also have a check box for Advanced options. In the
Create Table screen, checking the Advanced box shows various options to create a table,
as you can see in the following image.

We encourage you to explore the various objects and their DDL options so that you will
better understand them.

Managing Constraints
Constraints are created in the database to enforce business rules in the database and to spec-
ify relationships between various tables. You can also enforce business rules using database
triggers and application code. Integrity constraints prevent bad data from being entered into
the database. Oracle supports five types of integrity constraints, as shown in Table 7.2.

Tabl e 7. 2    Integrity Constraints

Constraint Description

NOT NULL Prevents NULL values from being entered into the column. These types
of constraints are defined on a single column. By default, Oracle allows
NULL values in any column.

CHECK Checks whether the condition specified in the constraint is satisfied.

362	 Chapter 7  ■  Creating Tables and Constraints

Constraint Description

UNIQUE Ensures that there are no duplicate values for the column(s) specified.
Every value or set of values is unique within the table.

PRIMARY KEY Uniquely identifies each row of the table and prevents NULL values.
A table can have only one primary key constraint.

FOREIGN KEY Establishes a parent-child relationship between tables by using common
columns. The foreign key defined on a table refers to the primary key or
unique key of another table.

Creating Constraints
Constraints are created using the CREATE TABLE or ALTER TABLE statements. You can specify
the constraint definition at the column level if the constraint is defined on a single column.
Multiple-column constraints must be defined at the table level; the columns should be specified
in parentheses and separated by commas.

If you do not provide a name for the constraints, Oracle assigns a system-generated
unique name that begins with SYS_. A name is provided for the constraint by specifying
the keyword CONSTRAINT followed by the constraint name.

You should not rely on system-generated names for constraints. If you
want to compare table characteristics, such as between production and
test databases, the inconsistent system-generated names will make the
comparison difficult.

In the following sections, we will define the rules for each constraint type and provide
examples of creating constraints.

NOT NULL Constraint
A NOT NULL constraint is defined at the column level; it cannot be defined at the table level.
The syntax for a NOT NULL constraint is as follows:

[CONSTRAINT <constraint name>] [NOT] NULL

The following example creates a table with two columns that have NOT NULL constraints:

CREATE TABLE orders (
 order_num NUMBER (4) CONSTRAINT nn_order_num NOT NULL,
 order_date DATE NOT NULL,
 product_id NUMBER (6))

Tabl e 7. 2    Integrity Constraints  (continued)

	 Managing Constraints	 363

The example provides a name for the constraint on the ORDER_NUM column. Because
no name is specified for the constraint on the ORDER_DATE column, it will get a system-
generated name.

Use ALTER TABLE MODIFY to add or remove a NOT NULL constraint on the columns of
an existing table. The following examples remove a constraint and add a constraint to an
existing table:

ALTER TABLE orders MODIFY order_date NULL;
ALTER TABLE orders MODIFY product_id NOT NULL;

Check Constraints
You can define a check constraint at the column level or table level. For both the column
and table levels, the syntax is as follows:

[CONSTRAINT <constraint name>] CHECK (<condition>)

The condition specified in the CHECK clause should evaluate to a Boolean result and can refer
to values in other columns of the same row; the condition cannot use queries. Environment
functions (such as SYSDATE, USER, USERENV, and UID) and pseudocolumns (such as ROWNUM,
CURRVAL, NEXTVAL, and LEVEL) cannot be used to evaluate the check condition. One column
can have more than one check constraint defined.

The following are examples of check constraints defined at the table level:

CREATE TABLE bonus (
 emp_id VARCHAR2 (40) NOT NULL,
 salary NUMBER (9,2),
 bonus NUMBER (9,2),
CONSTRAINT ck_bonus check (bonus > 0));
ALTER TABLE bonus
ADD CONSTRAINT ck_bonus2 CHECK (bonus < salary);

The check constraint can be defined at the column level if the constraint refers to only
that column.

You cannot use the ALTER TABLE MODIFY clause to add or modify check constraints (only
NOT NULL constraints can be modified this way). Column-level constraints can be defined
when using the CREATE TABLE statement or when using the ALTER TABLE statement with the
ADD clause. Here is an example:

ALTER TABLE orders ADD cust_id number (5)
CONSTRAINT ck_cust_id CHECK (cust_id > 0);

You can use the check constraint to implement a NOT NULL constraint also. This is
especially useful if you need to disallow NULL values in multiple columns together. For
example, the following constraint definition for the BONUS table allows a NULL value

364	 Chapter 7  ■  Creating Tables and Constraints

for the BONUS and SALARY columns if both column values are NULL, or else both columns
should have a valid non-NULL value.

ALTER TABLE bonus ADD CONSTRAINT ck_sal_bonus
CHECK ((bonus IS NULL AND salary IS NULL) OR
 (bonus IS NOT NULL AND salary IS NOT NULL));

Unique Constraints
A unique constraint protects one or more columns in a table, ensuring that no two rows
contain duplicate data in the protected columns. Unique constraints can be defined at the
column level for single-column unique keys. Here is the column-level syntax:

[CONSTRAINT <constraint name>] UNIQUE

For a multiple-column unique key (a composite key; the maximum number of columns
specified can be 32). The constraint should be defined at the table level. Here is the table-
level syntax:

[CONSTRAINT <constraint name>]
UNIQUE (<column>, <column>, …)

Oracle creates a unique index on the unique key columns to enforce uniqueness. If a
unique index or nonunique index already exists on the table with the same column-order
prefix, Oracle uses the existing index. To use the existing nonunique index for enforcing
uniqueness, there must not be any duplicate values in the unique key columns.

Unique constraints allow NULL values in the constraint columns. The following example
defines a unique constraint with two columns:

ALTER TABLE employee
ADD CONSTRAINT uq_emp_id UNIQUE (dept, emp_id);

The next example adds a new column to the EMP table and creates a unique key at the
column level:

ALTER TABLE employee ADD
ssn VARCHAR2 (11) CONSTRAINT uq_ssn unique;

Primary Key Constraints
All characteristics of the unique key are applicable to the primary key constraint, except
that NULL values are not allowed in the primary key columns. A table can have only one
primary key. The column-level syntax is as follows:

[CONSTRAINT <constraint name>] PRIMARY KEY

	 Managing Constraints	 365

Here is the table-level syntax:

[CONSTRAINT <constraint name>]
PRIMARY KEY (<column>, <column>, …)

Oracle creates a unique index and NOT NULL constraints for each column in the key.
The following example defines a primary key when creating the table:

CREATE TABLE employee (
 dept_no VARCHAR2 (2),
 emp_id NUMBER (4),
 name VARCHAR2 (20) NOT NULL,
 ssn VARCHAR2 (11),
 salary NUMBER (9,2) CHECK (salary > 0),
CONSTRAINT pk_employee primary key (dept_no, emp_id),
CONSTRAINT uq_ssn unique (ssn))

To add a primary key to an existing table, use the ALTER TABLE statement. Here is
an example:

ALTER TABLE employee
ADD CONSTRAINT pk_employee PRIMARY KEY (dept_no, emp_id);

Indexes created to enforce unique keys and primary keys can be managed in the same
way as any other index. However, these indexes cannot be dropped explicitly using the
DROP INDEX statement.

Foreign Key Constraints
A foreign key constraint protects one or more columns in a table by ensuring that for each
non-NULL value there is data available elsewhere in the database with a primary or unique
key. The foreign key is the column or columns in the table (child table) where the constraint is
created. The referenced key is the primary key or unique key column or columns in the table
(parent table) that is referenced by the constraint. The column datatypes in the parent table
and the child table should match.

You can define a foreign key constraint at the column level or table level. Here is the
syntax for the column-level constraint:

[CONSTRAINT <constraint name>]
REFERENCES [<schema>.]<table> [(<column>, <column>, …]
[ON DELETE {CASCADE | SET NULL}]

Multiple-column foreign keys should be defined at the table level. Here is the table-
level syntax:

[CONSTRAINT <constraint name>]
FOREIGN KEY (<column>, <column>, …)

366	 Chapter 7  ■  Creating Tables and Constraints

REFERENCES [<schema>.]<table> [(<column>, <column>, …]
[ON DELETE {CASCADE | SET NULL}]

The foreign key column(s) and referenced key column(s) can be in the same table (self-
referential integrity constraint). NULL values are allowed in the foreign key columns.

The following is an example of creating a foreign key constraint on the COUNTRY_CODE
and STATE_CODE columns of the CITY table, which refers to the COUNTRY_CODE and STATE_
CODE columns of the STATE table (the composite primary key of the STATE table).

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state (country_code, state_code);

You can omit the column listing of the referenced table if referring to the primary key
of the table. For example, if the COUNTRY_CODE and STATE_CODE columns are the primary
key of the STATE table, the previous statement could be written like this:

ALTER TABLE city ADD CONSTRAINT fk_state
FOREIGN KEY (country_code, state_code)
REFERENCES state;

The ON DELETE clause specifies the action to be taken when a row in the parent
table is deleted and child rows exist for the deleted parent primary key. You can delete
the child rows (CASCADE) or set the foreign key column values to NULL (SET NULL). If
you omit this clause, Oracle will not allow you to delete from the parent table if child
records exist. You must delete the child rows first and then delete the parent row. The
following are two examples of specifying the delete action in a foreign key:

ALTER TABLE city ADD CONSTRAINT fk_state
 FOREIGN KEY (country_code, state_code)
 REFERENCES state (country_code, state_code)
 ON DELETE CASCADE;

ALTER TABLE city ADD CONSTRAINT fk_state
 FOREIGN KEY (country_code, state_code)
 REFERENCES state (country_code, state_code)
 ON DELETE SET NULL;

You can query the constraint information from the Oracle dictionary using
the following views: USER_CONSTRAINTS, ALL_CONSTRAINTS, USER_CONS_
COLUMNS, and ALL_CONS_COLUMNS.

	 Managing Constraints	 367

Disabled Constraints
When a constraint is created, it is enabled automatically. You can create a disabled constraint
by specifying the DISABLE keyword after the constraint definition. Here is an example:

ALTER TABLE city ADD CONSTRAINT fk_state
 FOREIGN KEY (country_code, state_code)
 REFERENCES state (country_code, state_code) DISABLE;

ALTER TABLE bonus
ADD CONSTRAINT ck_bonus CHECK (bonus > 0) DISABLE;

Dropping Constraints
Dropping a constraint defined on a table may be necessary if you find out that business data
does not always meet strict data validations using constraints. In such instances, it may be
necessary to drop a constraint. Constraints are dropped using the ALTER TABLE statement.
Any constraint can be dropped by specifying the constraint name, as in this example:

ALTER TABLE bonus DROP CONSTRAINT ck_bonus2;

To drop the NOT NULL constraint, use the ALTER TABLE MODIFY statement, like this:

ALTER TABLE employee MODIFY employee_name NULL;

To drop unique key constraints with referenced foreign keys, specify the CASCADE
clause to drop the foreign key constraints and the unique constraint. Specify the unique
key column(s). Here is an example:

ALTER TABLE employee DROP UNIQUE (emp_id) CASCADE;

To drop primary key constraints with referenced foreign key constraints, use the CASCADE
clause to drop all foreign key constraints and then the primary key. Here is an example:

ALTER TABLE bonus DROP PRIMARY KEY CASCADE;

Enabling and Disabling Constraints
When you create a constraint, the constraint is automatically enabled (unless you specify
the DISABLE clause). You can disable a constraint by using the DISABLE clause of the ALTER
TABLE statement. When you disable unique or primary key constraints, Oracle drops the
associated unique index. When you re-enable these constraints, Oracle builds the index.

You can disable any constraint by specifying the DISABLE CONSTRAINT clause followed by
the constraint name. Specifying UNIQUE and the column name(s) can disable unique keys, and

368	 Chapter 7  ■  Creating Tables and Constraints

specifying PRIMARY KEY can disable the table’s primary key. You cannot disable a primary key
or unique key if foreign keys that are enabled reference it. To disable all the referenced foreign
keys and the primary or unique key, specify CASCADE. The following three examples demon-
strate disabling constraints:

ALTER TABLE bonus DISABLE CONSTRAINT ck_bonus;

ALTER TABLE employee DISABLE CONSTRAINT uq_employee;

ALTER TABLE state DISABLE PRIMARY KEY CASCADE;

Using the ENABLE clause of the ALTER TABLE statement enables a constraint. When you
enable a disabled unique or primary key, Oracle creates an index if an index with the unique
or primary key columns does not already exist. You can specify storage for the unique or
primary key while enabling these constraints, as in this example:

ALTER TABLE state ENABLE PRIMARY KEY USING INDEX
TABLESPACE user_INDEX STORAGE (INITIAL 2M NEXT 2M);

Validated Constraints
You have seen how to enable and disable a constraint. ENABLE and DISABLE affect only
future data that will be added or modified in the table. In contrast, the VALIDATE and
NOVALIDATE keywords in the ALTER TABLE statement act on the existing data. Therefore,
a constraint can have four states, as shown in Table 7.3.

Tabl e 7. 3    Constraints

Constraint Description

ENABLE VALIDATE This is the default for the ENABLE clause. The existing data in the
table is validated to verify that it conforms to the constraint.

ENABLE NOVALIDATE This does not validate the existing data but enables the constraint
for future constraint checking.

DISABLE VALIDATE The constraint is disabled (any index used to enforce the con-
straint is also dropped), but the constraint is kept valid. No DML
operation is allowed on the table because future changes cannot
be verified.

DISABLE NOVALIDATE This is the default for the DISABLE clause. The constraint is dis-
abled, and no checks are done on future or existing data.

	 Managing Constraints	 369

Suppose you have a large data-warehouse table, where bulk data loads are performed
every night. The primary key of this table is enforced using a nonunique index because
Oracle does not drop the nonunique index when disabling the constraint. When you do
batch loads, you can disable the primary key constraint as follows:

ALTER TABLE wh01 MODIFY CONSTRAINT pk_wh01
DISABLE NOVALIDATE;

After the batch load completes, you can enable the primary key like this:

ALTER TABLE wh01 MODIFY CONSTRAINT pk_wh01
ENABLE NOVALIDATE;

Oracle does not allow any INSERT, UPDATE, or DELETE operations on a table
with a DISABLE VALIDATE constraint. This is a quick way to make a table
non-updatable in releases prior to Oracle Database 11g, where the READ
ONLY clause of the ALTER TABLE statement was not available.

Deferring Constraint Checks
By default, Oracle checks whether the data conforms to the constraint when the statement
is executed. Oracle allows you to change this behavior if the constraint is created using the
DEFERRABLE clause (NOT DEFERRABLE is the default). It specifies that the transaction can set
the constraint-checking behavior.

INITIALLY IMMEDIATE specifies that the constraint should be checked for conformance
at the end of each SQL statement (this is the default). INITIALLY DEFERRED specifies that
the constraint should be checked for conformance at the end of the transaction.

The DEFERRABLE status of a constraint cannot be changed using ALTER TABLE MODIFY
CONSTRAINT; you must drop and re-create the constraint. You can change the INITIALLY
{DEFERRED|IMMEDIATE} clause using ALTER TABLE.

If the constraint is DEFERRABLE, you can set the behavior by using the SET CONSTRAINTS
command or by using the ALTER SESSION SET CONSTRAINT command. You can enable or
disable deferred constraint checking by listing all the constraints or by specifying the ALL
keyword. The SET CONSTRAINTS command is used to set the constraint-checking behavior
for the current transaction, and the ALTER SESSION command is used to set the constraint-
checking behavior for the current session.

As an example, let’s create a primary key constraint on the CUSTOMER table and a foreign
key constraint on the ORDERS table as DEFERRABLE. Although the constraints are created as
DEFERRABLE, they are not deferred because of the INITIALLY IMMEDIATE clause.

ALTER TABLE customer ADD CONSTRAINT pk_cust_id
PRIMARY KEY (cust_id) DEFERRABLE
INITIALLY IMMEDIATE;

370	 Chapter 7  ■  Creating Tables and Constraints

ALTER TABLE orders ADD CONSTRAINT fk_cust_id
FOREIGN KEY (cust_id)
REFERENCES customer (cust_id)
ON DELETE CASCADE DEFERRABLE;

If you try to add a row to the ORDERS table with a CUST_ID value that is not available in
the CUSTOMER table, Oracle returns an error immediately, even though you plan to add the
CUSTOMER row soon. Since the constraints are verified for conformance as each SQL statement
is executed, you must insert the row in the CUSTOMER table first and then add it to the ORDERS
table. Because the constraints are defined as DEFERRABLE, you can change this behavior by
using this command:

SET CONSTRAINTS ALL DEFERRED;

Now you can insert rows to these tables in any order. Oracle checks the constraint
conformance only at commit time.

If you want deferred constraint checking as the default, create or modify the constraint
by using INITIALLY DEFERRED, as in this example:

ALTER TABLE customer MODIFY CONSTRAINT pk_cust_id
INITIALLY DEFERRED;

Creating Tables and Constraints for an Application

Here’s a scenario you may find yourself in one day. You have been provided the following
information to create tables and constraints for an application developed in your com-
pany to maintain geographic information:

■■ The COUNTRY table stores the country name and country code. The country code
uniquely identifies each country. The country name must be present.

■■ The STATE table stores the state code, name, and its capital. The country code in this
table refers to a valid entry in the COUNTRY table. The state name must be present.
The state code and country code together uniquely identify each state.

■■ The CITY table stores the city code, name, and population. The city code uniquely
identifies each city. The state and country where the city belongs are also stored in
the table, which refers to the STATE table. The city name must be present.

■■ Each table should have a column identifying the created-on timestamp, with the sys-
tem date as the default.

	 Managing Constraints	 371

■■ The user should not be able to delete from the COUNTRY table if there are records in
the STATE table for that country.

■■ The records in the CITY table should be automatically removed when their correspond-
ing state is removed from the STATE table.

■■ All foreign and primary key constraints should be provided with meaningful names.

Let’s start by creating the COUNTRY table:

SQL> CREATE TABLE country (
 2 code NUMBER (4) PRIMARY KEY,
 3 name VARCHAR2 (40));
Table created.
SQL>

Oops! CODE and NAME are not very descriptive column names, and you also have other
columns in tables to store codes and names. Let’s rename the columns to COUNTRY_CODE
and COUNTRY_NAME:

SQL> ALTER TABLE country RENAME COLUMN
 2 code TO country_code;
Table altered.

SQL> ALTER TABLE country RENAME COLUMN
 2 name TO country_name;
Table altered.

SQL>

You also forgot to provide a name for the primary key constraint. Because the table was
created with a system-generated name, you have to find the name first to rename the
constraint:

SQL> SELECT constraint_name, constraint_type
 2 FROM user_constraints
 3 WHERE table_name = 'COUNTRY';

CONSTRAINT_NAME C
------------------------------ -
SYS_C0010893 P

SQL> ALTER TABLE country RENAME CONSTRAINT SYS_C0010893 TO pk_country;
Table altered.

SQL>

372	 Chapter 7  ■  Creating Tables and Constraints

Oops, again! The table should include a column to store the created-on date, and the
country name cannot be NULL.

Before you continue, realize that if you have a good logical and physical design before
you start creating tables, you will not have any of these problems. This is not the typical
or recommended approach to creating tables for the application. The objective here is to
demonstrate the various options available.

SQL> ALTER TABLE country MODIFY country_name NOT NULL
 2 ADD created DATE DEFAULT SYSDATE;
Table altered.
SQL>

Review the table created:

SQL> DESCRIBE country
 Name Null? Type
 ------------------ -------- ------------
 COUNTRY_CODE NOT NULL NUMBER(4)
 COUNTRY_NAME NOT NULL VARCHAR2(40)
 CREATED DATE
SQL>

Let’s create the STATE table. Notice that multiple column constraints can be defined only
at the table level.

SQL> CREATE TABLE state (
 2 state_code VARCHAR2 (3),
 3 state_name VARCHAR2 (40) NOT NULL,
 4 country_code NUMBER (4) REFERENCES country,
 5 capital_city VARCHAR2 (40),
 6 created DATE DEFAULT SYSDATE,
 7 CONSTRAINT pk_state PRIMARY KEY
 8 (country_code, state_code));
Table created.
SQL>

Because you did not provide a name for the COUNTRY_CODE foreign key, Oracle assigns a
name. To rename this constraint to provide a meaningful name, you can use the ALTER
TABLE statement as you did before. To demonstrate dropping a constraint and re-creating
it using ALTER TABLE, let’s drop this constraint and then add it. So, find the constraint
name from the USER_CONSTRAINTS view to drop and re-create it:

SQL> SELECT constraint_name, constraint_type
 2 FROM user_constraints

	 Summary	 373

 3 WHERE table_name = 'STATE';

CONSTRAINT_NAME C
------------------------------ -
SYS_C002811 C
PK_STATE P
SYS_C002813 R

SQL> ALTER TABLE state DROP CONSTRAINT SYS_C002813;
Table altered.
SQL> ALTER TABLE state ADD CONSTRAINT fk_state
 2 FOREIGN KEY (country_code) REFERENCES country;
Table altered.
SQL>

Now you’ll create the CITY table. Notice the foreign key constraint is created with the ON
DELETE CASCADE clause:

SQL> CREATE TABLE city (
 2 city_code VARCHAR2 (6),
 3 city_name VARCHAR2 (40) NOT NULL,
 4 country_code NUMBER (4) NOT NULL,
 5 state_code VARCHAR2 (3) NOT NULL,
 6 population NUMBER (15),
 7 created DATE DEFAULT SYSDATE,
 8 constraint pk_city PRIMARY KEY (city_code),
 9 constraint fk_city FOREIGN KEY
 10 (country_code, state_code)
 11 REFERENCES state ON DELETE CASCADE);
Table created.
SQL>

Summary
Tables are the basic structure of data storage. A table comprises columns and rows, as
in a spreadsheet. Each column has a characteristic that restricts and verifies the data it
stores. You can use several datatypes to define columns. CHAR, NCHAR, VARCHAR2,
CLOB, and NCLOB are the character datatypes. BLOB, BFILE, and RAW are the binary
datatypes. DATE, TIMESTAMP, and INTERVAL are the date datatypes. TIMESTAMP
datatypes can store the time-zone information also. NUMBER, BINARY_FLOAT, and
BINARY_DOUBLE are the numeric datatypes.

374	 Chapter 7  ■  Creating Tables and Constraints

You use the CREATE TABLE statement to create a new table. A table should have at least
one column, and a datatype should be assigned to the column. The table name and column
name should begin with a letter and can contain letters, numbers, or special characters. You
can create a new table from an existing table using the CREATE TABLE … AS SELECT… (CTAS)
statement. You can add, modify, or drop columns from an existing table using the ALTER
TABLE statement.

Constraints are created in the database to enforce business rules and to specify
relationships between various tables. NOT NULL constraints can be defined only with a
column definition and are used to prevent NULL values (an absence of data). Check con-
straints are used to verify whether the data conforms to certain conditions. Primary key
constraints uniquely identify a row in the table. There can be only one primary key for
a table, and the columns in the primary key cannot have NULL values. A unique key is
similar to a primary key, but you can have more than one unique key in a table, as well
as NULL values in the unique key columns.

You can enable and disable constraints using the ALTER TABLE statement. The constraint
can be in four different states. ENABLE VALIDATE is the default state.

Exam Essentials

Understand datatypes.    Know each datatype’s limitations and accepted values. Concentrate
on the new TIMESTAMP and INTERVAL datatypes.

Know how date arithmetic works.    Know the resulting datatype of date arithmetic, especially
between INTERVAL and DATE datatypes.

Know how to modify column characteristics.    Understand how to change datatypes, add
and modify constraints, and make other modifications.

Understand the rules associated with changing the datatype definitions of columns with
rows in a table.    When the table is not empty, you can change a datatype only from CHAR
to VARCHAR2, and vice versa. Reducing the length is allowed only if the existing data fits
in the new length specified.

Understand the DEFAULT clause on the column definition.    The DEFAULT clause provides a
value for the column if the INSERT statement omits a value for the column. When modifying a
column to have default values, the existing rows with NULL values in the table are not updated
with the default value.

Know the actions permitted on read-only tables.    Understand the various actions that
are permitted on a read-only table. Any operation that changes the data in the table is not
allowed on a read-only table. Most DDL statements are allowed, including DROP TABLE.

Understand constraints.    Know the difference between a primary key and a unique key
constraint, and understand how to use a nonunique index for primary/unique keys.

Know how a constraint can be defined.    You can use the CREATE TABLE or ALTER TABLE
statement to define a constraint on the table.

	 Review Questions	 375

Review Questions

	 1.	 The STATE table has the following constraints (the constraint status is shown in
parentheses):

Primary key pk_state (enabled)

Foreign key COUNTRY table: fk_state (enabled)

Check constraint ck_cnt_code (disabled)

Check constraint ck_st_code (enabled)

NOT NULL constraint nn_st_name (enabled)

		 You execute the following SQL code:

CREATE TABLE STATE_NEW AS SELECT * FROM STATE;

		 How many constraints will there be in the new table?

	 A.	 0

	 B.	 1

	 C.	 3

	 D.	 5

	 E.	 2

	 2.	 Which line of code has an error?

 1. CREATE TABLE FRUITS_VEGETABLES
 2. (FRUIT_TYPE VARCHAR2,
 3. FRUIT_NAME CHAR (20),
 4. QUANTITY NUMBER);

	 A.	 1

	 B.	 2

	 C.	 3

	 D.	 4

376	 Chapter 7  ■  Creating Tables and Constraints

	 3.	 Which statement successfully adds a new column, ORDER_DATE, to the table ORDERS?

	 A.	 ALTER TABLE ORDERS ADD COLUMN ORDER_DATE DATE;

	 B.	 ALTER TABLE ORDERS ADD ORDER_DATE (DATE);

	 C.	 ALTER TABLE ORDERS ADD ORDER_DATE DATE;

	 D.	 ALTER TABLE ORDERS NEW COLUMN ORDER_DATE TYPE DATE;

	 4.	 What special characters are allowed in a table name? (Choose all that apply.)

	 A.	 &

	 B.	 #

	 C.	 @

	 D.	 $

	 5.	 Consider the following statement:

CREATE TABLE MY_TABLE (
1ST_COLUMN NUMBER,
2ND_COLUMN VARCHAR2 (20));

		 Which of the following best describes this statement?

	 A.	 Tables cannot be created without defining a primary key. The primary key is
missing form the table definition.

	 B.	 The reserved word COLUMN cannot be part of the column name.

	 C.	 The column names are invalid.

	 D.	 No maximum length is specified for the first column definition. You must always
specify a length for character and numeric columns.

	 E.	 There is no error in the statement.

	 6.	 Which dictionary view would you query to list only the tables you own?

	 A.	 ALL_TABLES

	 B.	 DBA_TABLES

	 C.	 USER_TABLES

	 D.	 USR_TABLES

	 Review Questions	 377

	 7.	 The STATE table has six rows. You issue the following command:

ALTER TABLE STATE ADD UPDATE_DT DATE DEFAULT SYSDATE;

		 Which of the following is correct?

	 A.	 A new column, UPDATE_DT, is added to the STATE, table, and its contents for the
existing rows are NULL.

	 B.	 Because the table is not empty, you cannot add a new column.

	 C.	 The DEFAULT value cannot be provided if the table has rows.

	 D.	 A new column, UPDATE_DT, is added to STATE, and its default value is saved in the
dictionary.

	 8.	 The HIRING table has the following data:

EMPNO HIREDATE
--------- ----------
1021 12-DEC-00
3400 24-JAN-01
2398 30-JUN-01

		 What will be result of the following query?

SELECT hiredate+1 FROM hiring WHERE empno = 3400;

	 A.	 4-FEB-01

	 B.	 25-JAN-01

	 C.	 N-02

	 D.	 None of the above

	 9.	 What is the default length of a CHAR column if no length is specified in the table definition?

	 A.	 256

	 B.	 1,000

	 C.	 64

	 D.	 1

	 E.	 You must always specify a length for CHAR columns.

	10.	 Which statement will remove the column UPDATE_DT from the table STATE?

	 A.	 ALTER TABLE STATE DROP COLUMN UPDATE_DT;

	 B.	 ALTER TABLE STATE REMOVE COLUMN UPDATE_DT;

	 C.	 DROP COLUMN UPDATE_DT FROM STATE;

	 D.	 ALTER TABLE STATE SET UNUSED COLUMN UPDATE_DT;

	 E.	 You cannot drop a column from the table.

378	 Chapter 7  ■  Creating Tables and Constraints

	11.	 Which actions are allowed on a table that is marked as read-only? (Choose all that apply.)

	 A.	 Truncating a table

	 B.	 Inserting new data

	 C.	 Dropping a constraint

	 D.	 Dropping an index

	 E.	 Dropping a table

	12.	 Which of the following statements will create a primary key for the CITY table with the
columns STATE_CD and CITY_CD?

	 A.	 CREATE PRIMARY KEY ON CITY (STATE_CD, CITY_CD);

	 B.	 CREATE CONSTRAINT PK_CITY PRIMARY KEY ON CITY (STATE_CD, CITY_CD);

	 C.	 ALTER TABLE CITY ADD CONSTRAINT PK_CITY PRIMARY KEY (STATE_CD, CITY_CD);

	 D.	 ALTER TABLE CITY ADD PRIMARY KEY (STATE_CD, CITY_CD);

	 E.	 ALTER TABLE CITY ADD PRIMARY KEY CONSTRAINT PK_CITY ON (STATE_CD,
CITY_CD);

	13.	 Which of the following check constraints will raise an error? (Choose all that apply.)

	 A.	 CONSTRAINT ck_gender CHECK (gender IN ('M', 'F'))

	 B.	 CONSTRAINT ck_old_order CHECK (order_date > (SYSDATE -30))

	 C.	 CONSTRAINT ck_vendor CHECK (vendor_id IN (SELECT vendor_id FROM
vendors))

	 D.	 CONSTRAINT ck_profit CHECK (gross_amt > net_amt)

	14.	 Consider the datatypes DATE, TIMESTAMP (TS), TIMESTAMP WITH LOCAL
TIME ZONE (TSLTZ), INTERVAL YEAR TO MONTH (IY2M), and INTERVAL
DAY TO SECOND (ID2S). Which operations are not allowed by Oracle Database 12c?
(Choose all that apply.)

	 A.	 DATE+DATE

	 B.	 TSLTZ–DATE

	 C.	 TSLTZ+IY2M

	 D.	 TS*5

	 E.	 ID2S/2

	 F.	 IY2M+IY2M

	 G.	 ID2S+IY2M

	 H.	 DATE–IY2M

	 Review Questions	 379

	15.	 A constraint is created with the DEFERRABLE INITIALLY IMMEDIATE clause. What does
this mean?

	 A.	 Constraint checking is done only at commit time.

	 B.	 Constraint checking is done after each SQL statement is executed, but you can
change this behavior by specifying SET CONSTRAINTS ALL DEFERRED.

	 C.	 Existing rows in the table are immediately checked for constraint violation.

	 D.	 The constraint is immediately checked in a DML operation, but subsequent
constraint verification is done at commit time.

	16.	 What is the default precision for fractional seconds in a TIMESTAMP datatype column?

	 A.	 0

	 B.	 2

	 C.	 6

	 D.	 9

	17.	 Which datatype shows the time-zone information along with the date value?

	 A.	 TIMESTAMP

	 B.	 TIMESTAMP WITH LOCAL TIME ZONE

	 C.	 TIMESTAMP WITH TIME ZONE

	 D.	 DATE

	 E.	 Both options B and C

	18.	 You have a large job that will load many thousands of rows into your ORDERS table.
To speed up the loading process, you want to temporarily stop enforcing the foreign key
constraint FK_ORDERS. Which of the following statements will satisfy your requirement?

	 A.	 ALTER CONSTRAINT FK_ORDERS DISABLE;

	 B.	 ALTER TABLE ORDERS DISABLE FOREIGN KEY FK_ORDERS;

	 C.	 ALTER TABLE ORDERS DISABLE CONSTRAINT FK_ORDERS;

	 D.	 ALTER TABLE ORDERS DISABLE ALL CONSTRAINTS;

380	 Chapter 7  ■  Creating Tables and Constraints

	19.	 You are connected to the database as user JOHN. You need to rename a table named
NORDERS to NEW_ORDERS, owned by SMITH. Consider the following two statements:

1. RENAME SMITH.NORDERS TO NEW_ORDERS;

2. ALTER TABLE SMITH.NORDERS RENAME TO NEW_ORDERS;

		 Which of the following is correct?

	 A.	 Statement 1 will work; statement 2 will not.

	 B.	 Statements 1 and 2 will work.

	 C.	 Statement 1 will not work; statement 2 will work.

	 D.	 Statements 1 and 2 will not work.

	20.	 Tom executed the following SQL statement.

create table xx (n number, x long, y clob);

		 Choose the best option.

	 A.	 A table named xx will be created.

	 B.	 Single-character column names are not allowed in table definitions.

	 C.	 When using the LONG datatype, other LOB datatypes cannot be used in table
definitions.

	 D.	 The size needs to be specified in one of the datatypes used in the column definition.

Oracle
Database 12c:

Installation and
Administration

Part

II

Chapter

8
Introducing Oracle
Database 12c
Components and
Architecture

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Exploring the Oracle Database Architecture

■■ List the architectural components of Oracle Database.

■■ Explain the memory structures.

■■ Describe the background processes.

■■ Explain the relationship between logical and physical

storage structures.

✓✓ Oracle Database Management Tools

■■ Use database management tools.

With this chapter, you’ll start learning Oracle Database 12c
(Oracle 12c) database administration. This chapter and the
remaining chapters of the book will discuss the objectives for the

Oracle Database 12c: Installation and Administration OCA certification exam. There are two
parts to the exam: Oracle Database Administration and Installing, Upgrading, and Patching
the Oracle Database. The book’s chapters are organized to give you a natural progression
from the basics, installation, database creation, basic administration, and on to advanced top-
ics, not necessarily organized in the order of examination objectives specified by Oracle.

With the release of Oracle Database 12c, the Oracle Corporation has delivered a pow-
erful and feature-rich database that can meet the performance, availability, recoverabil-
ity, multitenancy, cloud-enabled, application-testing, and security requirements of any
mission-critical application. As the Oracle DBA, you are responsible for managing and
maintaining the Oracle Database 12c environment throughout its lifecycle, from the initial
installation through creation, configuration, final deployment, and its daily administra-
tion. Performing these tasks requires a solid understanding of Oracle’s product offerings
so that you can apply the proper tools and features to the application. You must also use
relational database concepts to design, implement, and maintain the tables that store the
application data. At the heart of these activities is the need for a thorough understanding
of the Oracle architecture and the tools and techniques used to monitor and manage the
components of this architecture.

We will begin this chapter by reviewing the Oracle database basics. You will learn what
constitutes the Oracle Database 12c architecture. We’ll provide an overview of the memory
structures, the processes that manage the database, how data is stored in the database, and
the many pluggable databases in a consolidated cloud database. We will also discuss the
tools used to administer Oracle Database 12c.

In this chapter, you will see many examples of using the database to show information
from the database, and you might wonder, “Why are you doing this without first showing
me how to create a database?” It is a chicken-and-egg situation; we think knowing the basic
components and high-level architecture will help you better understand the database and
create options. So, you will learn the architecture basics in this chapter and actually create
a database in the next chapter.

Exam objectives are subject to change at any time without prior notice
and at Oracle’s sole discretion. Please visit Oracle’s Training and Certifi-
cation website at http://education.oracle.com for the most current
exam-objectives listing.

http://education.oracle.com

	 Oracle Database Fundamentals	 385

Oracle Database Fundamentals
Databases store data. The data itself is composed of related logical units of information. The
database management system (DBMS) facilitates the storage, modification, and retrieval of
this data. Some early database technologies used flat files or hierarchical file structures to
store application data. Others used networks of connections between sets of data to store and
locate information. The early DBMS architecture mixed the physical manipulation of data
with its logical manipulation. When the location of data changed, the application referenc-
ing the data had to be updated. Relational databases brought a revolutionary change to this
architecture. Relational DBMS introduced data independence, which separated the physical
model of the data from its logical model. Oracle is a relational DBMS.

All releases of Oracle’s database products have used a relational DBMS model to store
data in the database. This relational model is based on the groundbreaking work of Dr. Edgar
Codd, which was first published in 1970 in his paper “A Relational Model of Data for Large
Shared Data Banks.” IBM Corporation, which was then an early adopter of Dr. Codd’s model,
helped develop the computer language that is used to access all relational databases today—
Structured Query Language (SQL). The great thing about SQL is that you can use it to easily
interact with relational databases without having to write complex computer programs and
without needing to know where or how the data is physically stored on disk. You saw several
SQL statements in the previous chapters.

Relational Databases
The concept of a relational database management system (RDBMS) is that the data consists
of a set of relational objects. The basic storage of data in a database is a table. The relations
are implemented in tables, where data is stored in rows and columns. Figure 8.1 shows such
a relationship.

The DEPT table in the lower part of the figure stores information about departments in the
company. Each department is identified by the department ID. Along with the ID, the name
and location of the department are also stored in the table. The EMP table stores information
about the employees in the company. Each employee is identified by a unique employee ID.
This table includes employee information such as hire date, salary, manager, and so on. The
DEPTNO column in both tables provides a relationship between the tables. A department may
have many employees, but an employee can work for only one department.

Because the user accessing this data doesn’t need to know how or where the row is stored in
the database, there must be a way to uniquely identify the rows in the tables. In our example,
the department is uniquely identified by department number, and an employee is identified by
an employee ID. The column (or set of columns) that uniquely identifies a row is known as the
primary key. According to relational theory, each table in a relational database must have a
primary key.

386	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

F igur e 8 .1     Relational tables

EMP (Employee Table)

EMPNO

7369

7499

7521

7566

7654

7698

7844

ENAME

SMITH

ALLEN

WARD

JONES

MARTIN

BLAKE

URNER

JOB

CLERK

SALESMAN

SALESMAN

MANAGER

SALESMAN

MANAGER

SALESMAN

MGR

7902

7698

7698

7839

7698

7839

7698

HIREDATE

17-DEC -8

20-FEB-8

22-FEB-8

02-APR-8

28-SEP-8

07-MAY-8

08-SEP-8

0800

11600

11250

12975

11250

12850

11500

COMM DEPTNO

20

30

30

20

30

30

30

300

500

1400

Primary Key
Column

Primary Key
Column

Foreign Key
Column

DEPT (Department Table)

DNAME

ACCOUNTING

RESEARCH

SALES

OPERATIONS

DEPTNO

10

20

30

40

LOC

NEW YORK

DALLAS

CHICAGO

BOSTON

SAL

When relating tables together, the primary key of one table is placed in another table. For
example, the primary key of the DEPT table is a column in the EMP table. In RDBMS terminol-
ogy, this is known as a foreign key. A foreign key states that the data value in the column
exists in another table and should continue to exist in the other table to keep the relationship
between tables. The table where the column is a primary key is known as the parent table,
and the table where the foreign key column exists is known as the child table. Oracle enforces
the parent-child relationship between tables using constraints.

Oracle Database 12c Objects
Every RDBMS supports a variety of database objects. Oracle Database 12c supports the
entire set of database objects required for a relational and object-relational database, such
as tables, views, constraints, and so on. It also supports a wide range of objects specific to
the Oracle database, such as packages, sequences, materialized views, and so on. Table 8.1
lists the major commonly used objects in Oracle Database 12c.

	 Oracle Database Fundamentals	 387

Tabl e 8 .1    Oracle Database 12c Objects

Object Type Description

Table A table is the basic form of data storage. A table has
columns and stores rows of data.

View A view is a stored query. No data-storage space is occu-
pied for view data.

Index An index is an optional structure that is useful for fetching
data faster.

Materialized view Materialized views are used to summarize and store
data. They are similar to views but take up storage
space to store data.

Index-organized table An index-organized table stores the table data along with
the index, instead of storing table and index separately.

Cluster A cluster is a group of tables sharing a common col-
umn. The cluster stores the rows of the tables together
with the common columns stored once.

Constraint A constraint is a stored rule to enforce data integrity.

Sequence A sequence provides a mechanism for the continuous
generation of numbers.

Synonym A synonym is an alias for a database schema object.

Trigger A trigger is a PL/SQL program unit that is executed
when an event occurs.

Stored function Stored functions are PL/SQL programs that can be used
to create user-defined functions to return a value.

Stored procedure Stored procedures are PL/SQL programs to define a
business process.

Package A package is a collection of procedures, functions, and
other program constructs.

Java Stored Java procedures can be created in Oracle to
define business processes.

Database link Database links are used to communicate between data-
bases to share data.

388	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

You use SQL to create database objects and to interact with application data. In the next
section, we will discuss the tools available to access and administer Oracle Database 12c.

Interacting with Oracle Database 12c
Several Oracle database management tools are available for the DBA to interact with and man-
age Oracle Database 12c. SQL is the language used to interact with Oracle Database 12c. The
common tools available for the DBA to administer Oracle Database 12c are as follows:

■■ SQL*Plus, which is a SQL command-line interface utility

■■ SQL Developer, a GUI tool to explore and manage the database using predefined menu
actions and SQL statements

■■ Oracle Enterprise Manager Database Express 12c, a GUI tool for database adminis-
tration and performance management

Using SQL*Plus and SQL Developer, you interact directly with Oracle Database 12c
using SQL statements and a superset of commands such as STARTUP, SHUTDOWN, and so on.
Using Enterprise Manager, you interact indirectly with Oracle Database 12c.

SQL*Plus
SQL*Plus is the primary tool for an Oracle DBA to administer the database using SQL
commands. Before you can run SQL statements, you must connect to Oracle Database 12c.
You can start SQL*Plus from a Windows command prompt using the SQLPLUS.EXE execut-
able or using the $ORACLE_HOME/bin/sqlplus executable on the Unix/Linux platform.
Figure 8.2 shows connecting to SQL*Plus from a Linux workstation.

F igur e 8 . 2     SQL*Plus login in Linux

	 Oracle Database Fundamentals	 389

To get an overview of SQL*Plus and how to connect to the database using SQL*Plus,
refer to Chapter 2, “Introducing SQL.”

SQL Developer
SQL Developer is a GUI database-development tool. With SQL Developer, you can create
and view the database objects, make changes to the objects, run SQL statements, run PL/SQL
programs, create and edit PL/SQL programs, and perform PL/SQL debugging. SQL Developer
also includes a migration utility to migrate Microsoft Access and Microsoft SQL Server data-
bases to Oracle Database 12c. Figure 8.3 shows the object browser screen of SQL Developer.

F igur e 8 . 3     The SQL Developer screen

You can download and learn more about SQL Developer on the OTN website
(http://www.oracle.com/technetwork/developer-tools/sql-developer).
SQL Developer is installed by default with your Oracle Database 12c tool set.

Enterprise Manager Database Express 12c
Oracle Enterprise Manager (EM) Database Express is a web-based database management
tool that is bundled with Oracle Database 12c. This is a graphical tool specifically designed
to administer an Oracle database. Enterprise Manager Database Express is used to manage
a single database (single instance or cluster database), whereas Enterprise Manager Cloud
Control 12c can manage multiple databases and other services and applications, such as OAS,

http://www.oracle.com/technetwork/developer-tools/sql-developer

390	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

and even non-Oracle applications at the same time. Figure 8.4 shows the Enterprise Manager
Database Express home screen, where an overview of the database is shown.

F igur e 8 . 4     The Enterprise Manager home screen

EM Database Express is configured using a check box in Database Configuration
Assistant when you’re creating a new database. EM Database Express requires that
XMLDB be installed in the database. The default port configured is 5,500, and the URL
for EM Database Express is https://<hostname>:5500/em. The port can be changed
using the DBMS_XDB_CONFIG.setHTTPsPort (<port>) procedure.

EM Database Express is available only when the database is open. Therefore, this tool
cannot be used to start or stop a database.

Oracle Enterprise Manager (OEM) Cloud Control is installed separately,
outside of the Oracle Database 12c install. Agents are installed on each
server that is configured in OEM Cloud Control. To learn more about OEM
Cloud Control, visit http://www.oracle.com/technetwork/oem.

For all the database-administration examples in this chapter, you can use either SQL*Plus
to perform the SQL command line or use the GUI tool Enterprise Manager Database Express.
All the commands you run using SQL*Plus can also be performed using SQL Developer.
However, if there are any administrative tasks that can be performed using predefined menu
options in SQL Developer, we will show that. Before you start learning to administer Oracle
Database 12c, let’s start with the basics. In the next section, you’ll learn about Oracle 12c
architecture.

http://www.oracle.com/technetwork/oem

	 Oracle Database 12c Architecture	 391

Oracle Database 12c Architecture
All of the previously described database administration and development tools allow users
to interact with the database. Using these tools requires that user accounts be created in the
database and that connectivity to the database be in place across the network. Users must also
have adequate storage capacity for the data they add, and they need recovery mechanisms for
restoring the transactions they are performing in the event of a hardware failure. As the DBA,
you take care of each of these tasks, as well as others, which include the following:

■■ Selecting the server hardware on which the database software will run

■■ Installing and configuring the Oracle Database 12c software on the server hardware

■■ Deciding to use Oracle Database 12c Container or a traditional single database (now
known as non-Pluggable Database (PDB).

■■ Creating Oracle Database 12c database

■■ Creating and managing the tables and other objects used to manage the application data

■■ Creating and managing database users

■■ Establishing reliable backup and recovery procedure for the database

■■ Monitoring and tuning database performance

■■ Analyzing trends and forecasting resource and storage requirements

The remainder of this book is dedicated to helping you understand how to perform these
and other important Oracle database-administration tasks. But first, to succeed as an Oracle
DBA, you need to completely understand Oracle’s underlying architecture and its mechanisms.
Understanding the relationship between Oracle’s memory structures, background processes,
and I/O activities is critical before learning how to manage these areas.

The Oracle server architecture can be described in three categories:

■■ Server processes that communicate with users processes and interact with an Oracle
instance to fulfill requests

■■ Logical memory structures that are collectively called an Oracle instance

■■ Physical file structures that are collectively called a database

You will also see how the physical structures map to the logical structures of the database
you are familiar with, such as tables and indexes.

Database is a confusing term that is often used to represent different things on different
platforms; the only commonality is that it is something related to storing data. In Oracle,
however, the term database represents the physical files that store data. An instance is com-
posed of the memory structures and background processes. Each database should have at
least one instance associated with it. It is possible for multiple instances to access a single
database; such a configuration is known as Real Application Clusters (RAC). In this book,
however, you’ll concentrate only on single-instance databases because RAC is not part of
the OCA certification exam.

Figure 8.5 shows the parts of an Oracle instance and database at a high level. Although
the architecture in Figure 8.5 may at first seem complex, each of these architecture

392	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

components is described in more detail in the following sections, beginning with the user-
related processes, and is actually fairly simple. This figure is an important piece of funda-
mental information when learning about the Oracle Database 12c architecture.

The key database components are memory structures, process structures,
and storage structures. Process and memory structures together are called
an instance; the storage structure is called a database. Taken together, the
instance and the database are called an Oracle server.

F igur e 8 .5     The Oracle Database 12c architecture

Database

Data
Files

Control
File

Redo Log
Files

Database

SYSTEM
Tablespace

SYSAUX
Tablespace

Tablespaces
...

TEMP
Tablespace

Background
Processes

User

Instance

PGA

. . .

CMPT LGWRDBWNARGN

RVWR
Physical
Database
Structure

Logical
Database
Structure

Server Process

User

Server Process

SGA

Data File
2

Data File
1

Archive
Logs

Flashback
Logs

Password
File

Parameter
File

Listener
Config File Data File

3
Temp File

1
Data File

4

	 Oracle Database 12c Architecture	 393

Each Oracle database consists of several schemas that reside in tablespaces. Tablespace
is a logical storage structure at the highest level in the database. Each tablespace consists
of one or more data files. The database has user data and overhead, such as database
dictionary, memory, control files, archived log files, flashback files, etc. Do not worry
if you do not understand these components yet; you will get to know them in the next
few chapters.

Oracle Database 12c comes with a major architectural change compared to its predeces-
sors. Oracle Database 12c allows multitenancy, meaning, you can have more than one data-
base in a structure called a container database. The database overhead will be shared by all
the databases in the container database. The databases in the container database are called
pluggable databases. Administration and resource overhead are reduced by going with this
architecture. Figure 8.6 shows database multitenancy.

F igur e 8 .6     Oracle Database 12c multitenancy

CDB Physical

CDB Logical

Container Database
InstanceMemory

Logical

Physical

Seed
PDB

PDB
1

PDB
2

PDB
3

Root OB$ROOT

Data
Files

Redo Log
Files

Control
File

More on container and pluggable databases will be discussed in Chapter 9, “Creating
and Operating Oracle Database 12c.”

394	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

What Is a Schema?

When working with Oracle, you will often hear the words schema and user used inter-
changeably. Is there a difference between the two? Yes and no. A user is a defined database
entity that has a set of abilities to perform activities based on their granted rights. A schema,
which is associated with a user entity, is more appropriately defined as a collection of data-
base objects. Some examples of database objects are tables, indexes, and views.

A schema can be related to a real person, such as a user of your Sales database who may
have a user ID and password they use to access the database. This user may or may not
own any schema objects.

Because a schema is a collection of objects, DBAs often define a schema to represent
a collection of objects associated with an application. For example, a DBA might create
a schema called SALES and create objects owned by that schema. Then, they can grant
access to other database users who need the ability to access the SALES schema.

In this way, the schema becomes a logical collection of objects associated with an applica-
tion and is not tied to any specific user. This ability makes it easy to logically group common
objects that are related to specific applications or tasks using a common schema name.

The main difference is that users are the entities that perform work, and schemas are the
collections of objects on which users perform work.

User and Server Processes
At the user level, two types of processes allow a user to interact with the instance and,
ultimately, with the database: the user process and the server process.

Whenever a user runs an application, such as a human-resources or order-taking applica-
tion, Oracle starts a user process to support the user’s connection to the instance. Depending
on the technical architecture of the application, the user process exists either on the user’s own
computer or on the middle-tier application server. The user process then initiates a connection
to the instance. Oracle calls the process of initiating and maintaining communication between
the user process and the instance a connection. Once the connection is made, the user estab-
lishes a session in the instance.

After establishing a session, each user starts a server process on the host server itself.
It is this server process that is responsible for performing the tasks that actually allow the
user to interact with the database. The server processes are allowed to interact with the
instance, but not the user process directly.

Examples of these interactions include sending SQL statements to the database, retrieving
needed data from the database’s physical files, and returning that data to the user.

	 Oracle Database 12c Architecture	 395

Server processes generally have a one-to-one relationship with user pro-
cesses—in other words, each user process connects to one and only one
server process. However, in some Oracle configurations, multiple user pro-
cesses can share a single server process. We will discuss Oracle connection
configurations in Chapter 12, “Understanding Oracle Network Architecture.”

On a Unix system, it is easier to distinguish these processes. Here is an example.
User initiates SQL*Plus to connect to Oracle database. You can see the process that
starts SQL*Plus (user process with process ID 10604) by samuel. This in turn starts
another process that connects to the instance (server process with process ID 10606)
owned by database server user oracle.

$ ps -ef |grep sqlplus | grep -v grep
samuel 10604 10511 0 01:51 pts/2 00:00:00 sqlplus

$ ps -ef |grep 10604 | grep -v grep
samuel 10604 10511 0 01:51 pts/2 00:00:00 sqlplus
oracle 10606 10604 0 01:52 ? 00:00:00 oracleC12DB1
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

In addition to the user and server processes that are associated with each user connection,
an additional memory structure called the program global area (PGA) is also created for
each server process. The PGA stores user-specific session information such as bind variables
and session variables. Every server process on the server has a PGA memory area. Figure 8.7
shows the relationship between a user process, server processes, and the PGA.

F igur e 8 .7     The relationship between user and server processes and the PGA

User Process

...the user process communicates
with the server process on the host
server using the PGA to store
session-specific information.

The user starts the Oracle-based
application on their computer,
creating a user process...

Host Server

PGA

Oracle Instance

Session

Server
Process

396	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

PGA memory is not shared. Each server process has a PGA associated with it and is
exclusive. As a DBA, you set the total memory that can be allocated to all the PGA memory
allocated to all server and background processes. The components of PGA are

SQL Work Area    Area used for memory-intensive operations such as sorting or building a
hash table during join operations.

Private SQL Area    Holds information about SQL statement and bind variable values.

The PGA can be configured to manage automatically by setting the database parameter
PGA_AGGREGATE_TARGET. Oracle then contains the total amount of PGA memory allocated
across all database server processes and background processes within this target.

The server process communicates with the Oracle instance on behalf of the user. The
Oracle instance is examined in the next section.

The Oracle Instance
An Oracle database instance consists of Oracle’s main memory structure, called the
system global area (SGA, also known as shared global area) and several Oracle back-
ground processes. When the user accesses the data in the database, it is the SGA with
which the server process communicates. Figure 8.8 shows the components of the SGA.

The components of the instance are described in the following sections.

Oracle Memory Structures
The SGA is a shared memory area. All the users of the database share the information
maintained in this area. Oracle allocates memory for the SGA when the instance is started
and de-allocates it when the instance is shut down. The SGA consists of three mandatory
components and four optional components. Table 8.2 describes the required components.

Tabl e 8 . 2    Required SGA Components

SGA Component Description

Shared pool Caches the most recently used SQL statements that have been
issued by database users

Database buffer cache Caches the data that has been most recently accessed by data-
base users

Redo log buffer Stores transaction information for recovery purposes

	 Oracle Database 12c Architecture	 397

F igur e 8 . 8     SGA components

Data
Dictionary

Cache

Result
Cache

DB Buffer Cache

MMON

DBWD

ASMB

MMNL

VKTM

Background Processes

SGA

DIAGSMON

DIAOLGWR

ARCNLREG

RELO

Shared Pool

Reserved Pool
Redo Buffer

Large Pool

Java Pool

Shared Pool

Fixed SGA

Shared
SQL
Area

Library Cache

Control Structures

Keep DefaultRecycle

RBAL

CKPT RVWR

PMON GMNN

MMAN

Others...

Shared
PL/SQL

Area

Table 8.3 describes the optional SGA components required, based on the database con-
figuration and use.

398	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Tabl e 8 . 3    Optional SGA Components

SGA Component Description

Java pool Caches the most recently used Java objects and application code
when Oracle’s JVM option is used.

Large pool Caches data for large operations such as Recovery Manager (RMAN)
backup and restore activities and Shared Server components.

Streams pool Caches the data associated with queued message requests when
Oracle’s Advanced Queuing option is used.

Result cache This new area is introduced in Oracle Database 12c and stores results
of SQL queries and PL/SQL functions for better performance.

Oracle Database 12c can manage the components of SGA and PGA automatically using
the Automatic Memory Management (AMM) feature. Memory in the SGA is allocated in
units of contiguous memory called granules. The size of a granule depends on the parameter
MEMORY_MAX_TARGET. If MEMORY_MAX_TARGET is larger than 1,024MB, the granule size is either
16MB or 4MB. MEMORY_MAX_TARGET is discussed in detail in Chapter 14, “Maintaining the
Database and Managing Performance.” A minimum of three granules must be allocated to
SGA—one each for the required components in Table 8.2.

The sizes of these SGA components can be managed in two ways: manually or auto-
matically. If you choose to manage these components manually, you must specify the size
of each SGA component and then increase or decrease the size of each component accord-
ing to the needs of the application. If these components are managed automatically, the
instance itself will monitor the utilization of each SGA component and adjust their sizes
accordingly, relative to a predefined maximum allowable aggregate SGA size.

Oracle Database 12c provides several dynamic performance views to see the components
and sizes of SGA; you can use V$SGA and V$SGAINFO, as shown here:

SQL> select * from v$sga;

NAME VALUE CON_ID
-------------------- ---------- ----------
Fixed Size 2290368 0
Variable Size 620760384 0
Database Buffers 1694498816 0
Redo Buffers 20762624 0

Alternatively, you may use the SHOW SGA command from SQL*Plus, as shown here:

SQL> show sga

	 Oracle Database 12c Architecture	 399

Total System Global Area 2338312192 bytes
Fixed Size 2290368 bytes
Variable Size 620760384 bytes
Database Buffers 1694498816 bytes
Redo Buffers 20762624 bytes
SQL>

 The output from this query shows that the total size of the SGA is 2,338,312,192 bytes.
This total size is composed of the variable space that is composed of the shared pool, the
large pool, and the Java pool (620,760,384 bytes); the database buffer cache (1,694,498,816
bytes); the redo log buffers (20,762,624 bytes); and some additional space (2,290,368 bytes)
that stores information used by the instance’s background processes. The V$SGAINFO view
displays additional details about the allocation of space within the SGA, as shown in the fol-
lowing query:

SQL> SELECT * FROM v$sgainfo;

NAME BYTES RES CON_ID
-------------------------------- ---------- --- ----------
Fixed SGA Size 2290368 No 0
Redo Buffers 20762624 No 0
Buffer Cache Size 1694498816 Yes 0
Shared Pool Size 570425344 Yes 0
Large Pool Size 33554432 Yes 0
Java Pool Size 16777216 Yes 0
Streams Pool Size 0 Yes 0
Shared IO Pool Size 117440512 Yes 0
Data Transfer Cache Size 0 Yes 0
Granule Size 16777216 No 0
Maximum SGA Size 2338312192 No 0
Startup Overhead in Shared Pool 149697048 No 0
Free SGA Memory Available 0 0

13 rows selected.

SQL>

The results of this query show in detail how much space is occupied by each component
in the shared pool. The components with the RESIZEABLE column with a value of Yes can
be managed dynamically by Oracle Database 12c.

You can also use EM Database Express to view the sizes of each of the SGA components, as
shown in Figure 8.9. From the home screen, go to the Server tab and click Memory Advisors to
see this.

400	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

F igur e 8 . 9     EM Database Express showing SGA components

You’ll learn more about the components in the SGA in the next sections.

Database Buffer Cache

The database buffer cache is the area in SGA that caches the database data, holding blocks
from the data files that have been accessed recently. The database buffer cache is shared
among all the users connected to the database. There are three types of buffers:

■■ Dirty buffers are the buffer blocks that need to be written to the data files. The data in
these buffers has changed and has not yet been written to the disk.

■■ Free buffers do not contain any data or are free to be overwritten. When Oracle reads
data from the disk, free buffers hold this data.

■■ Pinned buffers are the buffers that are currently being accessed or explicitly retained
for future use.

Oracle uses a least recently used algorithm (LRU algorithm) to manage the contents of
the shared pool and database buffer cache. When a user’s server process needs to put a SQL
statement into the shared pool or copy a database block into the buffer cache, Oracle uses the
space in memory that is occupied by the least recently accessed SQL statement or buffer to
hold the requested SQL or block copy. Using this technique, Oracle keeps frequently accessed
SQL statements and database buffers in memory longer, improving the overall performance
of the server by minimizing parsing and physical disk I/O.

The background process DBWn writes the database blocks from the data-
base buffer cache to the data files. Dirty buffers contain data that changed
and must be written to disk.

	 Oracle Database 12c Architecture	 401

To better manage the buffer cache better, Oracle Database 12c provides three buffer
caches. The DEFAULT cache is the default and is required. The KEEP cache and the RECYCLE
cache can be optionally configured. By default all the data read from the disk is written to
the DEFAULT pool. If you want certain data not to be aged from memory, you can configure
the KEEP pool and use the ALTER TABLE statement to specify which tables should use the KEEP
pool. Similarly, if you do not want to age out good data from the default cache for tempo-
rary data, you may specify such tables to have the RECYCLE pool instead of the default. The
blocks in the KEEP pool also follow the LRU algorithm to age out blocks when new blocks
need space in the KEEP pool. By sizing the KEEP pool appropriately, you can hold frequently
used blocks longer in the KEEP pool. The RECYCLE cache removes the buffers from memory
as soon as they are no longer needed.

The DB_CACHE_SIZE parameter specifies the size of the database buffer
cache DEFAULT pool. To configure the KEEP and RECYCLE pools, use the
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE parameters.

Since Oracle Database 11g Release 2, Oracle Linux and Oracle Solaris servers make
use of the flash storage for additional buffer cache. Database Smart Flash Cache allows the
database buffer cache to be expanded beyond the SGA in main memory to a second level
cache on flash memory. When the block expires from the SGA buffer cache, it is evicted to
the database flash cache until required again. Flash cache is configured using two database
parameters. DB_FLASH_CACHE_FILE identifies the flash device, and DB_FLASH_CACHE_SIZE
specifies the size of flash cache.

Redo Log Buffer

The redo log buffer is a circular buffer in the SGA that holds information about the changes
made to the database data. The changes are known as redo entries or change vectors and are
used to redo the changes in case of a failure. DML and DDL statements are used to make
changes to the database data. The parameter LOG_BUFFER determines the size of the redo log
buffer cache.

The background process LGWR writes the redo log information to the
online redo log files.

Shared Pool

The shared pool portion of the SGA holds information such as SQL, PL/SQL procedures
and packages, the data dictionary, locks, character-set information, security attributes, and
so on. The shared pool consists of the library cache and the data dictionary cache.

The library cache contains the shared SQL areas, private SQL areas, PL/SQL programs,
and control structures such as locks and library cache handles.

The shared SQL area is used for maintaining recently executed SQL statements and their
execution plans. Oracle divides each SQL statement that it executes into a shared SQL area

402	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

and a private SQL area. When two users are executing the same SQL, the information in
the shared SQL area is used for both. The shared SQL area contains the parse tree and exe-
cution plan, whereas the private SQL area contains values for the bind variables (persistent
area) and runtime buffers (runtime area). Oracle creates the runtime area as the first step
of an execute request. For INSERT, UPDATE, and DELETE statements, Oracle frees the runtime
area after the statement has been executed. For queries, Oracle frees the runtime area only
after all rows have been fetched or the query has been canceled.

Oracle processes PL/SQL program units the same way it processes SQL statements.
When a PL/SQL program unit is executed, the code is moved to the shared PL/SQL area,
and the individual SQL commands within the program unit are moved to the shared SQL
area. Again, the shared program units are maintained in memory with an LRU algorithm.

The third area in the library cache is used to store control information and is maintained
internally by Oracle. Various locks, latches, and other control structures reside here, and
any server process that requires this information can access it.

The data dictionary cache holds the most recently used database dictionary information.
The data dictionary cache is also known as the row cache because it holds data as rows
instead of buffers (which hold entire blocks of data).

The SQL query result cache stores the results of queries. If an application runs the same
SELECT statement repeatedly and if the results are cached, then the database can return
them immediately. In this way, the database avoids the expensive operation of rereading
blocks to show results.

The PL/SQL function result cache is used to hold the SQL and PL/SQL function results.
Executions of similar SQL statements can use the cached results to answer query requests.
Because retrieving results from the SQL query result cache is faster than rerunning a query,
frequently run queries experience a significant performance improvement when their results
are cached.

The reserved pool is an area in the shared pool used to allocate large chunks of memory.
Its size is determined by the SHARED_POOL_RESERVED_SIZE initialization parameter.

The parameter SHARED_POOL_SIZE determines the size of the shared pool.

Large Pool

The large pool is an optional area in the SGA that the DBA can configure to provide large
memory allocations for specific database operations such as an RMAN backup or restore.
The large pool allows Oracle to request large memory allocations from a separate pool
to prevent contention from other applications for the same memory. The large pool does
not have an LRU list; Oracle Database 12c does not attempt to age objects out of the large
pool. The parameter LARGE_POOL_SIZE determines the size of the large pool.

	 Oracle Database 12c Architecture	 403

Java Pool

The Java pool is another optional area in the SGA that the DBA can configure to provide
memory for Java operations, just as the shared pool is provided for processing SQL and
PL/SQL statements. The parameter JAVA_POOL_SIZE determines the size of the Java pool.

Streams Pool

The streams pool is exclusively used by Oracle streams. The STREAMS_POOL_SIZE parameter
determines the size of the streams pool.

If any SGA component size is set smaller than the granule size, the size of
the component is rounded to the nearest granule size.

Oracle Database 12c can manage all the components of the SGA and PGA
automatically; there is no need for the DBA to configure each pool indi-
vidually. You will learn more about automatic memory management in
Chapter 14.

Oracle Background Process
Many types of Oracle background processes exist, designed specifically for different func-
tions. Each process performs a specific job in helping to manage an instance. Five Oracle
background processes are required by the Oracle instance, and several background processes
are optional. The required background processes are found in all Oracle instances. Optional
background processes may or may not be used, depending on the features that are being
used in the database. Table 8.4 describes the required background processes. The database
instance terminates abruptly if you terminate any of these processes (except RECO, DIA0,
DIAG—these are restarted automatically if the process dies or is terminated) or if there is an
error in one of these processes and Oracle had to shut down the process. The processes are
started by default when the instance starts.

Tabl e 8 . 4    Required Oracle Background Processes

Process Name OS Process Description

Database Writer DBWn

BWnn

Writes modified database blocks from the SGA’s
database buffer cache to the data files on disk.

Checkpoint CKPT Updates the data file headers following a check-
point event.

404	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Process Name OS Process Description

Log Writer LGWR Writes transaction recovery information from the
SGA’s redo log buffer to the online redo log files
on disk.

Process Monitor PMON Cleans up failed user database connections.

System Monitor SMON Performs instance recovery following an instance
crash, coalesces free space in the database, and
manages space used for sorting.

Listener Registration LREG Registers information about the database instance
and dispatcher processes with the listener.

Recoverer RECO Recovers failed transactions that are distributed
across multiple databases when using Oracle’s
distributed database feature.

Memory Monitor MMON Gathers and analyzes statistics used by the Auto-
matic Workload Repository feature. See Chap-
ter 14 for more information on using this feature.

Memory Monitor
Light

MMNL Gathers and analyzes statistics used by the Active
Session History feature. See Chapter 14 for more
information on using this feature.

Virtual Keeper of
Time

VKTM Responsible for providing a wall-clock time
(updated every second) and reference-time
counter.

Diagnosability DIAG Performs diagnostic dumps.

Diagnosability DIA0 Diagnostic process responsible for hang detec-
tion and deadlock resolution.

Table 8.5 describes some of the optional background processes.

Tabl e 8 . 4    Required Oracle Background Processes  (continued)

	 Oracle Database 12c Architecture	 405

Tabl e 8 .5    Optional Oracle Background Processes

Process Name OS Process Description

Archiver ARCn Copies the transaction recovery information
from the redo log files to the archive location.
Nearly all production databases use this optional
process. You can have up to 30 archival pro-
cesses (ARC0-ARC9, ARCa-ARCt).

Recovery Writer RVWR Writes flashback data to flashback database logs
in the fast recovery area.

ASM Disk ASMB Present on databases using Automatic Storage
Management disks.

ASM Balance RBAL Coordinates rebalance activity of disks in an ASM
disk group.

Job Queue Monitor CJQn Assigns jobs to the job queue processes when
using Oracle’s job scheduling feature.

Job Queue Jnnn Executes database jobs that have been scheduled
using Oracle’s job-scheduling feature.

Queue Monitor QMNn Monitors the messages in the message queue
when Oracle’s Advanced Queuing feature is used.

Event Monitor EMNC Process responsible for event-management coor-
dination and notification.

Flashback Data
Archive

FBDA Archives historical records from a table when the
flashback data archive feature is used.

Parallel Query Slave Qnnn Carries out portions of a larger overall query
when Oracle’s Parallel Query feature is used.

Dispatcher Dnnn Assigns user’s database requests to a queue
where they are then serviced by shared server
processes when Oracle’s Shared Server feature
is used. See Chapter 11, “Managing Data and
Undo,” for details on using shared servers.

Shared Server Snnn Server processes that are shared among several
users when Oracle’s Shared Server feature is used.
See Chapter 11 for details on using shared servers.

406	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Process Name OS Process Description

Memory Manager MMAN Manages the size of each individual SGA compo-
nent when Oracle’s Automatic Shared Memory
Management feature is used. See Chapter 14 for
more information on using this feature.

Recovery Writer RVWR Writes recovery information to disk when Oracle’s
Flashback Database feature is used. See Chap-
ter 16, “Implementing Database Backups,” for
details on how to use the Flashback Database
feature.

Change Tracking
Writer

CTWR Keeps track of which database blocks have
changed when Oracle’s incremental Recovery
Manager feature is used. See Chapter 16 for details
on using Recovery Manager to perform backups.

Space Management
Coordinator

SMCO Coordinates various space management tasks.
Worker processes are identified with Wnnn.

On Unix systems, you can view these background processes from the operating system
using the ps command, as shown here:

$ ps -ef |grep C12DB1
oracle 3623 1 0 Aug24 ? 00:00:05 ora_pmon_C12DB1
oracle 3625 1 0 Aug24 ? 00:00:06 ora_psp0_C12DB1
oracle 3627 1 2 Aug24 ? 00:12:21 ora_vktm_C12DB1
oracle 3631 1 0 Aug24 ? 00:00:01 ora_gen0_C12DB1
oracle 3633 1 0 Aug24 ? 00:00:01 ora_mman_C12DB1
oracle 3637 1 0 Aug24 ? 00:00:01 ora_diag_C12DB1
oracle 3639 1 0 Aug24 ? 00:00:01 ora_dbrm_C12DB1
oracle 3641 1 0 Aug24 ? 00:00:29 ora_dia0_C12DB1
oracle 3643 1 0 Aug24 ? 00:00:12 ora_dbw0_C12DB1
oracle 3645 1 0 Aug24 ? 00:00:06 ora_lgwr_C12DB1
oracle 3647 1 0 Aug24 ? 00:00:10 ora_ckpt_C12DB1
oracle 3649 1 0 Aug24 ? 00:00:12 ora_lg00_C12DB1
oracle 3651 1 0 Aug24 ? 00:00:04 ora_lg01_C12DB1
oracle 3653 1 0 Aug24 ? 00:00:01 ora_smon_C12DB1
oracle 3655 1 0 Aug24 ? 00:00:00 ora_reco_C12DB1
oracle 3657 1 0 Aug24 ? 00:00:01 ora_lreg_C12DB1
oracle 3659 1 0 Aug24 ? 00:00:23 ora_mmon_C12DB1
oracle 3661 1 0 Aug24 ? 00:00:20 ora_mmnl_C12DB1

Tabl e 8 .5    Optional Oracle Background Processes  (continued)

	 Oracle Database 12c Architecture	 407

oracle 3663 1 0 Aug24 ? 00:00:00 ora_d000_C12DB1
oracle 3679 1 0 Aug24 ? 00:01:39 ora_p000_C12DB1
oracle 3681 1 0 Aug24 ? 00:01:16 ora_p001_C12DB1
oracle 3683 1 0 Aug24 ? 00:00:00 ora_tmon_C12DB1
oracle 3685 1 0 Aug24 ? 00:00:01 ora_tt00_C12DB1
oracle 3687 1 0 Aug24 ? 00:00:00 ora_smco_C12DB1
oracle 3691 1 0 Aug24 ? 00:00:00 ora_aqpc_C12DB1
oracle 3693 1 0 Aug24 ? 00:00:03 ora_w000_C12DB1
oracle 3697 1 0 Aug24 ? 00:00:15 ora_p002_C12DB1
oracle 3699 1 0 Aug24 ? 00:00:14 ora_p003_C12DB1
oracle 3701 1 0 Aug24 ? 00:00:01 ora_p004_C12DB1
oracle 3703 1 0 Aug24 ? 00:00:01 ora_p005_C12DB1
oracle 3705 1 0 Aug24 ? 00:00:00 ora_p006_C12DB1
oracle 3707 1 0 Aug24 ? 00:00:00 ora_p007_C12DB1
oracle 3737 1 0 Aug24 ? 00:00:00 ora_qm02_C12DB1
oracle 3741 1 0 Aug24 ? 00:00:00 ora_q002_C12DB1
oracle 3743 1 0 Aug24 ? 00:00:00 ora_q003_C12DB1
oracle 3746 1 0 Aug24 ? 00:00:27 ora_cjq0_C12DB1
oracle 3951 1 0 Aug24 ? 00:00:03 ora_w001_C12DB1
oracle 4102 1 0 Aug24 ? 00:00:04 ora_w002_C12DB1
oracle 4886 1 0 Aug24 ? 00:00:00 ora_w003_C12DB1
oracle 4906 1 0 Aug24 ? 00:00:00 ora_w004_C12DB1
oracle 6504 1 0 Aug24 ? 00:00:05 ora_s000_C12DB1
oracle 11619 1 0 03:13 ? 00:00:00 ora_p00a_C12DB1
oracle 11621 1 0 03:13 ? 00:00:00 ora_p00b_C12DB1
oracle 11632 1 0 03:14 ? 00:00:00 ora_p008_C12DB1
oracle 11634 1 0 03:14 ? 00:00:00 ora_p009_C12DB1

This output shows that several background processes are running on the Linux server
for the C12DB1 database, which is a container database.

Threaded Execution

A new parameter introduced in Oracle Database 12c allows multiple background processes
to share a single OS process on Unix, similar to the model Oracle has on Windows. This
behavior on Unix is controlled by the parameter THREADED_EXECUTION, which by default is
set to FALSE. The multithreaded Oracle Database model enables Oracle processes to exe-
cute as operating system threads in separate address spaces. In default process models,
SPID and STID columns of V$PROCESS will have the same values, whereas in multithreaded
models, each SPID (process) will have multiple STID (threads) values. The EXECUTION_TYPE
column in V$PROCESS will show THREAD.

408	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

The dynamic view V$BGPROCESS shows the background processes available. The follow-
ing query may be used to list all the background processes running on the instance.

SQL> SELECT min(name || ': '|| description) process_description
 2 FROM v$bgprocess
 3 group by substr(name,1,3)
 4* ORDER BY 1
SQL> /

On Windows systems, each background and server process is a thread to
the oracle.exe process.

Knowing the purpose of the required background processes is a must for the OCA
certification exam. We’ll discuss those purposes in the next subsections.

Database Writer (DBWn)

The purpose of the database writer process (DBWn) is to write the contents of the dirty
buffers to the data files. By default, Oracle starts one database writer process when the
instance starts. For multiuser and busy systems, you can have up to 100 database writer
processes to improve performance. The names of the first 36 database writer processes are
DBW0–DBW9 and DBWa–DBWz. The names of the 37th through 100th database writer processes
are BW36–BW99. The parameter DB_WRITER_PROCESSES determines the additional number of
database writer processes to be started. Having more DBWn processes than the number
of CPUs is normally not beneficial.

The DBWn process writes the modified buffer blocks to disk, so more free buffers are
available in the buffer cache. Writes are always performed in bulk to reduce disk contention;
the number of blocks written in each I/O is OS-dependent.

Checkpoint (CKPT)

When a change is committed to a database, Oracle identifies the transaction with a unique
number called the system change number (SCN). The value of an SCN is the logical point
in time at which changes are made to a database. A checkpoint is when the DBWn process
writes all the dirty buffers to the data files. When a checkpoint occurs, Oracle must update
the control file and each data file header to record the checkpoint. This update is done by the
checkpoint process (CKPT); the DBWn process writes the actual data blocks to the data files.

Checkpoints help reduce the time required for instance recovery. If checkpoints occur
too frequently, disk contention becomes a problem with the data file updates. If checkpoints
occur too infrequently, the time required to recover a failed database instance can be sig-
nificantly longer. Checkpoints occur automatically when an online redo log file is full (a log
switch happens).

When a redo log switch happens, the checkpoint process needs to update the header of
all the data files; this causes performance issues on databases with hundreds of data files.
To alleviate this situation, Oracle uses incremental checkpoints. Here the responsibility of

	 Oracle Database 12c Architecture	 409

updating the data file header is given to the DBWn process, when it writes dirty buffers to
data files. The CKPT process updates only the control file with the checkpoint position,
not the data files.

When Does Database Writer Write?

The DBWn background process writes to the data files whenever one of the following
events occurs:

■■ A user’s server process has searched too long for a free buffer when reading a buffer
into the buffer cache.

■■ The number of modified and committed, but unwritten, buffers in the database buf-
fer cache is too large.

■■ At a database checkpoint event. See Chapter 16 for information on checkpoints.

■■ The instance is shut down using any method other than a shutdown abort.

■■ A tablespace is placed into backup mode.

■■ A tablespace is taken offline to make it unavailable or is changed to READ ONLY.

■■ A segment is dropped.

A database checkpoint or thread checkpoint is when all data file headers as well as the
control file are updated with checkpoint information. At this time, the database writes all
the dirty buffers to data files. This happens during normal database shutdown, online redo
log switch, forced checkpoint using ALTER SYSTEM CHECKPOINT, or when the database is
placed in backup mode using ALTER DATABASE BEGIN BACKUP.

Log Writer (LGWR)

The log writer process (LGWR) writes the blocks in the redo log buffer of the SGA to the
online redo log files. When the LGWR writes log buffers to disk, Oracle server processes can
write new entries in the redo log buffer. LGWR writes the entries to the disk fast enough to
ensure that room is available for the server process to write the redo entries. There can be
only one LGWR process in the database.

If the redo log files are multiplexed, LGWR writes simultaneously to all the members of
the redo log group. Even if one of the log files in the group is damaged, LGWR writes the
redo information to the available files. LGWR writes to the redo log files sequentially so
that transactions can be applied in order in the event of a failure.

As soon as a transaction commits, the information is written to redo log files. By writing
the committed transaction immediately to the redo log files, the change to the database is
never lost. Even if the database crashes, committed changes can be recovered from the online
redo log files and applied to the data files.

410	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

When Does Log Writer Write?

The LGWR background process writes to the current redo log group under any of the fol-
lowing conditions:

■■ Three seconds since the last LGWR write

■■ When a user commits a transaction

■■ When the redo log buffer is a third full

■■ When the redo log buffer contains 1MB worth of redo information

■■ Whenever a database checkpoint occurs

Process Monitor (PMON)

The process monitor process (PMON) cleans up failed user processes and frees up all the
resources used by the failed process. It resets the status of the active transaction table and
removes the process ID from the list of active processes. It reclaims all the resources held
by the user and releases all locks on tables and rows held by the user. PMON wakes up
periodically to check whether it is needed. Other processes can call PMON if they detect
a need for a PMON process.

PMON also checks on some optional background processes and restarts them if any
have stopped.

System Monitor (SMON)

The system monitor process (SMON) performs instance or crash recovery at database startup
by using the online redo log files. SMON is also responsible for cleaning up temporary seg-
ments in the tablespaces that are no longer used and for coalescing the contiguous free space
in the dictionary-managed tablespaces. If any dead transactions were skipped during instance
recovery because of file-read or offline errors, SMON recovers them when the tablespace or
data file is brought back online. SMON wakes up regularly to check whether it is needed.
Other processes can call SMON if they detect a need for an SMON process.

In Windows environments, a Windows service called
OracleServiceInstanceName is also associated with each instance. This
service must be started in order to start up the instance in Windows
environments.

Oracle Storage Structures
An instance is a memory structure, but the Oracle database consists of a set of physical files
that reside on the host server’s disk drives. The physical storage structures include three

	 Oracle Database 12c Architecture	 411

types of files. These files are called control files, data files, and redo log files. The additional
physical files that are associated with an Oracle database but are not technically part of
the database are as follows: the password file, the parameter file, and any archived redo
log files. The Oracle Net configuration files are also required for connectivity to an Oracle
database. To roll back database changes using the Database Flashback feature, the flash-
back log files are used. Table 8.6 summarizes the role that each of these files plays in the
database architecture.

Tabl e 8 .6    Oracle Physical Files

File Type Information Contained in Files

Control file Locations of other physical files, database name, database
block size, database character set, and recovery information.
These files are required to open the database.

Data file All application data and internal metadata.

Redo log file Record of all changes made to the database; used for
instance recovery.

Parameter (pfile or spfile) Configuration parameters for the SGA, optional Oracle fea-
tures, and background processes.

Archived redo log file Copy of the contents of online redo logs, used for database
recovery and for change capture.

Password file Optional file used to store names of users who have been
granted the SYSDBA and SYSOPER privileges. See Chapter 13,
“Implementing Security and Auditing,” for details on SYSDBA
and SYSOPER privileges.

Oracle Net file Entries that configure the database listener and client-to-
database connectivity. See Chapter 12 for details.

Flashback log file If the database has flashback logging enabled, files are written
to the fast recovery area.

Figure 8.10 shows where to view the physical storage information of the database using
OEM Database Express 12c.

Figure 8.11 shows how to access the DBA menu in SQL Developer. Under DBA menu,
you can view and administer several components of the database.

The three types of critical files that make up a database—the control file, the data file,
and the redo log file—are described in the following sections.

412	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

F igur e 8 .10     The OEM Database Express Storage menu

F igur e 8 .11     The SQL Developer DBA menu

Control Files
Control files are critical components of the database because they store important informa-
tion that is not available anywhere else. This information includes the following:

■■ The name of the database

■■ A database-creation timestamp

	 Oracle Database 12c Architecture	 413

■■ The names, locations, and sizes of the data files and redo log files

■■ Tablespace information

■■ Redo log information used to recover the database in the case of a disk failure or
user error

■■ Archived log information

■■ RMAN backup information

■■ Checkpoint information

The following query shows the types of information kept in the control file, indicating
the importance of this file.

SQL> SELECT type FROM v$controlfile_record_section;

TYPE

DATABASE
CKPT PROGRESS
REDO THREAD
REDO LOG
DATAFILE
FILENAME
TABLESPACE
TEMPORARY FILENAME
RMAN CONFIGURATION
LOG HISTORY
OFFLINE RANGE
ARCHIVED LOG
BACKUP SET
BACKUP PIECE
BACKUP DATAFILE
BACKUP REDOLOG
DATAFILE COPY
BACKUP CORRUPTION
COPY CORRUPTION
DELETED OBJECT
PROXY COPY

BACKUP SPFILE
DATABASE INCARNATION
FLASHBACK LOG
RECOVERY DESTINATION
INSTANCE SPACE RESERVATION
REMOVABLE RECOVERY FILES
RMAN STATUS
THREAD INSTANCE NAME MAPPING
MTTR
DATAFILE HISTORY
STANDBY DATABASE MATRIX
GUARANTEED RESTORE POINT
RESTORE POINT
DATABASE BLOCK CORRUPTION
ACM OPERATION
FOREIGN ARCHIVED LOG
PDB RECORD
AUXILIARY DATAFILE COPY
MULTI INSTANCE REDO APPLY
PDBINC RECORD

41 rows selected.

SQL>

414	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

The control files are created when the database is created in the locations specified in the
control_files parameter in the parameter file. Because a loss of the control files negatively
impacts the ability to recover the database, most databases multiplex their control files to
multiple locations. Oracle uses the CKPT background process to automatically update each
of these files as needed, keeping the contents of all copies of the control synchronized. You
can use the dynamic performance view V$CONTROLFILE to display the names and locations
of all the database’s control files. A sample query on V$CONTROLFILE is shown here:

SQL> SELECT name FROM v$controlfile;

NAME
--
/u01/app/oracle/oradata/C12DB1/controlfile/o1_mf_8tx7cfnl_.ctl
/u01/app/oracle/fast_recovery_area/C12DB1/controlfile/o1_mf_8tx7cfz0_.ctl

SQL>

This query shows that the database has two control files, called o1_mf_8tx7cfnl_.ctl
and o1_mf_8tx7cfz0_.ctl, which are stored in different directories. The control files can
be stored in any directory; however, it is better if they are physically stored on different
disks. You can also monitor control files using EM Database Express (on the Server tab,
choose Control Files under Storage, as shown in Figure 8.12).

Control files are usually the smallest files in the database, generally a
few megabytes in size. However, they can be larger, depending on the
PFILE/SPFILE setting for CONTROLFILE_RECORD_KEEP_TIME when the
Recovery Manager feature is used.

F igur e 8 .12     EM Database Express showing control files

	 Oracle Database 12c Architecture	 415

In the database, the control files keep track of the names, locations, and sizes of the
database data files. Data files, and their relationship to another database structure called a
tablespace, are examined in the next section.

Data Files
Data files are the physical files that actually store the data that has been inserted into each
table in the database. The size of the data files is directly related to the amount of table data
they store. Data files are the physical structure behind another database storage area called
a tablespace. A tablespace is a logical storage area within the database. Tablespaces group
logically related segments. For example, all the tables for the Accounts Receivable applica-
tion might be stored together in a tablespace called AR_TAB, and the indexes on these tables
might be stored in a tablespace called AR_IDX.

By default, every Oracle Database 12c must have at least three tablespaces. Table 8.7
describes these tablespaces.

Tabl e 8 .7    Required Tablespaces in Oracle 12c

Tablespace Name Description

SYSTEM Stores the data dictionary tables and PL/SQL code.

SYSAUX Stores segments used for database options such as the Automatic Work-
load Repository, Online Analytical Processing (OLAP), and Spatial.

TEMP Used for performing large sort operations. TEMP is required when the
SYSTEM tablespace is created as a locally managed tablespace; other-
wise, it is optional. See Chapter 10, “Understanding Storage and Space
Management,” for details.

In addition to these three required tablespaces, most databases have tablespaces for stor-
ing other database segments such as undo and application data. Many production databases
often have many more tablespaces for storing application segments. Either you or the applica-
tion vendor determines the total number and names of these tablespaces. Tablespaces are dis-
cussed in detail in Chapter 10, “Understanding Storage and Space Management.”

For each tablespace in the database, there must be at least one data file. Some tablespaces
may be composed of several data files for management or performance reasons. The data
dictionary view DBA_DATA_FILES shows the data files associated with each tablespace in the
database. The following SQL statement shows a sample query on the DBA_DATA_FILES data
dictionary view:

SQL> SELECT tablespace_name, file_name
 2 FROM dba_data_files
 3 ORDER BY tablespace_name;

416	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

TABLESPACE_N FILE_NAME
------------ ---
APPL_DATA /u01/app/oracle/oradata/12cR1/appl_data01.dbf
APPL_DATA /u01/app/oracle/oradata/12cR1/appl_data02.dbf
EXAMPLE /u01/app/oracle/oradata/12cR1/example01.dbf
SYSAUX /u01/app/oracle/oradata/12cR1/sysaux01.dbf
SYSTEM /u01/app/oracle/oradata/12cR1/system01.dbf
UNDOTBS1 /u01/app/oracle/oradata/12cR1/undotbs01.dbf
USERS /u01/app/oracle/oradata/12cR1/users01.dbf

7 rows selected.
SQL>

The output shows that the APPL_DATA tablespace is comprised of two data files; all
other tablespaces have one data file. You can also monitor data files using EM, as shown
in Figure 8.13.

Data files are usually the largest files in the database, ranging from mega-
bytes to gigabytes or terabytes in size.

When a user performs a SQL operation on a table, the user’s server process copies the
affected data from the data files into the database buffer cache in the SGA. If the user has
performed a committed transaction that modifies that data, the database writer process
(DBWn) ultimately writes the modified data back to the data files.

F igur e 8 .13     EM Database Express showing data files

	 Oracle Database 12c Architecture	 417

Redo Log Files
Whenever a user performs a transaction in the database, the information needed to repro-
duce this transaction in the event of a database failure is written to the redo log files, and
the user does not get a confirmation of the commit until the transaction is successfully
written to the redo log files.

Because of the important role that redo logs play in Oracle’s recovery mechanism, they are
usually multiplexed. This means that each redo log contains one or more copies of itself in case
one of the copies becomes corrupt or is lost because of a hardware failure. Collectively, these
sets of redo logs are referred to as redo log groups. Each multiplexed file within the group is
called a redo log group member. Oracle automatically writes to all members of the redo log
group to keep the files in sync. Each redo log group must be composed of one or more mem-
bers. Each database must have a minimum of two redo log groups because redo logs are used
in a circular fashion.

V$LOG dynamic performance view shows information on redo logs in the database, their
size along with other information. You can use the V$LOGFILE dynamic performance view
to view the names of the redo log groups and the names and locations of their members, as
shown here:

SQL> SELECT group#, member
 2 FROM v$logfile
 3* ORDER BY group#
SQL> /

 GROUP# MEMBER
------- --
 1 C:\APP\ORACLE12C\MULTIPLEX\O12C01\REDO01.LOG
 1 D:\APP\ORACLE12C\ORADATA\O12C01\REDO01.LOG
 2 C:\APP\ORACLE12C\MULTIPLEX\O12C01\REDO02.LOG
 2 D:\APP\ORACLE12C\ORADATA\O12C01\REDO02.LOG
 3 C:\APP\ORACLE12C\MULTIPLEX\O12C01\REDO03.LOG
 3 D:\APP\ORACLE12C\ORADATA\O12C01\REDO03.LOG
 4 C:\APP\ORACLE12C\MULTIPLEX\O12C01\REDO04.LOG
 4 D:\APP\ORACLE12C\ORADATA\O12C01\REDO04.LOG

8 rows selected.
SQL>

This output shows that the database has a total of four redo log groups and that each group
has two members. Each of the members is located in a separate directory on the server’s disk
drives so that the loss of a single disk drive will not result in the loss of the recovery informa-
tion stored in the redo logs. You can also monitor redo logs using EM Database Express, as
shown in Figure 8.14.

418	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

F igur e 8 .14     EM Database Express showing redo logs

When a user performs a DML activity on the database, the recovery information for this
transaction is written to the redo log buffer by the user’s server process. LGWR eventually
writes this recovery information to the active redo log group until that log group is filled.
Once the current log fills with transaction information, LGWR switches to the next redo
log until that log group fills with transaction information, and so on, until all available
redo logs are used. When the last redo log is used, LGWR wraps around and starts using
the first redo log again. As shown in the following query, you can use the V$LOG dynamic
performance view to display which redo log group is currently active and being written to
by LGWR:

SQL> SELECT group#, members, status
 2 FROM v$log
 3 ORDER BY group#;

 GROUP# MEMBERS STATUS
---------- ---------- ----------------
 1 2 CURRENT
 2 2 INACTIVE
 3 2 INACTIVE
 4 2 ACTIVE

This output shows that redo log group number 1 is current and being written to by
LGWR. Once redo log group 4 is full, LGWR switches back to redo log group 1. The fol-
lowing are the statuses available for log files.

■■ UNUSED - Online redo log is new and never been written to.

■■ CURRENT - The current active redo log.

	 Oracle Database 12c Architecture	 419

■■ ACTIVE - Log is active but is not the current log. It is needed for crash recovery.

■■ CLEARING - A short time status during ALTER DATABASE CLEAR LOGFILE statement.
After the log is cleared, the status changes to UNUSED.

■■ CLEARING_CURRENT - Current log is being cleared of a closed thread. The log file may be
in this status if there is an I/O error writing the new log information.

■■ INACTIVE - Log is no longer needed for instance recovery.

When LGWR wraps around from the last redo log group back to the first redo log
group, any recovery information previously stored in the first redo log group is overwritten
and, therefore, no longer available for recovery purposes.

However, if the database is operating in archive log mode, the contents of these previ-
ously used logs are copied to a secondary location before the log is reused by LGWR. If this
archiving feature is enabled, it is the job of the ARCn background process described in the
previous section to copy the contents of the redo log to the archive location. These copies of
old redo log entries are called archive logs. Figure 8.15 shows this process graphically.

In Figure 8.15, the first redo log group has been filled, and LGWR has moved on to redo
log group 2. As soon as LGWR switches from redo log group 1 to redo log group 2, the
ARCn process starts copying the contents of redo log group 1 to the archive log file location.
Once the first redo log group is safely archived, LGWR is free to wrap around and reuse the
first redo log group once redo log group 3 is filled.

F igur e 8 .15     How ARCn copies redo log entries to disk

420	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Nearly all production databases run in archive-log mode because they
need to be able to redo all transactions since the last backup in the event
of a hardware failure or user error that damages the database.

A database can have multiple archive processes and multiple archive destinations. We will
discuss archiving and how the archived redo logs are used for database recovery in Chapter 15.

If LGWR needs to write to the redo log group that ARCn is trying to copy
but cannot because the destination is full, the database hangs until space
is cleared on the drive.

SQL Developer also has friendly menu options to manage database storage structures
easily for DBAs. Figure 8.16 shows the storage menu screen from SQL Developer, giving
you an overview. We encourage you to go through the menu items, modify the configura-
tion, and use the SQL tab to view the SQL code generated by the SQL Developer tool. This
will help you obtain a good understanding of the options and the syntax.

Real Application Clusters Database

Oracle Real Application Clusters were introduced in Oracle9i and have seen major
enhancements in the Oracle 10g database where “grid” is the key. In the RAC architec-
ture, there is one storage structure (database), with multiple Oracle instances (memory
and processes) running on multiple nodes. This architecture gives high availability and
horizontal scalability. When you need more capacity, all you need to do is add one more
node to the RAC cluster.

In the RAC architecture, certain components must be shared by the instances; some can
be shared by the instances and some components cannot be shared.

■■ Control files belong to the database, and all instances use the same control files.

■■ Database files belong to the database, and all instances access the same data files
and permanent and temporary tablespaces.

■■ Each instance undo is kept separately and, therefore, requires that each instance
undo its tablespace separately.

■■ Each instance has its own redo log buffer and redo threads and, therefore, has its
own redo log files. Redo log files are not shared by the instances, but the files must
reside in a shared location for recovery and backup purposes.

■■ It is advisable to keep the parameter file in a shared location accessible to all
instances, with instance-specific parameters prefixed with the instance name.

	 Oracle Database 12c Architecture	 421

F igur e 8 .16     The SQL Developer screen showing database storage

The Logical Structure
In the previous section, you saw how the Oracle database is configured physically. The
obvious question is where and how your table is stored in a database. Let’s try to relate the
physical storage to the logical structures you know, such as tables and indexes.

Oracle logically divides the database into smaller units to manage, store, and retrieve
data efficiently. The following paragraphs give you an overview of the logical structures:

Tablespaces    The database is logically divided into smaller units at the highest level, called
tablespaces. A tablespace has a direct relationship to the physical structure—a data file can
belong to one and only one tablespace. A tablespace could have more than one data file asso-
ciated with it.

A tablespace commonly groups related logical structures together. For example, you might
group data specific to an application in a tablespace. This will ease the management of the
application from the DBA’s point of view. This logical division helps administer a portion of
the database without affecting the rest of it. Each Oracle Database 12c database must have at
least three tablespaces: SYSTEM, SYSAUX, and TEMP. For better management and performance,
it must have two more tablespaces holding the UNDO data and application data.

Tablespaces are discussed in detail in Chapter 10.

Blocks    A block is the smallest unit of storage in Oracle. A block is usually a multiple of
the operating-system block size. A data block corresponds to a specific number of bytes
of storage space. The block size is based on the parameter DB_BLOCK_SIZE and is deter-
mined when the database is created.

422	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Extents    An extent is the next level of logical grouping. It is a grouping of contiguous
blocks, allocated in one chunk. Because they are allocated in contiguous chunks, extents
cannot spawn multiple data files.

Segments    A segment is a set of extents allocated for logical structures such as tables, indexes,
clusters, table partitions, materialized views, and so on. Whenever you create a logical struc-
ture that stores data, Oracle allocates a segment, which contains at least one extent, which in
turn has at least one block. A segment can be associated to only one tablespace; the extents
of a segment may belong to more than one datafile. A segment is created when a table, index,
materialized view, or a clustered table is created. When partitioned tables or partitioned
indexes are created, one segment is created for each partition.

Figure 8.17 shows the relationship between data files, tablespaces, segments, extents,
and blocks.

A schema is a logical structure that groups the database objects. A schema is not directly
related to a tablespace or to any other logical storage structure. The objects that belong to
a schema can reside in different tablespaces, and a tablespace can have objects that belong
to multiple schemas. Schema objects include structures such as tables, indexes, synonyms,
procedures, triggers, database links, and so on.

The DBA sees and manages the physical structure and logical structures of the database,
whereas the programmer or a database user sees only the logical storage structures such as
tables, indexes, and materialized views. They are not interested or not required to know to
which tablespace the table belongs or where the tablespace data files are stored.

F igur e 8 .17     Logical database structure

Database

Tablespace
1

Tablespace
2

SYSTEM
Tablespace

Segment 1 Segment 2

Segment 3

SYSAUX
Tablespace

Tablespace Segment

Extent 1

Extent 2

Block

	 Oracle Database 12c Architecture	 423

Exploring the Data Dictionary for Physical and Logical Structures

The Oracle Data Dictionary is discussed in detail in Chapter 9. You may do this exercise after
the database is created, but we wanted to document the information where it is relevant.

Here are a few data dictionary objects you can use to explore and help you understand
the physical and logical structures more. You can use SQL*Plus or SQL Developer to
explore. However, because SQL Developer shows a spreadsheet-like output, we recom-
mend that you use SQL Developer for improved readability; just execute SELECT * FROM
<dictionary_view> in the Worksheet.

Physical Storage Structures

Use the following v$ and DBA views to explore your database’s physical storage.

Control Files
V$CONTROLFILE

Redo Log Files
V$LOG

V$LOGFILE

Data Files—The tablespace number (V$) or name (DBA) links a data file to its logical stor-
age structure

V$DATAFILE

V$TEMPFILE

DBA_DATA_FILES

DBA_TEMP_FILES

Logical Storage Structures

Use the following DBA views to explore the logical storage structures, and see how
they are linked to physical storage. All of the views listed here have a file number col-
umn that ties the tablespace, segment, or extent back to its physical storage.

Tablespaces

DBA_TABLESPACES

Segments—The tablespace name links to DBA_TABLESPACES, segment’s parent in the
relational model for database logical structures.

DBA_SEGMENTS

424	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Extents—The tablespace name ties extents to DBA_TABLESPACES, and the segment
owner, segment type, and segment name combination ties each extent to a segment in
the relational model.

DBA_EXTENTS

Summary
This chapter introduced you to the Oracle Database 12c architecture with the components that
constitute an Oracle database server. Most popular databases today are relational databases.
Relational databases consist of data composed of a set of relational objects. Data is stored in
tables as rows and columns. Oracle is a relational database. SQL is the language used to man-
age and administer Oracle databases. Several tools are available to administer Oracle Database
12c. The most common ones used by DBAs are SQL*Plus and Oracle Enterprise Manager.
SQL Developer is a GUI tool that can be used to interact with Oracle Database 12c using sev-
eral DBA functions readily coded in menu items.

The Oracle Database 12c architecture consists of three major components: memory, pro-
cesses, and storage. A user process initiates a connection with the Oracle database and starts
a server process. The server process is responsible for performing the tasks on the database.
The memory structures and background processes together are an Oracle instance. The server
process communicates with the memory structure known as the system global area. The SGA
consists of a shared pool, database buffer cache, and redo log buffer. The shared pool also
includes components such as a Java pool, large pool, result cache, and streams pool.

There are many types of background processes, each performing a specific job to maintain
and manage the database instance. All databases have at least nine background processes:
the important ones are database writer, checkpoint writer, log writer, process monitor, and
system monitor. Depending on the configuration of the database, there may be other back-
ground processes such as archiver, ASM balancing, and so on.

The physical data structure consists of several files stored on disk. The most important file
is the control file, which keeps track of several important pieces of information, such as data-
base name, names of data files and redo log files, backup information, and so on. The CKPT
process is responsible for keeping the control file updated. Redo log files contain information
from the redo log buffer. The LGWR process is responsible for writing the redo log buffer
contents to the redo log files. Oracle metadata and application data are stored in data files.
The DBWn process is responsible for writing dirty blocks from the database buffer cache to
the data files.

Looking at the logical structure of the database, a tablespace is the highest level of logical
unit. A tablespace consists of several segments. A segment consists of one or more extents.
An extent is a contiguous allocation of blocks. A block is the smallest unit of storage in an
Oracle database.

	 Exam Essentials	 425

Exam Essentials

Describe common Oracle tools and their uses.    Know which tools are available for
connecting to and interacting with an Oracle database. Understand how these tools
differ from one another.

Understand the Oracle architecture components.    Be able to describe the logical and physical
components of the Oracle architecture and the components that make up each. Know the rela-
tionship between segments, extents, database blocks, and operating-system blocks.

Understand the difference between a traditional Oracle database and a multitenancy
database.    Multitenancy databases are known as container databases and can have one
or more pluggable databases. A traditional database is one database.

Know the background processes.    Understand the Oracle Database 12c background processes
and how they are used. The important ones to know are DBWn, CKPT, LGWR, PMON,
SMON, ARCn, ASMB, RBAL.

Identify the three types of database files that constitute the database.    Understand the
purposes and key differences between the control files, data files, and redo log files.

Explain and categorize the SGA memory structures.    Identify the SGA areas along with
the subcomponents contained within each of these areas.

426	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

Review Questions

	 1.	 Choose two SGA structures that are required in every Oracle instance.

	 A.	 Large pool

	 B.	 Shared pool

	 C.	 Buffer cache

	 D.	 Java pool

	 2.	 Which statement is true?

	 A.	 A database can have only one control file.

	 B.	 A database must have at least two control files.

	 C.	 A database may have zero or more control files.

	 D.	 A database must have at least one control file.

	 3.	 Which component is configured at database startup and cannot be dynamically
managed?

	 A.	 Redo log buffer

	 B.	 Streams pool

	 C.	 Java pool

	 D.	 Shared pool

	 E.	 None of the above

	 4.	 Which component is not part of an Oracle instance?

	 A.	 System global area

	 B.	 Process monitor

	 C.	 Control file

	 D.	 Shared pool

	 E.	 None

	 5.	 Which background process guarantees that committed data is saved even when the
changes have not been recorded in data files?

	 A.	 DBWn

	 B.	 PMON

	 C.	 LGWR

	 D.	 CKPT

	 E.	 ARCn

	 Review Questions	 427

	 6. 	User John has updated several rows in a table and issued a commit. What does the
DBWn (database writer) process do at this time in response to the commit event?

	 A.	 Writes the changed blocks to data files.

	 B.	 Writes the changed blocks to redo log files.

	 C.	 Triggers checkpoint and thus LGWR writes the changes to redo log files.

	 D.	 Does nothing.

	 7.	 Which of the following best describes a RAC configuration?

	 A.	 One database, multiple instances

	 B.	 One instance, multiple databases

	 C.	 Multiple databases plugged in from multiple servers

	 D.	 Multiple databases, multiple instances

	 8.	 Which component of the SGA contains the parsed SQL code?

	 A.	 Database buffer cache

	 B.	 Dictionary cache

	 C.	 Library cache

	 D.	 Parse cache

	 9.	 Which tasks are accomplished by the SMON process? (Choose all that apply.)

	 A.	 Performs recovery at instance startup

	 B.	 Performs cleanup after a user session is terminated

	 C.	 Starts any server process that stopped running

	 D.	 Coalesces contiguous free space in dictionary-managed tablespaces

	10.	 Choose the best statement from the options related to segments.

	 A.	 A contiguous set of blocks constitutes a segment.

	 B.	 A nonpartitioned table can have only one segment.

	 C.	 A segment can belong to more than one tablespace.

	 D.	 All of the above are true.

	11.	 From the following list, choose two processes that are optional in an Oracle Database
12c database.

	 A.	 MMON

	 B.	 MMNL

	 C.	 ARCn

	 D.	 MMAN

428	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

	12.	 Which SGA component will you increase or configure so that RMAN tape backups do
not use memory from the shared pool?

	 A.	 Java pool

	 B.	 Streams pool

	 C.	 Recovery pool

	 D.	 Large pool

	13.	 When a user session is terminated, which processes are responsible for cleaning up and
releasing locks? (Choose all that apply.)

	 A.	 DBWn

	 B.	 LGWR

	 C.	 MMON

	 D.	 PMON

	 E.	 SMON

	14.	 The LRU algorithm is used to manage what part of the Oracle architecture?

	 A.	 Users who log on to the database infrequently and may be candidates for being
dropped

	 B.	 The data file that stores the least amount of information and will need the least
frequent backup

	 C.	 The tables that users rarely access so that they can be moved to a less active
tablespace

	 D.	 The shared pool and database buffer cache portions of the SGA

	15.	 Two structures make up an Oracle server: an instance and a database. Which of the
following best describes the difference between an Oracle instance and a database?

	 A.	 An instance consists of memory structures and processes, whereas a database is
composed of physical files.

	 B.	 An instance is used only during database creation; after that, the database is all
that is needed.

	 C.	 An instance is started whenever the demands on the database are high, but the
database is used all the time.

	 D.	 An instance is configured using a pfile, whereas a database is configured using
a spfile.

	 Review Questions	 429

	16.	 Which of the following is the proper order of Oracle’s storage hierarchy, from smallest
to largest?

	 A.	 Operating-system block, database block, segment, extent

	 B.	 Operating-system block, database block, extent, segment

	 C.	 Segment, extent, database block, operating-system block

	 D.	 Segment, database block, extent, operating-system block

	17.	 The DBA unknowingly terminated the process ID belonging to the PMON process
of Oracle Database 12c database using the kill -9 command on Unix. Choose the
best answer:

	 A. 	Oracle spawns another PMON process automatically.

	 B.	 The database hangs, and the DBA must manually start a PMON process.

	 C.	 If the database is in ARCHIVELOG mode, Oracle automatically starts another
PMON process and recovers from the database hang.

	 D.	 The instance crashes and needs to be restarted.

	18.	 When an incremental checkpoint happens in a database, which file(s) are updated with
the checkpoint position? Choose all options that are correct.

	 A. 	Data files

	 B.	 Control files

	 C.	 Initialization Parameter Files

	 D.	 Redo log files

	 E.	 Archive log files

	19.	 User Isabella updates a table and commits the change after a few seconds. Which of the
following actions are happening in the database? Order them in the correct sequence
and ignore the actions that are not relevant.

	 A.	 Oracle reads the blocks from data file to buffer cache and updates the blocks.

	 B.	 Changed blocks from the buffer cache are written to data files.

	 C.	 The user commits the change.

	 D.	 LGWR writes the changed blocks to the redo log buffer.

	 E.	 The server process writes the change vectors to the redo log buffer.

	 F.	 LGWR flushes the redo log buffer to redo log files.

	 G.	 A checkpoint occurs.

430	 Chapter 8  ■  Introducing Oracle Database 12c Components and Architecture

	20.	 Querying the V$LOG file shows the following information. Which redo group files are
required for instance crash recovery?
SQL> select GROUP#, ARCHIVED, STATUS from V$LOG;
 GROUP# ARC STATUS
---------- --- ----------------
 1 NO CURRENT
 2 NO INACTIVE
 3 NO INACTIVE
 4 NO ACTIVE

	 A.	 Group 1 and 4

	 B.	 Group 2 and 3

	 C.	 Groups 1 through 4

	 D.	 Group 1

	 E.	 Group 4

Chapter

9
Creating and
Operating Oracle
Database 12c

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Oracle Software Installation Basics

■■ Plan for an Oracle Database software installation.

✓✓ Installing Oracle Database Software

■■ Install the Oracle Database software.

✓✓ Creating an Oracle Database Using DBCA

■■ Create a database by using the Database Configuration

Assistant (DBCA).

■■ Generate database creation scripts by using DBCA.

■■ Manage database design templates by using DBCA.

■■ Configure database options by using DBCA.

✓✓ Oracle Database Instance

■■ Understand initialization parameter files.

■■ Start up and shut down an Oracle database instance.

■■ View the alert log and access dynamic performance views.

 As a DBA, you are responsible for creating and manag-
ing Oracle databases and services within your organization.
Oracle provides a comprehensive and cohesive set of tools to

help DBAs perform these tasks. It is important for you to understand these tools and how
to use them properly.

Oracle uses Java-based tools to manage Oracle Database 12c because Java gives the same
look and feel to the tools across all platforms. In this chapter, we will cover how to use the
Oracle Database Configuration Assistant tool, which is used to create and delete Oracle
databases, and how you can use templates to create databases. DBCA can also be used to
modify the database options installed.

After the database is created using DBCA, it will be up and running. We will then cover
how to shut down and restart the database for some configuration changes, apply patches,
and perform server maintenance. We’ll describe the various database startup and shutdown
options and explain the circumstances under which you use these options.

You will also learn more about the Oracle data dictionary, including how the dictionary
is created, where it is created, and so on. Finally, we will cover initialization parameter files
and discuss how you can use them to manage, locate, and view the database alert log.

Oracle Database 12c Software Installation
We will begin this chapter with Oracle’s software installation tool, Oracle Universal Installer
(OUI). OUI is a Java-based graphical tool used to install Oracle software. Because it is written
in Java, OUI looks and feels the same on all platforms. OUI is included with every software
installation distribution media.

OUI also has the option to create an Oracle database along with the software install. Before
software installation and database creation can occur, certain operating-system requirements
must be met. As the DBA, you must properly plan the Oracle database software installation.

The examples in this section are for a Linux server, but most of the con-
cepts apply equally to Windows platforms. Any significant differences
between Linux and Windows are noted.

	 Oracle Database 12c Software Installation	 433

Planning the Oracle Database 12c Software Install
The base release of Oracle database software and other Oracle products can be down-
loaded from Oracle’s software delivery cloud location https://edelivery.oracle.com.
You must have a valid support identification number to download patches and patch sets
from My Oracle Support (MOS) location at http://support.oracle.com, widely known
as Metalink.

Oracle Database 12c software is available on various platforms: Unix, Linux, and Windows
(64-bit edition only). This chapter will show examples of downloading and installing on a
Linux platform.

Reviewing the Documentation
Before beginning an installation of Oracle Database 12c, you need to review several docu-
ments so that you completely understand the installation requirements. These documents
include the following:

■■ The installation guide for your operating system

■■ The general release notes for the version of Oracle you are installing

■■ The operating-system-specific release notes for the version of Oracle you are installing

■■ Any quick-start installation guides

Before you begin, review each of these documents so that you are thoroughly familiar
with the installation process and any known associated issues.

All of these documents are available on Oracle’s Documentation Library
website located at http://www.oracle.com/pls/db121/homepage.

Reviewing the System Requirements
The next task is to review your server-hardware specifications to see whether they meet
or exceed the specifications in the install documentation. Minimally, this means you must
confirm that your server meets the installation requirements in these four areas:

■■ The operating system is of the proper release level.

■■ The server has adequate memory to perform the install and run an instance.

■■ The server has adequate CPU resources to perform the install and run an instance.

■■ The server has adequate disk storage space to perform the install and run a database.

Table 9.1 shows the recommended minimum hardware requirements for an Oracle
Database 12c installation.

https://edelivery.oracle.com
http://support.oracle.com
http://www.oracle.com/pls/db121/homepage

434	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Tabl e 9 .1    Recommended Hardware Requirements for Oracle Database 12c

Hardware Component Recommended Requirement

Memory 1GB minimum, 2GB+ recommended

Swap space 1.5GB or equal to the amount of RAM

Temp space 1GB of free space in the /tmp directory on Unix systems

Free disk space 6.4GB of disk space

The Oracle Universal Installer, which is described in the subsequent section “Using the
Oracle Universal Installer,” will perform a quick system check prior to starting an installa-
tion to see whether your system meets the specific requirements for your operating system.
If your system does not meet the minimum requirements, the installer will return an error
and abort.

On Unix systems, you must examine one critical system requirement before installation:
the Unix kernel parameters. Unix kernel parameters are used to configure the Unix operating-
system settings for operating-system-level operations that impact Oracle-related activities such
as the following:

■■ The maximum size allowed for a sharable memory segment on the server, which can
impact the system global area (SGA) size

■■ The maximum number of files that can be open on the server at one time, which
impacts the total number of users and files in the database

■■ The number of processes that can run concurrently on the server, which impacts the
number of users and the ability to use some optional features

The systems administrator usually makes Unix kernel changes, which may require a
server reboot in order to take effect. The install guide and/or release notes provide details
on the appropriate kernel setting for your operating system. In addition to kernel settings,
the system administrator may have to configure the server’s disk storage system and backup
hardware before installing the Oracle software.

Planning Your Install
Once you review the documentation and system requirements, you are ready to begin
planning your installation. This is the last step before actually running the Oracle
Universal Installer.

One way to simplify the installation planning is to adopt the Optimal Flexible Architecture
(OFA) model that Oracle recommends as a best-practice methodology for managing Oracle
installations in Unix environments (and to a lesser extent, Windows environments). The OFA
model was designed to produce database installations that are easier to manage, upgrade, and

	 Oracle Database 12c Software Installation	 435

back up, while at the same time minimizing problems associated with database growth. The
OFA model addresses four areas:

■■ Naming conventions for Unix file systems and mount points

■■ Naming conventions for directory paths

■■ Naming conventions for database files

■■ Standardized locations for Oracle-related files

In addition to using the OFA model, planning your install also means answering the
following questions:

■■ Which operating-system user will own the installed Oracle software?

■■ On which disk drive and directory will the Oracle software be installed?

■■ What directory structure will be used to store the Oracle software, its related configu-
ration files, and the database itself?

■■ How should the database files be laid out so that the maximum performance benefits
will be realized?

■■ How should the database files be laid out so that the maximum recoverability benefits
will be realized?

Creating the Oracle User Account
On Unix systems, every file is owned by an operating-system user account. Therefore, before
you can install the Oracle software, you must create a Unix user account that will own the
Oracle binaries. The username for this account can be anything, but common Oracle user-
names include oracle, ora12c, and ora121. Each Unix user is also in one or more operating-
system groups. Create a new operating-system group for the Oracle Unix user. This group is
usually called dba, and you will be prompted for it later during the installation.

On Windows systems, you can choose an account that has administrative privileges on
the server.

On Linux platforms, Oracle provides a preinstall RPM. As a root user, you
can install the RPM using yum install oracle-rdbms-server-12cR1-
preinstall. This RPM creates the required users and groups to install
Oracle software as well.

Oracle Inventory
Oracle maintains an inventory of all software installed on the server using the Oracle
Inventory. On Unix systems, the Oracle Inventory location is identified by the file /etc/
oraInst.loc. The /etc/oraInst.loc file typically has two lines:

inventory_loc=central_inventory_location
inst_group=group

436	 Chapter 9  ■  Creating and Operating Oracle Database 12c

The central_inventory_location is the directory where the Oracle Inventory is saved.
All users installing Oracle software on this server should have access to this directory. The
group is the install group where the software install users belong, thus they have privilege
to create and update the central inventory. The inventory group (typically named oinstall
on Unix) needs to be created before the software install.

On Windows systems, the central inventory is located under C:\Program Files\Oracle\
Inventory. On Windows systems the inventory group is always named ORA_INSTALL.
The ORA_INSTALL group contains all the Oracle Home Users for all the Oracle Homes
on the server. The central inventory directory and group are automatically created by the
installer on windows.

Job Role Separation Using OS Groups
Oracle Database 12c can use operating-system authentication to connect to a specific data-
base, and OS groups may be configured for different job roles and separation of duties.
Oracle Database 12c installation requires one mandatory group (the default group where
the software install user belongs in Unix, usually named dba), which is the OSDBA group.
Members belonging to this group can authenticate to the database without a password
using the / AS SYSDBA login option.

Table 9.2 gives an overview of the groups identified by Oracle Database 12c. All groups
are subsets of OSDBA, meaning members belonging to the OSDBA group can perform all
job role functions. In Table 9.2, the <hn> indicates the home name used for software instal-
lation. The privileges are specific to the databases running under the specific Oracle Home.

Tabl e 9 . 2    Job Role Separation Groups

Job Role System Privilege Windows Group Typical Unix Group

OS DBA – OS users with
DBA privileges

SYSDBA ORA_<hn>_DBA OSDBA (dba)

Operator – Limited
administrative privileges

SYSOPER ORA_<hn>_OPER OSOPER (oper)

Backup and Recovery
Admin

SYSBACKUP ORA_<hn>_
SYSBACKUP

OSBACKUPDBA (backupdba)

Data Guard Admin SYSDG ORA_<hn>_SYSDG OSDGDBA (dgdba)

Encryption Key
Management Admin

SYSKM ORA_<hn>_SYSKM OSKMDBA (kmdba)

	 Oracle Database 12c Software Installation	 437

It is possible to install the Oracle Database 12c software without creating
any additional groups on Unix. Only one group is required, typically named
dba, which can be used for the software install inventory group, the OSDBA
group, and the various job role authentication groups, although that is not
the recommended configuration. On Windows, Oracle installer automati-
cally creates the groups.

Naming Volumes and Mount Points
Unless Oracle’s Automatic Storage Management feature or raw devices are used, almost all
files on a Unix server are stored on logical storage areas called volumes that are attached, or
mounted, to directories, or mount points, by the Unix system administrator. The OFA model
suggests that these mount points be given a name that consists of a combination of a character
and numeric values. Common OFA mount points for Unix systems include the following:

■■ /u01
■■ /mnt01
■■ /du01
■■ /d01

Notice that the naming convention for these mount points is generic. The mount point’s
name has no relationship to what type of file it will ultimately hold. The OFA model recom-
mends this generic naming convention because it provides the greatest flexibility for future
management of the server’s file systems.

The concept of mount points does not apply directly to Windows environ-
ments. Windows environments assign a standard Windows drive letter
(for example, C:, D:) to each volume.

Creating OFA Directory Paths
The OFA model prescribes that the directory structures under the mount points use a con-
sistent and meaningful naming convention. In addition to this naming convention, the OFA
model assigns standard operating-system environment variable names to some of these direc-
tory paths as nicknames to aid in navigation and to ensure the portability of the directory
structures in the event that they need to be moved to new file systems.

Table 9.3 shows the two operating-system environment variables used in the OFA
model, along with the directories with which the variables are associated, for Unix systems.

438	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Tabl e 9 . 3    Comparison of Unix Directory Paths and Variables

Environment Variable Directory Path Description

$ORACLE_BASE /u01/app/oracle Top-level directory for Oracle
software on the host server

$ORACLE_HOME /u01/app/oracle/
product/12.1.0/dbhome_1

Directory into which the Oracle 12c
software will be installed

Table 9.4 shows the variables and directories used in the OFA model for Windows
systems.

Tabl e 9 . 4    Comparison of Windows Directory Paths and Variables

Environment Variable Directory Path Description

%ORACLE_BASE% C:\app\oracle12c Top-level directory for Oracle
software on the host server

%ORACLE_HOME% C:\app\oracle12c\
product\12.1.0\dbhome_1

Directory into which the Oracle 12c
software will be installed

These environment variables are used extensively when Oracle systems are installed,
patched, upgraded, and managed. Table 9.5 shows several examples of how these variables
define the locations of other Oracle directories.

Tabl e 9 .5    Common Uses of ORACLE_BASE and ORACLE_HOME

Directory Description

$ORACLE_HOME/dbs Default location for password file and parameter file
on Unix systems

%ORACLE_HOME%\database Default location for parameter file on Windows
systems

$ORACLE_BASE/admin/PROD/pfile Location of the pfile for a database called PROD on
Unix systems

%ORACLE_BASE%\admin\PROD\pfile Location of the pfile for a database called PROD on
Windows systems

	 Oracle Database 12c Software Installation	 439

Directory Description

$ORACLE_HOME/network/admin Default location for Oracle Net configuration files on
Unix systems

%ORACLE_HOME%\network\admin Default location for Oracle Net configuration files on
Windows systems

$ORACLE_HOME/rdbms/admin Location of many Oracle database-configuration
scripts on Unix systems

%ORACLE_HOME%\rdbms\admin Location of many database-configuration scripts on
Windows systems

For Unix systems, Table 9.5 says $ORACLE_HOME/dbs is the default location for the pfile and
spfile but then says that pfiles should be stored in $ORACLE_BASE/admin/<instance>/pfile.
Windows systems are similar. This implies that the same file needs to be in two locations at
the same time. You can accomplish this using two tricks; which one you use depends on your
operating system.

The following examples use 12CR11 as the database (and instance) name. On Unix systems,
you can create the pfile in the $ORACLE_BASE/admin/12CR11/pfile directory, and then create
a symbolic link in $ORACLE_HOME/dbs that points to the file in $ORACLE_BASE/admin/12CR11/
pfile using this syntax:

ln -s $ORACLE_BASE/admin/12CR11/pfile/init12CR11.ora
 $ORACLE_HOME/dbs/init12CR11.ora

On Windows systems, you can create the pfile in the %ORACLE_BASE%\admin\12CR11\pfile
directory, and then put another pfile in %ORACLE_HOME%\dbs that contains a single entry that
points to the other pfile in %ORACLE_BASE%\admin\12CR11\pfile like this:

ifile=D:\oracle\admin\12CR11\pfile\init12CR11.ora

Using these techniques allows you to put the initialization parameter files in their default
locations under $ORACLE_HOME but also in their desired location under $ORACLE_BASE.

Why should the real copy of the pfiles be stored under $ORACLE_BASE instead of $ORACLE_
HOME? Well, it is a good idea to keep only version-specific files under $ORACLE_HOME. That way,
when you eventually uninstall the software from an old $ORACLE_HOME, you won’t lose your
carefully tailored initialization files.

In addition to $ORACLE_BASE and $ORACLE_HOME, you should also be aware of a few other
non-OFA-related operating-system environment variables on Unix and Windows systems.
These are described in Table 9.6.

440	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Tabl e 9 .6    Common Non-OFA Environment Variables

Operating-System Variable Description

$ORACLE_SID Defines which instance a Unix user session should be
connecting to on the server.

%ORACLE_SID% Defines which instance a Windows user session should
connect to on the server.

$TNS_ADMIN Specifies where the Oracle Net configuration files are
stored on Unix systems—if they are to be stored outside
their default location of $ORACLE_HOME/network/admin.

%TNS_ADMIN% Specifies where the Oracle Net configuration files are stored
on Windows systems—if they are to be stored outside their
default location of %ORACLE_HOME%\network\admin.

$TWO_TASK Establishes a default Oracle Net connection string that will
be used if none is specified by the user.

%LOCAL% Establishes a default Oracle Net connection string that will
be used if none is specified by the user.

$LD_LIBRARY_PATH Specifies the locations of the Oracle shared object
libraries. This variable usually points to $ORACLE_HOME/lib
on Unix systems.

$PATH Tells the operating system in which directories to look for
executable files on Unix systems.

%PATH% Tells the operating system in which directories to look for
executable files on Windows systems.

There is no need to set any of these variables for an Oracle Database 12c install; setting
ORACLE_BASE is recommended, but is not mandatory. These variables are important when
you’re ready to create a database.

Using the Oracle Universal Installer
You use the Oracle Universal Installer (OUI) to install and configure the Oracle Database
12c software. The OUI is a Java-based application that provides the same installation look
and feel no matter which operating system the install is being run on. The OUI process
consists of seven primary operations:

■■ Unzipping Software and starting the OUI

■■ Performing preinstallation checks

	 Oracle Database 12c Software Installation	 441

■■ Responding to server-specific prompts for file locations, names, and so on

■■ Selecting the products you want to install

■■ Copying the files from the install media to $ORACLE_HOME
■■ Compiling the Oracle binaries

■■ Performing post-install operations using configuration assistants

Unzipping Software and Starting the OUI
To begin the install process, unzip the software downloaded from the Oracle Software
Delivery Cloud. OUI installations on Unix systems require you to set the X Windows
DISPLAY environment variable; otherwise, the OUI will not appear.

Once you unzip both parts of the Oracle Database 12c Release 1 (12.1.0.1.0) software, you
should see the database directory. The OUI is invoked by running the SETUP.EXE program on
Windows or the runInstaller program on Unix and Linux platforms.

Performing Preinstallation Checks
Start the OUI using the runInstaller command, as shown in Figure 9.1, on the
Linux platform.

F igur e 9 .1     Invoking the Oracle Database 12c install

Notice that the output shows that the OUI checked the server’s operating-system version,
available RAM, temporary and swap space, and so on.

If necessary, you can turn off the system verification that occurs
prior to the installation by using the -ignoreSysPrereqs option of
the runInstaller command.

Once the preinstallation tests are completed and passed, the OUI displays the initial OUI
screen shown in Figure 9.2.

Provide an email address and Oracle support password if you have one and would like to
receive updates. For this install, uncheck the I Wish To Receive Security Updates check box
and click Next. The second screen is also applicable if you have an Oracle support account
to download software updates. Software updates are recommended; they include critical
patches released for the software.

442	 Chapter 9  ■  Creating and Operating Oracle Database 12c

F igur e 9 . 2     The initial OUI installation screen

Responding to OUI Prompts
The next OUI screen, Select Installation Option, provides the various options available for the
software installation. Figure 9.3 shows the installation options screen, along with the Help
window display. You can click on the Help button in any screen to get context-sensitive help.

Based on the option chosen in this screen, the rest of the screens will change appropriately.
The options provided in this screen are

■■ Create And Configure A Database: This option installs the software and creates a new
database. If you choose this option, you can create a database with minimal configura-
tion (desktop class) or opt for an advanced configuration (server class) database.

■■ Install Database Software Only: This option installs only the database binaries and
does not create a database. Because this chapter also discusses the database creation,
this section will show only the software installation.

■■ Upgrade An Existing Database: This option installs the database software and upgrades
an existing database to Oracle Database 12c.

To create a new database in an existing software home, use the Database Configuration
Assistant (DBCA) tool; to upgrade a previous version of the database to a current software

	 Oracle Database 12c Software Installation	 443

version, use the Database Upgrade Assistant (DBUA) tool. The database creation screens
and database upgrade screens that appear when you choose option 1 or 3 are discussed in
detail later in the book. Here you will review the screens and options in option 2: Install
Database Software Only. Select the Install Database Software Only option, and the next
screen will prompt the grid options shown in Figure 9.4.

F igur e 9 . 3     The Select Installation Option screen

F igur e 9 . 4     The Grid Installation Options screen

444	 Chapter 9  ■  Creating and Operating Oracle Database 12c

The Grid Installation screen provides the option to install software into a cluster for use
with a Real Application Cluster (RAC) database. The RAC installation of Oracle Database
12c software is possible only if the server is part of a cluster. Because RAC is not part of the
OCA exam, you should choose Single Instance Database Installation for now. When single
instance installation is chosen, you have the option to install languages. By default only one
language is installed (US English), but you can install as many languages as you want the
product to run on. Install the supported languages used by your users.

Oracle database can be installed in one of four editions, as shown in Figure 9.5, based
on the license purchased and the requirements. Figure 9.5 shows only three options, because
Personal Edition is not available on Linux.

F igur e 9 .5     The Select Database Edition screen

■■ Enterprise Edition: This installation type is designed for enterprise-level applications. It is
engineered for mission-critical, high-security online transaction processing (OLTP) and
data warehousing environments. If you select this installation type, then all separately
licensable Enterprise Edition options are installed.

■■ Standard Edition: This installation type is designed for department or workgroup-level
applications and for small and medium-sized enterprises (SMEs). It is engineered to pro-
vide core relational-database management services and options. It installs an integrated
set of management tools, full distribution, replication, web features, and facilities for
building business-critical applications.

■■ Standard Edition One (Desktop and Single Instance Installations Only): This installation
type is designed for department, workgroup-level, or web applications. From single-server
environments for small business to highly distributed branch environments, Oracle Data-
base Standard Edition One includes all the facilities necessary to build business-critical
applications.

	 Oracle Database 12c Software Installation	 445

■■ Personal Edition (Microsoft Windows Operating Systems Only): This installation type
installs the same software as the Enterprise Edition installation type, with the excep-
tion of the management packs. However, it supports only a single-user development and
deployment environment that requires full compatibility with Enterprise Edition and Stan-
dard Edition. Oracle RAC is not installed with Personal Edition.

The Specify Installation Location screen is where you specify the ORACLE_BASE and
ORACLE_HOME values. If you have defined these environment variables, they will be shown
here; if you haven’t, platform-specific default values will be shown.

The next screen is specific to Unix installations, where you can choose the groups
to identify the job roles discussed in the “Job Role Separation Using OS Groups” section.
See Figure 9.6. On Windows, the groups are automatically created by the OUI with stan-
dard names.

F igur e 9 .6     The Privileged Operating System Groups screen

If all the prerequisite checks are successful, the Privilege Checks screen is not shown and
OUI goes straight to Summary screen. If there are any prerequisite check issues, they will be
displayed, and you will be given the option to fix or ignore them. Even if there are no issues, to
help you better understand all of the prerequisite checks, we recommend clicking the Back but-
ton from the Summary screen to view the Prerequisite Checks screen, as shown in Figure 9.7.
The bottom portion of the screen shows what is checked as part of the prerequisite. Click on
each item to see the limit that the OUI checks each item against. Sometimes more information
is available when you click the More Details link.

The prerequisites checks are for disk space, memory, user and groups, open file and process
limits, Linux version and architecture, OS Kernel parameters, and OS Packages installed. You
have the option to fix errors as well as ignore errors and warnings. Ignore errors only if you are
sure ignoring will not impact the installation and ongoing operation. The Summary of installa-
tion options is shown for you to confirm before starting the installation. The same screen also
has a Save Response File button to save the options chosen in the install session to a file, and it
can be used to install Oracle Database 12c in a silent mode without going through the screens.
If you are satisfied with your selections, click the Next button to start copying and linking the
Oracle binaries to the $ORACLE_HOME directory.

446	 Chapter 9  ■  Creating and Operating Oracle Database 12c

F igur e 9 .7     The Perform Prerequisite Checks screen

Copying and Compiling Files
The OUI displays status information while the installation and setup is in progress. Once
the file-copy portion of the installation is complete, the OUI will begin linking the binaries
to create the executable files needed to make the Oracle Database 12c software run on the
server. On Unix systems, after the linking process, you are prompted to execute configura-
tion scripts as the super-user root from the Unix command line. The orainstRoot.sh script
creates the inventory location and necessary inventory directory.

On Unix and Linux platforms, the orainstRoot.sh script creates a file
named /etc/oraInst.loc, which has information about the Oracle
Inventory location and the software installation owner name.

The root.sh script should be executed as root. Executing the root.sh script copies some
files to a location outside $ORACLE_HOME and sets the permissions on several files inside and
outside $ORACLE_HOME. Once the root.sh script executes successfully, click OK to continue
the installation.

	 Using DBCA to Create an Oracle 12c Database	 447

One important file created by the root.sh script is the /etc/oratab file (the /var/opt/
oracle/oratab file on Solaris). When databases are created on this server, this file will have
information about the database and which Oracle Home directory is used by the database.

If you have multiple installations to perform, you can speed up the process
and minimize errors by building an OUI response file. This text file contains
all the necessary responses to the OUI prompts so that an unattended,
silent install is possible.

Once the root.sh script has completed, the OUI will perform some brief post-installation
configuration activities before displaying the End of Installation screen. Click the Close button
to exit the OUI and return to the Unix prompt.

Once the OUI is complete, you should have a completely installed and configured
$ORACLE_HOME. In the next section, you’ll use this software to create your first database.

Using DBCA to Create an
Oracle 12c Database
The Oracle Database Configuration Assistant (DBCA) is a Java-based tool used to cre-
ate Oracle databases. If you’ve been a DBA for a few years, you probably remember the
days of writing and maintaining scripts to create databases. Although it is still possible
to manually create a database, the DBCA provides a flexible and robust environment in
which you not only can create databases but also can generate templates containing the
definitions of the databases created. This provides you with the ease of using a GUI-based
interface with the flexibility of Oracle-generated XML-based templates that you can use to
maintain a library of database definitions.

You can also use the DBCA to add options to a running database or to remove a database.
In recent years, many die-hard command-line DBAs have switched to the DBCA tool to create
databases, mainly because of its flexibility and ease of use.

You can use the DBCA to create a database while the Oracle software is installed, or you
can invoke the DBCA later to manually create a database. In the following sections, we will
show you the steps necessary to create an Oracle database using the DBCA tool.

Invoking the Database Configuration Assistant
You can invoke the DBCA from a command line in the Unix environment or as an
application in a Windows environment. If you are using the Windows environment,
choose Start ➪ All Programs ➪ Oracle Home ➪ Configuration and Migration Tools ➪
Database Configuration Assistant.

448	 Chapter 9  ■  Creating and Operating Oracle Database 12c

If you are in a Unix environment or would prefer to work from the command line in
Windows, type dbca from the $ORACLE_HOME/bin location. The ORACLE_HOME variable must
be set appropriately before invoking dbca. Also, it is recommended to set the PATH variable
to include $ORACLE_HOME/bin so that all Oracle Database 12c tools can be invoked without
specifying or changing to the $ORACLE_HOME/bin directory.

After you invoke the DBCA, you should see the Operation screen, as shown in Figure 9.8.
The Operation screen will be different on a node that belongs to Real Application Cluster,
where you will have the option to create a single instance RAC database or a multinode RAC
database. Because RAC is not part of the certification exam, you will be using a node that is
not part of the RAC.

F igur e 9 . 8     The DBCA Database Operation screen

In the Database Operation screen, you can choose to create a database, configure
database options, delete a database, manage templates, and manage pluggable databases.
Table 9.7 lists and describes the DBCA database operation options.

Choose Create A Database, and click Next to open the Creation Mode screen. This gives
you two options to create the database. The Create Database With Default Configuration
option does not ask any more questions; it creates the database with minimal informa-
tion collected in the screen and utilizes default configuration. See Figure 9.9 for the DBCA
Creation Mode screen. (Note the number of screens on the left side; there is only one more

	 Using DBCA to Create an Oracle 12c Database	 449

before the summary when the default configuration is chosen.) You have to provide the
database name, database file-storage location, character set, and administrative password.
You can create a consolidated multitenant database by checking the Create As Container
Database option; if so, you will need to provide a pluggable database name.

Tabl e 9 .7    DBCA Database Management Options

Option Description

Create a Database Allows the step-by-step creation of a database. The
database can be created based on an existing template
or customized for the specific needs of the organization.

Configure Database Options Performs the necessary changes to move from a dedi-
cated server to a shared server. You can also add database
options that have not been previously configured for use
with your database.

Delete a Database Completely removes a database and all associated files.

Manage Templates Manages database templates. The database templates
are definitions of your database configuration saved in an
XML file format on your local hard disk. You can choose
from several predefined templates, or you can create cus-
tomized templates.

Manage Pluggable Databases This option enables you to manage pluggable databases.
Pluggable or container databases allow you to consolidate
multiple databases into a multitenant database. Container
databases are not part of the OCA objectives at the time of
writing this book.

The Advanced Mode option provides more customizable options to create the database.
Choose the Advanced Mode to customize and help you learn the database creation options.
Clicking Next will bring up the database template screen. In the following sections, we will
discuss database templates and the various screens in the DBCA to create a database.

Database Templates
The DBCA comes with two preconfigured database templates. These XML-based docu-
ments contain the information necessary to create the Oracle Database 12c database. You
can choose one of these predefined templates, or you can build a custom database definition.
The predefined database templates are Data Warehouse and General Purpose or Transaction
Processing (see Figure 9.10). These templates were designed to create databases that are opti-
mized for a particular type of workload. When you choose Custom Database, you will have
more flexibility to create tablespaces and decide which components to install. The screens that
are different when choosing the Custom Database option are identified later in the section.

450	 Chapter 9  ■  Creating and Operating Oracle Database 12c

F igur e 9 . 9     The DBCA Creation Mode screen

F igur e 9 .10     The DBCA Database Template screen

To display the configuration definitions for these preconfigured databases, click Show
Details. Figure 9.11 shows the details of the General Purpose or Transaction Processing tem-
plate. Using the button at the bottom-right corner, you have the option of saving the details as
an HTML file. Before creating the database, you will get the summary information, and you
will have the option to save the database create scripts as well as a similar HTML file with all
the options and parameter values.

	 Using DBCA to Create an Oracle 12c Database	 451

Table 9.8 displays information about what is contained in the template definition shown
in Figure 9.11. When you scroll down, you’ll see multiple sections on the page. Each section
of the page gives further information about the template. For example, under the Common
Options section, you will see a list of each of the database options that gets installed for the
template definition you have chosen.

F igur e 9 .11     The DBCA Templates Details screen

Tabl e 9 . 8    Template Definition Details

Section Description

Database Components Displays which database components will be installed

Initialization Parameters Displays the common initialization parameters and their settings

Character Sets Displays character sets to be used

Control Files Displays filenames and locations for control files

Data Files Displays filenames and size for each tablespace

Redo Log Groups Displays group number and size

452	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Choosing the Custom Database template option on the DBCA Database Templates screen
gives you the most flexibility. For other templates, the database data files are prebuilt with
certain Oracle options. Also, the database block size cannot be changed from 8KB. A No
value in the Includes Datafiles column in the Database Templates screen indicates which
templates are fully customizable.

After you have chosen the appropriate template to use, click Next. The Database
Identification screen will appear.

Database Identification
The Database Identification screen (see Figure 9.12) allows you to enter the global database
name and Oracle system identification name (commonly referred to as the Oracle SID).

F igur e 9 .12     The DBCA Database Identification screen

The global database name is the fully qualified name of the database in the enterprise.
It is composed of a database name and a database domain, and it takes the format
database_name.database_domain—for example, sales.company.com.

In this example, the first part of the global database name, c12ncdb, is the name of your
database. Normally, the database domain is the same as the network domain within the enter-
prise. A global database name must be unique within a given network domain. The database
name can be up to eight characters and can include letters and numbers.

	 Using DBCA to Create an Oracle 12c Database	 453

The Oracle SID is the name of the instance associated with the database. Usually, this name
is the same as the database name. For RAC databases where multiple instances are associated
with the database, the instance name is usually different from the database name. The Oracle
SID can be a maximum of eight characters and must be unique on the server. For example,
you cannot have two Oracle SIDs called PROD on a single server.

The second section of the Database Identification screen is used to create the new database
as a multitenant container database. If you choose this option, specify the number of pluggable
databases and the pluggable database name for the CDB.

Management Options
After you provide the database name, you can configure Enterprise Manager to monitor
and manage your database using the DBCA Management Options screen (see Figure 9.13).

F igur e 9 .13     The DBCA Management Options screen

You can choose from two options: you can centrally manage all your databases from a
single management console if the Management Agent for Oracle Enterprise Manager Cloud
Control is installed on the database server, or you can manage each database individually
using the EM Database Express.

If the Oracle Management Agent is installed, the DBCA detects its presence and lists
the name of the agent service. You can select this name if you want this existing agent to
manage this database. Your new database then becomes one of the managed targets for
the existing agent.

If you don’t have an agent installed or are not doing centralized database management,
you can still use Enterprise Manager to monitor and maintain the database. Choose the
Configure Enterprise Manager (EM) Database Express check box if you want to install
Enterprise Manager and configure it locally.

Database Credentials
You use the Database Credentials screen (see Figure 9.14) to configure passwords for
the various administrative accounts that are set up automatically when the database is

454	 Chapter 9  ■  Creating and Operating Oracle Database 12c

configured. You can select the same password for all the critical accounts, or you can elect
to have a different password for each of the preconfigured accounts. How you elect to set
your passwords may depend on the policies of your particular organization. Typically, the
same critical passwords are set for these accounts, and the accounts that you won’t need to
access are locked.

F igur e 9 .14     The DBCA Database Credentials screen

The SYS user owns all the internal Oracle tables that constitute the data dictionary.
Normally, you should not perform any actions as the SYS user and should ensure that this
account password is properly protected. Also, don’t manually modify the underlying objects
owned by the SYS user.

SYSTEM is an administrative user that contains additional administrative tables and
views. Many DBAs use this account to administer the database, but ideally this account
should also be locked and secured.

Once you have completed the Database Credentials page, click Next. You will be presented
with the Network Configuration screen.

Network Configuration
The Network Configuration screen (shown in Figure 9.15) provides the opportunity to
define and start a listener, or to associate the new database with a listener.

Click Next to go to the Storage Locations screen.

	 Using DBCA to Create an Oracle 12c Database	 455

F igur e 9 .15     The DBCA Network Configuration screen

Storage Locations
The Storage Locations screen (see Figure 9.16) is used to define how you want to configure
the disk storage areas used by the database. You have two choices:

■■ File System

■■ Automatic Storage Management (ASM)

Let’s take a look at these options in more detail.

F igur e 9 .16     The DBCA Storage Locations screen

456	 Chapter 9  ■  Creating and Operating Oracle Database 12c

File System Storage

File system storage is a widely used type of storage configuration for many Oracle databases.
This type of storage definition relies on the underlying operating system to maintain and
manage the actual files you, as the DBA, define. When you choose this option, the DBCA
suggests a set of data filenames and directory locations for those files. You can modify this
information at the database-storage step later in the database-creation process.

The DBCA uses the Optimal Flexible Architecture (OFA) directory design for laying out
the suggested file locations. The OFA is an Oracle-recommended method for designing a
flexible directory structure and naming convention for your Oracle database files.

ASM Storage

Automatic Storage Management (ASM) is a type of storage mechanism available since
Oracle 10g. ASM is designed to relieve the burden of disk and storage management and
relies on Oracle to maintain your database storage. Instead of managing many individual
database files, ASM allows you to define disk groups for file management.

Using disk groups, you can define one or more groups of disks as a logical unit that Oracle
views as a single unit of storage. This concept is similar in nature to the way that some oper-
ating systems, including various versions of Unix, define volume groups.

Oracle manages the storage definitions of the database within a second instance used
exclusively by ASM to keep track of the diskgroup allocations. When you create a database
and select the ASM option in the Storage Locations screen, a series of screens guides you
through the process of defining the secondary ASM database instance. Every server using
ASM storage should be tied to an ASM instance running.

More about ASM Install and disks are discussed in Chapter 18, “Using Grid Infrastructure
and Data Movement Tools.” For now, choose File System on the DBCA Storage Locations
screen, and specify the file locations.

Depending on the type of storage option you choose, you may have more or fewer
location options available. You will be presented with three options on the Database
File Locations screen:

■■ Use Database File Locations From Template

■■ Use Common Location For All Database Files

■■ Use Oracle-Managed Files

The following are descriptions of each of these options.

Use Database File Locations From Template

If you choose one of the predefined database templates to use for this database, Oracle uses
the previously defined locations from the template as the basis for the database file locations.
You still have the opportunity later in the database-definition process to review and modify
the filenames and locations even if you choose this option.

Use Common Location For All Database Files

If you choose this option, you can specify a new directory for all your database files.
Again, even if you choose this option, you can change the filenames and locations later
in the database-definition process.

	 Using DBCA to Create an Oracle 12c Database	 457

Use Oracle-Managed Files

If you choose Use Oracle-Managed Files, you let the Oracle database manage the database
files. As a DBA, you just specify the location of the database files. The tasks of creating and
deleting files as required by the database are automatically managed—the DBA doesn’t need
to specify a data file’s location when creating a new tablespace or specify the size or filename.
Since you will not be presented with an option to change the storage characteristics of the data
files later when the Use Oracle-Managed Files option is chosen, you can have multiplexed redo
log files and control files by clicking the Multiplex Redo Logs and Control Files button. In the
pop-up window, specify the location of the redo log and control files.

You use the Recovery Related files section of the screen to set up database backup and
recovery related files. Similar to database files, you can save the recovery related files on
ASM or in a file system. You can configure several options, including specifying the flash
recovery area and size. You can also enable archive-log mode for the database and specify
archive-log parameters. Let’s take a look at each of these options.

Fast Recovery Area

Oracle fast recovery (popularly known as FRA) has been available since Oracle 10g. It is the
foundation of the automated disk-based recovery feature. Fast recovery is designed to simplify
your life in terms of Oracle backups by providing a centralized location to maintain and man-
age all the files related to database backups and recovery.

The fast recovery area is an area of the disk dedicated to the storage and management
of files needed for recovering an Oracle database. This area is completely separate from the
other components of the Oracle database, such as the data files, redo logs, and control files.

Oracle uses the fast recovery area to store and manage the archive logs. The Oracle
Recovery Manager (RMAN) uses the fast recovery area and ensures that the database is
recoverable based on the files being stored in the fast recovery area. All files necessary to
recover the database following a media failure are part of the fast recovery area.

You will explore the fast recovery area in more detail in Chapter 15, “Using
Backup and Recovery.”

You can specify the directory location and the size of the disk area you want to dedi-
cate to the fast recovery area. The default location of the directory provided by DBCA is
$ORACLE_BASE/fast_recovery_area. You can click File Location Variables on the Recovery
Configuration screen to display a summary of the Oracle file location parameters, including
the current setting of the ORACLE_BASE parameter. The size of the flash recovery area defaults
to 2,048MB and can be set larger or smaller by changing the Fast Recovery Size setting.

Enable Archiving

You also have the ability to enable the Oracle archive-logging option. Archive logging is
the mechanism Oracle uses to enable you to perform a point-of-failure recovery of a data-
base. To enable archive logging, select the Enable Archiving check box. By default, when
the DBCA is used to create a database, the archive logs are written to Fast Recovery Area.

458	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Once you enable the archiving checkbox, the button Edit Archive Mode Parameters will be
enabled. If you click this button, you are presented with a screen that enables you to set the
various parameters that are used to configure archive logging.

We will explore archive logging in more detail in Chapter 16, “Controlling
Resources and Jobs.”

After completing the Storage Locations screen, click Next. The Database Options screen
will appear.

Database Options
If you chose a predefined template (OLTP or Data Warehouse), you will be presented with
the Database Options screen shown in Figure 9.17. You will then have the option to add
sample schemas to the database, which is explored in the next section, “Sample Schemas
and Custom Scripts.”

F igure 9.17    The DBCA Database Options screen for a predefined database template

Certain options, such as Database Vault and Label Security, are not included in the
predefined templates; you have the option to add them if needed. If you chose to create

	 Using DBCA to Create an Oracle 12c Database	 459

a custom database on the Database Templates screen, you will be presented with the
Database Options screen shown in Figure 9.18.

You use the options on this screen to specify which Oracle Database 12c components
you want to install. Table 9.9 describes the components that can be included and configured
automatically by the DBCA.

Tabl e 9 . 9    Optional Oracle Components

Component Description

Oracle JVM Enables the database to run Java stored procedures,
Java Database Connectivity (JDBC), and SQLJ.

Oracle Text Provides support for multimedia content, search and
analyze documents.

Oracle Multimedia Enables you to store, manage, and retrieve images,
audio, video, or other heterogeneous media data in an
integrated fashion.

Oracle OLAP Provides facilities for creating and deploying online ana-
lytical processing applications.

Oracle Spatial Provides the components and infrastructure for Oracle
to manage and maintain geographic and spatial infor-
mation such as map coordinates.

Oracle Label Security Manages and controls access to sensitive information
within the database. This option will be enabled if
the Label Security option is installed in the Oracle
software home.

Oracle Application Express Oracle Application Express is a rapid web application
development tool using only a web browser and limited
programming experience.

Oracle Database Vault Addresses a security solution for regulatory compli-
ance and security controls. This option will be enabled
if the Database Vault option is installed in the Oracle
software home.

Oracle recommends installing the standard components such as JVM, Text, multimedia,
OLAP, and Application Express. You can pick the tablespace for storing the component
tables; the default shown by DBCA is good to keep as is.

460	 Chapter 9  ■  Creating and Operating Oracle Database 12c

F igur e 9 .18     The DBCA Database Options screen for a custom database template

Sample Schemas and Custom Scripts
The DBCA also lets you install examples of actual working databases. Oracle provides a set
of example schemas and applications that use these schemas. You can install these sample
schemas now or later by running a series of SQL scripts.

These sample schemas include the following:

■■ Human Resources (HR)

■■ Order Entry (OE)

■■ Product Media (PM)

■■ Sales History (SH)

■■ Queued Shipping (QS)

These schemas are designed to provide you with working examples of how to use and
implement a variety of features within Oracle. For example, the Product Media schema
shows how to use the Oracle Intermedia option, which is used to manage binary large
objects (BLOBs) such as images and sound clips.

If you choose to create the sample schemas, Oracle creates a tablespace called EXAMPLE and
stores all the necessary tables within that tablespace. Be aware that this adds about 130MB to

	 Using DBCA to Create an Oracle 12c Database	 461

your database definition. The examples shown in Chapters 1 through 7 mostly used the tables
that belonged to the sample schema HR.

You can also run custom scripts as part of the database-creation process. Click the
Custom Scripts tab on the Database Options screen to enter the names and locations of
the custom scripts that you want to run at database creation (see Figure 9.19).

F igur e 9 .19     The DBCA Database Options screen’s Sample Schemas tab

For example, you might want the DBCA to automatically create the schema and define
the tables that you will use for this database. You can create a script that performs all the
necessary work and have the DBCA run the script as part of the database-creation process.
The custom scripts are run using the command-line utility SQL*Plus, so you will have to
define a user ID and password within the body of the script. For example, your script might
contain the following line:

connect some_userid/some_password

This line directs Oracle to connect to the current Oracle database, which is determined
by your ORACLE_SID environment variable using the supplied user ID and password.

After completing the Database Options screen, click Next. You will then be presented
with the Initialization Parameters screen.

462	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Initialization Parameters
You use the Initialization Parameters screen to define the various initialization-parameter set-
tings used to configure size and set up the characteristics of the Oracle instance. The following
four tabs are categorized according to the parameters used to manage the Oracle instance:

■■ Memory

■■ Sizing

■■ Character Sets

■■ Connection Mode

Let’s take a look at each of these tabs and the settings you can manage on each one.

The Memory Tab

You use the options on the Memory tab to control the size of the database parameters that
configure the overall memory footprint of the Oracle instance (see Figure 9.20). There are
two general approaches to managing the memory database parameters: Oracle can set and
manage most of the parameters for you, or you can customize each of the initialization
parameters for your specific database.

F igur e 9 . 20     The Memory tab on the Initialization Parameters screen

If you choose Typical Settings, Oracle allocates memory to the various components
within the Oracle system global area (SGA) and process global area (PGA). This memory
allocation is automatic and is a percentage of the overall physical memory available on the
server. The default is 40 percent of the total memory available, but you can change this
setting by specifying the memory size or by sliding the bar to the appropriate size. If you
choose this setting, click the Show Memory Distribution button to see how Oracle will
allocate the memory between the SGA and the PGA (see Figure 9.21).

If you choose the Use Automatic Memory Management option under Typical Settings,
Oracle will manage the total memory automatically, including the SGA and PGA. The
memory distribution will show differently, as in Figure 9.22, if this option is selected.

	 Using DBCA to Create an Oracle 12c Database	 463

F igur e 9 . 21     Memory distribution for SGA and PGA for the Typical Settings

F igur e 9 . 22     Memory distribution for Automatic Memory Management

If you choose the Custom Settings option, you will again have two options:
Automatic Shared Memory Management and Manual Shared Memory Management.
With Automatic Shared Memory Management, you specify only the SGA size and the
PGA size. Each component inside the SGA is configured automatically by Oracle. With
Manual Shared Memory Management, you have full control over how much each of
the specific areas of the SGA will take. The main areas that you will configure are the
shared pool, buffer cache, Java pool, large pool, and PGA size. Each setting maps to a
specific Oracle parameter. Figure 9.23 shows the options.

F igur e 9 . 23     DBCA showing the Manual Shared Memory Management options

464	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Memory management and the parameters associated with memory are
discussed in detail in Chapter 14, “Maintaining the Database and Managing
Performance.”

The Sizing Tab

You use the options on the Sizing tab (see Figure 9.24) to configure the block size of your
database and the number of processes that can connect to this database. The Block Size
setting corresponds to the smallest unit of storage within the Oracle database. All storage
of database objects (tables, indexes, and so on) is governed by the block size. The block size
defaults to 8KB, but you can modify it in the custom template only. Once the database is
created, you cannot modify the database block size.

F igur e 9 . 24     The Sizing tab on the Initialization Parameters screen

The maximum and minimum size of an Oracle block depend on the operating system.
Generally, 8KB is sufficient for most transaction-oriented applications; larger block sizes,
such as 16KB and higher, are used in data warehouse–type applications. The block size can
be 2KB, 4KB, 8KB, 16KB, or 32KB.

The Processes setting specifies the maximum number of simultaneous operating-system
processes that can be connected to this Oracle database. If you are not sure of the number
of processes needed, you can start with the default value of 300. This parameter does have
a bearing on the overall size of your Oracle instance. The larger you make this number, the
more room Oracle must reserve in the SGA to track the processes.

The block size can be changed only for the Custom Database Template.
For the other predefined templates that include data files, you cannot
change the block size.

The Character Sets Tab

You use the options on the Character Sets tab to configure the character sets you will use
within your database (see Figure 9.25). You will determine the database character set, the
national character set, the default language, and the default date format.

	 Using DBCA to Create an Oracle 12c Database	 465

F igur e 9 . 25     The Character Sets tab on the Initialization Parameters screen

Specifying a database character set defines the type of encoding scheme that Oracle uses
to determine how characters are displayed and stored within your Oracle environment. The
character set you choose determines the languages that can be represented in your environ-
ment. It also controls other nuances, such as how your database interacts with your operating
system and how much storage is required for your data. The default character set is based on
the language setting of the operating system.

Specifying a national character set defines how your database represents Unicode characters
in a database that does not use a Unicode-enabled character set. You use the Default Language
setting to manage certain aspects of how your database represents information pertaining to
different locales. For example, this setting determines how your database displays time and
monetary values. AL16UTF16 and UTF8 are the only national character sets from which you
can choose.

Use the Default Language and Default Territory setting to specify how Oracle supports
certain locale-sensitive information such as day and month abbreviations, writing direction,
and default sorting.

The Connection Mode Tab

You use the options on the Connection Mode tab to specify the type of connections to
use for this database (see Figure 9.26). You can choose Dedicated Server Mode or Shared
Server Mode. The default connection mode is Dedicated Server Mode.

The Dedicated Server and Shared Server modes are covered in more detail
in Chapter 12, “Understanding Oracle Network Architecture.”

In the Dedicated Server Mode, each user process will have a dedicated server process. In
the Shared Process Mode, many user processes share a server process.

466	 Chapter 9  ■  Creating and Operating Oracle Database 12c

F igur e 9 . 26     The Connection Mode tab on the Initialization Parameters screen

If you want to review the initialization parameters and make any changes, click the
All Initialization Parameters button. The screen shown in Figure 9.27 details the basic
parameters. From this screen, you can view/edit the advanced parameters using the Show
Advanced Parameters button. You have the option to edit a value on this screen.

F igur e 9 . 27     The DBCA Initialization Parameters screen

	 Using DBCA to Create an Oracle 12c Database	 467

After completing the Initialization Parameters screen, click Next. You will then be
presented with the Creation Options screen.

Creation Options
The Creation Options screen (see Figure 9.28) provides you with three options, and you can
choose all three if needed.

F igur e 9 . 28     The DBCA Creation Options screen

Create Database    Use this option to have the DBCA create your database.

Save as a Database Template    You can elect to save your database definition to a template
and create the database at a later time, or you can have the DBCA create the template along
with creating the database.

Generate Database Creation Scripts    This option will generate scripts for you to create the
database at a later time without using the DBCA.

If you elect to create your database, the DBCA uses the information you provided in
the previous screens to create all the necessary components of your database, populates the
database with sample schemas if they were chosen, starts your database, and gets the data-
base ready for use.

468	 Chapter 9  ■  Creating and Operating Oracle Database 12c

If you elect to save your database to a template definition, this definition is added to the
list of database definitions that you can select on subsequent executions of the DBCA.

You can also let the DBCA create a set of scripts that you can run manually to create the
database. You can choose a location to store your scripts, and then you can run the scripts
manually to generate your database. If you choose a manual creation process, you will also
have to manually configure several items, including the Oracle Internet Directory Service
if you elect to use centralized naming and your listener. Also, depending on your operating
system, you will have to configure or modify the oratab file (under /etc or /var/opt/oracle
depending on the platform) on Unix or create a service in the Windows environment.

When preparing for the test, create the database using a predefined template
as well as a custom template. Save the database-creation scripts, and go
through the scripts so that you understand what statements are executed
behind the scenes by the DBCA to create the database. When using a custom
template, a new database will be created using the CREATE DATABASE state-
ment. When using a predefined template, Oracle does not create a new data-
base from scratch; instead, it clones an existing database from the template.

The Creation Options screen has a button to customize storage locations. Choose this if
you want to adjust the storage location or data file properties.

Customizing Storage
The Customize Storage screen provides you with the opportunity to review and change
the locations of the actual objects that compose the Oracle database; namely, the data
files, control files, and redo logs (see Figure 9.29).

F igur e 9 . 29     The DBCA Customize Storage screen

	 Using DBCA to Create an Oracle 12c Database	 469

This screen displays a tree structure in the left pane. You can click the various elements
within the tree to expand and display the details of each component. Selecting an element
displays details about the element in the pane on the right. For example, clicking Control
File displays a summary of the control filenames and locations in the right pane. You can
make manual changes to the names and locations of the control files in the right pane.

If you are creating a custom database definition that does not use a template, you can
add new objects to a particular group. For example, clicking the Tablespaces folder and
then clicking Create lets you add new tablespaces to your database definition. If you
selected a database template that included data file definitions, you cannot add or remove
data files, or tablespaces, but you can modify the location of the data files, control files,
and redo log groups.

Chapter 10, “Understanding Storage and Space Management,” covers
configuring and managing tablespaces and data files in detail.

After completing the Database Storage screen, click Close to go back to the Database
Options screen. When you click Next, DBCA performs all the prerequisite checks and skips
the prerequisite screen display if there are no issues. If issues are identified, you will be pro-
vided with the Pre Requisite Checks screen as in Figure 9.30. You have the option to fix the
issue and click Check Again or Ignore All and proceed with the database creation.

F igur e 9 . 3 0     The DBCA Pre Requisite Checks screen

Once the prerequisites are met, the Database Summary screen appears as in Figure 9.31.
You can scroll down the window to examine the following:

■■ Components to install into the database

■■ The initialization-parameter settings

■■ Character-set settings

■■ Tablespaces

■■ Names and locations for data files

470	 Chapter 9  ■  Creating and Operating Oracle Database 12c

■■ Names and locations for redo logs

■■ Names and locations for control files

F igur e 9 . 31     The DBCA Summary screen

Once you click Finish to start the database-creation process, Oracle creates the data-
base you specified. It starts the instance, creates all the necessary database components,
and configures all the database options you specified. If you chose to create scripts, DBCA
displays the location of the scripts. Depending on the size of database you create and how
many options you are installing, the process can take anywhere from several minutes to an
hour or more.

During the database creation, the summary progress is displayed. Two buttons in
this screen are useful for viewing more information: Activity Log and Alert Log. Click
on the Activity Log to view detailed information about the steps that are executing.
Click on the Alert Log button to view the database alert log file. Figure 9.32 shows the
Progress Page with alert log pop-up displaying information.

After the database is created, DBCA displays a summary screen, as shown in Figure 9.33.
Note the information on this screen, especially the URL to invoke Enterprise Manager
Database Express and the server parameter file location.

	 Using DBCA to Create an Oracle 12c Database	 471

F igur e 9 . 32     The DBCA Progress Page screen

F igur e 9 . 3 3     The DBCA result summary screen

472	 Chapter 9  ■  Creating and Operating Oracle Database 12c

On this screen, you have the option to manage passwords (click Password Management).
By default, all the accounts except SYS, SYSTEM are locked. You can change the password
and unlock selective accounts.

When the creation process is complete, connect to the database with one of the tools such
as SQL*Plus or Enterprise Manager to verify that all the database options and components
were installed properly. Logging into Enterprise Manager will give you an overview of the
new database. By using the URL specified in Figure 9.33, you can invoke the EM Database
Express home page.

Configuring an Oracle Database Using the DBCA
The DBCA lets you change various aspects of an existing database. To change the database
configuration, select Configure Database Options on the DBCA Operations screen, as shown
in Figure 9.8. (Options that are not applicable to the particular Oracle Home are grayed out.
Once a database is created, the Configure and Delete options will be visible.) If the database
is not started, the DBCA starts it for you automatically. You must connect to the database as
a user who has DBA authority.

Once you have selected and started the database, you can add options that may not have
been previously included in the database. Using DBCA you can make the following changes
to the database configuration:

■■ Add database options that are not already installed (no reinstall option) in the database
(refer to Figure 9.18).

■■ Install a sample schema if not already installed (refer to Figure 9.19).

■■ Change the default connection mode for the database. You can change from Dedicated
Server Mode to Shared Server Mode, or vice versa (refer to Figure 9.26).

Deleting an Oracle Database Using the DBCA
You can also delete a database using the DBCA. On the Operations screen (Figure 9.8),
choose Delete Database, and click Next to open the Database screen. The DBCA lists all
the databases available for deletion. Choose the database you want to delete. DBCA also
gives you the option to deregister the database from the EM cloud control if the database
is registered.

The Delete Database summary screen shows the name of the database and files associated
with the database that is removed. If you click Finish, the DBCA removes all files on the disk
associated with the database you have chosen. If you are using Windows, the DBCA also
removes the service associated with the database.

Exercise 9.1 shows you how to delete a database manually using SQL*Plus.

	 Using DBCA to Create an Oracle 12c Database	 473

E x e rcis e 9 .1

Manually Delete or Remove an Oracle Database

Some DBAs prefer to use a command-line interface to perform their tasks. You can delete
a database using the command-line tool SQL*Plus.

To do so, first connect to SQL*Plus as an administrator who has the ability to start up the
database—that is, an administrator with either the SYSOPER or the SYSDBA privilege.

Here’s an example:

/u01/app/oracle>sqlplus sys/**** as sysdba

Once you are connected, you need to put the database in MOUNT RESTRICT mode. Issue
the following command if the database is not running:

Startup mount restrict;

Next, issue the following command:

Drop database;

This command shuts down the instance and deletes all the files associated with the
database, including the server parameter file. You may have to remove any archived logs
from the database archive area using the appropriate operating-system command.

Managing Database Templates Using the DBCA
As explained earlier in this chapter, the DBCA can store and use XML-based templates to cre-
ate your Oracle database. As the DBA, you can manage these database-definition templates.
Saving a definition of your database in a template format makes it easier to perform various
tasks. For example, you can copy a preexisting template to modify new database definitions.
The template definition is normally stored in the $ORACLE_HOME/assistants/dbca/templates
directory on Unix and in the %ORACLE_HOME%\assistants\dbca\templates directory on
Windows systems.

The DBCA can use two types of templates: seed and nonseed. Seed templates are template
definitions that contain database-definition information and the actual data files and redo log
files. The advantage of a seed template is that the DBCA makes a copy of the data files and
redo logs included in the definition file. These prebuilt data files include all schema informa-
tion, which makes the database-creation process faster. The seed templates carry a .dbc exten-
sion. The associated predefined data files are stored as files having a .dfb extension. When you
use a seed template, you can change the database name, the data file locations, the number of
control files and redo log groups, and the initialization parameters.

474	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Nonseed templates contain custom-defined database definitions. Unlike seed templates,
they do not come with preconfigured data files and redo logs. Nonseed templates carry a .dbt
extension.

Now let’s look at the various options you have to manage templates.

Creating Template Definitions Using the DBCA
You can use the DBCA interface to create new database templates. DBCA templates are
XML files that contain information required to create a new database or to clone existing
databases. Templates can be copied from one machine to another, and thus can be used to
create databases with a uniform standard. When you connect to the DBCA, select Manage
Templates on the Database Operation screen (see Figure 9.8, shown earlier in this chapter),
and click Next to open the Template Management screen, as shown in Figure 9.34.

F igur e 9 . 3 4     The DBCA Template Management screen

You have three choices for creating templates. Table 9.10 summarizes your options.

Tabl e 9 .10    Template-Creation Options

Selection Description

From an Existing Template Creates a new template definition from a preexisting
template. This allows you to modify a variety of
template settings, including parameters and data file
storage characteristics.

	 Working with Oracle Database Metadata	 475

Selection Description

From an Existing Database
(Structure Only)

Creates a new template based on the structural
characteristics of an existing database. The data files are
created from scratch and will not include data from the
original database. Choose this option when you want
a database that is structurally like another database
but does not contain any data. The database you are
copying from can reside anywhere in your network.

From an Existing Database
(Structure As Well As Data)

Creates a new template based on the structural
characteristics of an existing database. The data files
and all corresponding user data are included in the
new database. Choose this option when you want an
exact copy of an existing database. The database you
are copying must reside on the same physical server
as the new database you are creating.

Depending on the option selected, you will be presented with a set of forms to save your
template definition. If you elect to create a template from an existing database, you will have
to connect to the database so that the DBCA can obtain information about the database.
You must connect to the database as a user who has DBA credentials to perform this task.

If you are copying a definition from an existing template, you can configure the template
by following a series of screens that are similar to those used to create a database. These
screens allow you to configure the various aspects of the template, including initialization
parameters and data file and redo log locations.

Deleting Template Definitions Using the DBCA
You can also delete an existing template definition. On the Database Operation screen (see
Figure 9.8, shown earlier in this chapter), click Manage Templates. You will be presented with
the Template Management screen (see Figure 9.34). Select the Delete a Database Template
option. You can then select the template to delete. When you remove the template, the DBCA
removes the XML file from the system.

Working with Oracle Database Metadata
In addition to tables such as DEPARTMENTS and EMPLOYEES that store important business data,
Oracle databases also contain system tables that store data about the database. Examples
of the type of information in these system tables include the names of all the tables in the
database, the column names and datatypes of those tables, the number of rows those tables
contain, and security information about which users are allowed to access those tables. This
“data about the database” is referred to as metadata. As a DBA, you will frequently use this
metadata when performing your administration tasks.

476	 Chapter 9  ■  Creating and Operating Oracle Database 12c

An Oracle Database 12c database contains two types of metadata views:

■■ Data dictionary views

■■ Dynamic performance views

The SYS user owns the data dictionary and dynamic performance views in the Oracle data-
base, and they are stored in the SYSTEM tablespace. During normal database operation, Oracle
frequently uses the data dictionary and updates the dictionary with the current status of the
database components. The dictionary is also immediately updated when a DDL statement is
executed.

Data dictionary views and dynamic performance views are described in the next section.

Data Dictionary Views
Data dictionary views provide information about the database and its objects. Depending on
which features are installed and configured, an Oracle Database 12c database can contain
more than 2,000 data dictionary views. Data dictionary views have names that begin with
DBA_, ALL_, and USER_. For every DBA_ view a corresponding CDB_ view also exists with a con-
tainer identifier. Oracle creates public synonyms on many data dictionary views so users can
access the views conveniently. Data dictionary is owned by user SYS.

The difference between the DBA_, ALL_, and USER_ views can be illustrated using the DBA_
OBJECTS data dictionary view as an example. The DBA_OBJECTS view shows information
on all the objects in the database. The corresponding ALL_OBJECTS view, despite its name,
shows only the objects that a particular database user owns or can access. For example,
if you were logged into the database as a user named SCOTT, the ALL_OBJECTS view would
show all the objects owned by the user SCOTT and the objects to which SCOTT has been
granted access by other users or through a system privilege. The USER_OBJECTS view shows
only those objects owned by a user. If the user SCOTT were to examine the USER_OBJECTS
view, only those objects he owns would be displayed. In a multitenant container database,
multiple pluggable databases are present. The CDB_ views are available for the CDB admin-
istrator to view information from all the databases in the CDB. Figure 9.35 shows a graphi-
cal representation of the relationship between the CDB_, DBA_, ALL_, and USER_ views.

Because the DBA_ views provide the broadest metadata information, they are generally
the data dictionary views used by DBAs. Table 9.11 provides examples of a few DBA_ data
dictionary views.

Tabl e 9 .11    Examples of Data Dictionary Views

Dictionary View Description

DBA_TABLES Shows the names and physical storage information about all the
tables in the database

DBA_USERS Shows information about all the users in the database

	 Working with Oracle Database Metadata	 477

Dictionary View Description

DBA_VIEWS Shows information about all the views in the database

DBA_TAB_COLUMNS Shows all the names and datatypes of the table columns in
the database

DBA_TABLESPACES Shows information on tablespaces in the database

DBA_DATA_FILES Shows information on the data files belonging to the database

You can find a complete list of the Oracle Database 12c data dictionary
views in the “Oracle Database Reference 12c Release 1 (12.1) E17615-18”
document available at http://www.oracle.com/pls/db121/portal
.all_books.

F igur e 9 . 3 5     A comparison of data dictionary views

Dynamic Performance Views
Throughout database operation, Oracle updates a set of virtual tables to record the current
database activity and status. These tables are called dynamic performance tables. Views are

http://www.oracle.com/pls/db121/portal.all_books
http://www.oracle.com/pls/db121/portal.all_books

478	 Chapter 9  ■  Creating and Operating Oracle Database 12c

created on top of the dynamic performance tables so that information is grouped better and
names are in a user-friendly format. The dynamic performance views are sometimes called
fixed views, because they cannot be altered or removed by the database administrator.

The dynamic performance tables begin with X$. The dynamic performance view names
begin with V_$. Public synonyms are created for these views, and they begin with V$.
For example, the dynamic performance view with data file information is v_$datafile,
whereas the public synonym is v$datafile.

Depending on which features are installed and configured, an Oracle database can con-
tain over 700 dynamic performance views. Most of these views have names that begin with
V$. Table 9.12 describes a few of these dynamic performance views.

Tabl e 9 .12    Examples of Dynamic Performance Views

Dynamic Performance View Description

V$DATABASE Contains information about the database, such as the
database name and when the database was created

V$VERSION Shows which software version the database is using

V$OPTION Displays which optional components are installed in the
database

V$SQL Displays information about the SQL statements that
database users have been issuing

Although the contents of the DBA_ and V$ metadata views are similar, there are some
important differences between the two types. Table 9.13 compares these two types.

Tabl e 9 .13    Data Dictionary vs. Dynamic Performance Views

Data Dictionary Views Dynamic Performance Views

The DBA_ views usually have plural names
(for example, DBA_DATA_FILES).

The names of the V$ views are generally
singular (for example, V$DATAFILE).

The DBA_ views are available only when the
database is open and running.

Some V$ views are available even when the
database is not fully open and running.

The data contained in the DBA_ views is
static and is not cleared when the database
is shut down.

The V$ views contain dynamic statistical
data that is lost each time the database is
shut down.

	 Managing Initialization-Parameter Files	 479

The data dictionary view DICTIONARY shows information about the data dic-
tionary and dynamic performance views in the database. DICT is a synonym
for the DICTIONARY view. The COMMENTS column shows the purpose or con-
tents of the view. The V$FIXED_TABLE view lists the dynamic performance
tables and views in the database. You can use SQL Developer to query the
contents of these views so that you can better understand them.

The Oracle data dictionary and dynamic performance views are created while creating
the database. The scripts to create the metadata are stored in the $ORACLE_HOME/rdbms/admin
directory. Several scripts are in this directory, and the script that creates the base dictionary
objects is called catalog.sql. The catproc.sql script creates the PL/SQL packages and func-
tionality to support PL/SQL in the database.

You are not allowed to log in as SYS and modify the data dictionary views
or update information directly using SQL. The only SYS-owned table you
are allowed to delete records from is AUD$. This table is used to store data-
base audit information.

Managing Initialization-Parameter Files
Oracle uses initialization-parameter files to store information about initialization parameters
used when an Oracle instance starts. Oracle reads the parameter file to obtain information
about how the Oracle instance should be sized and configured upon startup.

The parameter file can be a plaintext file, commonly referred to as a pfile, or it can be
a binary parameter file, commonly referred to as an spfile. You can use either type of file
to configure instance and database options; however, there are some important differences
between the two types of configuration files, as shown in Table 9.14.

Tabl e 9 .14    Pfiles vs. Spfiles

Pfile Spfile

Text file that can be edited using a text editor. Binary file that cannot be edited directly.

When changes are made to the pfile, the
instance must be shut down and restarted
before it takes effect.

Parameter changes made to the database
using ALTER SYSTEM are updated in the spfile.

Is called initinstance_name.ora. Is called spfileinstance_name.ora.

480	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Pfile Spfile

Oracle instance reads only from pfile. Oracle instance reads and writes to the spfile.

Can be created from an spfile using the
create pfile from spfile command.

Can be created from a pfile using the create
spfile from pfile command.

You can specify more than 365 documented configuration parameters in the pfile
or spfile. Oracle Database 12c divides these parameters into two categories: basic and
advanced. Oracle recommends you set only the basic initialization parameters manually.
Oracle also recommends you do not modify the remaining parameters unless directed to
do so by Oracle Support or to meet the specific needs of your application.

Most parameters can be modified dynamically, meaning a database restart is not
required for the new value to take effect. But certain parameter value changes require a
database restart. Table 9.15 describes the basic initialization parameters. A “Yes” in the
Static column indicates that the parameter is static and cannot be modified dynamically
without a database restart.

Tabl e 9 .15    Oracle Database 12c Basic Initialization Parameters

Parameter Name Static Description

CLUSTER_DATABASE Yes Tells the instance whether it is part of a clustered
environment.

COMPATIBLE Yes Specifies the release level and feature set you want to
be active in the instance.

CONTROL_FILES Yes Designates the physical location of the database
control files.

DB_BLOCK_SIZE Yes Specifies the default database block size. The
database block size specified at database creation
cannot be changed.

DB_CREATE_FILE_DEST No Specifies the directory location where database data
files will be created if the Oracle-Managed Files feature
is used.

DB_CREATE_ONLINE_
LOG_DEST_n

No Specifies the location(s) where the database redo log
files will be created if the Oracle-Managed Files feature
is used.

tabl e 9 .14    Pfiles vs. Spfiles  (continued)

	 Managing Initialization-Parameter Files	 481

Parameter Name Static Description

DB_DOMAIN Yes Specifies the logical location of the database on
the network.

DB_NAME Yes Specifies the name of the database that is mounted by
the instance.

DB_RECOVERY_FILE_
DEST

No Specifies the location where recovery files will be
written if the flash recovery feature is used.

DB_RECOVERY_FILE_
DEST_SIZE

No Specifies the amount of disk space available for storing
flash recovery files.

DB_UNIQUE_NAME Yes Specifies a globally unique name for the database
within the enterprise.

INSTANCE_NUMBER Yes Identifies the instance in a Real Application Clusters
(RAC) environment.

LDAP_DIRECTORY_
SYSAUTH

Yes Enables or disables Oracle Internet Directory–based
authentication for SYSDBA and SYSOPER connections to
the database.

LOG_ARCHIVE_DEST_n No Specifies as many as nine locations where archived
redo log files are to be written.

LOG_ARCHIVE_DEST_
STATE_n

No Indicates how the specified locations should be used for
log archiving.

NLS_LANGUAGE Yes Specifies the default language of the database.

NLS_TERRITORY Yes Specifies the default region or territory of the database.

OPEN_CURSORS No Sets the maximum number of cursors that an individual
session can have open at one time.

PGA_AGGREGATE_
TARGET

No Establishes the overall amount of memory that all PGA
processes are allowed to consume.

PROCESSES Yes Specifies the maximum number of operating-system
processes that can connect to the instance.

REMOTE_LISTENER No Specifies a network name that points to the address or
list of addresses of remote Oracle Net listeners.

REMOTE_LOGIN_
PASSWORDFILE

Yes Determines whether the instance uses a password file
and what type.

482	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Parameter Name Static Description

SESSIONS Yes Determines the maximum number of sessions that can
connect to the database.

SGA_TARGET No Establishes the maximum size of the SGA, within
which space is automatically allocated to each SGA
component when Automatic Memory Management
is used.

SHARED_SERVERS No Specifies the number of shared server processes to
start when the instance is started. See Chapter 11,
“Managing Data and Undo,” for details.

STAR_TRANSFORMATION_
ENABLED

No Determines whether the optimizer will consider star
transformations when queries are executed. See
Chapter 14 for details on the optimizer.

UNDO_TABLESPACE No Specifies which tablespace stores undo segments if
the Automatic Undo Management option is used. See
Chapter 11 for details on undo management.

The V$PARAMETER view shows the parameters that are available to use.
Review the DESCRIPTION column to understand the purpose. The ISBASIC
column with value TRUE identifies the basic parameters.

SELECT name, description
FROM v$parameter
WHERE isbasic = 'TRUE';

Any parameters not specified in the pfile or spfile take on their default values. The
following is an example of the contents of a typical Oracle Database 12c pfile after the
database was created using DBCA:

*.audit_file_dest='/u01/app/oracle/admin/c12ndb1/adump'
*.audit_trail='db'
*.compatible='12.1.0.0.0'
*.control_files='/u02/oradata/c12ndb1/control01.ctl','/u01/app/oracle/fast_
recovery_area/c12ndb1/control02.ctl'
*.db_block_size=8192
*.db_domain=''
*.db_name='c12ndb1'

tabl e 9 .15    Oracle Database 12c Basic Initialization Parameters  (continued)

	 Managing Initialization-Parameter Files	 483

*.db_recovery_file_dest='/u01/app/oracle/fast_recovery_area'
*.db_recovery_file_dest_size=11g
*.diagnostic_dest='/u01/app/oracle'
*.dispatchers='(PROTOCOL=TCP) (SERVICE=c12ndb1XDB)'
*.local_listener='LISTENER_C12NDB1'
*.log_archive_format='%t_%s_%r.dbf'
*.memory_target=4000m
*.open_cursors=300
*.processes=300
*.remote_login_passwordfile='EXCLUSIVE'
*.undo_tablespace='UNDOTBS1'

In this sample pfile, the sizes of the shared pool, database buffer cache, large pool, and
Java pool are not individually specified. Instead, Oracle’s Automatic Memory Management
features allow you to simply set one configuration parameter—MEMORY_TARGET—to estab-
lish the total amount of memory allocated to the SGA and PGA. This parameter is dis-
cussed in Chapter 14.

On production databases, if your Oracle license is based on the number of named users,
you can enforce the license compliance by setting the LICENSE_MAX_USERS parameter. The
default for this parameter is 0, which means you can create any number of users in the
database and the license compliance is not enforced.

Handle with Care: Undocumented Configuration Parameters

You’ve just read a performance-tuning tip posted to the Oracle newsgroup at comp
.databases.oracle.server. The person posting the tip suggests setting the undocu-
mented pfile parameter _optimizer_dyn_smp_blks to a value of 200 in order to fix an issue.
Should you implement this suggestion as a precaution or even if you see a similar issue?

More than 2,900 undocumented configuration parameters are available in Oracle Database
12c. Undocumented configuration parameters are distinguished from their documented
counterparts by the underscore that precedes their name, as with the parameter described
in the newsgroup posting.

We do not recommend utilizing undocumented pfile or spfile parameters on any of your
systems because knowing the appropriate reasons to use these parameters, and the appro-
priate values to set these parameters to, is almost pure speculation because of their undocu-
mented nature. Although some undocumented parameters are relatively harmless (such as
_trace_files_public), using others incorrectly can cause unforeseen database problems.

484	 Chapter 9  ■  Creating and Operating Oracle Database 12c

You may use the following query logged in as SYSDBA to view all undocumented parameters
in the database.

select ksppinm parameter, ksppdesc description
from x$ksppi
where substr(ksppinm,1,1) = '_'

One exception to this recommendation is when you are directed to use an undocumented
configuration parameter by Oracle Support or an application vendor. Oracle Support occa-
sionally uses these parameters to enhance the generation of debug information or to work
around a bug in the kernel code or to enhance the performance of certain code.

Certain parameters in the spfile begin with a double underscore. These are dynamic
areas managed by Oracle automatic features and are used as starting sizes when you
restart the database. Here is an example:

$ strings spfileC12DB1.ora | head -10
C12DB1.__data_transfer_cache_size=0
C12DB1.__db_cache_size=788529152
C12DB1.__java_pool_size=16777216
C12DB1.__large_pool_size=16777216
C12DB1.__oracle_base='/u01/app/oracle'#ORACLE_BASE set from environment
C12DB1.__pga_aggregate_target=788529152
C12DB1.__sga_target=2348810240
C12DB1.__shared_io_pool_size=117440512
C12DB1.__shared_pool_size=1375731712
C12DB1.__streams_pool_size=0

Locating the Default Parameter File
The default location that Oracle searches to find the pfile and spfile parameter files is
$ORACLE_HOME/dbs on Unix systems and %ORACLE_HOME%\database on Windows systems.

Oracle uses a search hierarchy when a startup command is issued without specifying
either a pfile or an spfile. Oracle looks for files with the following names in the default
directory to start the instance:

■■ spfile$ORACLE_SID.ora
■■ spfile.ora
■■ init$ORACLE_SID.ora

	 Managing Initialization-Parameter Files	 485

Oracle first looks for a parameter file called spfile$ORACLE_SID.ora. If it doesn’t find
that, it searches for spfile.ora. Finally, it searches for a traditional text pfile with the default
name of init$ORACLE_SID.ora.

If the parameter files do not exist in the default location or you want to use a different
parameter file to start your database, you can specify a parameter file to use when you issue
a startup command to start the Oracle database. A database instance cannot start without
referring to a parameter file.

You will see examples of how database startup is performed later in this
chapter in the section “Starting up and Shutting down an Oracle Instance.”

Modifying Initialization-Parameter Values
In some instances, you may need to change the initialization parameters. For example, you
might need to increase the number of sessions allowed to connect to the database because you
are adding users. Whatever the case, you need to know how to make these changes. There are
a few options to change the initialization-parameter value, based on the type of parameter file
used. Here they are

■■ If PFILE is used, edit the pfile using an OS editor and make any appropriate changes.

■■ If SPFILE is used, connect to the instance and make the changes using the ALTER SYSTEM
SET parameter_name = value statement.

■■ Use EM Database Express to make changes.

Using EM Database Express
To use the EM Database Express tool to modify existing database parameters, navigate to the
Configuration menu and choose Initialization Parameters. The SPFile tab shows the parame-
ters as set in the spfile. You can also use the filters to find the exact parameter that needs to be
modified. The SPFile tab groups the parameters in various categories. Figure 9.36 shows the
EM screen to change initialization parameters. You have to be logged in as SYSDBA to modify
the parameters.

The Initialization Parameters screen has two tabs:

Current Tab     This tab displays all the currently active settings for the initialization parame-
ters for the database instance. If a parameter is marked Dynamic, you can modify it, and this
modification immediately affects the parameter that affects the currently running instance
without stopping the database. The changes you make on the Current tab are not permanent,
so the next time the database is stopped and restarted, the settings will revert to their original
values. Click on Set to modify the parameter values; you will have the option to change the
memory value or spfile value, or both.

486	 Chapter 9  ■  Creating and Operating Oracle Database 12c

SPFile Tab    If you are using a server parameter file, you will see the SPFile tab. This
tab also lets you change existing database parameters. The difference between changing
parameters on this tab and changing parameters on the Current tab is that changes to the
spfile are persistent across database startups and shutdowns because the changes are saved
to the spfile definition. You can also apply your changes to the spfile only or to the spfile
and the currently running instance. Click on Set to modify the parameter values. The SQL
code used for set is alter system set "<parameter>"=<value> scope=spfile sid='*'.
Click on Reset to remove the parameter from SPFile and have it default. The SQL used for
reset is alter system reset "<parameter>" scope=spfile sid='*'.

F igur e 9 . 36     The EM Database Express Initialization Parameters screen

Using SQL*Plus or SQL Developer
Although EM Database Express is a handy tool to modify the initialization parameters,
sometimes it is convenient to use SQL*Plus or SQL Developer and make changes to the
parameters. You should know about two dynamic performance views: V$PARAMETER and
V$SPPARAMETER.

V$PARAMETER

The V$PARAMETER view shows information about the initialization parameters that are
currently in effect. This view has several useful columns. Table 9.16 lists some of the
columns in V$PARAMETER and how they can be used in queries.

	 Managing Initialization-Parameter Files	 487

Tabl e 9 .16    V$PARAMETER Columns

Column Name Description

NAME This specifies the name of the initialization parameter.

VALUE This specifies the current value of the parameter.

DISPLAY_VALUE This specifies the current value in a more user-friendly format.

DESCRIPTION This gives a short description about the parameter.

ISBASIC TRUE indicates that the parameter is categorized as a basic
parameter.

ISDEFAULT FALSE indicates that the parameter was specified in the pfile or
spfile during instance startup.

ISMODIFIED FALSE indicates that the parameter has not been modified since
the instance started.

ISSES_MODIFIABLE TRUE indicates that the parameter can be modified using an ALTER
SESSION statement.

ISSYS_MODIFIABLE FALSE indicates that the parameter cannot be modified using an
ALTER SYSTEM statement. Such parameters can be changed only
using the SCOPE=SPFILE clause.

V$SPPARAMETER

The V$SPPARAMETER view shows the contents of the spfile used to start the instance. A TRUE
value for the ISSPECIFIED column shows whether the parameter was specified in the spfile.
If a pfile was used to start the instance, all the rows will have FALSE for the ISSPECIFIED
column. Sometimes, querying the V$SPPARAMETER can produce readable output for param-
eters that take multiple values.

V$PARAMETER vs. V$SPPARAMETER

The following SQL example shows the difference in the result from the V$PARAMETER and
V$SPPARAMETER views:

SQL> SELECT name, value
 2 FROM v$parameter
 3 WHERE name LIKE 'control%'
 4 AND isdefault = 'FALSE';

488	 Chapter 9  ■  Creating and Operating Oracle Database 12c

NAME VALUE
--------------- ---
control_files /u02/oradata/c12ndb1/control01.ctl, /u01/app/oracle/fast
 _recovery_area/c12ndb1/control02.ctl

SQL> SELECT name, value
 2 FROM v$spparameter
 3 WHERE name LIKE 'control%'
 4 AND isspecified = 'TRUE';

NAME VALUE
--------------- ---
control_files /u02/oradata/c12ndb1/control01.ctl
control_files /u01/app/oracle/fast_recovery_area/c12ndb1/control02.ctl

SQL>

You can use the ALTER SESSION statement to change the value of a parameter in the
current session. For example, if you want to change the default date-display format for
the session only, use the following statement:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

Session altered.

SQL>

You can use the ALTER SYSTEM statement to change the value of a parameter system-wide
or in the spfile, or both. You use the SCOPE clause to define where you want to change the
parameter value: MEMORY, SPFILE, and BOTH are the valid values for the SCOPE clause.

A value of DEFERRED or IMMEDIATE in the ISSYS_MODIFIABLE column shows that the param-
eter can be dynamically changed using ALTER SYSTEM. The DEFERRED value indicates that the
change you make does not take effect until a new session is started; the existing sessions will
use the current value. IMMEDIATE indicates that as soon as you change the value of the parame-
ter, it is available to all sessions in the instance. A session is a job or task that Oracle manages.
When you log in to the database using SQL*Plus or any other tool, you start a session.

If you want to change a parameter value for the current instance but do not want the
change to persist across database shutdowns, you can specify SCOPE=MEMORY, as in the fol-
lowing example:

SQL> ALTER SYSTEM SET UNDO_RETENTION = 3600 SCOPE=MEMORY;

System altered.
SQL>

	 Managing Initialization-Parameter Files	 489

Some parameters values can be set only at instance startup; they are not modifiable
when the instance is running. Such parameter changes can be made with the SCOPE=SPFILE
clause. Oracle will make the change only to the spfile, which takes effect after you restart
the database:

SQL> ALTER SYSTEM SET UNDO_MANAGEMENT = MANUAL;
ALTER SYSTEM SET UNDO_MANAGEMENT = MANUAL
 *
ERROR at line 1:
ORA-02095: specified initialization parameter cannot be modified

SQL> ALTER SYSTEM SET UNDO_MANAGEMENT = MANUAL SCOPE=SPFILE;

System altered.
SQL>

Usually when you make a parameter change, you want it to take effect immediately in
memory as well as persist the change across database shutdowns. You can use the SCOPE=BOTH
clause, which is the default, for this purpose. So if you omit the SCOPE clause, Oracle will
make changes to the memory and to the spfile. If a pfile is used to start the instance, the
change will be in memory only for the current running instance.

SQL> ALTER SYSTEM SET SGA_TARGET=500M SCOPE=BOTH;

System altered.
SQL>

You can use the SQL*Plus command SHOW PARAMETER to view the current value of an
initialization parameter. You can specify the full parameter name or part of the name. For
example, to view all the parameters related to undo, you can do the following. The first one
(SHOW PARAMETER) shows parameters as in memory, and the second one (SHOW SPPARAMETER)
shows parameters defined in the SPFile.

SQL> SHOW PARAMETER undo
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
temp_undo_enabled boolean FALSE
undo_management string AUTO
undo_retention integer 900
undo_tablespace string UNDOTBS1
SQL>
SQL> SHOW SPPARAMETER undo

490	 Chapter 9  ■  Creating and Operating Oracle Database 12c

SID NAME TYPE VALUE
-------- ----------------------------- ----------- ----------------------------
* temp_undo_enabled boolean
* undo_management string
* undo_retention integer
* undo_tablespace string UNDOTBS1
SQL>

In the next section, the options to start up and shut down a database will be discussed.

Starting Up and Shutting Down
an Oracle Instance
As a DBA, you are responsible for the startup and shutdown of the Oracle instance. Oracle
gives authorized administrators the ability to perform this task using a variety of interfaces. It
is important to understand the options that are available to you to start up and shut down the
Oracle instance and when the various options can or should be used. The stages of instance
startup and the startup options appear frequently on OCA certification exams.

To start up or shut down an Oracle instance, you need to be connected to the database with
the appropriate privileges. Two special connection account authorizations are available for
startup and shutdown: SYSDBA and SYSOPER. The SYSDBA authorization is an all-empowering
authorization that allows you to perform any database task. The SYSOPER authorization is
a less powerful authorization that allows startup and shutdown abilities but restricts other
administrative tasks, such as access to nonadministrative schema objects. These authorizations
are managed either through a passwords file or via operating-system control.

When a database is initially installed, only the SYS schema can connect to the database
with the SYSDBA authorization. You can grant this authorization and the SYSOPER authoriza-
tion to give others the ability to perform these tasks without connecting as the SYS user.

Now let’s look at how to perform a database startup.

The startup and shutdown discussed here are for the noncontainer data-
bases. For container databases, the startup is the same but in addition
the pluggable databases need to be opened separately. When you issue
a shutdown connected to the root container of the container database,
all pluggable databases are shut down before shutting down the con-
tainer database.

	 Starting Up and Shutting Down an Oracle Instance	 491

Starting Up an Oracle Database 12c Instance
As described in Chapter 8, “Introducing Oracle Database 12c Components and Architecture,”
the Oracle instance is composed of a set of logical memory structures and background pro-
cesses that users interact with to communicate with the Oracle database. When Oracle is
started, these memory structures and background processes are initialized and started so that
users can communicate with the Oracle database.

Whenever an Oracle database is started, it goes through a series of steps to ensure database
consistency. When it starts up, a database passes through three modes: NOMOUNT, MOUNT, and
OPEN. This section will review each of these startup modes and other special startup options,
such as FORCE and RESTRICT, and discuss when you need to use these options. Then you’ll
review how to use the available interfaces to start up an Oracle instance.

STARTUP NOMOUNT    This starts the instance without mounting the database. When a data-
base is started in this mode, the parameter file is read, and the background processes and
memory structures are initiated, but they are not attached nor do they communicate with
the disk structures of the database. When the instance is in this state, the database is not
available for use.

If a database is started in NOMOUNT mode, the background processes are started and shared
memory is allocated. The instance is not associated with any database. This state is used to
create a database or to create a database control file.

At times, a database may not be able to go to the next mode (called MOUNT mode) and will
remain in NOMOUNT mode. For example, this can occur if Oracle has a problem accessing the
control file structures, which contain important information needed to continue with the
startup process. If these structures are damaged or not available, the database startup pro-
cess cannot continue until the problem is resolved.

If STARTUP NOMOUNT fails, the most likely cause is that the parameter file
cannot be read or is not in the default location. Other causes include OS
resource limits that prevent memory or process allocation.

STARTUP MOUNT    This performs all the work of the STARTUP NOMOUNT option and reads the
control file. At this point, Oracle obtains information from the control files that it uses to
locate and attach to the physical database structures. The control file contains the name of
the database, all the data filenames, and the redo log files associated with the database.

Certain administrative tasks can be performed while the database is in this mode, including
renaming data files, enabling or disabling archive logging, renaming and adding redo log
files, and recovering the database.

492	 Chapter 9  ■  Creating and Operating Oracle Database 12c

STARTUP OPEN    This is the default startup mode if no mode is specified on the STARTUP com-
mand line. STARTUP OPEN performs all the steps of the STARTUP NOMOUNT and STARTUP MOUNT
options. This option makes the database available to all users.

When opening the database, you can use a couple of options. STARTUP OPEN READ ONLY
opens the database in read-only mode. STARTUP OPEN RECOVER opens the database and
performs a database recovery.

Although you typically use the STARTUP NOMOUNT, STARTUP MOUNT, and STARTUP OPEN
options, a few other startup options are available that you can use in certain situations:
STARTUP FORCE and STARTUP RESTRICT. These are discussed next.

STARTUP FORCE    You can use the STARTUP FORCE startup option if you are experiencing dif-
ficulty starting the database in a normal fashion. For example, when a database server loses
power and the database stops abruptly, the database can be left in a state in which a STARTUP
FORCE startup is necessary. This type of startup should not normally be required but can be
used if a normal startup does not work. What is also different about STARTUP FORCE is that
it can be issued no matter what mode the database is in. STARTUP FORCE does a shutdown
abort and then restarts the database; therefore, it can be used to cycle a database that is in
open state.

STARTUP RESTRICT    The STARTUP RESTRICT option starts up the database and places it in
OPEN mode but gives access only to users who have the RESTRICTED SESSION privilege. You
might want to open a database using the RESTRICTED option when you want to perform
maintenance on the database while it is open but want to ensure that users cannot connect
and perform work on the database. You might also want to open the database using the
RESTRICTED option to perform database exports or imports and guarantee that no users
access the system during these activities. After you are done with your work, you can dis-
able the restricted session, ALTER SYSTEM DISABLE RESTRICTED SESSION, so everyone can
connect to the database.

STARTUP UPGRADE / DOWNGRADE    The STARTUP UPGRADE option starts up the database in
UPGRADE mode and sets system initialization parameters to specific values required to enable
database upgrade scripts to be run. UPGRADE should be used only when a database is first
started with a new version of the Oracle Database Server.

Similarly, the STARTUP DOWNGRADE option sets system initialization parameters to specific
values required to enable database downgrade scripts to be run. Database upgrade and
downgrade are discussed in Chapter 17, “Upgrading an Oracle Database.”

Oracle EM Database Express is available only when the database is up and
running. Hence, database instance startup and shutdown options are not
available in EM Database Express. Oracle Enterprise Manager Cloud Control
manages multiple databases and has an agent on the database server. You
can use EM Cloud Control to start and stop the database and listener.

	 Starting Up and Shutting Down an Oracle Instance	 493

Starting Oracle Using SQL*Plus
You can use the command-line facility SQL*Plus to start the Oracle database. You will
need to connect to SQL*Plus as a user with SYSOPER or SYSDBA privileges. Here is the syntax
of the startup options available:

STARTUP [NOMOUNT|MOUNT|OPEN] [PFILE=] [RESTRICT] [FORCE] [QUIET]

Table 9.17 shows some examples of startup commands that you can use from within
SQL*Plus. The QUIET option suppresses the SGA information during startup.

Tabl e 9 .17    SQL*Plus DB Startup-Command Examples

Command Description

STARTUP NOMOUNT pfile=/u01/oracle/
init.ora

Starts Oracle in NOMOUNT mode using a
nondefault parameter file.

STARTUP MOUNT Starts Oracle in MOUNT mode using a default
spfile or pfile.

STARTUP OPEN Starts Oracle in OPEN mode using a default spfile
or pfile.

STARTUP RESTRICT Starts Oracle in OPEN mode and allows only
users with restricted session privileges to con-
nect to the database.

STARTUP FORCE Forces database startup using the default pfile
or spfile. The running instance is shut down
using the ABORT method.

STARTUP OPEN PFILE=/u01/sp01.ora Starts Oracle in OPEN mode using a nondefault
parameter file.

Here is an example of how you can use the STARTUP FORCE command with a nondefault
parameter file to start an Oracle database using SQL*Plus:

$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Sun Sep 22 10:37:13 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter user-name: system/**** as sysdba

494	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options
SQL>
SQL> startup force pfile='/home/oracle/mypfile1.ora'

ORACLE instance started.
Total System Global Area 2505338880 bytes
Fixed Size 2405760 bytes
Variable Size 671091328 bytes
Database Buffers 1811939328 bytes
Redo Buffers 19902464 bytes
Database mounted.
Database opened.
SQL>

If you are running Oracle on Windows, you can also start the database
when you start the associated Oracle service. Starting the Oracle service
automatically starts the Oracle database.

Changing Database Startup States Using SQL
When the database is in the NOMOUNT or MOUNT state, you can go to the next state by using
the ALTER DATABASE statement instead of shutting down the database and starting with the
appropriate state option. The following SQL statements show how to perform database-
availability state changes.

■■ To mount a database in NOMOUNT state, use ALTER DATABASE MOUNT;.

■■ To open a database from NOMOUNT or MOUNT state, use ALTER DATABASE OPEN;.

■■ To open a database in read-only mode, use ALTER DATABASE OPEN READ ONLY;.

■■ To enable restricted mode, use ALTER SYSTEM ENABLE RESTRICTED SESSION;.

■■ To disable restricted mode, use ALTER SYSTEM DISABLE RESTRICTED SESSION;.

If the database is already open, you cannot return to the MOUNT or
NOMOUNT state. You have to shut down the database and start with the
appropriate state.

	 Starting Up and Shutting Down an Oracle Instance	 495

Shutting Down an Oracle Database 12c Instance
In some instances, you will need to shut down a database, such as to perform regularly
scheduled cold backups of the database, to perform database upgrades, or to change a
nondynamic initialization parameter. Just as with starting the database, several options
as well as a variety of interfaces are available for database shutdown:

SHUTDOWN NORMAL    A normal shutdown is the default type of shutdown that Oracle performs
if no shutdown options are provided. You need to be aware of the following performing a
normal shutdown:

■■ No new Oracle connections are allowed from the time the SHUTDOWN NORMAL
command is issued.

■■ The database will wait until all users are disconnected to proceed with the
shutdown process.

Because Oracle waits until all users are disconnected before shutting down, you can find your-
self waiting indefinitely for a client who may be connected but is no longer doing any work or
who may have left for the day. This can require extra work, identifying which connections are
still active and either notifying the users to disconnect or forcing the client disconnections by
killing their sessions. This type of shutdown is also known as a clean shutdown because when
you start Oracle again, no recovery is necessary.

SHUTDOWN TRANSACTIONAL    A transactional shutdown of the database is a bit more
aggressive than a normal shutdown. The characteristics of the transactional shutdown
are as follows:

■■ No new Oracle connections are allowed from the time the SHUTDOWN TRANSACTIONAL
command is issued.

■■ No new transactions are allowed to start from the time the SHUTDOWN TRANSACTIONAL
command is issued.

■■ Once all active transactions on the database have completed, all client connections
are disconnected.

A transactional shutdown does allow client processes to complete prior to the disconnection.
This can prevent a client from losing work and can be valuable especially if the database has
long-running transactions that need to be completed prior to shutdown. This type of shut-
down is also a clean shutdown and does not require any recovery on a subsequent startup.

SHUTDOWN IMMEDIATE    The immediate shutdown method is the next most aggressive option.
An immediate shutdown is characterized as follows:

■■ No new Oracle connections are allowed from the time the SHUTDOWN IMMEDIATE
command is issued.

■■ Any uncommitted transactions are rolled back. Therefore, a user in the middle of a
transaction will lose all the uncommitted work.

■■ Oracle does not wait for clients to disconnect. Any unfinished transactions are
rolled back, and their database connections are terminated.

496	 Chapter 9  ■  Creating and Operating Oracle Database 12c

This type of shutdown works well if you want to perform unattended or scripted shutdowns
of the database and you need to ensure that the database will shut down without getting hung
up during the process by clients who are connected. Even though Oracle is forcing transac-
tions to roll back and disconnecting users, an immediate shutdown is still a clean shutdown.
No recovery activity takes place when Oracle is subsequently restarted.

SHUTDOWN ABORT    A shutdown abort is the most aggressive type of shutdown and has the
following characteristics:

■■ No new Oracle connections are allowed from the time the SHUTDOWN ABORT
command is issued.

■■ Any SQL statements currently in progress are terminated, regardless of their state.

■■ Uncommitted work is not rolled back.

■■ Oracle disconnects all client connections immediately upon the issuance of the
SHUTDOWN ABORT command.

Do not use SHUTDOWN ABORT regularly. Use it only if the other options for database shutdown
fail or if you are experiencing some type of database problem that is preventing Oracle from
performing a clean shutdown. This type of shutdown is not a clean shutdown and requires
instance recovery when the database is subsequently started. Instance recovery is performed
automatically when you do the startup—no manual intervention required. During instance
recovery the uncommitted changes are rolled back from the database, and committed changes
are written to the data files. Oracle uses the redo log files and undo segments to construct the
instance recovery information.

Shutting Down Oracle Using SQL*Plus
You can use the command-line facility SQL*Plus to shut down the Oracle database. You
will need to connect to SQL*Plus as a user with the SYSOPER or SYSDBA privilege. Here is
the syntax of the shutdown options available to you:

SHUTDOWN [NORMAL|TRANSACTIONAL|IMMEDIATE|ABORT]

Here is an example of how to use the SHUTDOWN IMMEDIATE command to shut down an
Oracle database using SQL*Plus:

$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Sun Sep 22 10:23:33 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter user-name: system/**** as sysdba

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options
SQL>

	 Monitoring the Database Alert Log	 497

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

If you are running in a Windows environment and shut down the database
using either the Database Control or SQL*Plus tool, the Oracle service will
continue to run. Even though the Oracle Windows service is running, the
database is not available until a subsequent startup command is issued.

Monitoring the Database Alert Log
The database alert log, sometimes referred to as the alert file, contains information about
certain activities and errors that occur within your database. The alert log contains a
chronological summary of the database events. The alert log contains a wealth of informa-
tion that you can use to diagnose system problems and review the history of activities that
have occurred on the system. This is the first location DBA must look to diagnose database
issues. Some of the events and actions recorded in the alert log include the following:

■■ Startup and shutdown information, including a record of every time a database is
started or shut down

■■ Certain types of administrative actions, such as the ALTER SYSTEM and ALTER DATABASE
commands

■■ Certain types of database errors, such as internal Oracle errors (ORA-600 errors) or
space errors (ORA-1542, for example)

■■ Messages that are errors about shared servers and dispatchers

■■ Errors during materialized view refreshes

■■ The values of initialization parameters that have values different from their default val-
ues at instance startup

Here is an excerpt from an Oracle Database 12c alert log. Long output is shown for you
to review and understand the type of information written to alert log (the output format
here is adjusted to print in two columns to conserve space):

Sat Sep 21 17:17:28 2013
TABLE SYS.WRP$_REPORTS: ADDED INTERVAL
PARTITION SYS_P201 (1360) VALUES LESS
THAN (TO_DATE(' 2013-09-22 01:00:00',
'SYYYY-MM-DD HH24:MI:SS', 'NLS_
CALENDAR=GREGORIAN'))

TABLE SYS.WRP$_REPORTS_DETAILS: ADDED
INTERVAL PARTITION SYS_P202 (1360)
VALUES LESS THAN (TO_DATE(' 2013-09-22
01:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIAN'))

498	 Chapter 9  ■  Creating and Operating Oracle Database 12c

TABLE SYS.WRP$_REPORTS_TIME_BANDS:
ADDED INTERVAL PARTITION SYS_P205
(1359) VALUES LESS THAN (TO_DATE('
2013-09-21 01:00:00', 'SYYYY-MM-DD
HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'))
Sat Sep 21 17:17:29 2013
Thread 1 cannot allocate new log,
sequence 41
Checkpoint not complete
 Current log# 1 seq# 40 mem# 0: /u02/
oradata/c12ndb1/redo01.log
Sat Sep 21 17:17:32 2013
Thread 1 advanced to log sequence 41
(LGWR switch)
 Current log# 2 seq# 41 mem# 0: /u02/
oradata/c12ndb1/redo02.log
Sat Sep 21 17:18:08 2013
Thread 1 cannot allocate new log,
sequence 42
Checkpoint not complete
 Current log# 2 seq# 41 mem# 0: /u02/
oradata/c12ndb1/redo02.log
Sat Sep 21 17:18:14 2013
queuing purge of JIT compilation
due to creation of d74dab20 oracle/xml/
util/XMLUtil
Sat Sep 21 17:18:14 2013
Thread 1 advanced to log sequence 42
(LGWR switch)
 Current log# 3 seq# 42 mem# 0: /u02/
oradata/c12ndb1/redo03.log
… … …
Sat Sep 21 18:03:54 2013

LICENSE_MAX_SESSION = 0
LICENSE_SESSIONS_WARNING = 0
Initial number of CPU is 2
Number of processor cores in the system
is 2
Number of processor sockets in the
system is 1
CELL communication is configured to use
0 interface(s):

CELL IP affinity details:
 NUMA status: non-NUMA system
 cellaffinity.ora status: N/A
CELL communication will use 1 IP
group(s):
 Grp 0:
Picked latch-free SCN scheme 3
Using LOG_ARCHIVE_DEST_1 parameter
default value as USE_DB_RECOVERY_FILE_
DEST
Autotune of undo retention is turned
on.
IMODE=BR
ILAT =51
LICENSE_MAX_USERS = 0
SYS auditing is disabled
NOTE: remote asm mode is local (mode
0x1; from cluster type)
Starting up:
Oracle Database 12c Enterprise Edition
Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced
Analytics and Real Application Testing
options.
ORACLE_HOME = /u01/app/oracle/
product/12.1.0/dbhome_2
System name: Linux
Node name: btlnx63
Release: 2.6.39-400.24.1.el6uek.
x86_64
Version: #1 SMP Wed May 15
11:46:52 PDT 2013
Machine: x86_64
Using parameter settings in client-side
pfile /u01/app/oracle/admin/c12ndb1/
pfile/init.ora on machine btlnx63
System parameters with non-default
values:
 processes = 300
 sga_target = 2224M
 control_files = "/u02/
oradata/c12ndb1/control01.ctl"

	 Monitoring the Database Alert Log	 499

 control_files = "/u01/
app/oracle/fast_recovery_area/c12ndb1/
control02.ctl"
 db_block_size = 8192
 compatible =
"12.1.0.0.0"
 log_archive_format = "%t_%s_%r.
dbf"
 db_recovery_file_dest = "/u01/app/
oracle/fast_recovery_area"
 db_recovery_file_dest_size= 11G
 undo_tablespace = "UNDOTBS1"
 remote_login_passwordfile=
"EXCLUSIVE"
 db_domain = ""
 dispatchers =
"(PROTOCOL=TCP) (SERVICE=c12ndb1XDB)"
 local_listener = "LISTENER_
C12NDB1"
 audit_file_dest = "/u01/app/
oracle/admin/c12ndb1/adump"
 audit_trail = "DB"
 db_name = "c12ndb1"
 open_cursors = 300
 pga_aggregate_target = 740M
 diagnostic_dest = "/u01/app/
oracle"
NOTE: remote asm mode is local (mode
0x1; from cluster type)
Starting background process PMON
Sat Sep 21 18:03:54 2013
PMON started with pid=2, OS id=26952
Starting background process PSP0
… … …
Sat Sep 21 18:03:56 2013
starting up 1 dispatcher(s) for network
address '(ADDRESS=(PARTIAL=YES)
(PROTOCOL=TCP))'...
Sat Sep 21 18:03:56 2013
MMNL started with pid=20, OS id=26990
starting up 1 shared server(s) ...
ORACLE_BASE from environment = /u01/
app/oracle

Sat Sep 21 18:03:56 2013
ALTER DATABASE MOUNT
Sat Sep 21 18:03:58 2013
Using default pga_aggregate_limit of
2048 MB
Sat Sep 21 18:04:00 2013
Changing di2dbun from to c12ndb1
Sat Sep 21 18:04:00 2013
Successful mount of redo thread 1, with
mount id 1855935436
Sat Sep 21 18:04:00 2013
Database mounted in Exclusive Mode
Lost write protection disabled
Ping without log force is disabled.
Completed: ALTER DATABASE MOUNT
Sat Sep 21 18:04:01 2013
alter database archivelog
Completed: alter database archivelog
alter database open
Starting background process TMON
Sat Sep 21 18:04:01 2013
TMON started with pid=23, OS id=27006
Sat Sep 21 18:04:01 2013
LGWR: STARTING ARCH PROCESSES
Starting background process ARC0
Sat Sep 21 18:04:01 2013
ARC0 started with pid=24, OS id=27008
… … …
Sat Sep 21 18:04:03 2013
FBDA started with pid=30, OS id=27020
replication_dependency_tracking turned
off (no async multimaster replication
found)
Starting background process AQPC
Sat Sep 21 18:04:04 2013
AQPC started with pid=31, OS id=27022
Starting background process CJQ0
Completed: alter database open
Sat Sep 21 18:04:04 2013

500	 Chapter 9  ■  Creating and Operating Oracle Database 12c

This excerpt shows a successful startup of a database. Notice the section that lists the
initialization parameters read from the parameter file. You can also see that Oracle is start-
ing dispatcher processes, which indicates that Oracle Shared Server is running.

The parameter that governs the location of the alert log is DIAGNOSTIC_DEST. This
parameter is set to a path that designates where Oracle should place the log. The default
value for DIAGNOSTIC_DEST is the ORACLE_BASE environment value, if set when starting
the database. If ORACLE_BASE is not set, DIAGNOSTIC_DEST will default to the directory of
ORACLE_HOME/rdbms/log.

Oracle Database 12c supports two types of alert log files. The XML version of the file
is located in the DIAGNOSTIC_DEST/rdbms/dbname/instancename/alert directory. The
text file is in the DIAGNOSTIC_DEST/rdbms/dbname/instancename/trace directory.
The alert log file is always named alert_<instancename>.log. For example, the alert
log filename for the c12ndb1 database would be alert_c12ndb1.log.

The dictionary view V$DIAG_INFO shows the exact location of the alert log file for the
instance. Here is an example from the c12ndb1 database running on a Linux server:

SQL> SELECT name, value FROM v$diag_info;

NAME VALUE
---------------------- ---
Diag Enabled TRUE
ADR Base /u01/app/oracle
ADR Home /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1
Diag Trace /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/trace
Diag Alert /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/alert
Diag Incident /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/incident
Diag Cdump /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/cdump
Health Monitor /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/hm
Default Trace File /u01/app/oracle/diag/rdbms/c12ndb1/c12ndb1/trace/c12ndb
 1_ora_29330.trc

Active Problem Count 0
Active Incident Count 0

The ADR Base value is the directory specified (or derived by the instance using ORACLE_BASE
or ORACLE_HOME) for DIGNOSTIC_DEST. The Diag Trace location is where the text version of the
alert log file located.

The alert log is continuously appended to, so it is a good idea to periodically purge it.
Many DBAs do so daily or weekly, saving a copy of the current alert log to a backup and
clearing the current alert log. It is a good idea to save the log contents. You can use it to
review when any initialization parameters have changed and to review database errors or
problems recorded in the log. Oracle database will create the file if you remove or rename
the file.

	 Monitoring the Database Alert Log	 501

The alert log file of an Oracle Database 12c database is part of the advanced fault diag-
nostic infrastructure known as the Automatic Diagnostic Repository (ADR). ADRCI is the
command interface for ADR, and the SHOW ALERT command can be used to view the con-
tents of the alert log. Here is an example of using ADRCI.

$ adrci
ADRCI: Release 12.1.0.1.0 - Production on Sat Nov 9 15:16:46 2013
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.
ADR base = "/u01/app/oracle"

adrci> show homes
ADR Homes:
diag/rdbms/c12ndb1/c12ndb1
diag/rdbms/c12db1/C12DB1
diag/tnslsnr/btlnx63/listener1
diag/tnslsnr/btlnx63/listener

adrci> show alert

Choose the home from which to view the alert log:

1: diag/rdbms/c12ndb1/c12ndb1
2: diag/rdbms/c12db1/C12DB1
3: diag/tnslsnr/btlnx63/listener1
4: diag/tnslsnr/btlnx63/listener
Q: to quit

Please select option: 2
Output the results to file: /tmp/alert_26280_1402_C12DB1_1.ado

Please select option: q
adrci>

In Exercise 9.2, you’ll learn how to create an Oracle Database 12c database without
using DBCA.

E x e rcis e 9 . 2

Creating an Oracle Database 12c Database

You have learned to use the DBCA to create a database, learned to start and stop a database,
and learned about alert log files and the Oracle dictionary. Though the DBCA does all the
background work and creates a database for you, it’s good to know the stages of database

502	 Chapter 9  ■  Creating and Operating Oracle Database 12c

creation and any relevant scripts needed if you decide to create the database manually. Here
are the steps needed to create an Oracle Database 12c database on the Linux platform:

	 1.	 Set up the relevant environment variables before creating the database. The three
important variables are ORACLE_SID, ORACLE_BASE, and ORACLE_HOME. The ORACLE_
SID variable is the instance identifier, which can be up to eight characters. On Unix
platforms, the instance identifier is case-sensitive. The ORACLE_BASE parameter
decides where the trace file and dump file directories will be located. ORACLE_HOME is
the location where the Oracle Database 12c software is installed.

export ORACLE_SID=OCA12C2
export ORACLE_BASE=/u01/app/oracle
export ORACLE_HOME=/u01/app/oracle/product/12.1.0

	 2.	 Create a password file using the ORAPWD utility. This allows administrative logins to
the Oracle Database 12c database using tools such as EM Database Express and SQL
Developer. If the SYS password is not provided using the password parameter, orapwd
will prompt for the password.

cd $ORACLE_HOME/dbs
orapwd file=orapwOCA12C2

	 3.	 Create an initialization-parameter file. You can create a text-based pfile, and using
SQL*Plus, you can create the spfile from the pfile. The pfile must have at least DB_NAME,
CONTROL_FILES, and MEMORY_TARGET parameters.

cd $ORACLE_HOME/dbs
sqlplus / as sysdba
SQL> create spfile from pfile;

	 4.	 Start the instance in NOMOUNT mode:

SQL> startup nomount;

	 5.	 Create the database using the CREATE DATABASE statement. This statement creates
the database with SYSTEM, SYSAUX, TEMP, and UNDOTBS1 tablespaces. It creates control
files specified in the location of the CONTROL_FILES parameter and redo log files. It
also sets a password for SYS and SYSTEM users.

CREATE DATABASE "c12ndb1"
MAXDATAFILES 100
DATAFILE '/u02/oradata/c12ndb1/system01.dbf' SIZE 700M REUSE AUTOEXTEND ON
NEXT 100M MAXSIZE 32G
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE '/u02/oradata/c12ndb1/sysaux01.dbf' SIZE 550M REUSE AUTOEXTEND
ON NEXT 100M MAXSIZE 32G

E x e rcis e 9 . 2   (c ont inue d)

	 Summary	 503

DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE '/u02/oradata/c12ndb1/temp01.dbf'
SIZE 20M REUSE AUTOEXTEND ON NEXT 100M MAXSIZE 16G
SMALLFILE UNDO TABLESPACE "UNDOTBS1" DATAFILE '/u02/oradata/c12ndb1/
undotbs01.dbf' SIZE 200M REUSE AUTOEXTEND ON NEXT 50M MAXSIZE 16G
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
LOGFILE GROUP 1 ('/u03/oradata/c12ndb1/redo0101.log', '/u04/oradata/c12ndb1/
redo0102.log') SIZE 50M,
GROUP 2 ('/u03/oradata/c12ndb1/redo0201.log', '/u04/oradata/c12ndb1/redo0202
.log') SIZE 50M,
GROUP 3 ('/u03/oradata/c12ndb1/redo0301.log', '/u04/oradata/c12ndb1/redo0302
.log') SIZE 50M
USER SYS IDENTIFIED BY "my1Password" USER SYSTEM IDENTIFIED BY "my1Password";

	 6.	 Create additional tablespaces if any are needed:

CREATE TABLESPACE "USERS"
DATAFILE '/u02/oradata/c12ndb1/users01.dbf' SIZE 25M;

	 7.	 Build data dictionary views and public synonyms (? in SQL*Plus refers to the ORACLE_
HOME directory):

SQL> @?/rdbms/admin/catalog.sql

	 8.	 Build the PL/SQL packages:

SQL> @?/rdbms/admin/catproc.sql

	 9.	 If you want to install additional options such as JVM or Oracle Ultra Search, run the
relevant scripts:

SQL> @?/javavm/install/initjvm.sql;

Summary
In this chapter, you started off by learning how to install and create an Oracle Database 12c
database using the Oracle Universal Installer and Database Configuration Assistant tools.
Then you learned about the Oracle metadata dictionary and parameter files. You also learned
about database startup and shutdown as well as the alert log file.

Installing Oracle Database 12c software is a relatively easy task once the preinstall
checks and hardware requirements are met. Installing Oracle database software binaries

E x e rcis e 9 . 2   (c ont inue d)

504	 Chapter 9  ■  Creating and Operating Oracle Database 12c

is a joint task between the system administrator and DBA, as certain scripts need to be
run as root on Linux/Unix platforms.

You can use the DBCA to create databases. You can choose from preexisting database
definitions stored as XML templates or create a database definition from a custom template.
All aspects of the database, including database name, file location, sizing, and initialization-
parameter settings, are defined within the DBCA. You can create a database after completing
the database definition, or you can save the definition as a template or series of scripts to be
run at a later time. You can also use the DBCA to remove databases or add options to exist-
ing databases.

You can manage and create new template definitions using the DBCA interface. This is
advantageous because it serves as a way to centrally manage all your database definitions. You
can also create new databases from existing databases with the DBCA by using templates.

Oracle uses a parameter file to store information about the initialization parameters
used when an Oracle instance starts. Oracle reads the parameter file to obtain information
about how the Oracle instance should be sized and configured upon startup. The parameter
file can be either a plaintext file, commonly referred to as a pfile, or a binary file that is
referred to as a spfile. You can use the EM Database Express to change database param-
eters when the database is running.

The data dictionary contains information about the database and database objects. The
data dictionary is created when the database is created using the script catalog.sql. The data
dictionary views have static data, whereas the dynamic performance views have data that does
not persist across database shutdowns.

The database needs to be started in order for work to be done against it. You can start up
the database in one of several modes: MOUNT, NOMOUNT, and OPEN. You can also start up the
database with the RESTRICT option to restrict general access to the database. You can also
start up a database using the FORCE option, which accomplishes a shutdown and startup but
requires instance recovery because the shutdown is not clean.

You can shut down the database using one of several options: NORMAL, TRANSACTIONAL,
IMMEDIATE, and ABORT. The NORMAL, TRANSACTIONAL, and IMMEDIATE options are considered
clean shutdowns because no recovery is necessary upon a subsequent startup.

The alert log contains information about certain activities and errors that occur within
your database. The alert log contains a chronological summary of these events and a wealth
of information that you can use to diagnose system problems and review histories of activities
that occurred on the system. The DIGNOSTIC_DEST parameter determines the location of the
alert log.

Exam Essentials

Explain Oracle Database 12c system requirements.    Know what the requirements are for
available server disk space and memory prior to performing an Oracle Database 12c soft-
ware installation.

	 Exam Essentials	 505

Describe the Optimal Flexible Architecture.    Be able to explain the concepts associated
with the OFA model and how to implement an OFA-compliant installation and database
directory structure.

Describe steps for installation and configuration.    Know how to set up the Oracle installa-
tion environment so that the OUI can be used to install and configure the Oracle Database
12c software.

Be able to create a database using the DBCA.    Describe the steps involved in creating a
database using the Oracle Database Configuration Assistant (DBCA). Understand how the
DBCA uses templates to store information about databases and how templates are used by
the DBCA to create databases. Be familiar with the various options available to you when
creating an Oracle database using the DBCA.

Know how to manage DBCA templates.    Understand how to use the DBCA to man-
age templates and the various options available when creating new database templates.
Understand what each option is and when it should be used.

Describe the database startup modes.     Understand the various modes of database startup.
Understand what each database startup option is and when you might use the option.

Recognize how to start an Oracle database.    Understand how to use the database tools to
start up an Oracle Database.

Describe the database-shutdown modes.     Understand the various modes of database
shutdown. Understand what each database-shutdown option is and when you might use
the option.

Be able to shut down an Oracle database.    Understand how to use the database tools to
shut down an Oracle database.

Know how to manage the Oracle parameter file.    Be able to identify the Oracle parameter
file and the different types of parameter files. Also understand how you can change the
parameter files.

View and understand the contents of the Oracle alert log.    Be able to identify the Oracle
alert log and the kinds of information Oracle writes to the alert log. Be able to identify the
database initialization parameter that provides the location of the alert log.

Be familiar with the data dictionary.    Understand the difference between the static
data dictionary and dynamic performance views. Also understand how critical database
information can be obtained from these views.

506	 Chapter 9  ■  Creating and Operating Oracle Database 12c

Review Questions

	 1.	 You noticed that the current value of the UNDO_RETENTION parameter is 900 and is too
low for some of your transactions. The database was created using DBCA. You issue
the following statement:

ALTER SYSTEM SET UNDO_RETENTION=4800;

		 Which option is true?

	 A.	 UNDO_RETENTION is a static parameter and, therefore, cannot be changed using
ALTER SYSTEM.

	 B.	 The change will be available to the instance only after a database cycle.

	 C.	 The value is changed in memory, and when the database restarts the next time, the
new value will be preserved when using the spfile.

	 D.	 The value is changed only in memory, and the server parameter file needs to be
updated for the change to persist across database shutdowns.

	 2.	 You need to find the directory where the Oracle alert log is being written. Which initial-
ization parameter can be best used to list the full directory path of the alert log location?

	 A.	 ALERT_LOG_DEST

	 B.	 BACKGROUND_DUMP_DEST

	 C.	 DIAGNOSTIC_DEST

	 D.	 INIT_LOG_DUMP_DEST

	 3.	 Which data dictionary view is used to view the current values of parameters?

	 A.	 V$DATABASE

	 B.	 V$SPPARAMETER

	 C.	 V$PARAMETER

	 D.	 V$SYSPARAMETER

	 4.	 Which startup options must be used to start the instance when you create a new database?

	 A.	 STARTUP FORCE

	 B.	 STARTUP MOUNT

	 C.	 STARTUP RESTRICT

	 D.	 STARTUP NOMOUNT

	 Review Questions	 507

	 5.	 The DIAGNOSTIC_DEST parameter is not set up in the initialization-parameter file. The
value of the ORACLE_HOME environment variable is /u01/app/oracle/product/12.1.0,
and the value of ORACLE_BASE is /u01/app/oracle. The database and instance name is
xyz. What is the location of the text-alert log file for the xyz database?

	 A.	 /u01/app/oracle/product/12.1.0/log/rdbms/xyz/xyz/trace

	 B.	 /u01/app/oracle/diag/rdbms/xyz/xyz/trace

	 C.	 /u01/app/oracle/diag/rdbms/xyz/xyz/alert

	 D.	 /u01/app/oracle/product/12.1.0/diag/rdbms/xyz/xyz/trace

	 E.	 /u01/app/oracle/log/rdbms/xyz/xyz/trace

	 6.	 You want to create a database using the DBCA with DB_BLOCK_SIZE as 32KB. Which
statement is true?

	 A.	 A block size of 32KB is not allowed in Oracle Database 12c.

	 B.	 You must choose the Data Warehouse template in the DBCA.

	 C.	 You must choose the Custom template in the DBCA.

	 D.	 You must set the environment variable DB_BLOCK_SIZE to 32,768.

	 7.	 All of the following are database-management options within the Database Configura-
tion Assistant except which one?

	 A.	 Change Database Initialization Parameters

	 B.	 Create a Database

	 C.	 Manage Templates

	 D.	 Delete a Database

	 8.	 The Oracle Universal Installer is started by executing which program?

	 A.	 emctl

	 B.	 runInstaller

	 C.	 ouistart

	 D.	 isqlplusctl

	 9.	 You’ve been asked to install Oracle Database 12c on a new Linux server. You’re likely
to ask the Unix system administrator to do all but which one of the following for you
in order to get the new server ready for Oracle?

	 A.	 Modify the server’s kernel parameters.

	 B.	 Create a new Unix user to own the Oracle software.

	 C.	 Create the mount points and directory structure using the OFA model.

	 D.	 Determine which directory will be used for $ORACLE_HOME.

508	 Chapter 9  ■  Creating and Operating Oracle Database 12c

	10.	 Your database name is OCA12C. The options show the files that are available in the
$ORACLE_HOME/dbs directory. Which file is used to start up the database instance when
you issue the STARTUP command?

	 A.	 initOCA12C.ora

	 B.	 OCA12Cspfile.ora

	 C.	 spfile.ora

	 D.	 init.ora

	11.	 Which initialization parameter cannot be changed after the database is created?

	 A.	 DB_BLOCK_SIZE

	 B.	 DB_NAME

	 C.	 CONTROL_FILES

	 D.	 None. All parameters can be changed as and when required.

	12.	 Which script creates the database dictionary?

	 A.	 dictionary.sql

	 B.	 catdict.sql

	 C.	 catproc.sql

	 D.	 catalog.sql

	13.	 If your database name is PROD and your instance name is PROD1, what would be the
name of the text-alert log file?

	 A.	 alertPROD.log

	 B.	 alert_PROD1.log

	 C.	 PROD1alert.log

	 D.	 PROD_alert.log

	14.	 Your database is not responding and is in a hung state. You want to shut down and
start the database to release all resources. Which statements would you use?

	 A.	 STARTUP AFTER SHUTDOWN

	 B.	 STARTUP FORCE

	 C.	 SHUTDOWN FORCE

	 D.	 SHUTDOWN ABORT and STARTUP

	15.	 Which of the following startup options does not perform a database recovery?

	 A.	 STARTUP

	 B.	 STARTUP FORCE RESTRICT

	 C.	 STARTUP NOMOUNT

	 D.	 STARTUP OPEN

	 E.	 STARTUP RESTRICT

	 Review Questions	 509

	16.	 Which of the following shutdown statements does not perform a clean shutdown?

	 A.	 SHUTDOWN ABORT

	 B.	 SHUTDOWN TRANSACTIONAL

	 C.	 SHUTDOWN

	 D.	 SHUTDOWN IMMEDIATE

	 E.	 All of these are considered clean shutdowns.

	17.	 You would like to perform maintenance on the system and limit access to only the
DBA staff during the maintenance window. Which of the following startup options
should you use?

	 A.	 STARTUP NOMOUNT RESTRICT

	 B.	 STARTUP RESTRICT

	 C.	 STARTUP MOUNT RESTRICT

	 D.	 STARTUP MOUNT FORCE RESTRICT

	18.	 You want to start up the database using a binary initialization file. What is another
name for this file?

	 A.	 Configfile

	 B.	 Pfile

	 C.	 Spfile

	 D.	 init_pfile.ora

	19.	 Under normal circumstances, which of the following actions or events is not found in
the Oracle alert log?

	 A.	 Database startup and shutdown information

	 B.	 Nondefault initialization parameters

	 C.	 ORA-00600 errors

	 D.	 New columns added to a user table

	20.	 Which of the following is true about EM Database Express? (Choose all that apply.)

	 A.	 You can start up and shut down a database using Database Express.

	 B.	 You can read the contents of the alert log file.

	 C.	 You can modify static initialization parameters.

	 D.	 The CREATE DATABASE statement creates the Database Control repository in the
database.

Chapter

10
Understanding
Storage and Space
Management

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Managing Database Storage Structures

■■ Describe the storage of table row data in blocks.

■■ Create and manage tablespaces.

✓✓ Managing Space

■■ Explain how Oracle database server automatically

manages space.

■■ Save space by using compression.

■■ Proactively monitor and manage tablespace space usage.

■■ Use the Segment Advisor.

■■ Reclaim wasted space from tables and indexes by using the

segment shrink functionality.

■■ Manage resumable space allocation.

Understanding how data is stored in the database and how the
space is managed are important aspects of database adminis-
tration. In this chapter, you will learn more about the physical

and logical storage structures. To start, you’ll explore how a tablespace is the highest level
of logical structure in Oracle Database 12c. A data file is a structure that is associated with
a tablespace at the physical level. A database block is the smallest unit of logical storage.
We will discuss how a table row is stored in the database block.

You will also learn about the various storage and space management aspects of Oracle
Database 12c. With large amounts of data stored in the database, Oracle Database 12c has
automated several space management activities and offers compression to reduce the storage
footprint. Segment Advisor provides information on the tables and indexes with significant
free space; a DBA can use this information to reclaim wasted space by rebuilding or utilizing
the segment shrink option.

Understanding the Physical and
Logical Storage
The database’s data is stored logically in tablespaces and physically in data files that cor-
respond to the tablespaces. The logical storage management is independent of the physical
storage of the data files. A tablespace can have more than one data file associated with
it, whereas one data file belongs to only one tablespace. A database has more than one
tablespace. Figure 10.1 shows the relationship between the database, tablespaces, data
files, and objects within the tablespace. Any object (such as a nonpartitioned table or
index) created in the database is stored on a single tablespace, but the object’s physical
storage can be on multiple data files belonging to that tablespace. A segment is created
when a table or index is created and is stored on a single tablespace.

The size of the tablespace is the total size of all the data files belonging to that tablespace.
The size of the database is the total size of all the tablespaces in the database, which is the
total size of all the data files in the database (plus redo log and control files). Changing the size
of the data files belonging to a tablespace can change the size of that tablespace. You can add
more space to a tablespace by adding more data files to the tablespace. You can then add more
space to the database by adding more tablespaces, by adding more data files to the existing
tablespaces, or by increasing the size of the existing data files.

	 Understanding the Physical and Logical Storage	 513

F igur e 10 .1     Tablespaces and data files

Segments Extents of
Same Segment

Tablespace 1

Database

Tablespace 2 Tablespace 3

Data File 1 Data File 2 Data File 3 Data File 4

Extents Segments

When you create a database, Oracle creates the SYSTEM tablespace. All the data dictionary
objects are stored in this tablespace. You can add more space to the SYSTEM tablespace after
you create the database by adding more data files or by increasing the size of the data files.
The PL/SQL program units (such as procedures, functions, packages, or triggers) created in
the database are also stored in the SYSTEM tablespace.

The SYSTEM tablespace is a special tablespace that must be online all the time
for the database to function properly. SYSAUX is an auxiliary tablespace that is
created when the Oracle Database 12c database is created. The SYSAUX and
SYSTEM tablespaces cannot be renamed or dropped.

Oracle recommends against creating any objects other than the Oracle data dictionary
in the SYSTEM tablespace. By having multiple tablespaces, you can do the following:

■■ Separate the Oracle dictionary from other database objects. Doing so reduces conten-
tion between dictionary objects and database objects for the same data file.

■■ Control I/O by allocating separate physical storage disks for different tablespaces.

■■ Manage space quotas for users on tablespaces.

■■ Have separate tablespaces for temporary segments (TEMP) and undo management
(rollback segments). You can also create a tablespace for a specific activity; for
example, you can place high-update tables in a separate tablespace. When creating
the database, you can specify tablespace names for temporary tablespaces and undo
tablespaces.

Make sure to group application-related or module-related data together so that when
maintenance is required for the application’s tablespace, you only need to take that tablespace
offline, and the rest of the database will be available for users.

■■ Back up the database one tablespace at a time.

■■ Make part of the database read-only.

514	 Chapter 10  ■  Understanding Storage and Space Management

When you create a tablespace, Oracle creates the data files with the size specified. The space
reserved for the data file is formatted but does not contain any user data. Whenever spaces for
objects are needed, extents are allocated from this free space.

The tablespace name cannot exceed 30 characters. The name should
begin with an alphabetic character and can contain alphabetic characters,
numeric characters, and the special characters #, _, and $.

We discussed the logical structures block, extent, and segment in Chapter 8, “Introducing
Oracle Database 12c Components and Architecture.” Here is a brief refresher of what you
learned. The highest logical level of Oracle disk-space management are tablespaces. Drilling
down, you find segments that can reside in only one tablespace. Each segment is constructed
from one or more extents. Each of these extents can reside in only one data file. Therefore,
for a segment to straddle multiple data files, it must be constructed from multiple extents that
are located in separate data files. An extent is composed of a contiguous set of data blocks,
which are at the lowest level of space management. A data block is a fixed number of bytes
of disk space. You’ll learn more about the data block in the next section.

Contents of a Data Block
A data block is the minimum unit of I/O in an Oracle database. A data block is a multiple
of operating system block. The most commonly used data block size is 8K, but it can be
at 2K, 4K, 8K, 16K, or 32K. The DB_BLOCK_SIZE initialization parameter determines the
database data block size at the time of database creation. After the database is created,
the data block size cannot be changed.

Every data block has an internal structure known as the block format to track the data
stored in the block as well as the free space still available in the block. The data block can
be divided into three major areas.

Data block overhead: Overhead area cannot store any user data; this portion is used to
maintain the content of the block. Usually, the block overhead is between 84 to 107 bytes.

Row data: Area of the block where user data or an actual row of the table or index key
is stored. Row data is stored in an internal format known as the row format.

Free space: Available space in the data block for row data.

Figure 10.2 shows how the data block is organized. The contents of data block overhead
and row data are discussed next.

Oracle uses the data block overhead information to manage the block. There are three
areas in the overhead area. The block header contains information about the block, such as
disk address, segment type, and transaction entries. When a transaction updates a row in
the block, an entry is made in the transaction list. The table directory area stores metadata
about tables that have rows in the block. The row directory area identifies the location of
the rows in the row data area.

	 Understanding the Physical and Logical Storage	 515

F igur e 10 . 2     A data block

Block
Overhead

Row
Data

Block Format

Block Header

Table Directory

Row Directory
Row Data

Row Overhead

Number of Columns

Cluster Key ID

Chained Row ID

Column Length
Column Data

Column Length
Column Data

•
•
•
•

Free Space

The row data part of the block contains the actual data, such as table rows or index key
entries. The row format consists of row header and column data. The row header includes
the columns in the row piece and if the row is chained. Column data stores the actual data
in the row.

Oracle database uses ROWID to uniquely identify a row. Using ROWID is the fastest
way to get to the row. ROWID includes the data object number, the relative file number
where the block is stored, the block number in the file, and the row number.

Block storage characteristics, such as how much free space to leave in every block for
row updates and how many transaction lists to create, are defined at the time a segment,
such as a table, partition, or index, is created.

Defining Block Storage Characteristics
PCTFREE and PCTUSED are data block storage parameters. PCTFREE specifies the amount of
free space that should be reserved in each block of the table for future updates. You specify
a low PCTFREE for the ORDERS table, if there aren’t many updates to the table that increase
the row length. PCTUSED specifies when the block should be considered for inserting new
rows once the PCTFREE threshold is reached.

INITRANS specifies the number of concurrent transactions that can update each block of the
table. The default is 1 for table and 2 for index. Oracle reserves space in the block header for
the INITRANS number of concurrent transactions. For each additional concurrent transaction,
Oracle allocates space from the free space, which has an overhead of dynamically allocating

516	 Chapter 10  ■  Understanding Storage and Space Management

transaction entry space. If the block is full and no space is available, the transaction waits until
a transaction entry space is available.

Managing Tablespaces
Tablespaces logically group schema objects for administration convenience. Tablespaces
can store zero or more segments. Segments are schema objects that require storage in the
database. Tables and indexes are examples of segments. Constraints and sequences are
examples of schema objects that do not store data outside the data dictionary and, there-
fore, do not have segments.

You can place the tables and indexes associated with an application into a set of tablespaces
so that data can be managed more easily. You can take a tablespace offline and recover it
(potentially to a different point in time), separate from the rest of the database. You can also
move it to another database and configure it as read-only so that you do not have to make
additional backups of static data.

In the following sections, you will learn how to create and manage tablespaces in your
database.

Identifying Default Tablespaces
The SYSTEM tablespace is used for the data dictionary and should not be used to store
schema objects other than those that are placed there during the installation. The SYSAUX
tablespace stores schema objects associated with Oracle-provided features; examples are
the spatial data option, Extended Markup Language Database (XMLDB), and Oracle
Multimedia (formerly known as Intermedia).

The SYSTEM and SYSAUX tablespaces are always created when the database is created. One
or more temporary tablespaces are usually created in a database, as well as an undo tablespace
and several application tablespaces. Because SYSTEM and SYSAUX are the only tablespaces that
are always created with the database, SYSTEM may be the default tablespace for temporary
and user data if the database is created with SYSTEM as a dictionary-managed tablespace. You
should not, however, continue to use them as the default tablespaces for your users or applica-
tions. In the following sections, you will learn how to create additional tablespaces and enable
their use as better defaults.

Creating and Maintaining Tablespaces
You create tablespaces using either the CREATE DATABASE or CREATE TABLESPACE statement.
When creating a tablespace, you must make several choices:

■■ Whether to make the tablespace bigfile or smallfile

■■ Whether to manage extents locally or with the dictionary

■■ Whether to manage segment space automatically or manually

Additionally, there are specialized tablespaces for temporary segments and undo segments.

	 Managing Tablespaces	 517

A tablespace is created with the CREATE TABLESPACE statement. The following statement
creates a tablespace named HR_DATA. The data file associated with the tablespace is physically
stored on the disk at /u02/oradata/12CR11/hr_data01.dbf and has a size of 20MB.

SQL> CREATE TABLESPACE HR_DATA
 2 DATAFILE '/u02/oradata/12CR11/hr_data01.dbf'
 3 SIZE 20M;

Tablespace created.
SQL>

In the following sections, we will discuss the various options available when you create
a tablespace.

Creating Bigfile and Smallfile Tablespaces
Bigfile tablespaces are built on a single data file (or temp file), which can be as many as
232 data blocks in size. Therefore, a bigfile tablespace that uses 8KB data blocks can be
as large as 32TB (the maximum size is 128TB for a 32KB block size). Bigfile tablespace
can have only one data file.

Bigfile tablespaces are intended for very large databases. When a very large database has
thousands of read-write data files, operations that must update the data file headers, such
as checkpoints, can take a relatively long time. If you reduce the number of data files, these
operations can complete faster.

To create a bigfile tablespace, use the keyword BIGFILE in the CREATE statement, like this:

CREATE BIGFILE TABLESPACE PO_ARCHIVE
DATAFILE '/u02/oradata/12CR11/po_archive.dbf' size 25G;

Smallfile tablespace is the new terminology for the old Oracle tablespace data file option.
With a smallfile tablespace, you can have multiple data files for a tablespace. Each data file
can be as many as 222 data blocks in size. Therefore, data files in a smallfile tablespace that
uses 8KB data blocks are limited to 32GB. The smallfile tablespace can have as many as
1,022 data files, limiting the 8KB data block tablespace to slightly less than 32TB—about
the same as a bigfile tablespace.

To create a smallfile tablespace, either omit the keyword BIGFILE or explicitly use the
keyword SMALLFILE, like this:

CREATE SMALLFILE TABLESPACE PO_DETAILS
DATAFILE '/u02/oradata/12CR11/po_details.dbf' size 2G;

By default, Oracle Database 12c creates SMALLFILE tablespaces. You do not
have to specify SMALLFILE in the CREATE TABLESPACE statement. You can
use the DATABASE_PROPERTIES dictionary to view the default tablespace
type for your Oracle Database 12c database (look for the property name
DEFAULT_TBS_TYPE). You can use the ALTER DATABASE statement to change
the default behavior.

518	 Chapter 10  ■  Understanding Storage and Space Management

Working with Oracle Managed File Tablespaces
The Oracle Managed Files (OMF) feature can make it easier for you to administer the
files used by an Oracle database. Using the OMF feature, you specify operations in terms
of tablespaces and not operating-system files. You don’t explicitly name data files or temp
files; the database does this for you.

To enable the OMF feature, set the initialization parameter DB_CREATE_FILE_DEST to
the directory where you want the database to create and manage your data and temp files,
like this:

ALTER SYSTEM SET
 db_create_file_dest = '/u02/oradata/' SCOPE=BOTH;

When creating a tablespace using the OMF feature, you simply omit the filename:

CREATE TABLESPACE hr_data;

Oracle creates a tablespace using a unique filename, such as o1_mf_hr_data_46n3ck5t_.
dbf under the /u02/oradata/12CR11/datafile directory. Notice that Oracle Database 12c
adds the subdirectories <DBNAME>/datafile in the DB_CREATE_FILE_DEST directory. This data
file will have autoextend enabled and be 100MB unless you specify a different size. By default,
the tablespace is a smallfile tablespace, but you can specify a bigfile tablespace by including the
keyword BIGFILE.

The OMF feature will be discussed later in this chapter. In the next two sections, you will
learn about the automatic space management features in Oracle Database 12c.

Choosing Extent Management
When Oracle allocates space to an object in a tablespace, it is allocated in chunks of con-
tiguous database blocks known as extents. Each object is allocated a segment, which has
one or more extents. Oracle maintains the extent information such as extents free, extent
size, and extents allocated, either in the data dictionary or in the tablespace itself.

If you store the extent management information in the dictionary for a tablespace, that
tablespace is called a dictionary-managed tablespace. Whenever an extent is allocated or
freed, the information is updated in the corresponding dictionary tables. Such updates also
generate undo information.

With dictionary extent management, the database tracks free and used extents in the
data dictionary, changing the FET$ and UET$ tables with recursive SQL. With local extent
management, the free/used extent information is maintained in a bitmap pattern in the
header of the data file. Therefore, Oracle has to check in the local bitmap instead of making
trips to the UET$ or FET$ table. Local extent management is the default and is generally the
preferred technique.

A simple example of a dictionary-managed tablespace creation command is as follows:

CREATE TABLESPACE APPL_DATA
DATAFILE '/disk3/oradata/DB01/appl_data01.dbf' SIZE 100M
EXTENT MANAGEMENT DICTIONARY;

	 Managing Tablespaces	 519

This statement creates a tablespace named APPL_DATA; the data file specified is created with
a size of 100MB. You can specify more than one file under the DATAFILE clause separated by
commas; you may need to create more files if there are any operating-system limits on the
file size. For example, if you need to allocate 6GB to the tablespace and the operating system
allows only 2GB as the maximum file size, you need three data files for the tablespace. The
statement will be as follows:

CREATE TABLESPACE APPL_DATA
DATAFILE '/disk3/oradata/DB01/appl_data01.dbf' SIZE 2000M,
 '/disk3/oradata/DB01/appl_data02.dbf' SIZE 2000M,
 '/disk4/oradata/DB01/appl_data03.dbf' SIZE 2000M
EXTENT MANAGEMENT DICTIONARY;

The options available when you’re creating or reusing a data file are discussed in the
“Managing Data Files” section, later in this chapter.

If you store the management information in the tablespace by using bitmaps in each data
file, such a tablespace is known as a locally managed tablespace. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for reuse,
Oracle changes the bitmap values to show the new status of the blocks. These changes do
not generate rollback information because they do not update tables in the data dictionary.

With locally managed tablespaces, you have two options for how extents are allocated:
UNIFORM and AUTOALLOCATE. The UNIFORM option tells the database to allocate and deallocate
extents in the tablespace with the same unvarying size that you can specify or to let extents
default to 1MB. UNIFORM is the default for temporary tablespaces and cannot be specified
for undo tablespaces. To create consistent 10MB extents, use the clause EXTENT MANAGEMENT
LOCAL UNIFORM SIZE 10M in the CREATE TABLESPACE statement. Here is an example:

CREATE TABLESPACE hr_index
DATAFILE '/u02/oradata/12CR11/hr_index01.dbf' SIZE 2G
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 10M;

The minimum extent size for a locally managed tablespace with
AUTOALLOCATE is 64KB.

AUTOALLOCATE, on the other hand, tells the database to vary the size of extents for each
segment. For example, on Windows and Linux with 8KB data blocks, each segment starts out
with 64KB extents for the first 16 extents, and then the extents increase in size to 1MB for
the next 63 extents. The size then increases to 8MB for the next 120 extents, then 64MB, and
so on, as the segment grows. This algorithm allows small segments to remain small and large
segments to grow without gaining too many extents. AUTOALLOCATE is best used for a general-
purpose mixture of small and large tables. Here is an example of creating a tablespace using
AUTOALLOCATE:

CREATE TABLESPACE hr_index
DATAFILE '/u02/oradata/12CR11/hr_index01.dbf' SIZE 2G
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

520	 Chapter 10  ■  Understanding Storage and Space Management

Bigfile tablespaces are created as locally managed; you cannot specify the EXTENT
MANAGEMENT DICTIONARY clause for bigfile tablespaces. You can convert a smallfile tablespace
from dictionary extent management to local extent management and back with the Oracle-
supplied PL/SQL package DBMS_SPACE_ADMIN.

When the SYSTEM tablespace is created as a locally managed tablespace, you
cannot create dictionary-managed tablespaces in the database. The Oracle
DBCA tool by default creates the SYSTEM tablespace as locally managed.

Choosing Segment Space Management
For tablespaces that have local extent management, you can use either manual or automatic
segment space management. Manual segment space management exists for backward compat-
ibility and uses free-block lists to identify the data blocks available for inserts together with the
parameters PCTFREE and PCTUSED, which control when a block is made available for inserts.

After each INSERT or UPDATE, the database compares the remaining free space in that
data block with the segment’s PCTFREE setting. If the data block has less than PCTFREE free
space (meaning it is almost full), it is taken off the free-block list and is no longer available
for inserts. The remaining free space is reserved for update operations that may increase
the size of rows in that data block. After each UPDATE or DELETE, the database compares the
used space in that data block with that segment’s PCTUSED setting. If the data block has less
than PCTUSED used space, the data block is deemed empty enough for inserts and is placed
on the free-block list.

To specify manual segment space management, use the SEGMENT SPACE MANAGEMENT
MANUAL clause of the CREATE TABLESPACE statement, or simply omit the SEGMENT SPACE
MANAGEMENT AUTO clause. Oracle strongly recommends AUTOMATIC segment space management
for permanent locally managed tablespaces, and the default behavior of Oracle Database 12c is
AUTO. Here is a statement that creates a tablespace with manual segment space management:

CREATE TABLESPACE hr_index
DATAFILE '/u02/oradata/12CR11/hr_index01.dbf' SIZE 2G
EXTENT MANAGEMENT LOCAL AUTOALLOCATE
SEGMENT SPACE MANAGEMENT MANUAL;

When automatic segment space management is specified, bitmaps are used instead of free
lists to identify which data blocks are available for inserts. The parameters PCTFREE and
PCTUSED are ignored for segments in tablespaces with automatic segment space management.
Automatic segment space management is available only on tablespaces configured for local
extent management; it is not available for temporary or system tablespaces. Automatic seg-
ment space management performs better and reduces your maintenance tasks, making it the
preferred technique.

	 Managing Tablespaces	 521

To specify automatic segment space management, use the SEGMENT SPACE MANAGEMENT
AUTO clause of the CREATE TABLESPACE statement like this or do not include the SEGMENT
SPACE MANAGEMENT clause (it is the default):

CREATE TABLESPACE hr_index
DATAFILE '/u02/oradata/12CR11/hr_index01.dbf' SIZE 2G
EXTENT MANAGEMENT LOCAL AUTOALLOCATE
SEGMENT SPACE MANAGEMENT AUTO;

When automatic segment space management is used, Oracle ignores the storage parameters
PCTUSED, FREELISTS, and FREELIST GROUPS when creating objects.

Using SQL Developer is a very handy way to create a tablespace—and to learn the
various clauses of creating a tablespace using the DDL tab. Figure 10.3 shows the Create
Tablespace screen.

F igur e 10 . 3     The Create Tablespace screen of SQL Developer

Although the term segment space management sounds similar to extent
management, it is quite different and can be more accurately regarded as
block space management.

522	 Chapter 10  ■  Understanding Storage and Space Management

Choosing Other Tablespace Options
Several options are available to use when you are creating a tablespace. You learned
to create bigfile and smallfile tablespaces and use the EXTENT MANAGEMENT and SEGMENT
SPACE MANAGEMENT options in the previous sections. In this section, you will learn the
other options available while creating a tablespace:

■■ Specifying nondefault block size

■■ Specifying default storage characteristics

■■ Specifying logging and flashback clauses

■■ Creating offline tablespaces

The following example shows the optional clauses you can use while creating a dictionary-
managed tablespace:

CREATE TABLESPACE APPL_DATA
 DATAFILE '/disk3/oradata/DB01/appl_data01.dbf'
 SIZE 100M
 DEFAULT STORAGE (
 INITIAL 256K
 NEXT 256K
 MINEXTENTS 2
 PCTINCREASE 0
 MAXEXTENTS 4096)
 BLOCKSIZE 16K
 MINIMUM EXTENT 256K
 LOGGING
 ONLINE
 FORCE LOGGING
 FLASHBACK ON
 EXTENT MANAGEMENT DICTIONARY
 SEGMENT SPACE MANAGEMENT MANUAL;

The following example shows the optional clauses you can use while creating a locally
managed tablespace:

CREATE TABLESPACE APPL_DATA
 DATAFILE '/disk3/oradata/DB01/appl_data01.dbf'
 SIZE 100M
 DEFAULT STORAGE COMPRESS
 BLOCKSIZE 16K
 LOGGING
 ONLINE
 FORCE LOGGING

	 Managing Tablespaces	 523

 FLASHBACK ON
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

Oracle manages the tablespace characteristics very efficiently with its default values;
however, you can specify several clauses to obtain an even finer level of control. The clauses
in the CREATE TABLESPACE command can specify the following:

DEFAULT STORAGE Clause    The DEFAULT STORAGE clause specifies the default storage param-
eters for new objects that are created in the tablespace. If an explicit storage clause is specified
when an object is created, the tablespace defaults are not used for the specified storage param-
eters. The storage parameters are specified within parentheses; no parameter is mandatory,
but if you specify the DEFAULT STORAGE clause, you must specify at least one parameter inside
the parentheses. The storage parameters are valid only for dictionary-managed tablespaces;
for locally managed tablespaces, you can specify only the COMPRESS option.

BLOCKSIZE Clause    You can specify block size that is different from the standard database
block size when creating a new tablespace. The database block size is specified when you cre-
ate the database using the initialization parameter DB_BLOCK_SIZE. This is the block size used
for the SYSTEM tablespace and is known as the standard block size. The valid sizes of the non-
standard block size are 2KB, 4KB, 8KB, 16KB, and 32KB. If you do not specify a block size
for the tablespace, the database block size is assumed. Multiple block sizes in the database
are beneficial for large databases with Online Trasaction Processing (OLTP) and Decision
Support System (DSS) data stored together and for storing large tables. The restrictions on
specifying nonstandard block sizes along with the tablespace creation are discussed in the
“Using Nonstandard Block Sizes” section.

MINIMUM EXTENT Clause    The MINIMUM EXTENT clause specifies that the extent sizes should
be a multiple of the size specified. You can use this clause to control fragmentation in the
tablespace by allocating extents of at least the size specified; this clause is always a multiple
of the size specified. In the CREATE TABLESPACE example, all the extents allocated in the
tablespace would be multiples of 256KB. The INITIAL and NEXT extent sizes specified should
be multiples of MINIMUM EXTENT. This clause is valid only for dictionary-managed tablespaces.

LOGGING/NOLOGGING Clause    The LOGGING/NOLOGGING clause specifies that the DDL opera-
tions and direct-load INSERT should be recorded in the redo log files. This is the default, and
the clause can be omitted. When you specify NOLOGGING, data is modified with minimal log-
ging, and hence the commands complete faster. Because the changes are not recorded in the
redo log files, you need to apply the commands again in the case of a media recovery. You can
specify LOGGING or NOLOGGING in the individual object creation statement, and it will override
the tablespace default.

FORCE LOGGING Clause    You must specify this clause to log all changes irrespective of
the LOGGING mode for individual objects in the tablespace. You can specify the NOLOGGING
clause and FORCE LOGGING clause together when creating a tablespace. If you do, the objects
will be created in NOLOGGING mode and will be overridden by the FORCE LOGGING mode.
When you take the tablespace out of the FORCE LOGGING mode, the NOLOGGING attribute for
objects will go into effect.

524	 Chapter 10  ■  Understanding Storage and Space Management

ONLINE/OFFLINE Clause    This clause specifies that the tablespace should be made online
or made available as soon as it is created. This is the default, and hence the clause can be
omitted. If you do not want the tablespace to be available, you can specify OFFLINE.

FLASHBACK ON/OFF Clause    FLASHBACK ON puts the tablespace in flashback mode and is the
default. The OFF option turns flashback off, and hence Oracle will not save any flashback
data. We will discuss flashback operations in Chapter 15, “Using Backup and Recovery.”

The clauses related to encrypting the tablespace are not discussed here
because they are beyond the scope of this book.

Using Nonstandard Block Sizes
The block size to be used while creating the database is specified in the initialization
parameter using the DB_BLOCK_SIZE parameter. This is known as the standard block size
for the database. You must choose a block size that suits most of your tables. In most data-
bases, this is the only block size you will ever need. Oracle gives you the option of having
multiple block sizes, which is especially useful when you’re transporting tablespaces from
another database with a different block size.

The DB_CACHE_SIZE parameter defines the buffer cache size that is associated with the
standard block size. To create tablespaces with nonstandard block sizes, you must set the
appropriate initialization parameter to define a buffer cache size for the block size. The ini-
tialization parameter is DB_nK_CACHE_SIZE, where n is the nonstandard block size. The n can
have the values 2, 4, 8, 16, or 32, but it cannot have the size of the standard block size. For
example, if your standard block size is 8KB, you cannot set the parameter DB_8K_CACHE_
SIZE. If you need to create a tablespace that uses a different block size, say 16KB, you must
set the DB_16K_CACHE_SIZE parameter. By default, the value for DB_nK_CACHE_SIZE param-
eter is 0MB.

The temporary tablespaces that are created should have the standard block size.

The DB_nK_CACHE_SIZE parameter is dynamic; you can alter its value using
the ALTER SYSTEM statement.

Creating Temporary Tablespaces
Oracle can manage space for sort operations more efficiently by using temporary tablespaces.
By exclusively designating a tablespace for temporary segments, Oracle eliminates the allo-
cation and deallocation of temporary segments in a permanent tablespace. A temporary
tablespace can be used only for sort segments. A temporary tablespace is used for temporary
segments, which are created, managed, and dropped by the database as needed. These tem-
porary segments are most commonly generated during sorting operations such as ORDER BY,
GROUP BY, and CREATE INDEX. They are also generated during other operations such as hash
joins or inserts into temporary tables.

	 Managing Tablespaces	 525

You create a temporary tablespace at database creation time with the DEFAULT TEMPORARY
TABLESPACE clause of the CREATE DATABASE statement or after the database is created with
the CREATE TEMPORARY TABLESPACE statement, like this:

CREATE TEMPORARY TABLESPACE temp
TEMPFILE '/u01/oradata/12CR11/temp01.dbf' SIZE 1G;

Notice that the keyword TEMPFILE is used instead of DATAFILE. Temp files are available
only with temporary tablespaces. They never need to be backed up, and they do not log
data changes in the redo logs. The EXTENT MANAGEMENT LOCAL clause is optional and can be
omitted; you can provide it to improve readability. If you do not specify the extent size by
using the UNIFORM SIZE clause, the default size used will be 1MB.

Although it is always good practice to create a separate temporary
tablespace, it is required when the SYSTEM tablespace is locally managed.

Temporary tablespaces are created using temp files instead of data files. Temp files are
allocated slightly differently than data files. Although data files are completely allocated
and initialized at creation time, temp files are not always guaranteed to allocate the disk
space specified. This means that on some Unix systems a temp file will not actually allocate
disk space until a sorting operation requires it. Although this delayed allocation approach
allows rapid file creation, it can cause problems down the road if you have not reserved the
space that may be needed at runtime.

Each user is assigned a temporary tablespace when the user is created. By default, the
default tablespace (where the user creates objects) is the SYSTEM tablespace and the temporary
tablespace (where the user’s sort operations are performed) is the SYSTEM tablespace as well as
when SYSTEM tablespace is dictionary managed. No user should have SYSTEM as their default or
temporary tablespace. This will unnecessarily increase fragmentation in the SYSTEM tablespace.

When creating a database, you can also create a temporary tablespace using the DEFAULT
TEMPORARY TABLESPACE clause of the CREATE DATABASE statement. If the default temporary
tablespace is defined in the database, all new users will have that tablespace assigned as the
temporary tablespace by default when you do not specify another temporary tablespace.
You can also designate a data tablespace for application tables during database creation
using the DEFAULT TABLESPACE clause.

If there are multiple temporary tablespaces in a database and if you want to utilize the
space in multiple temporary tablespaces for a user’s sort operation, you can use the temporary
tablespace groups. When creating the temporary tablespace, use the TABLESPACE GROUP clause
as in the following example:

CREATE TEMPORARY TABLESPACE TEMP01
TEMPFILE '/u01/oradata/12CR11/temp01a.dbf' size 200M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 5M
TABLESPACE GROUP ALL_TEMPS;

526	 Chapter 10  ■  Understanding Storage and Space Management

In this example, the tablespace is made part of the ALL_TEMPS temporary tablespace
group. Tablespace groups are applicable only to temporary tablespaces. If the group does
not exist, Oracle will create the group and add the tablespace to the group.

When creating a temporary tablespace, you can use only the EXTENT
MANAGEMENT and TABLESPACE GROUP clauses along with the TEMPFILE
clause. All other options are invalid for temporary tablespaces.

Creating Undo Tablespaces
An undo tablespace stores undo segments, which are used by the database for several
purposes, including the following:

■■ Rolling back a transaction explicitly with a ROLLBACK statement

■■ Rolling back a transaction implicitly (for example, through the recovery of a failed
transaction)

■■ Reconstructing a read-consistent image of data

■■ Recovering from logical corruptions

To create an undo tablespace at database creation time, set the initialization parameter
UNDO_MANAGEMENT=AUTO (default) and include an UNDO TABLESPACE clause in your CREATE
DATABASE statement, like this:

CREATE DATABASE "TEST1"
DATAFILE '/u01/app/oracle/oradata/TEST1/system01.dbf'
 SIZE 300M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE '/u01/app/oracle/oradata/TEST1/sysaux01.dbf'
 SIZE 120M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
SMALLFILE DEFAULT TEMPORARY TABLESPACE TEMP
 TEMPFILE '/u01/app/oracle/oradata/TEST1/temp01.dbf'
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
SMALLFILE UNDO TABLESPACE "UNDOTBS1"
 DATAFILE '/u01/app/oracle/oradata/TEST1/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
DEFAULT TABLESPACE "USERS"
 DATAFILE '/u01/app/oracle/oradata/TEST1/users01.dbf'
 SIZE 5M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO
CHARACTER SET UTF8
NATIONAL CHARACTER SET AL16UTF16
LOGFILE

	 Managing Tablespaces	 527

 GROUP 1 ('/u01/app/oracle/oradata/TEST1/redo01.log') SIZE 51200K,
 GROUP 2 ('/u01/app/oracle/oradata/TEST1/redo02.log') SIZE 51200K,
 GROUP 3 ('/u01/app/oracle/oradata/TEST1/redo03.log') SIZE 51200K
SET DEFAULT SMALLFILE TABLESPACE
USER SYS IDENTIFIED BY mysupersekret
USER SYSTEM IDENTIFIED BY supersekret;

You can create an undo tablespace after database creation with the CREATE UNDO
TABLESPACE statement, like this:

CREATE UNDO TABLESPACE undo
DATAFILE '/ORADATA/PROD/UNDO01.DBF' SIZE 2G;

When creating an undo tablespace, you can specify the undo retention clause. The
RETENTION GUARANTEE option specifies that Oracle should preserve unexpired undo data
until the period of time specified by the UNDO_RETENTION initialization parameter. This
setting is useful for flashback query operations. RETENTION NOGUARANTEE is the default.

When you’re creating undo tablespaces, the only tablespace clauses available to specify are
EXTENT MANAGEMENT LOCAL and DATAFILE. Undo management and retention are discussed in
Chapter 11, “Managing Data Concurrency and Undo.”

Although it is always good practice to create a separate undo tablespace, it
is required when the SYSTEM tablespace is locally managed.

Removing Tablespaces
Tablespaces that are not needed in the database can be dropped. Once a tablespace is dropped,
there is no rollback. Although you can drop a tablespace with objects in it, it may be safer to
drop the objects first and then drop the tablespace. To remove a tablespace from the database,
use the DROP TABLESPACE statement:

DROP TABLESPACE USER_DATA;

If the tablespace is not empty, you should specify the optional clause INCLUDING CONTENTS
to recursively remove any segments (tables, indexes, and so on) in the tablespace, like this:

DROP TABLESPACE dba_sandbox INCLUDING CONTENTS;

If referential integrity constraints from the objects on other tablespaces refer to the objects
in the tablespace that is being dropped, you must specify the CASCADE CONSTRAINTS clause:

DROP TABLESPACE USER_DATA INCLUDING CONTENTS CASCADE CONSTRAINTS;

When you drop a tablespace, the control file is updated with the tablespace and data
file information.

528	 Chapter 10  ■  Understanding Storage and Space Management

Dropping a tablespace does not automatically remove the data files from the file system.
Use the additional clause INCLUDING CONTENTS AND DATAFILES to remove the underlying
data files as well as the stored objects, like this:

DROP TABLESPACE hr_data INCLUDING CONTENTS AND DATAFILES;

If the Oracle Managed Files feature is used for the tablespace, such files will be removed
automatically when you drop the tablespace. For files that are not Oracle managed, if you
need to free up the disk space, you can use OS commands to remove the data files belonging
to the dropped tablespace or you can use the AND DATAFILES clause.

You cannot drop the SYSTEM tablespace. You can drop the SYSAUX tablespace connected
using SYSDBA system privilege when the database is started in UPGRADE mode.

Modifying Tablespaces
Use an ALTER TABLESPACE statement to modify the attributes of a tablespace. These are
some of the actions you can perform on tablespaces:

■■ Change the default storage clauses and the MINIMUM_EXTENT of a dictionary-managed
tablespace.

■■ Change the extent allocation and LOGGING/NOLOGGING modes.

■■ Change the availability of the tablespace.

■■ Make the tablespace read-only or read-write.

■■ Coalesce the contiguous free space.

■■ Add more space by adding new data files or temporary files.

■■ Resize the data files or temporary files.

■■ Rename a tablespace or rename files belonging to the tablespace.

■■ Shrink temporary files or shrink space in the tablespace.

■■ Change flashback on or off and change retention guarantee.

■■ Begin and end a backup.

 The following sections detail common modifications you can perform on the tablespaces.

Changing Storage Defaults

Changing the default storage or MINIMUM_EXTENT or LOGGING/NOLOGGING does not affect the
existing objects in the tablespace. The DEFAULT STORAGE and LOGGING/NOLOGGING clauses are
applied to the newly created segments if such a clause is not explicitly specified when creating
new objects. For example, to change the storage parameters, use the following statement:

ALTER TABLESPACE APPL_DATA
DEFAULT STORAGE (INITIAL 2M NEXT 2M);

Only the INITIAL and NEXT values of the default STORAGE are changed; the other storage
parameters such as PCTINCREASE or MINEXTENTS remain unaltered.

	 Managing Tablespaces	 529

Adding a Data File to a Tablespace

Smallfile tablespaces can have multiple data files and can, therefore, be spread over multiple
file systems without engaging a logical volume manager. To add a data file to a smallfile
tablespace, use an ADD clause with the ALTER TABLESPACE statement. For example, the follow-
ing statement adds a 2GB data file on the /u02 file system to the RECEIVABLES tablespace:

ALTER TABLESPACE receivables ADD DATAFILE
 '/u02/oradata/ORA10/receivables01.dbf'
 SIZE 2G;

Taking a Tablespace Offline or Online

You can control the availability of certain tablespaces by altering the tablespace to be
offline or online. When you make a tablespace offline, the segments in that tablespace are
not accessible. The data stored in other tablespaces is available for use. When making a
tablespace unavailable, you can use these four options:

NORMAL    This is the default. Oracle writes all the dirty buffer blocks in the SGA to the data
files of the tablespace and closes the data files. All data files belonging to the tablespace must
be online. You need not perform a media recovery when bringing the tablespace online.
For example:

ALTER TABLESPACE USER_DATA ONLINE;

TEMPORARY    Oracle performs a checkpoint on all online data files. It does not ensure that
the data files are available. You may need to perform a media recovery on the offline data
files when the tablespace is brought online. For example:

ALTER TABLESPACE USER_DATA OFFLINE TEMPORARY;

IMMEDIATE    Oracle does not perform a checkpoint and does not make sure that all data
files are available. You must perform a media recovery when the tablespace is brought back
online. For example:

ALTER TABLESPACE USER_DATA OFFLINE IMMEDIATE;

FOR RECOVER    This makes the tablespace offline for point-in-time recovery. You can copy
the data files belonging to the tablespace from a backup and apply the archive log files.
For example:

ALTER TABLESPACE USER_DATA OFFLINE FOR RECOVER;

You cannot make the SYSTEM tablespace offline because the data dictionary must always be
available for the functioning of the database. If a tablespace is offline when you shut down
the database, it remains offline when you start up the database. You can make a tablespace
offline by using the following statement:

ALTER TABLESPACE USER_DATA OFFLINE

530	 Chapter 10  ■  Understanding Storage and Space Management

When a tablespace is taken offline, SQL statements cannot reference any objects contained
in that tablespace. If there are unsaved changes when you take the tablespace offline, Oracle
saves rollback data corresponding to those changes in a deferred rollback segment in the
SYSTEM tablespace. When the tablespace is brought back online, Oracle applies the rollback
data to the tablespace, if needed.

Making a Tablespace Read-Only

If a tablespace contains static data, it can be marked read-only. Tablespaces that contain his-
toric or reference data are typical candidates for read-only. When a tablespace is read-only,
it does not have to be backed up with the nightly or weekly database backups. One backup
after being marked read-only is all that is needed for future recoveries. Tables in a read-only
tablespace can only be selected from; their rows cannot be inserted, updated, or deleted.

You cannot make the SYSTEM tablespace read-only. When you make a tablespace read-
only, all the data files must be online, and the tablespace can have no active transactions.
You can drop objects such as tables or indexes from a read-only tablespace, but you cannot
create new objects in a read-only tablespace.

Use a READ ONLY clause with an ALTER TABLESPACE statement to mark a tablespace read-
only. For example, to mark the SALES2007 tablespace read-only, execute the following:

ALTER TABLESPACE sales2007 READ ONLY;

If you need to make changes to a table in a read-only tablespace, make it read writable
again with the keywords READ WRITE, like this:

ALTER TABLESPACE sales2007 READ WRITE;

Oracle normally checks the availability of all data files belonging to the database when
starting up the database. If you are storing your read-only tablespace on offline storage
media or on a CD-ROM, you might want to skip the data file availability checking when
starting up the database by setting the parameter READ_ONLY_OPEN_DELAYED to TRUE. Oracle
checks the availability of data files belonging to read-only tablespaces only at the time of
access to an object in the tablespace. A missing or bad read-only file will not be detected at
database startup time.

Putting a Tablespace in Backup Mode

If you perform non-RMAN online backups, sometimes called user-managed backups, you
will need to put a tablespace in backup mode before you begin to copy the data files using an
operating-system program. While the tablespace is in backup mode, the database will continue
to write data to the data files (checkpoints occur), but the occurrences of these checkpoints
will not be recorded in the header blocks of the data files. This omission will tell the database
that recovery may be needed if the database instance gets terminated abruptly.

While a tablespace is in backup mode, some additional information is written to the
redo logs to assist with recovery, if needed.

See Chapter 15 for more information on backups and recovery.

	 Managing Tablespaces	 531

Some companies perform backups by splitting a third mirror, mounting these mirrored file
systems onto another server, and then copying them to tape. To safely split the mirror, alter
all your tablespaces into backup mode, make the split, and then alter all the tablespaces out
of backup mode. Put them into backup mode like this:

ALTER TABLESPACE system BEGIN BACKUP;

Use the keywords END BACKUP to take a tablespace out of backup mode, like this:

ALTER TABLESPACE system END BACKUP;

If you forget to take a tablespace out of backup mode, the next time you bounce your
database, it will see that the checkpoint number in the control file is later than the one in
the data file headers and report that media recovery is required.

Obtaining Tablespace Information
DBAs often need to determine how much space is being used and how much is available
in a tablespace, as well as query the tablespace characteristics. The data dictionary is the
place to go for tablespace information. You can use the command-line utility SQL*Plus
to query the information from data dictionary tables, or you can use Enterprise Manager
Grid Control. We will review both in this section.

Obtaining Tablespace Information Using SQL*Plus
Many data dictionary views can provide information about tablespaces in a database, such
as the following:

■■ DBA_TABLESPACES
■■ DBA_DATA_FILES
■■ DBA_TEMP_FILES
■■ V$TABLESPACE

The DBA_TABLESPACES view has one row for each tablespace in the database and provides
the following information:

■■ The tablespace block size

■■ The tablespace status: online, offline, or read-only

■■ The contents of the tablespace: undo, temporary, or permanent

■■ Whether it uses dictionary-managed or locally managed extents

■■ Whether the segment space management is automatic or manual

■■ Whether it is a bigfile or smallfile tablespace

532	 Chapter 10  ■  Understanding Storage and Space Management

To get a listing of all the tablespaces in the database, their status, contents, extent
management policy, and segment management policy, run the following query:

SELECT tablespace_name, status,contents
 ,extent_management extents
 ,segment_space_management free_space
FROM dba_tablespaces

TABLESPACE_NAME STATUS CONTENTS EXTENTS FREE_SPACE
------------------ --------- --------- --------- ----------
SYSTEM ONLINE PERMANENT LOCAL MANUAL
UNDOTBS1 ONLINE UNDO LOCAL MANUAL
SYSAUX ONLINE PERMANENT LOCAL AUTO
TEMP ONLINE TEMPORARY LOCAL MANUAL
USERS ONLINE PERMANENT LOCAL AUTO
EXAMPLE ONLINE PERMANENT LOCAL AUTO
DATA ONLINE PERMANENT LOCAL AUTO
INDX ONLINE PERMANENT LOCAL AUTO

The V$TABLESPACE view also has one row per tablespace, but it includes some informa-
tion other than DBA_TABLESPACES, such as whether the tablespace participates in database
flashback operations:

SELECT name, bigfile, flashback_on
FROM v$tablespace;

NAME BIGFILE FLASHBACK_ON
---------- -------- ------------
SYSTEM NO YES
UNDOTBS1 NO YES
SYSAUX NO YES
USERS NO YES
TEMP NO YES
EXAMPLE NO YES
DATA NO YES
INDX NO YES

See Chapter 15 for more information on flashback operations.

	 Managing Tablespaces	 533

The DBA_DATA_FILES and DBA_TEMP_FILES views contain information on data files and
temp files, respectively. This information includes the tablespace name, filename, file size,
and autoextend settings.

SELECT tablespace_name, file_name, bytes/1024 kbytes
FROM dba_data_files
UNION ALL
SELECT tablespace_name, file_name, bytes/1024 kbytes
FROM dba_temp_files;

TABLESPACE FILE_NAME KBYTES
---------- -- -------
USERS C:\ORACLE\ORADATA\ORA12\USERS01.DBF 102400
SYSAUX C:\ORACLE\ORADATA\ORA12\SYSAUX01.DBF 256000
UNDOTBS1 C:\ORACLE\ORADATA\ORA12\UNDOTBS01.DBF 51200
SYSTEM C:\ORACLE\ORADATA\ORA12\SYSTEM01.DBF 460800
EXAMPLE C:\ORACLE\ORADATA\ORA12\EXAMPLE01.DBF 153600
INDX C:\ORACLE\ORADATA\ORA12\INDX01.DBF 102400
TEMP C:\ORACLE\ORADATA\ORA12\TEMP01.DBF 51200

Generating DDL for a Tablespace

Another way to quickly identify the attributes of a tablespace is to ask the database to
generate DDL to re-create the tablespace. The CREATE TABLESPACE statement that results
contains the attributes for the tablespace. Use the PL/SQL package DBMS_METADATA to
generate DDL for your database objects. For example, to generate the DDL for the USERS
tablespace, execute this:

SET LONG 32000
SELECT DBMS_METADATA.GET_DDL('TABLESPACE','USERS')
FROM dual;

The output from this statement is a CREATE TABLESPACE statement that contains all the
attributes for the USERS tablespace:

 CREATE TABLESPACE "USERS" DATAFILE
 SIZE 104857600
 AUTOEXTEND ON NEXT 104857600 MAXSIZE 32767M
 LOGGING ONLINE PERMANENT BLOCKSIZE 8192
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE DEFAULT
 NOCOMPRESS SEGMENT SPACE MANAGEMENT AUTO

534	 Chapter 10  ■  Understanding Storage and Space Management

In addition to the data dictionary, you can obtain tablespace information from several
sources. Some of these sources are the DDL and the Enterprise Manager.

Obtaining Tablespace Information Using the EM Database Express
Instead of querying the data dictionary views with a command-line tool such as SQL*Plus,
you can use the interactive GUI tool EM Database Express (or SQL Developer) to monitor
and manage database structures, including tablespaces. EM Database Express is an alterna-
tive to a command-line interface.

Choose Tablespaces under the Storage drop-down menu, and the screen in Figure 10.4
will appear.

F igur e 10 . 4     The Enterprise Manager Tablespaces screen

Using EM Database Express, you can create a new tablespace, modify the properties of
a tablespace, change the status of a tablespace, add more data files, resize a tablespace, and
drop a tablespace.

Managing Data Files
Data files (or temporary files) are made when you create a tablespace or when you alter a
tablespace to add files. If you are not using the OMF feature, you will need to manage data
files yourself. The database will create or reuse one or more data files in the sizes and locations
that you specify whenever you create a tablespace. A data file belongs to only one tablespace
and only one database at a time. Temp files are a special variety of data file that are used in
temporary tablespaces. When the database creates or reuses a data file, the operating-system

	 Managing Data Files	 535

file is allocated and initialized—filled with a regular pattern of mostly binary zeros. This ini-
tialization will not occur with temp files.

Performing Operations on Data Files
Operations that you may need to perform on data files include:

■■ Resizing them

■■ Taking them offline or online

■■ Moving (renaming) them

Sizing Files
You can specify that the data file (or temporary file) will grow automatically whenever
space is needed in the tablespace. This is accomplished by specifying the AUTOEXTEND clause
for the file. This functionality enables you to have fewer data files per tablespace and can
simplify the administration of data files. The AUTOEXTEND clause can be ON or OFF; you can
also specify file size increments. You can set a maximum limit for the file size; by default,
the file size limit is UNLIMITED. You can specify the AUTOEXTEND clause for files when you
run the CREATE DATABASE, CREATE TABLESPACE, ALTER TABLESPACE, and ALTER DATAFILE
commands. For example:

CREATE TABLESPACE APPL_DATA
DATAFILE '/disk2/oradata/DB01/appl_data01.dbf'
SIZE 500M
AUTOEXTEND ON NEXT 100M MAXSIZE 2000M;

The AUTOEXTEND ON clause specifies that the automatic file-resize feature should be
enabled for the specified file; NEXT specifies the size by which the file should be incre-
mented, and MAXSIZE specifies the maximum size for the file. When Oracle tries to allocate
an extent in the tablespace, it looks for a free extent. If a large-enough free extent cannot
be located (even after coalescing), Oracle increases the data file size by 100MB and tries to
allocate the new extent.

The following statement disables the automatic file-extension feature:

ALTER DATABASE
DATAFILE '/disk2/oradata/DB01/appl_data01.dbf'
AUTOEXTEND OFF;

If the file already exists in the database, and you want to enable the autoextension feature,
use the ALTER DATABASE command. For example, you can use the following statement:

ALTER DATABASE
DATAFILE '/disk2/oradata/DB01/appl_data01.dbf'
AUTOEXTEND ON NEXT 100M MAXSIZE 2000M;

536	 Chapter 10  ■  Understanding Storage and Space Management

You can increase or decrease the size of a data file or temporary file (thereby increasing
or decreasing the size of the tablespace) by using the RESIZE clause of the ALTER DATABASE
DATAFILE command. For example, to redefine the size of a file, use the following statement:

ALTER DATABASE
DATAFILE '/disk2/oradata/DB01/appl_data01.dbf'
RESIZE 1500M;

When decreasing the file size, Oracle returns an error if it finds data beyond the new file
size. You cannot reduce the file size below the high-water mark in the file. Reducing the
file size helps reclaim unused space.

Making Files Online and Offline
Sometimes you may have to make data files unavailable to the database if a file is corrupted.
You can use the ONLINE and OFFLINE clauses of the ALTER DATABASE statement to take a data
file online or offline. You can specify the filename or specify the unique identifier number
that represents the data file. This identifier can be found in the FILE# column of V$DATAFILE
or the FILE_ID column of the DBA_DATA_FILES view.

To take a data file offline, use the OFFLINE clause. If the database is in NOARCHIVELOG
mode, then you must specify the FOR DROP clause along with the OFFLINE clause. The data
file will be taken offline and marked with status OFFLINE. You can remove the data file
using OS commands, if you want to get rid of the data file. If the database is in ARCHIVELOG
mode, you don’t need to specify the FOR DROP clause when taking a data file offline. When
you’re ready to bring the data file online, Oracle performs media recovery on the data file to
make it consistent with the database. Also, the FOR DROP clause is ignored if the database is
in ARCHIVELOG mode. Here is an example of taking a data file offline:

ALTER DATABASE DATAFILE '/u01/oradata/12CR11/tools02.dbf' OFFLINE;

The following statement brings the data file online:

ALTER DATABASE DATAFILE '/u01/oradata/12CR11/tools02.dbf' ONLINE;

Renaming Files
You can rename data files using the RENAME FILE clause of the ALTER DATABASE command as
in the previous version of Oracle or using the newly introduced MOVE DATAFILE clause. You
can also rename data files by using the RENAME DATAFILE clause of the ALTER TABLESPACE
command. The RENAME or MOVE functionality is used to logically move tablespaces from one
location to another. To rename or relocate data files belonging to a non-SYSTEM tablespace,
you should follow certain steps. Consider the following example.

Your tablespace USER_DATA has three named data files, such as the following:

■■ /disk1/oradata/DB01/user_data01.dbf
■■ /disk1/oradata/DB01/userdata2.dbf
■■ /disk1/oradata/DB01/user_data03.dbf

	 Managing Data Files	 537

Renaming a Data File in Online Mode

If you need to rename one of these, say the second file, use the MOVE DATAFILE clause of the
ALTER DATABASE command.

ALTER DATABASE MOVE DATAFILE
'/disk1/oradata/DB01/userdata2.dbf' TO
'/disk1/oradata/DB01/user_data02.dbf';

The MOVE DATAFILE clause takes care of copying the file from the source directory to the
destination directory (or to the ASM diskgroup) and deleting the file from the source loca-
tion after the copy. If you do not want Oracle to remove the file from the source location, use
the KEEP clause, as in the following example. ASM is discussed in Chapter 18, “Using Grid
Infrastructure and Management Tools.”

ALTER DATABASE MOVE DATAFILE
'/disk1/oradata/DB01/userdata2.dbf' TO
'+ORADATA' KEEP;

If for some reason the destination file already exists and is not part of the database, you
can overwrite the file using the REUSE clause.

ALTER DATABASE MOVE DATAFILE
'/disk1/oradata/DB01/userdata2.dbf' TO
'/disk4/oradata/DB01/user_data02.dbf' REUSE;

The TO <data file> in the MOVE DATAFILE clause is optional. When TO is not specified,
Oracle moves the file to the location specified by the DB_CREATE_FILE_DEST parameter as
an Oracle Managed File.

Renaming a Data File in Offline Mode

The following steps are discussed only for completeness. There is really no need to use this
approach when you are moving or renaming one file at a time (you can repeat the move
datafile statement multiple times to move multiple files):

	 1.	 Take the tablespace offline:

ALTER TABLESPACE USER_DATA OFFLINE;

	 2.	 Copy or move the file to the new location, or rename the file by using operating-system
commands.

	 3.	 Rename the file in the database by using one of the following two commands:

ALTER DATABASE RENAME FILE
'/disk1/oradata/DB01/userdata2.dbf' TO
'/disk1/oradata/DB01/user_data02.dbf';

538	 Chapter 10  ■  Understanding Storage and Space Management

or

ALTER TABLESPACE USER_DATA RENAME DATAFILE
'/disk1/oradata/DB01/userdata2.dbf' TO
'/disk1/oradata/DB01/user_data02.dbf';

	 4.	 Bring the tablespace online:

ALTER TABLESPACE USER_DATA ONLINE;

Because the SYSTEM tablespace cannot be taken offline, the ALTER DATABASE
RENAME FILE clause cannot be used on files belonging to SYSTEM tablespace.
But the ALTER DATABASE MOVE DATAFILE can be used on files belonging to
SYSTEM tablespace.

Relocating a Tablespace

You may also determine that you need to relocate the tablespace from disk 1 to disk 2. If so,
you should follow the same steps as when renaming a data file. If more than one data file
is in a tablespace, you can rename all the files in the tablespace by using a single command.
The steps are as follows:

	 1.	 Take the tablespace offline:

ALTER TABLESPACE USER_DATA OFFLINE;

	 2.	 Copy the file to the new location by using OS commands on the disk.

	 3.	 Rename the files in the database by using one of the following two commands. The
number of data files specified before the keyword TO should be equal to the number
of files specified after the keyword.

ALTER DATABASE RENAME FILE
'/disk1/oradata/DB01/user_data01.dbf',
'/disk1/oradata/DB01/userdata2.dbf',
'/disk1/oradata/DB01/user_data03.dbf'
 TO
'/disk2/oradata/DB01/user_data01.dbf',
'/disk2/oradata/DB01/user_data02.dbf',
'/disk2/oradata/DB01/user_data03.dbf';

or

ALTER TABLESPACE USER_DATA RENAME DATAFILE
'/disk1/oradata/DB01/user_data01.dbf',
'/disk1/oradata/DB01/userdata2.dbf',
'/disk1/oradata/DB01/user_data03.dbf'

	 Managing Data Files	 539

 TO
'/disk2/oradata/DB01/user_data01.dbf',
'/disk2/oradata/DB01/user_data02.dbf',
'/disk2/oradata/DB01/user_data03.dbf';

	 4.	 Bring the tablespace online:

ALTER TABLESPACE USER_DATA ONLINE;

Oracle Database 12c Release 1 supports moving one data file at a time
when using the ALTER DATABASE MOVE DATAFILE syntax. The ALTER DATA-
BASE RENAME FILE syntax allows moving multiple files at a time, but does
not support online operation.

Renaming or Relocating Files Belonging to Multiple Tablespaces

If you need to rename or relocate files belonging to multiple tablespaces, you can follow
these steps (or use move data file multiple times):

	 1.	 Shut down the database. A complete backup is recommended before making any
structural changes.

	 2.	 Copy or rename the files on the disk by using OS commands.

	 3.	 Start up and mount the database (STARTUP MOUNT).

	 4.	 Rename the files in the database by using the ALTER DATABASE RENAME FILE command.

	 5.	 Open the database by using ALTER DATABASE OPEN.

Using the Oracle Managed Files Feature
The Oracle Managed Files feature is appropriate for databases on disks using Logical
Volume Manager (LVM) or using Oracle ASM. LVM software is available with most disk
systems and is used to combine partitions of multiple physical disks into one logical vol-
ume. LVM can use mirroring, striping, RAID 5, and so on. Using the OMF feature has the
following benefits:

Error Prevention    Because Oracle manages all aspects of the files associated with the
tablespace, the DBA cannot accidentally remove a file belonging to an active tablespace.

Standard Naming Convention    The files created using the OMF method have unique and
standardized filenames.

Space Retrieval    When tablespaces are dropped, Oracle removes the files associated with
the tablespace, immediately freeing up space on the disk.

540	 Chapter 10  ■  Understanding Storage and Space Management

Easy Script Writing    Application vendors need not worry about the syntax for specifying
directory names in the scripts when porting the application to multiple platforms. The same
script can be used to create tablespaces on different OS platforms.

Moving a Data File from the H Drive to the G Drive

Your operating-system administrator said that he sees a lot of contention on the H drive
and would like options to move some of the reads off the H drive and to G drive. As a DBA,
you can move one of the hot files belonging to the RECEIVABLES tablespace to the G drive.

You do not need to take the application or database offline to perform the data file move
operation. You can move the data file from one location to another using a single command.

Move the data file:

ALTER DATABASE MOVE DATAFILE
 'H:\ORACLE\ORADATA\ORA12\RECEIVABLES02.DBF'
 TO 'G:\ORACLE\ORADATA\ORA12\RECEIVABLES02.DBF' ;

To be on the safe side, you might want to use the KEEP clause so the original file is not
deleted by Oracle. You must delete the file outside of Oracle using OS utilities to save space.

ALTER DATABASE MOVE DATAFILE
 'H:\ORACLE\ORADATA\ORA12\RECEIVABLES02.DBF'
 TO 'G:\ORACLE\ORADATA\ORA12\RECEIVABLES02.DBF' KEEP;

The OMF feature can be used to create files and to remove them when the corresponding
object (redo log group or tablespace) is dropped from the database. For managing OMF-
created files, such as renaming or resizing, you will need to use the traditional methods.

Enabling the Oracle Managed Files Feature
To enable the creation of Oracle-managed data files, you need to set the parameter DB_CREATE_
FILE_DEST. You can specify this parameter in the initialization-parameter file or set/change it
using the ALTER SYSTEM or ALTER SESSION statement. The DB_CREATE_FILE_DEST parameter
defines the directory where Oracle can create data files. Oracle must have read-write permis-
sion on this directory. The directory must exist on the server where the database is located.
Oracle will not create the directory; it will create only the data file.

You can use the OMF feature to create data files when using the CREATE DATABASE,
CREATE TABLESPACE, and ALTER TABLESPACE statements. In the CREATE DATABASE statement,
you don’t need to specify the filenames for the SYSTEM, UNDO, or TEMPORARY tablespaces.

	 Managing Data Files	 541

In the CREATE TABLESPACE statement, you can omit the DATAFILE clause. In the ALTER
TABLESPACE ADD DATAFILE statement, you can omit the filename.

The data files created using the OMF feature will have a standard format. For data
files, the format is ora_%t_%u.dbf. For temp files, the format is ora_%t_%u.tmp, where %t
is the tablespace name and %u is a unique eight-character string derived by Oracle. If the
tablespace name is longer than eight characters, only the first eight characters are used.
The filenames generated by Oracle are reported in the alert log file.

You can also use the OMF feature for the control files and redo log files of the database.
Because these two types of files can be multiplexed, Oracle provides another parameter to
specify the location of files, DB_CREATE_ONLINE_LOG_DEST_n, where n can be 1, 2, 3, 4, or 5.
These initialization parameters also can be altered using ALTER SYSTEM or ALTER SESSION.
If you set the parameters DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_
DEST_2 in the parameter file when creating a database, Oracle creates two control files (one
in each directory) and creates two online redo log groups with two members each (one
member each in both directories).

The redo log file names will have the format ora_%g_%u.log, where %g is the log group
number and %u is an eight-character string. The control file will have a format of ora_%u.ctl,
where %u is an eight-character string.

In the following sections, you will see examples using the OMF feature while creating a
database as well as creating additional tablespaces in a database.

In all SQL statements where you reference an existing data file by name,
you can replace it with the file number. This is especially useful when deal-
ing with Oracle Managed Files, typically with long names. Querying FILE#
column in V$DATAFILE generates the file number.

Creating Databases Using the OMF Feature
Let’s consider an example of creating a database. The following parameters are set in the
initialization-parameter file:

UNDO_MANAGEMENT = AUTO
DB_CREATE_ONLINE_LOG_DEST_1 = '/ora1/oradata/MYDB'
DB_CREATE_ONLINE_LOG_DEST_2 = '/ora2/oradata/MYDB'
DB_CREATE_FILE_DEST = '/ora1/oradata/MYDB'

You do not have the CONTROL_FILES parameter set. Create the database using the
following statement:

CREATE DATABASE MYDB
DEFAULT TEMPORARY TABLESPACE TEMP;

The following files will be created: the SYSTEM tablespace data file in /ora1/oradata/
MYDB; the TEMP tablespace temp file in /ora1/oradata/MYDB; one control file in /ora1/

542	 Chapter 10  ■  Understanding Storage and Space Management

oradata/MYDB and another control file in /ora2/oradata/MYDB; one member of the first
redo log group in /ora1/oradata/MYDB, and a second member in /ora2/oradata/MYDB;
and one member of second redo log group in /ora1/oradata/MYDB, and a second member
in /ora2/oradata/MYDB. Because you specified the UNDO_MANAGEMENT clause and did not
specify a name for the undo tablespace, Oracle creates the SYS_UNDOTBS tablespace as an
undo tablespace and creates its data file in /ora1/oradata/MYDB. If you omit the DEFAULT
TEMPORARY TABLESPACE clause, Oracle will not create a temporary tablespace.

When using the OMF feature to create control files, you must get the names
of control files from the alert log and add them to the initialization-parameter
file using the CONTROL_FILES parameter for the instance to start again.

Creating Tablespaces Using the OMF Feature
Let’s consider another example that creates two tablespaces. The data file for the APP_DATA
tablespace will be stored in the directory /ora5/oradata/MYDB. The data file for the APP_INDEX
tablespace will be stored in the directory /ora6/oradata/MYDB. Both data files will be of
default size 100M.

ALTER SESSION SET DB_CREATE_FILE_DEST = '/ora5/oradata/MYDB';
CREATE TABLESPACE APP_DATA;
ALTER SESSION SET DB_CREATE_FILE_DEST = '/ora6/oradata/MYDB';
CREATE TABLESPACE APP_INDEX;

If you do not specify the DB_CREATE_ONLINE_LOG_DEST_n parameter when
creating a database or when adding a redo log group, the OMF feature cre-
ates one control file and two groups with one member each for redo log files
in the DB_CREATE_FILE_DEST directory. If the DB_CREATE_FILE_DEST param-
eter is not set and you did not provide filenames for data files and redo logs,
Oracle creates the files in a default directory (mostly $ORACLE_HOME/dbs), but
they will not be Oracle-managed. This is the default behavior of the database.

Overriding the Default File Size
If you want to have different sizes for the files created by the OMF feature, you can specify
the DATAFILE clause without a filename. You can also turn off the autoextensible feature of the
data file. The following statement creates a tablespace of size 10MB and turns off the autoex-
tensible feature:

CREATE TABLESPACE PAY_DATA DATAFILE SIZE 10M
AUTOEXTEND OFF;

	 Managing Data Files	 543

Here is another example that creates multiple data files for the tablespace. The second
and third data files are autoextensible.

CREATE TABLESPACE PAY_INDEX
DATAFILE SIZE 20M AUTOEXTEND OFF,
SIZE 30M AUTOEXTEND ON MAXSIZE 1000M,
SIZE 1M;

The following example adds files to an existing tablespace:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/ora5/oradata/MYDB';
ALTER TABLESPACE USERS ADD DATAFILE;
ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/ora8/oradata/MYDB';
ALTER TABLESPACE APP_DATA
ADD DATAFILE SIZE 200M AUTOEXTEND OFF;

Once created, Oracle Managed Files are treated like other database files. You can rename
and resize them and must back them up. Archive log files cannot be managed by OMF.

Creating a Database and Its Associated Tablespaces with OMF

You have been asked by the vendor to create a test database for a new application
your company just bought. The database is to be used for testing the functionality of
the application. The vendor told you it needs four tablespaces: SJC_DATA, SJC_INDEX,
WKW_DATA, and WKW_INDEX. The system administrator has provisioned an LVM disk and
mounted it as /oradata.

You decide to use the Oracle Managed Files feature, which makes your life easier by creating
and cleaning the files belonging to the database.

Make sure you include the following in the parameter file:

UNDO_MANAGEMENT = AUTO
DB_CREATE_FILE_DEST = /oradata
DB_CREATE_ONLINE_LOG_DEST_1 = /oradata
DB_CREATE_ONLINE_LOG_DEST_2 = /oradata

Create the database using the following statement:

CREATE DATABASE SJCTEST
LOGFILE SIZE 20M
DEFAULT TEMPORARY TABLESPACE TEMP
TEMPFILE SIZE 200M

544	 Chapter 10  ■  Understanding Storage and Space Management

EXTENT MANAGEMENT LOCAL UNIFORM SIZE 2M
UNDO TABLESPACE UNDO_TBS SIZE 200M;

The previous code creates a database called SJCTEST. The SYSTEM tablespace, undo
tablespace, and temporary tablespace are created in /oradata. The SYSTEM tablespace
has the default size of 100MB, and the undo tablespace and temporary tablespace will
have the size of 200MB. Because you do not want each log file member to be 100MB,
you specify a smaller size for online redo log members.

Two control files are created, and redo log files with two members are created. Both
members are stored in /oradata.

After running the necessary scripts to create the catalog and packages, you create the
tablespaces for the application:

CREATE TABLESPACE SJC_DATA DATAFILE SIZE 800M AUTOEXTEND ON NEXT 50M MAXSIZE 8G;
CREATE TABLESAPCE WKW_INDEX
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 512K
DATAFILE SIZE 500M AUTOEXTEND ON NEXT 50M MAXSIZE 8G;
CREATE TABLESPACE WKW_DATA AUTOEXTEND ON NEXT 50M MAXSIZE 8G;
CREATE TABLESPACE SJC_INDEX
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 512K
DATAFILE SIZE 500M AUTOEXTEND ON NEXT 50M MAXSIZE 8G;

 All data files for application tablespaces are created with the autoextend option, and the
file increments by 50M, up to 8GB.

Querying Data File Information
Similar to the way you gather tablespace information, you can use SQL*Plus as well as the
EM Grid Control to obtain information about data files and temporary files. In the follow-
ing sections, you will query a few dictionary views that hold data-file and temporary-file
information. You can obtain the same information using the EM Grid Control by drilling
down the tablespaces shown in Figure 10.4. You can query data file and temporary-file
information by using the following views.

V$DATAFILE
This view shows data file information from the control file:

SELECT FILE#, RFILE#, STATUS, BYTES, BLOCK_SIZE
FROM V$DATAFILE;

	 Managing Data Files	 545

 FILE# RFILE# STATUS BYTES BLOCK_SIZE
---------- ---------- ------- ---------- ----------
 1 1 SYSTEM 734003200 8192
 2 2 ONLINE 883818496 8192
 3 3 ONLINE 225443840 8192
 4 4 ONLINE 5242880 8192
 5 5 ONLINE 104857600 8192
 6 6 ONLINE 209715200 8192
 7 7 ONLINE 209715200 8192
 8 8 ONLINE 104857600 8192

V$TEMPFILE
Similar to V$DATAFILE, this view shows information about the temporary files:

SELECT FILE#, RFILE#, STATUS, BYTES, BLOCK_SIZE
FROM V$TEMPFILE;

 FILE# RFILE# STATUS BYTES BLOCK_SIZE
---------- ---------- ------- ---------- ----------
 1 1 ONLINE 49283072 8192

DBA_DATA_FILES
This view displays information about the filenames, associated tablespace names, size,
and status:

SELECT TABLESPACE_NAME, FILE_NAME, BYTES,
 AUTOEXTENSIBLE
FROM DBA_DATA_FILES;

TABLESPACE FILE_NAME BYTES AUT
---------- -- ---------- ---
USERS /u01/app/oracle/oradata/12CR11/users01.d 5242880 YES
 bf
UNDOTBS1 /u01/app/oracle/oradata/12CR11/undotbs01 225443840 YES
 .dbf
SYSAUX /u01/app/oracle/oradata/12CR11/sysaux01. 883818496 YES
 dbf
SYSTEM /u01/app/oracle/oradata/12CR11/system01. 734003200 YES
 dbf
EXAMPLE /u01/app/oracle/oradata/12CR11/example01 104857600 YES
 .dbf

546	 Chapter 10  ■  Understanding Storage and Space Management

APPL_DATA /u01/app/oracle/oradata/12CR11/appl_data 209715200 NO
 01.dbf
APPL_DATA /u01/app/oracle/oradata/12CR11/appl_data 209715200 NO
 02.dbf
HR_DATA /u02/oradata/12CR11/12CR11/datafile/o1_m 104857600 YES
 f_hr_data_46n3ck5t_.dbf

DBA_TEMP_FILES
This view displays information similar to that of DBA_DATA_FILES for the temporary files in
the database:

SELECT TABLESPACE_NAME, FILE_NAME, BYTES,
 AUTOEXTENSIBLE
FROM DBA_TEMP_FILES;

TABLESPACE FILE_NAME BYTES AUT
---------- --- ---------- ---
TEMP /u01/app/oracle/oradata/12CR11/temp01.dbf 49283072 NO

The maximum number of data files per tablespace is OS-dependent, but on most operat-
ing systems, it is 1,022. The maximum number of data files per database is 65,533. The
MAXDATAFILES clause in the CREATE DATABASE and CREATE CONTROLFILE statements also
limits the number of data files per database. The maximum data file size is OS-dependent.
There is no limit on the number of tablespaces per database. Because only 65,533 data files
are allowed per database, you cannot have more than 65,533 tablespaces, because each
tablespace needs at least one data file.

A useful technique for managing disk space used by data files is to enable AUTOEXTEND for
application tablespaces, which tells the database to automatically enlarge a data file when
the tablespace runs out of free space. The AUTOEXTEND attribute applies to individual data
files and not to the tablespace.

To resize a data file manually, use the ALTER DATABASE DATAFILE statement, like this:

ALTER DATABASE DATAFILE
 '/u01/app/oracle/oradata/12CR11/example01.dbf' RESIZE 2000M;

To configure a data file to automatically enlarge as needed by adding 100MB at a time up
to a maximum of 8,000MB, execute the following:

ALTER DATABASE DATAFILE
 'C:\ORACLE\ORADATA\ORA10\DATA01.DBF'
AUTOEXTEND ON NEXT 100M MAXSIZE 8000M;

	 Managing Space	 547

If you plan to use the AUTOEXTEND option for the data files, use MAXSIZE to
limit the file size to the disk space available. Also, enabling AUTOEXTEND for
temporary and undo tablespaces is not advised because user errors can fill
up the available disk space.

Now that you’ve learned the basics and the details of logical and physical tablespace stor-
age, let’s look at the space management features of Oracle Database 12c in the next section.

Managing Space
In this section, we will discuss the various space management options and features of
Oracle Database 12c. We saw most of these options in the earlier sections of the chapter
and when using SQL*Plus commands. We will illustrate the features using SQL*Developer
and/or EM Database Express wherever applicable.

Automatic Space Management Features
The automatic space management features of the database include the following
characteristics.

■■ Using EXTENT MANAGEMENT LOCAL when creating tablespaces. It is better to create the
SYSTEM tablespace as locally managed—hence all tablespaces are automatically created
as locally managed.

■■ Using SEGMENT SPACE MANAGEMENT AUTO when creating tablespaces.

■■ Using AUTOEXTEND ON for data files, when creating tablespaces or adding files
to tablespaces.

■■ Using Oracle Managed Files to automate file management. OMF automates the creation
and deletion of files as needed.

■■ When tables or indexes are created, the segments are not allocated until the first row is
inserted into the table. Packaged applications like ERP install thousands of tables, but
most are not used. The delayed segment creation speeds up the application installation
and saves on storage for empty tables.

■■ Using automatic undo management to eliminate the complexities of managing rollback
segments. Undo is discussed in Chapter 11, “Managing Data Concurrency and Undo.”

■■ Oracle Database 12c automatically monitors free space and generates alerts based on
default thresholds. Server-generated alerts are discussed in Chapter 14, “Maintaining
the Database and Managing Performance.”

548	 Chapter 10  ■  Understanding Storage and Space Management

Creating a tablespace using EM Database Express is easy and error free. Select
Tablespaces from the Storage drop-down menu of EM Database Express. Click the Create
button; the Create Tablespace screen will appear, as shown in Figure 10.5. In this screen,
name the tablespace and click OK to create a tablespace with all defaults.

F igur e 10 .5     Create a tablespace using EM Database Express.

Creating a Locally Managed Tablespace
The Create Tablespace screen has other configurable options. Figure 10.6 shows the extent
management options for a tablespace found under the Space section of the Create Tablespace
screen. When you input the size in the Extent Size box, follow this format: numberunit. The
number variable needs to be an integer, and the unit variable needs to be one of the following
only: K, M, or G. For example, you would enter 512K. EM Database Express does not support
creating dictionary-managed tablespaces.

F igur e 10 .6     The Create Tablespace screen’s space options

SQL Developer gives the option to create tablespaces as dictionary managed or locally
managed. The Create Tablespace dialog box of SQL Developer is shown in Figure 10.7.
For Local Extent Management, you can check the Auto Allocate check box for automatic
extent allocation or provide Uniform Size for extent management. For Dictionary Extent

	 Managing Space	 549

Management, you can check the Define Extents check box and manually enter the storage
properties.

F igur e 10 .7     Create a tablespace using SQL Developer.

Choosing Automatic Segment Space Management
Segment space management is another configurable option of Create Tablespace using EM
Database Express. Figure 10.8 shows the segment space management options for tablespaces,
which are found under the Segments section of the Create Tablespace screen. The Segment
Space Management setting lets you specify whether Oracle Database 12c should track the
used and free space in the segments in the tablespace using free lists or bitmaps. For using
free lists to manage free space, use segment space management setting MANUAL, and to use
more efficient bitmaps use the AUTOMATIC setting. For bigfile tablespaces, segment man-
agement has to be automatic.

F igur e 10 . 8     The Create Tablespace screen’s segments options

550	 Chapter 10  ■  Understanding Storage and Space Management

In the SQL Developer Create Tablespace screen shown in Figure 10.7, you specify this
option by choosing Auto from the drop-down menu beside Segment Management.

Using Compression
Oracle Database 12c has a compression feature that reduces the storage footprint of the
database. Basic compression in an Oracle database has been available since version 9i. When
you create a new tablespace, NOCOMPRESS is the default, which means no compression on the
blocks. The Create Tablespace using EM Database Express screen shown in Figure 10.8 also
shows the compression options available. Using EM Database Express, you can choose either
basic compression or OLTP compression.

When creating or altering tablespaces, you can set the COMPRESS or NOCOMPRESS option.
They will act as the default for the objects created in the tablespace. If the table or index
definition has different COMPRESS or NOCOMPRESS options, those options will be applied for
the object.

COMPRESS tells Oracle to use basic compression. Basic compression compresses data loaded
using the direct-load method. Regular DML data is not compressed. The following example
shows how to create a table structure with the COMPRESS clause from an existing table, how to
load data into the new table using a direct-load operation, and compress the loaded data. The
APPEND hint in the INSERT statement directs Oracle to use the direct-load method.

SQL> CREATE TABLE bookings_comp COMPRESS NOLOGGING
 AS SELECT * FROM bookings WHERE 1=2;
SQL> INSERT /*+ APPEND */ INTO bookings_comp
 SELECT * FROM bookings;

Compression for OLTP compresses the data in the data block. The compression happens
at a block level, not when rows are inserted into the table. The rows are inserted as uncom-
pressed during normal DML operations. OLTP Table Compression has no negative impact
on read operations. Oracle compresses blocks in batch mode rather than compressing data
every time a DML operation takes place. A block is initially uncompressed until data in the
block reaches an internally controlled threshold. When a transaction causes the data in the
block to reach this threshold, all contents of the block are compressed. When more data is
added and this threshold is reached again, the compression operation happens again. This
process is repeated until the highest level of compression is achieved.

The following is an example of creating the table for OLTP compression and loading
data in a conventional method.

SQL> CREATE TABLE bookings_oltp COMPRESS FOR OLTP
 AS SELECT * FROM bookings WHERE 1=2;
SQL> INSERT INTO bookings_oltp
 SELECT * FROM bookings;

More compression options are available in Oracle Database 12c. Figure 10.9 shows the
compression options available for Create Tablespace using SQL Developer.

	 Managing Space	 551

F igur e 10 . 9     The SQL Developer Compress options available when creating
a tablespace

The additional compress options displayed in the screen are applicable only to Exadata
machines.

Monitoring Tablespace Free Space
You can determine the tablespace space allocated and the amount of used space by utilizing
dictionary views. You learned about obtaining tablespace and data file information earlier in
the chapter under the “Obtaining Tablespace Information Using SQL*Plus” and “Querying
Data File Information” sections. The DBA_DATA_FILES, DBA_TEMP_FILES, DBA_FREE_SPACE,
and DBA_SEGMENTS dictionary views provide comprehensive information about tablespace
space usage. DBA_FREE_SPACE has information about the free segments in a tablespace, and
DBA_SEGMENTS is used to find the size of the objects in the database. The following query
shows space usage information from data tablespaces (not including undo and temp-type
tablespaces).

WITH
ts_free AS (SELECT tablespace_name, round(sum(bytes)/1048576) free_mb
 FROM dba_free_space GROUP BY tablespace_name),
ts_alloc AS (SELECT tablespace_name, round(sum(bytes)/1048576) alloc_mb
 FROM dba_data_files GROUP BY tablespace_name)
SELECT tablespace_name, status, alloc_mb,
 free_mb, alloc_mb-free_mb used_mb
FROM dba_tablespaces
JOIN ts_alloc USING (tablespace_name)
JOIN ts_free USING (tablespace_name)
/

TABLESPACE_NAME STATUS ALLOC_MB FREE_MB USED_MB
---------------------- --------- ---------- ---------- ----------
SYSAUX ONLINE 11370 547 10823
MYAPPDATA ONLINE 100 99 1
USERS ONLINE 5 2 3

552	 Chapter 10  ■  Understanding Storage and Space Management

SYSTEM ONLINE 440 3 437
RENT ONLINE 300 298 2

When data files are set to AUTOEXTEND, the query needs to be modified to take that into
account. See the following query for an example.

WITH
ts_free AS (SELECT tablespace_name, round(sum(bytes)/1048576) free_mb
 FROM dba_free_space GROUP BY tablespace_name),
ts_alloc AS (SELECT tablespace_name,
 round(sum(decode(autoextensible, 'YES', maxbytes, bytes))/1048576)
alloc_mb
 FROM dba_data_files GROUP BY tablespace_name)
SELECT tablespace_name, status, alloc_mb, free_mb, alloc_mb-free_mb used_mb
FROM dba_tablespaces t
JOIN ts_alloc a USING (tablespace_name)
JOIN ts_free f USING (tablespace_name)
/

In Figure 10.10, the tablespace information is obtained using EM Database Express.
Checking the Permanent check box will show only permanent tablespaces, leaving out the
temporary and undo tablespaces.

F igur e 10 .10     EM Database Express tablespace usage

SQL Developer also displays tablespace usage information. See Figure 10.11. The Files
tab shows the details of data files associated with the tablespaces. The Free Space tab shows
the free-space detail by tablespace.

	 Managing Space	 553

F igur e 10 .11     SQL Developer tablespace usage

You can use OEM Cloud Control or DBMS_SPACE package to plan the capac-
ity for database objects. You can also use them to estimate the amount of
space the table and index will use, as well as growth trends.

Proactive Space Management
Space management used to be a very time-consuming task for DBAs. Now Oracle
Database 12c monitors its space consumption, alerts administrators about potential prob-
lems, and recommends possible solutions. The database does nonintrusive and timely
monitoring of space usage. The space-monitoring functionality of the database is set up
automatically without any measurable performance impact.

By default, Oracle monitors tablespace space usage. It generates a warning at 85 percent and
a critical alert at 97 percent. You can access the information by querying the DBA_THRESHOLDS
view. In Figure 10.12, the DBA_THRESHOLDS are queried using SQL Developer Worksheet. The
first three lines in the Query Result are for undo and temporary tablespaces, where the metric
is set to Do Not Check.

DBA_THRESHOLDS is part of Oracle’s server-managed alerts framework. The DBMS_SERVER_
ALERT.SET_THRESHOLD procedure is used to add or make changes to threshold values. Oracle
Enterprise Manager Cloud Control proactively monitors free space in tablespace and sends
alerts to administrators when a space threshold is reached. EM Database Express does not
have a built-in alerting mechanism.

554	 Chapter 10  ■  Understanding Storage and Space Management

F igur e 10 .12     The DBA_THRESHOLDS contents

You will learn more about server-generated alerts in Chapter 14.

The server-managed threshold alerts for tablespace space usage will not
be generated for dictionary-managed tablespaces. They are supported
for locally managed bigfile and smallfile tablespaces, and for undo and
temporary tablespaces.

Using Segment Advisor
When large amounts of updates and deletes are performed on tables, pockets of empty space
(known as fragmented space) are created in the segment that cannot be reused efficiently.
The Segment Advisor identifies whether a segment is a good candidate for a shrink opera-
tion based on the level of fragmentation within the segment. The advisor also keeps track of
historical growth of the segment, which can be used for capacity planning. Segments that can
be shrunk are those that the Segment Advisor has found to need less space than they are cur-
rently allocated. By shrinking or compressing these segments, space is returned to the data-
base for use by other objects, and the total number of I/Os needed to access these objects is
reduced, potentially improving the performance of SQL statements that access these objects.

Segment Advisor utilizes the growth statistics in the Automatic Workload Repository
(AWR) and samples the data in the segment for its recommendations. It is configured to run
during maintenance windows as an automated maintenance task. You may also run it man-
ually using the DBMS_ADVISOR package. The Segment Advisor automated maintenance
task is known as the Automatic Segment Advisor.

Segment Advisor recommendations can be accessed using OEM Cloud Control 12c; to
access them, select Administration ➪ Storage ➪ Segment Advisor. Figure 10.13 shows the
Segment Advisor screen.

	 Managing Space	 555

F igur e 10 .13     The Segment Advisor Recommendations screen

Clicking on the Recommendation Details shows the individual objects in the tablespace
and how much space could be reclaimed with the recommended operation. See Figure 10.14.

F igur e 10 .14     The Segment Advisor Recommendation Details screen

Automatic Segment Advisor Job is set up automatically in the database to run the Segment
Advisor during the maintenance window (AUTO_SPACE_ADVISOR_JOB). The Segment Advisor
results can be queried directly from the database using the DBA_ADVISOR_% views. The follow-
ing views are available in Oracle Database 12c Release 1.

DBA_ADVISOR_FINDINGS: Shows the findings of Segment Advisor.

556	 Chapter 10  ■  Understanding Storage and Space Management

DBA_ADVISOR_RECOMMENDATIONS: Shows the recommendations of Segment Advisor based
on the findings. The recommendations are shrink, reorganize, or compress the object.

DBA_ADVISOR_ACTIONS: Shows the actions or SQL to perform against the recommen-
dations.

DBA_ADVISOR_OBJECTS: Shows the objects and the recommendations.

Shrinking Space Usage of Objects
In Figure 10.14, notice the Shrink button against each object as well as on top. You can
select the objects you want to reclaim the space from and submit a job to shrink the space.
When you click Shrink, you will be presented with two options as in Figure 10.15.

F igur e 10 .15     The Shrink Segment Options screen

The Compact Segments And Release Space option will first compact the segments and
then release the recovered space to the tablespace. During the short space-release phase, any
cursors referencing this segment may be invalidated and queries on the segment could be
affected. The Compact Segments option will compact segment data without releasing the
recovered space. After the data is compacted, the recovered space can be quickly released
by running Compact Segments And Release Space.

The Segment Shrink option is available only to the segments belonging to
tablespaces with automatic segment space management. Segment shrink is
an online operation, and other DML operations on the object can continue.

You can use SQL*Plus to perform the shrink space of objects. The ALTER TABLE and
ALTER INDEX statements have the SHRINK SPACE clause to accomplish this. You can manu-
ally shrink space in a table, index-organized table or its overflow segment, index, partition,
subpartition, LOB segment, materialized view, or materialized view log. By default, Oracle
Database 12c compacts the segment, adjusts the high-water mark, and releases the recuper-
ated space immediately.

The ROW MOVEMENT option should be enabled on the object so that the segment compact-
ing is performed. When rows move, any ROWID-based triggers will fire, so it is better to
disable such triggers before performing the shrink space operation on tables. The SHRINK

	 Managing Space	 557

SPACE clause can be followed by COMPACT and CASCADE options. Using the COMPACT option is
similar to choosing the Compact Segments in Figure 10.15. The CASCADE option performs
the operation on all dependent indexes. Even if the CASCADE option is not specified, the
dependent indexes are not left in UNUSABLE state after the shrink operation on the table.

Specifying ALTER INDEX ... SHRINK SPACE COMPACT is equivalent to
specifying ALTER INDEX ... COALESCE.

Using Segment Advisor and Shrink Space in SQL*Plus

Here is a working example that invokes Segment Advisor to analyze a table and uses the
Shrink option to reclaim the unused space. Table XX_DATA is a table with several inserts
and deletes, thus prone to fragmentation. Let’s run Segment Advisor on this table to
determine if there is any reclaimable space.

Running Segment Advisor involves four DBMS_ADVISOR procedures. First, define the task,
then add objects to the task, then define expected recommendations, and finally execute
the task.

SQL> EXEC DBMS_ADVISOR.CREATE_TASK (advisor_name=>'Segment Advisor',
 task_name=> 'XX_DATA_SEG_ADV');

PL/SQL procedure successfully completed.

SQL> DECLARE
objid NUMBER;
BEGIN
DBMS_ADVISOR.CREATE_OBJECT (task_name=> 'XX_DATA_SEG_ADV',
object_type=> 'TABLE',
attr1 => 'SYSTEM',
attr2 => 'XX_DATA',
attr3 => NULL,
attr4 => 'NULL',
attr5 => NULL,
object_id => objid);

558	 Chapter 10  ■  Understanding Storage and Space Management

END;
/

PL/SQL procedure successfully completed.

SQL>
SQL> EXEC DBMS_ADVISOR.SET_TASK_PARAMETER (task_name => 'XX_DATA_SEG_ADV',
 parameter => 'RECOMMEND_ALL', value => 'TRUE');

PL/SQL procedure successfully completed.

SQL>
SQL> EXEC DBMS_ADVISOR.EXECUTE_TASK (task_name => 'XX_DATA_SEG_ADV');

PL/SQL procedure successfully completed.

Now, query DBA_ADVISOR_FINDINGS for the findings.

SQL> SELECT message, more_info
 FROM DBA_ADVISOR_FINDINGS
 WHERE task_name = 'XX_DATA_SEG_ADV';

MESSAGE
MORE_INFO
--
Enable row movement of the table SYSTEM.XX_DATA and perform shrink, estimated
savings is 252134195 bytes.
Allocated Space:503316480: Used Space:251182285: Reclaimable Space :252134195

SQL>
SQL> SELECT benefit_type
 FROM dba_advisor_recommendations
 WHERE task_name = 'XX_DATA_SEG_ADV';

BENEFIT_TYPE
--
Enable row movement of the table SYSTEM.XX_DATA and perform shrink, estimated
savings is 252134195 bytes.

SQL>

So our expectation was correct. The XX_DATA table does have some reclaimable space.
Validate the current allocated space and then perform the Shrink Space operation.

	 Managing Space	 559

SQL> SELECT bytes FROM dba_segments
 WHERE segment_name = 'XX_DATA';

 BYTES

 503316480

SQL>

Now, follow the recommendation. First, we will perform the COMPACT to show the impact
on allocated space, and then we will perform a shrink.

SQL> ALTER TABLE xx_data ENABLE ROW MOVEMENT;

Table altered.

SQL> ALTER TABLE xx_data SHRINK SPACE COMPACT;

Table altered.

SQL> SELECT bytes FROM dba_segments
 WHERE segment_name = 'XX_DATA';

 BYTES

 503316480

SQL> ALTER TABLE xx_data SHRINK SPACE;

Table altered.

SQL> SELECT bytes FROM dba_segments
 WHERE segment_name = 'XX_DATA';

 BYTES

 212598784

SQL>

Avoiding Out-of-Space Errors
During OLTP insert or update operations and bulk data-load operations, when all the
blocks in the segment are used, Oracle will try to add a new extent from the tablespace free
space to the segment and continue the DML operation. If no free space is available in the

560	 Chapter 10  ■  Understanding Storage and Space Management

tablespace, Oracle will look for data files with autoextensible turned on. Such files will be
extended to give more free space to the tablespace, which in turn will satisfy the new extent
addition to the segment; therefore, the DML operation will not fail.

If all the data files in the tablespace are not autoextensible, or if there is no room left in
the ASM diskgroup or file system, the tablespace cannot grow; therefore, the DML operation
requiring a new extent added to the segment will fail. The user will get an error, which is not
a good thing. To avoid space-related errors, Oracle Database 12c has the resumable space
allocation feature. Resumable space allocation can suspend a session when one of the follow-
ing conditions occurs in the database, and prevent the session from getting an error.

■■ Out-of-space condition (ORA-01653, ORA-01654)

■■ Maximum extents reached condition (ORA-01631, ORA-01632)

■■ Space quota exceeded condition (ORA-01536)

These conditions can occur and are resumable for the following operations:

■■ Queries involving sorting and causing an out-of-space condition in a temporary tablespace

■■ DML statements such as INSERT, UPDATE, DELETE, MERGE
■■ Import, SQL*Loader data load

■■ DDL statements such as

CREATE TABLE ... AS SELECT

CREATE INDEX

ALTER INDEX ... REBUILD

ALTER TABLE ... MOVE PARTITION

ALTER TABLE ... SPLIT PARTITION

ALTER INDEX ... REBUILD PARTITION

ALTER INDEX ... SPLIT PARTITION

CREATE MATERIALIZED VIEW

CREATE MATERIALIZED VIEW LOG

Once the error condition is rectified by the DBA within a predefined timeframe, the sus-
pended session will resume its operation.

One quick way to remember the operations that are resumable is to know
the operations that could create an extent for all type of segments.

Setting Up Resumable Space Allocation
A statement executes in resumable mode if the RESUMABLE_TIMEOUT initialization parameter is
set to a nonzero value and the ALTER SESSION ENABLE RESUMABLE statement is issued during
the user session. If the parameter is not set, resumable mode can be enabled in the user session

	 Managing Space	 561

using ALTER SESSION ENABLE RESUMABLE TIMEOUT timeout_value, where timeout_value is
nonzero. The timeout_value for the session or in the parameter is specified in seconds.

If the suspended error condition is not rectified within the time specified by the timeout_
value or RESUMABLE_TIMEOUT parameter, an error is returned to the user session. A resumable
statement can be suspended and resumed multiple times during its execution. The timeout
can be modified using the DBMS_RESUMABLE.SET_TIMEOUT procedure as well as ALTER SESSION
ENABLE RESUMABLE TIMEOUT timeout_value.

Notifying on Session Suspend
When a resumable exception condition is raised in the session, the following actions are
taken by Oracle.

■■ The error is reported in the alert log; DBA_RESUMABLE view is populated with suspended
session, statement, and error information; the EVENT column in V$SESSION_WAIT is
updated with “Statement suspended, wait error to be cleared” status.

■■ A resumable session suspended alert is triggered.

■■ The AFTER SUSPEND system event trigger, if it exists, is fired. You may use this trig-
ger to automatically perform the corrective action if needed.

When a resumable session is suspended, an alert log entry similar to the following is
generated.

statement in resumable session 'User SYSTEM(8), Session 268, Instance 1' was
suspended due to
 ORA-01653: unable to extend table SYSTEM.XX_DATA1 by 128 in tablespace TEST1

The DBA_RESUMABLE view can be queried to view this information as well.

SQL> SELECT user_id, session_id, status, timeout, suspend_time,
 2 error_number, sql_text
 3 FROM DBA_RESUMABLE
 4 /

 USER_ID SESSION_ID STATUS TIMEOUT SUSPEND_TIME ERROR_NUMBER
SQL_TEXT
---------- ---------- --------- ---------- -------------------- ------------
 8 264 SUSPENDED 300 11/05/13 16:53:46 1653
insert into xx_data1 select * from dba_objects

If no action is taken to fix the error condition, the user session will receive the error after
the timeout period.

SQL> alter session enable resumable timeout 300;
SQL> insert into xx_data1 select * from dba_objects;

562	 Chapter 10  ■  Understanding Storage and Space Management

insert into xx_data1 select * from dba_objects
 *
ERROR at line 1:
ORA-30032: the suspended (resumable) statement has timed out
ORA-01653: unable to extend table SYSTEM.XX_DATA1 by 128 in tablespace TEST1

If action taken to fix the error condition before the timeout expires, the user session will
not receive an error or message. The alert log will have the following information:

Tue Nov 05 17:09:49 2013
statement in resumable session 'User SYSTEM(8), Session 38, Instance 1' was
suspended due to
 ORA-01653: unable to extend table SYSTEM.XX_DATA2 by 128 in tablespace TEST2
Tue Nov 05 17:10:22 2013
alter tablespace test2 add datafile size 10m autoextend on next 10m
Completed: alter tablespace test2 add datafile size 10m autoextend on next 10m
statement in resumable session 'User SYSTEM(8), Session 38, Instance 1' was
resumed
Tue Nov 05 17:10:29 2013

If you would like to be notified by email, you can write the appropriate code in the
AFTER SUSPEND event trigger, as in the following example:

CREATE OR REPLACE TRIGGER alert_on_resumable_error
AFTER SUSPEND ON DATABASE
DECLARE
 -- Declare any variables
BEGIN
 -- Add space allocation code
 -- Code to Notify DBA.
 COMMIT;
END;
/

If you use OEM Cloud Control, you will be notified when a resumable session sus-
pended event occurs. So that the DBA has time to respond and fix the issue, keep the
timeout value large.

Summary
This chapter discussed the most important aspect of Oracle Database 12c: storing data.
You learned to create both tablespaces and data files. You found out how to create and
manage tablespaces, as well as how Oracle stores some schema objects as segments that

	 Exam Essentials	 563

are comprised of extents and data blocks. A data block is the minimum unit of I/O in an
Oracle database. Every data block has an internal structure known as the block format to
track the data stored in the block as well as the free space still available in the block.

A data file belongs to one tablespace, and a tablespace can have one or more data files. The
size of the tablespace is the total size of all the data files belonging to that tablespace. The size
of the database is the total size of all tablespaces in the database, which is the same as the
total size of all data files in the database. Tablespaces are logical storage units used to group
data depending on their type or category. The relationship between data files and tablespaces
is important to understand for the certification exam.

Tablespaces can manage the extents through the Oracle dictionary or locally in the data
files that belong to the tablespace. Locally managed tablespaces can have uniform extent
sizes; this reduces fragmentation and wasted space. You can also make Oracle perform the
entire extent sizing for locally managed tablespaces.

A temporary tablespace is used for sorting operations; no permanent objects can be cre-
ated in a temporary tablespace. Only one sort segment will be created for each instance in
the temporary tablespace. Multiple transactions can use the same sort segment, but one
transaction can use only one extent. Although temporary files are part of the database, they
do not appear in the control file, and the block changes do not generate any redo informa-
tion because all the segments created on locally managed temporary tablespaces are tempo-
rary segments.

The locally managed tablespaces eliminate the extent management activities from the
DBA, and the automatic segment space management feature eliminates the need to manage
free lists by using bitmaps. Tablespace data files can be set to extend automatically when-
ever space is needed in the tablespace. Tablespace storage can be monitored using data dic-
tionary views or using tools like Oracle Enterprise Manager.

You also learned about using the compression options when creating a tablespace and dur-
ing object creation. Basic compression is applicable only for direct-load operations, whereas
OLTP compression compresses blocks based on a block full algorithm. Exadata systems have
additional hyper columnar compression features. The Segment Advisor can be used to get
advice on reclaimable space in segments. Such segment space can be reclaimed online using
the SHRINK SPACE clause in SQL or using OEM.

When tablespaces reach out-of-space or a segments-cannot-extent situation arises, the
resumable space allocation feature can suspend the session and resume after the space con-
dition is rectified, thereby avoiding an error. When a session is suspended, it is written to
the alert log and an event trigger is fired.

Exam Essentials

Know the relationship between data files and tablespaces.    Tablespaces are built on one or
more data files. Bigfile tablespaces are built on a single data file, and smallfile tablespaces
are built on one or more data files.

564	 Chapter 10  ■  Understanding Storage and Space Management

Understand the statements needed to create, modify, and drop tablespaces.    Use a CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE statement to create, modify, or drop a
tablespace, respectively.

Know how to take tablespaces offline and understand the consequences the OFFLINE
IMMEDIATE option poses.    Use an ALTER TABLESPACE statement to take a tablespace offline
or bring it online. If you use the OFFLINE IMMEDIATE option, you must perform media
recovery when you bring it back online.

Understand the default tablespaces for the database.    When the database is created, if you
do not specify the DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE clauses, the
SYSTEM tablespace will be the default for user objects and temporary segments.

Know how to use EM Database Express to view tablespace information.    The EM Database
Express or Cloud Control can be used to view tablespace information, as well as perform
various administrative tasks. A working knowledge of this tool is required.

Know the difference between segment space management and extent management.    Extent
management deals with segment-level space allocations, and segment space management
deals with data block-level space allocations.

Know which initialization parameter controls OMF placement.    The DB_CREATE_FILE_
DEST parameter tells the database where to place Oracle Managed Files.

Understand the compression options.    The default compression option can be set at the
tablespace level, and individual objects can override the compression option.

Know the events that invoke a session suspension when a space condition is reached.    Out-
of-space, extents-reaching-maximum, and space-quota-exceeded conditions invoke session
suspension. Session suspended lasts until the timeout value in seconds is reached.

Learn how Segment Advisor can be invoked and apply its recommendation.    Segment
Advisor analyses space usage of segments and recommends reclaimable space. Learn the
options available to reclaim such space.

	 Review Questions	 565

Review Questions

	 1.	 Which of the following statements about tablespaces is true?

	 A.	 A tablespace is the physical implementation of a logical structure called a
namespace.

	 B.	 A tablespace can hold the objects of only one schema.

	 C.	 A bigfile tablespace can have only one data file.

	 D.	 The SYSAUX tablespace is an optional tablespace created only if you install certain
database options.

	 2.	 Automatic segment space management on the tablespace causes which of the following
table attributes in that tablespace to be ignored?

	 A.	 The whole storage clause

	 B.	 NEXT and PCTINCREASE

	 C.	 BUFFERPOOL and FREEPOOL

	 D.	PCTFREE and PCTUSED

	 3.	 Which is not a type of segment that is stored in a tablespace?

	 A.	 Undo

	 B.	 Redo

	 C.	 Permanent

	 D.	 Temporary

	 4.	 Which allocation unit is the smallest?

	 A.	 Data file

	 B.	 Extent

	 C.	 Data block

	 D.	 Segment

	 5.	 You performed the following statement in the database. What actions can you perform
on the CUST_INFO table in the CUST_DATA tablespace. (Choose all that apply.)

ALTER TABLESPACE CUST_DATA READ ONLY;

	 A.	 ALTER TABLE CUST_INFO DROP COLUMN xx;

	 B.	 TRUNCATE TABLE CUST_INFO;

	 C.	 INSERT INTO CUST_INFO VALUES (…);

	 D.	 DROP TABLE CUST_INFO;

	 E.	 RENAME CUST_INFO TO CUSTOMER_INFO;

566	 Chapter 10  ■  Understanding Storage and Space Management

	 6.	 If the tablespace is offline, which statements should be executed to make the USERS
tablespace read-only? (Choose all that apply.)

	 A.	 ALTER TABLESPACE USERS READ ONLY

	 B.	 ALTER DATABASE MAKE TABLESPACE USERS READ ONLY

	 C.	 ALTER TABLESPACE USERS ONLINE

	 D.	 ALTER TABLESPACE USERS TEMPORARY

	 7.	 How would you add more space to a tablespace? (Choose all that apply.)

	 A.	 ALTER TABLESPACE <TABLESPACE NAME> ADD DATAFILE SIZE <N>

	 B.	 ALTER DATABASE DATAFILE <FILENAME> RESIZE <N>

	 C.	 ALTER DATAFILE <FILENAME> RESIZE <N>

	 D.	 ALTER TABLESPACE <TABLESPACE NAME> DATAFILE <FILENAME>
RESIZE <N>

	 8.	 The database is using automatic memory management. The standard block size for
the database is 8KB. You need to create a tablespace with a block size of 16KB.
Which initialization parameter should be set?

	 A.	 DB_8K_CACHE_SIZE

	 B.	 DB_16K_CACHE_SIZE

	 C.	 DB_CACHE_SIZE

	 D.	 None of the above

	 9.	 Which data dictionary view can be queried to obtain information about the files that
belong to locally managed temporary tablespaces?

	 A.	 DBA_DATA_FILES

	 B.	 DBA_TABLESPACES

	 C.	 DBA_TEMP_FILES

	 D.	 DBA_LOCAL_FILES

	10.	 How would you drop a tablespace if the tablespace were not empty?

	 A.	 Rename all the objects in the tablespace, and then drop the tablespace.

	 B.	 Remove the data files belonging to the tablespace from the disk.

	 C.	 Use ALTER DATABASE DROP <TABLESPACE NAME> CASCADE.

	 D.	 Use DROP TABLESPACE <TABLESPACE NAME> INCLUDING CONTENTS.

	 Review Questions	 567

	11.	 Which command is used to enable the autoextensible feature for a file if the file is
already part of a tablespace?

	 A.	 ALTER DATABASE.

	 B.	 ALTER TABLESPACE.

	 C.	 ALTER DATA FILE.

	 D.	 You cannot change the autoextensible feature once the data file is created.

	12.	 Which statement is true regarding the SYSTEM tablespace?

	 A.	 It can be made read-only.

	 B.	 It can be offline.

	 C.	 Data files can be renamed.

	 D.	 Data files cannot be resized.

	13.	 The default critical threshold for a tablespace is set at 97 percent, and you think that
is too low. Which two options can you use to change the threshold value to 90 percent
for tablespace APPS_DATA?

	 A.	 Use Oracle Enterprise Manager Database Express.

	 B.	 Use Oracle Enterprise Manager Cloud Control.

	 C.	 Use DBMS_SERVER_ALERT package.

	 D.	 Use DBMS_SPACE package.

	14.	 Choose the statements that are resumable. (Choose three.)

	 A.	 ALTER TABLE … SPLIT PARTITION

	 B.	 SELECT

	 C.	 INSERT INTO … SELECT

	 D.	 CREATE TABLESPACE

	 E.	 ALTER TABLE … SHRINK SPACE

	15.	 How do you ensure you are notified when a resumable session is suspended?
(Choose two.)

	 A.	 You’ll be notified by email at the address registered in database properties.

	 B.	 Write a custom script to look for “statement in resumable session * was suspended”
in the alert log and notify the DBA.

	 C.	 Create an AFTER SUSPEND trigger and a code notification.

	 D.	 A suspended session displays a message on the screen.

568	 Chapter 10  ■  Understanding Storage and Space Management

	16.	 Which statement regarding reclaiming wasted space is true?

	 A.	 Segment shrink is accomplished using the ALTER TABLE … MOVE and ALTER INDEX
… REBUILD statements.

	 B.	 Segment shrink and reorganize are similar operations.

	 C.	 When a table segment shrink operation is completed, the dependent indexes are in
invalid state and need to be rebuilt.

	 D.	 A segment shrink operation is applicable only on tablespaces with automatic
segment space management.

	17.	 Which compression option should be specified to compress blocks of tables that are
used by the OLTP application?

	 A.	 COMPRESS

	 B.	 NOCOMPRESS

	 C.	 COMPRESS FOR OLTP

	 D.	 COMPRESS FOR ONLINE DML

	18.	 Choose the best option regarding extents.

	 A.	 An extent is a grouping of Oracle blocks.

	 B.	 An extent is a grouping of OS blocks.

	 C.	 An extent is a grouping of segments.

	 D.	 An extent is allocated when a table is created.

	19.	 You issue the statement CREATE TABLESPACE X;. Which of the following is the
best option?

	 A.	 The statement fails because mandatory properties are not defined.

	 B.	 The 100MB tablespace is created.

	 C.	 The mandatory DATAFILE clause is missing.

	 D.	 The tablespace name should be at least three characters long.

20.	 Choose the information that is not part of a ROWID.

	 A.	 Data object number

	 B.	 Relative file number

	 C.	 Segment ID where the block belongs

	 D.	 Block number in the file

Chapter

11
Managing Data
Concurrency
and Undo

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Managing Undo Data

■■ Explain DML and undo data generation.

■■ Monitor and administer undo data.

■■ Describe the difference between undo data and redo data.

■■ Configure undo retention.

✓✓ Managing Data Concurrency

■■ Describe the locking mechanism and how Oracle manages

data concurrency.

■■ Monitor and resolve locking conflicts.

Data Manipulation Language (DML) is used to manage data
in any relational database. When data is changed, it must be
tracked somewhere until the user decides to save the change

permanently. Oracle Database 12c uses the redo mechanism to track all changes and the
undo mechanism to store the previous image of the changed block in case the user decides
to discard the change. Redo can be transferred to a remote site to build disaster recovery
systems. Undo can also be used to construct a before-image to compare, change, or retrieve
old data.

A transaction is a logical unit of work that contains one or more SQL statements. It
takes the database from one consistent state to the next. A transaction begins with the first
SQL statement and ends with a commit or rollback. In this chapter, you will learn about
transactions and how Oracle ensures data consistency and concurrency.

Before reading this chapter, you must be familiar with the DML state-
ments in Oracle Database 12c. Please familiarize yourself with DML
statements and make sure to read the introduction to transaction control
in Chapter 6, “Manipulating Data.”

Managing Data Changes Using DML
A change in the database is made using Data Manipulation Language (DML). Data
Definition Language (DDL) and Data Control Language (DCL) statements also make
changes, but to the data dictionary. INSERT, DELETE, UPDATE, and MERGE are the DML
statements available to make changes to application data.

A transaction is a logical unit of work. All the changes made by the SQL statements in a
transaction commit or rollback at the same time to ensure data consistency in the database.
The use of transactions is one of the important ways in which a database management system
differs from a file-based system. In the database management system, a transaction must obey
ACID properties. ACID stands for atomicity, consistency, isolation, and durability.

Atomicity    The entire sequence of action must be either committed or rolled back. There
cannot be partial success in a transaction. For example, if a bank transfer includes crediting
an account and debiting another account, the entire set of actions to credit and debit must be
committed or rolled back as a transaction.

	 Managing Data Changes Using DML	 571

Consistency    Consistency ensures that the result of the query indicates the state of the data
when the query started. For example, if you are querying a large table that normally takes
30 minutes to read all records, and someone changed a few rows of the table 15 minutes
into the query, the query should still show you consistent information as it existed when
the query started.

Isolation    Isolation mandates that unsaved (not committed) information is not visible to
other users in the database. The session that is making changes to the data must see only
the uncommitted changes, not other transactions in the database. Changes should be visible
to other sessions when the transaction making the change is committed.

Durability    The changes made by the committed transactions are saved and the system
must not lose the change, even if there is a system failure. The database must guarantee
that a committed change is never lost.

The redo and undo mechanism of Oracle Database 12c ensures ACID properties of
the Oracle Database 12c database. Let’s review what happens when a user session makes
changes to a table in Oracle Database 12c.

Understanding “Change”
With the first DML statement in a session, a transaction is initiated and it ends when the
change is saved (COMMIT) or when the change is discarded (ROLLBACK). When a change is made
to the database, it is not immediately visible to other sessions in the database. The change is
visible only after the change-initiated session performs a commit. Until the change is commit-
ted or rolled back, the before-image of change is saved in the undo segments of the database.
A consistent view of the data is provided to other sessions by using the data from the undo
blocks, as long as the change is not saved. Oracle also writes the changes to undo blocks and
data blocks to log buffer and is flushed to disk, to the online redo log files. The redo data
keeps track of change, so that if needed the change can be reapplied, or so that during instance
recovery the change can be rolled back if the transaction was not committed.

Figure 11.1 shows how a change is made in the database in the simplest form. All the
block changes are made after reading the block into the buffer cache. Let’s assume user X
issues UPDATE tabx SET namef = 'ABCD'. Oracle optimizer determines the fastest way to
get to the block based on statistics and indexes on the table. Once the block(s) with row(s)
namef = 'ABCD' are identified, the server process reads the blocks from the data file to buf-
fer cache (1). Before making changes to the block, the row is written to the undo segment,
to re-create the original state if needed (2). The change that was made to the data is written
to the log buffer, to repeat the change if needed (3). Since the undo block also changed, the
undo change is written to the log buffer as well (3). When the log buffer is one-third full, or
after 3 seconds or after a commit in the database, the log buffer is written to the online redo
log files by the LGWR process. When a checkpoint happens, the data and undo blocks (dirty
blocks) are written to the disk by the DBWn process. To remind you how often and when the
LGWR and DBWn processes write, please refer to Chapter 8, “Introducing Oracle Database
12c Components and Architecture.”

572	 Chapter 11  ■  Managing Data Concurrency and Undo

F igur e 11.1     Making a change in the database

Buffer Cache

Table Block

Database

Read into memory

1

3

Undo Block

Read into memory

2

Log
Buffer

Log
Buffer

Changed Block

Change Log

Change
Log

The log buffer is flushed when one of the following conditions is met:

■■ The log buffer is one-third full.

■■ The log buffer has 1MB of redo data.

■■ Three seconds have passed since the last flush.

■■ A commit has been performed.

■■ A database checkpoint occurs.

Differentiating Undo and Redo
Although undo and redo both track changes, they serve totally different purposes, and
both are essential for a transaction in the database operation. As the names suggest, undo
data is used to “undo” a change and redo data is used to “redo” a change. The undo space

	 Managing Data Changes Using DML	 573

is dynamic, and segments and extents are allocated as and when required, whereas the redo
log buffer is a fixed size.

Undo data is the old value of data when a process or user changes data in a table. Undo
data serves four purposes in an Oracle database:

■■ Rollback of a transaction

■■ Read consistency of DML operations and queries

■■ Instance recovery operations (undo data from the redo log file is used for instance
recovery)

■■ Flashback functionality

Redo data is written to the online redo log files, and the information is used to reproduce
a change. Redo data is used primarily for recovery by the database in the following situations:

■■ Roll forward a change during instance recovery

■■ Archive the redo data in archive log files and use for point-in-time recovery of database

■■ Use log miner to read the redo (online or archived) log files and reapply the change or
undo the change

Let’s look at the undo operations in detail in the following sections. Chapter 15, “Using
Backup and Recovery,” discusses how log files are archived and how redo log files are used
in database recovery operations.

All DML operations generate undo and redo data. Rolling back the change
(DML) also generates redo data.

Using Undo for Transaction Rollback
At the user-session level, there may be one or hundreds of DML commands (such as DELETE,
INSERT, UPDATE, or MERGE) within a particular transaction that need to be undone. Undoing
the changes within a transaction is called rolling back part or all of the transaction. The
undo information needed to roll back the changes is called, appropriately, the rollback infor-
mation and is stored in a special type of tablespace called an undo tablespace.

When an entire transaction is rolled back, Oracle uses the saved undo information in the
undo tablespace to undo all the changes since the beginning of the transaction, releases any
locks on rows involved in the transaction, and ends the transaction.

If a failure occurs on the client or a network, abnormally terminating the user’s connection
to the database, undo information is used in much the same way as if the user explicitly rolled
back the transaction, and Oracle undoes all the changes since the beginning of the transac-
tion, using information saved in the undo tablespace.

When a DML SQL statement fails, only the changes made by the failed
DML statement are rolled back and not the entire transaction.

574	 Chapter 11  ■  Managing Data Concurrency and Undo

Undo and Redo Application During Instance Recovery
When a database is shut down cleanly (not using SHUTDOWN ABORT), a full checkpoint hap-
pens and, therefore, all the dirty blocks from the buffer cache are written to the data files.
As a result, when the database starts, there is no need for any kind of recovery. If the data-
base was shut down using SHUTDOWN ABORT or if the instance crashed for some reason, then
during the instance startup both redo and undo data are required to put the database in a
consistent state. This operation is known as instance recovery, or crash recovery.

As you learned in previous chapters, Oracle keeps many changes in memory to improve
performance, and it writes changes to files only at periodic intervals or at specific events.
This behavior improves database operational performance. Therefore, when the database
instance crashes or is brought down abruptly, Oracle has the responsibility to perform a
cleanup and bring the database to a consistent state.

In order to ensure that no committed change is lost, Oracle writes the redo log buffer to
redo log files immediately after a commit. As such, any change in the database is captured
in the log file, but not necessarily in the data file. Changed data blocks (dirty buffer) from
the buffer cache are written to the data files only during checkpoints. Instance recovery
is a two-phase operation consisting of cache recovery (or rolling forward) and transaction
recovery (or rolling back). Cache recovery uses redo information, and transaction recovery
uses undo information.

During cache recovery, Oracle replays the transactions from the online redo log files since
the last checkpoint. During this roll forward operation, both committed and uncommitted
changes are applied to the data files. At the end of the roll-forward operation, the data files
will have committed changes, uncommitted changes that were written to the data files to free
up buffer cache space and uncommitted changes applied by the roll-forward operation. The
database can be opened as soon as cache recovery is complete. See Figure 11.2.

F igur e 11. 2     Instance recovery using undo and redo

Crashed
Database

Inconsistent
Database

Committed
Changes

Uncommitted
Changes

Transaction RecoveryCache Recovery

Undo TablespaceRedo Log Files

Consistent
Database

Committed
Changes

After the cache is recovered, the database is inconsistent; the database includes both com-
mitted and uncommitted changes. To clean up the mess, Oracle uses the undo segments from
the undo tablespace. In the transaction-recovery phase of instance recovery, Oracle applies
undo blocks to roll back uncommitted changes in data blocks that were either written before
the instance crash or made by the roll-forward operation during cache recovery.

	 Managing Data Changes Using DML	 575

When a user session abnormally terminates due to a network issue or
desktop crash, the PMON process will detect the session failure and per-
form the transaction rollback. During instance recovery, the SMON process
is responsible for performing the transaction recovery by rolling back the
uncommitted changes.

Achieving Read Consistency
Undo also provides read consistency for users who are querying rows involved in a DML
transaction by another user or session. When one user starts to make changes to a table after
another user has already begun a query against the table, the user issuing the query will not
see the changes to the table until after the query has completed and the user issues a new query
against the table. Undo segments in an undo tablespace are used to reconstruct the data blocks
belonging to the table to provide the previous values of the rows for any user issuing SELECT
statements against the table before the DML statements’ transaction commits.

For example, the user JOSEPHJ begins a transaction at 3:00 p.m. that contains several
long-running DML statements against the EMPLOYEES table; the statements aren’t expected to
finish until 3:15 p.m. As each DML command is issued, the previous values of each row are
saved in the transaction’s undo segment. At 3:05 p.m., the user SARAR issues a SELECT against
the EMPLOYEES table; none of the changes made so far by JOSEPHJ are visible to SARAR. The
undo tablespace provides the previous values of the EMPLOYEES table to SARAR and any other
users querying the EMPLOYEES table between 3:00 p.m. and 3:15 p.m. Even if SARAR’s query
is still running at 3:20 p.m., the query still appears as it did at 3:00 p.m., before JOSEPHJ
started making changes.

INSERT statements use little space in an undo segment; only the pointer to
the new row is stored in the undo tablespace. To undo an INSERT statement,
the pointer locates the new row and deletes it from the table if the transac-
tion is rolled back.

In a few situations, either SARAR’s query or JOSEPHJ’s DML statements might fail, because
the undo tablespace is not sized correctly or because the undo retention period is too short.

You can also apply read consistency to an entire transaction instead of just a single SELECT
statement by using the SET TRANSACTION statement as follows:

SQL> set transaction read only;
Transaction set.

Until the transaction is either rolled back or committed, all queries in the transaction see
only those changes to other tables that were committed before the transaction began. Only
the following statements are permitted in a read-only transaction:

■■ SELECT statements without the FOR UPDATE clause

■■ LOCK TABLE

576	 Chapter 11  ■  Managing Data Concurrency and Undo

■■ SET ROLE
■■ ALTER SESSION
■■ ALTER SYSTEM

In other words, a read-only transaction cannot contain any statement that changes
data in a table, regardless of where the table resides. For example, although an ALTER
USER command does not change data in the USERS or any other non-SYSTEM tablespace,
it does change the data dictionary tables and, therefore, cannot be used in a read-only
transaction.

Undo data is kept in undo segments. In the next section, you will learn how to configure
and monitor undo.

User-initiated transaction rollback and commit are applicable only to DML
statements. DDL statements end the active transaction by performing a
commit before the DDL and a commit after the DDL. Therefore, DDL state-
ments cannot be rolled back.

Configuring and Monitoring Undo
Compared with configuring rollback operations in releases prior to Oracle9i, managing
undo in later versions of Oracle requires little DBA intervention. However, two particular
situations will trigger intervention: either not enough undo space to handle all active trans-
actions or not enough undo space to satisfy long-running queries that need undo informa-
tion for read consistency. Running out of undo space for transactions generates messages
such as ORA-01650: Unable to extend rollback segment; long-running queries whose
undo entries have been reused by current transactions typically receive the ORA-01555:
Snapshot too old message.

In the following sections, you will learn how to configure the undo tablespace using
two initialization parameters: UNDO_MANAGEMENT and UNDO_TABLESPACE. You will also learn
about the methods available for monitoring the health of the undo tablespace, as well as
using EM Database Express Undo Advisor to size or resize the undo tablespace. Using the
dynamic performance view V$UNDOSTAT, you can calculate an optimal size for the undo
tablespace if the Undo Advisor is not available. Finally, you will see how to guarantee that
long-running queries will have undo entries available, even if it means that a DML transac-
tion fails, by using the RETENTION GUARANTEE option.

Multiple active transactions can write simultaneously to the same current
extent or to different current extents in the same undo segment. Within an
undo extent, a data block contains data for only one transaction.

	 Managing Data Changes Using DML	 577

Configuring the Undo Management
Manual undo management is not recommended, although it is still available in Oracle
Database 12c. Automatic undo management is the default for the Oracle Database 12c. To
configure automatic undo management, use the initialization parameters UNDO_MANAGEMENT,
UNDO_TABLESPACE, and UNDO_RETENTION.

UNDO_MANAGEMENT

The parameter UNDO_MANAGEMENT specifies the way in which undo data is managed in the
database: either manually using rollback segments or automatically using a single tablespace
to hold undo information.

The allowed values for UNDO_MANAGEMENT are MANUAL and AUTO. To change the undo-
management mode, you must restart the instance. This parameter is not dynamic, as you
can see in the following example:

SQL> alter system
 set undo_management = manual;

set undo_management = manual
 *
ERROR at line 2:
ORA-02095: specified initialization parameter cannot be modified

If you are using an spfile, you can change the value of this parameter in the spfile and
then restart the instance for the parameter to take effect, as follows:

SQL> alter system
 set undo_management = manual scope=spfile;
System altered.

Manual undo management is specified by setting the parameter UNDO_MAN-
AGEMENT to MANUAL. You must then create appropriately sized rollback seg-
ments and make them available to the database using another parameter,
ROLLBACK_SEGMENTS. Using manual undo management is not recommended,
because automatic undo management reduces DBA intervention and pro-
vides undo tuning information as well as flashback query capabilities.

UNDO_TABLESPACE

The UNDO_TABLESPACE parameter specifies the name of the undo tablespace to use for read
consistency and transaction rollback when in automatic undo management mode.

You can create an undo tablespace when the database is created; you can resize it or create
a new one later. In any case, only one undo tablespace can be active at any given time, unless

578	 Chapter 11  ■  Managing Data Concurrency and Undo

the value of UNDO_TABLESPACE is changed while the old undo tablespace still contains active
transactions. In this case, the old undo tablespace remains active until the last transaction
using the old undo tablespace either commits or rolls back; all new transactions use the new
undo tablespace.

If UNDO_TABLESPACE is not defined but at least one undo tablespace exists in the data-
base, the first undo tablespace discovered by the Oracle instance at startup is assigned
to UNDO_TABLESPACE. You can find out the name of the current undo tablespace with the
SHOW PARAMETER command, as in the following example:

SQL> show parameter undo_tablespace

NAME TYPE VALUE
----------------------- ----------- --------------------
undo_tablespace string UNDOTBS1

For most platforms, if an undo tablespace is not explicitly created in the CREATE
DATABASE command, Oracle automatically creates one with the name SYS_UNDOTBS.

Here is an example of how you can switch the undo tablespace from UNDOTBS1 to
UNDO_BATCH:

SQL> show parameter undo_tablespace

NAME TYPE VALUE
-------------------------- ----------- -------------------
undo_tablespace string UNDOTBS1

SQL> alter system set undo_tablespace=undo_batch;
System altered.

SQL> show parameter undo_tablespace

NAME TYPE VALUE
-------------------------- ----------- -------------------
undo_tablespace string UNDO_BATCH

In Real Application Cluster database, each instance must have dedicated
undo tablespace configured using the UNDO_TABLESPACE parameter.

UNDO_RETENTION

The UNDO_RETENTION parameter specifies, in seconds, how long undo information that
has already been committed should be retained until it can be overwritten. This is not
a guaranteed limit: if the number of seconds specified by UNDO_RETENTION has not been

	 Managing Data Changes Using DML	 579

reached and if a transaction needs undo space, already committed undo information can
be overwritten.

SQL> show parameter undo

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
temp_undo_enabled boolean FALSE
undo_management string AUTO
undo_retention integer 900
undo_tablespace string UNDOTBS1
SQL>

To guarantee undo retention, you can use the RETENTION GUARANTEE key-
words for the undo tablespace, as you will see later in this chapter in the
“Guaranteeing Undo Retention” section.

Setting UNDO_RETENTION to zero turns on automatic undo retention tuning. Oracle
continually adjusts this parameter to retain just enough undo information to satisfy the
longest-running query to date. If the undo tablespace is not big enough for the longest-
running query, automatic undo retention retains as much as possible without extending
the undo tablespace. In any case, automatic undo retention attempts to maintain at least
900 seconds, or 15 minutes, of undo information.

Regardless of how long undo information is retained, it falls into one of three categories:

Uncommitted Undo Information    Uncommitted or active undo is undo information that
still supports an active transaction and is required in the event of a ROLLBACK or a transac-
tion failure. This undo information is never overwritten.

Committed Undo Information    Also known as unexpired undo, this is undo informa-
tion that is no longer needed to support an active transaction but is still needed to satisfy
the undo retention interval, as defined by UNDO_RETENTION. This undo can be overwritten,
however, if an active transaction needs undo space.

Expired Undo Information    Expired undo is undo information that is no longer needed
to support an active transaction and is overwritten when space is required by an active
transaction.

Here is an example of how you can change undo retention from its current value to
12 hours:

SQL> show parameter undo_retention

NAME TYPE VALUE
------------------ ----------- -----------------------
undo_retention integer 600

580	 Chapter 11  ■  Managing Data Concurrency and Undo

SQL> alter system set undo_retention = 43200;
System altered.

SQL> show parameter undo_retention

NAME TYPE VALUE
------------------ ----------- -----------------------
undo_retention integer 43200

Unless you use the SCOPE parameter in the ALTER SYSTEM command, the change to UNDO_
RETENTION takes effect immediately and stays in effect the next time the instance is restarted.

If the undo tablespace data file is C, Oracle retains undo for at least the time specified
in UNDO_RETENTION, and tunes the undo retention period to satisfy the undo requirements
of the queries. For fixed-size undo tablespaces, Oracle automatically tunes undo retention
for the maximum possible period, based on undo tablespace size and usage history, and
ignores the UNDO_RETENTION setting.

Undo and Flashback Operations
Oracle flashback features let you see the state of data, object, and database as they existed
in the past. The following flashback operations depend on automatic undo management
and undo data.

Flashback Query    This provides the ability to query data as it existed in the past. How far
back you can query depends on the size of the undo tablespace and the undo retention.

Flashback Version Query    This provides the ability to query the versions of rows in a table
that existed at a specific time interval.

Flashback Transaction    This backs out a transaction and its dependent transactions.

Flashback Transaction Query    This provides the ability to view all of the changes made to
the database at the transaction level.

Flashback Table    This provides point-in-time recovery of an individual table.

The flashback features are discussed in detail in Chapter 15.

Guaranteeing Undo Retention
By default, undo information from committed transactions (unexpired undo) is overwritten
before a transaction fails because of a lack of expired undo. If your database requirements
are such that you want long-running queries to succeed at the expense of DML in a trans-
action, such as in a data warehouse environment where a query can run for hours or even
days, you can set the RETENTION GUARANTEE parameter for the undo tablespace.

This setting is not available as an initialization parameter. You can set a retention guarantee
using ALTER TABLESPACE at the SQL*Plus command line, as in the following example:

SQL> alter tablespace undotbs1 retention guarantee;
Tablespace altered.

	 Managing Data Changes Using DML	 581

Turning off the setting is just as easy, as you can see in the next example:

SQL> alter tablespace undotbs1 retention noguarantee;
Tablespace altered.

Different undo tablespaces can have different settings for RETENTION. As expected,
you cannot set RETENTION for a tablespace that is not an undo tablespace. The following
example attempts to change the RETENTION setting for the USERS tablespace and generates
an error message:

SQL> select tablespace_name, contents,
 2 retention from dba_tablespaces;

TABLESPACE_NAME CONTENTS RETENTION
------------------------------ --------- -----------
SYSTEM PERMANENT NOT APPLY
SYSAUX PERMANENT NOT APPLY
UNDOTBS1 UNDO NOGUARANTEE
TEMP TEMPORARY NOT APPLY
USERS PERMANENT NOT APPLY

SQL> alter tablespace users retention guarantee;

alter tablespace users retention guarantee
*
ERROR at line 1:
ORA-30044: 'Retention' can only be specified for undo tablespace

Monitoring the Undo Tablespace
Undo tablespaces are monitored just like any other tablespace: if a specific set of space
thresholds is not defined for undo tablespace, the database default values are used; other-
wise, a specific set of thresholds can be assigned. When an undo tablespace’s data files do
not have the AUTOEXTEND attribute set, transactions can fail because too many transactions
are vying for too little undo space.

Although you can allow the data files in your undo tablespace to autoextend initially, you
should turn off autoextend on its data files once you believe that the undo tablespace has been
sized correctly. This prevents a single user from accidentally using up large amounts of disk
space in the undo tablespace by neglecting to commit transactions as frequently as possible.

Figure 11.3 shows the Automatic Undo Management screen in EM Database Express
(choose Undo Management under Storage drop-down). There are six sections in the Undo
Management Details screen, three each under Configuration and Statistics groups.

582	 Chapter 11  ■  Managing Data Concurrency and Undo

F igur e 11. 3     The Undo Management Details screen in EM Database Express

The sections in the screen are self-explanatory and show the undo configuration and
usage details. The Undo Summary section needs further explanation. The Undo Summary
section shows the following:

Undo Setting    The value of undo-related initialization parameters. You can modify the
undo retention by clicking on the value, which takes you to the Initialization Parameter
Modification screen.

Tablespace    This shows details of the active undo tablespace. Along with size of the
tablespace, you can see the Retention Guarantee setting and determine if the tablespace
data file is set to autoextend. Notice the Switch Undo Tablespace option on the top sec-
tion; use this to change the active undo tablespace for the database. Switching changes
the UNDO_TABLESPACE parameter.

Errors and Warnings    This shows any errors related to an undo reported in the database.
Transaction-stealing unexpired undo blocks can lead to Snapshot too old errors or can
prevent flashback database to a desired point in time.

Advisor Findings    This section shows any findings from the ADDM runs related to undo.
ADDM is discussed in Chapter 14, “Maintaining the Database and Managing Performance.”

The Undo Statistics Summary section shows the following:

Analysis Period    The analysis period can be changed by using the Change Analysis
Parameters button shown in the top section of Figure 11.3. The period can be changed
to Last Hour, Last Week, or Last Day, as shown in Figure 11.4. You can also provide the

	 Managing Data Changes Using DML	 583

undo retention value to use for the analysis. You can specify the Target Undo Retention
value or the database can pick the minimum required time based on database activity.

F igur e 11. 4     The Undo Management Change Analysis Period

Undo Retention Analysis    This shows the undo retention based on the undo configuration
and available data from the database.

Undo Statistics    This shows the undo generation rate, the longest running SQL information.

The Undo Advisor shows a graph of undo size against retention time; the blue dot shows
the current undo_retention value. When you move the mouse over to any point on the graph,
it shows the size of the undo used against the retention time. Use this information to properly
size the undo tablespace. In Figure 11.3, the screen shows an analysis of the undo tablespace
based on the longest-running query in the analysis period. If you don’t expect your undo usage
to increase or you don’t expect to need to retain undo information longer than the current lon-
gest one, you can drop the size of the undo tablespace to around 45MB from the current size
of 4GB.

On the other hand, if you expect to need undo information for more than the current
longest-running query, you can see the impact of this increase by entering a new value for
undo retention by using the Change Analysis Parameters.

EM Database Express uses the data dictionary view V$UNDOSTAT to calculate the undo
usage rate and provide recommendations. V$UNDOSTAT collects 10-minute snapshots of the
undo space consumption and, in conjunction with UNDO_RETENTION and the database block
size, can provide an optimal undo tablespace size.

Running out of space in an undo tablespace can also trigger an ORA-01555: Snapshot too
old error. Long-running queries that need a read-consistent view of one or more tables can be
at odds with ongoing transactions that need undo space. Unless the undo tablespace is defined
with the RETENTION GUARANTEE parameter, ongoing DML can use undo space that is needed for
long-running queries. As a result, a Snapshot too old error is returned to the user executing
the query, and an alert is generated.

The Snapshot too old error alert can be triggered independently of the
space available in the undo tablespace if the UNDO_RETENTION initialization
parameter is set too low.

584	 Chapter 11  ■  Managing Data Concurrency and Undo

SQL Developer is a good place to view the details as well as modify tablespaces, espe-
cially the undo tablespace. The Details tab shows properties such as retention guarantee.
The Datafiles tab shows the files associated with the undo tablespace and indicates if they
are autoextensible. The Objects tab shows the undo segments in the tablespace. The SQL
tab shows the SQL used to create the undo tablespace. See Figure 11.5 showing the undo
segments of UNDOTBS1 undo tablespace.

F igur e 11.5     Undo tablespace information using SQL Developer

Managing Data Concurrency
Most databases will have many users using the tables and making changes simultaneously. At
times, multiple users may be making changes to the same data concurrently. Oracle Database
12c has several locking mechanisms to minimize conflict and ensure data integrity.

	 Managing Data Concurrency	 585

Undo on Temporary Table Operations

By default, undo information on global temporary-table DML operations are stored in the
undo tablespace, similar to undo operations on persistent tables. Oracle Database 12c
introduced a new feature, where the undo information generated by DML operations on
temporary tables is stored in the temporary tablespace; therefore, no redo is generated
for the undo operation. This is accomplished by setting the database initialization param-
eter TEMP_UNDO_ENABLED to TRUE or setting the parameter in the user session. The tempo-
rary undo feature provides the following benefits:

Reduces the amount of undo data stored in the undo tablespaces.

Reduces the amount of redos generated. Operations on temporary tables do not
generate redo.

Temporary undo can be enabled or disabled in a session before making any changes to
temporary tables in the session by using the ALTER SESSION statement.

As a DBA, you will eventually have to deal with locking conflicts when two or more
users try to change the same row in the database. In the following sections, we’ll present
an overview of how locking works in the Oracle Database 12c, how users are queued for a
particular resource once it is locked, and how Oracle classifies lock types in the database.
Then we’ll show you a number of ways to detect and resolve locking issues; we’ll also cover
a special type of lock situation: the deadlock.

Understanding Locks and Transactions
Locks prevent multiple users from changing the same data at the same time. Before one or
more rows in a table can be changed, the user executing the DML statement must obtain a
lock on the row or rows; a lock gives the user exclusive control over the data until the user
has committed or rolled back the transaction that is changing the data.

In Oracle Database 12c, a transaction can lock one row, multiple rows, or an entire table.
Although you can manually lock rows, Oracle can automatically lock the rows needed at the
lowest possible level to ensure data integrity and minimize conflicts with other transactions
that may need to access other rows in the table.

In Table 11.1, both updates to the EMPLOYEES table return to the command prompt
immediately after the UPDATE because the locks are on different rows in the EMPLOYEES
table and neither session is waiting for the other lock to be released.

586	 Chapter 11  ■  Managing Data Concurrency and Undo

Tabl e 11.1    Concurrent Transactions on Different Rows of the Same Table

Session 1 Time Session 2

update employees set salary =
salary * 1.2 where employee_id
= 102;

11:29 update employees set manager =
100 where employee_id = 109;

commit; 11:30 commit;

Packaged Applications and Locking

The Human Resources (HR) department recently purchased a benefits-management pack-
age that interfaced well with our existing employee-management tables; however, once
HR started using the application, other users who accessed the employee tables started
complaining of severe slowdowns in updates to the employee information.

Reviewing the CPU and I/O usage of the instance did not reveal any problems. It wasn’t
until we looked at the locking information that we noticed a table lock on the employ-
ees table whenever the benefits-management features were being used. The benefits-
management application was written to work on a number of database platforms, and
the least capable of those platforms did not support row locking. As a result, no one
could make changes to the employees table when an employee’s benefits were being
changed, and everyone had to wait for the benefits changes to complete. Fortunately,
the parameter file for the benefits-management package had an option to specify Ora-
cle as the target platform; after setting the specific database version in the package’s
parameter file, the package was smart enough to use row locking instead of table lock-
ing whenever the employee table needed to be updated.

Queries never require a lock. Even if another transaction has locked several rows or an
entire table, a query always succeeds, using the prelock image of the data stored in the undo
tablespace.

If multiple users require a lock on a row or rows in a table, the first user to request the
lock obtains it, and the remaining users are enqueued using a first-in, first-out (FIFO)
method. At a SQL> command prompt, a DML statement (INSERT, UPDATE, DELETE, or MERGE)
that is waiting for a lock on a resource appears to hang, unless the NOWAIT keyword is used
in a LOCK statement.

	 Managing Data Concurrency	 587

The WAIT and NOWAIT keywords are explained in the next section,
“Maximizing Data Concurrency.”

At the end of a transaction, when either a COMMIT or a ROLLBACK is issued (either explic-
itly by the user or implicitly when the session terminates normally or abnormally), all locks
are released.

Oracle Database 12c Locking Behavior

■■ A row is locked only when it is updated or deleted. A row can also be locked using
SELECT … FOR UPDATE statement. Only modified rows are locked. There is no lock
escalation—for example, a row lock does not become a table lock after certain time
period or after a certain number of rows are locked in a table.

■■ A session (A) making changes to a row already changed by another session (B) waits
until transaction B ends. This prevents one row from being modified by two sessions
at the same time.

■■ A SELECT statement (reader) never blocks any other sessions—readers or writers.
The exception is the SELECT … FOR UPDATE statement.

■■ A SELECT statement (reader) is never blocked by readers or writers. When a row read
is changed by a writer (update or delete statements), Oracle gets the data from undo
segments for the reader.

Maximizing Data Concurrency
Rows of a table are locked either explicitly by the user at the beginning of a transaction or
implicitly by Oracle, usually at the row level, depending on the operation. If a table must
be locked for performance reasons (which is rare), you can use the LOCK TABLE command,
specifying the level at which the table should be locked.

In the following example, you lock the EMPLOYEES and DEPARTMENTS tables at the highest
possible level, EXCLUSIVE:

SQL> lock table hr.employees, hr.departments
 in exclusive mode;
Table(s) Locked.

Until the transaction with the LOCK statement either commits or rolls back, only queries
are allowed on the EMPLOYEES and DEPARTMENTS tables.

In the following sections, we will review the lock modes and discuss how to avoid the lock
enqueue process and terminate the command if the requested resource is already locked.

588	 Chapter 11  ■  Managing Data Concurrency and Undo

Lock Modes
Lock modes provide a way for you to specify how much and what kinds of access other
users have on rows and tables that you are using in DML commands. There are two types
of locks: exclusive and shared. Exclusive lock mode prevents the associated resource (table
or row) from being shared. A transaction obtains an exclusive lock when it modifies data,
and it is the only transaction that can alter the resource until the exclusive lock is released.
Share lock mode allows the associated resource to be shared. Multiple users reading data
can share the data, each holding a share lock to prevent concurrent access by a writer who
needs an exclusive lock. Multiple transactions can acquire share locks on the same resource
(table or row).

DML locks guarantee the integrity of data when multiple users concurrently access
and update the data. DML statements such as INSERT, UPDATE, and DELETE always acquire
row locks in exclusive mode (RX), to prevent another transaction from modifying the
same row, and table lock in RX mode to prevent other transactions from running DDL
on the table.

In Table 11.2, you can see the types of locks that can be obtained at the table level.

Tabl e 11. 2    Table Lock Modes

Table Lock Mode Description

ROW SHARE (RS) Permits concurrent access to the locked table but prohib-
its other users from locking the entire table for exclusive
access.

ROW EXCLUSIVE (RX) Same as ROW SHARE but also prohibits locking in SHARE
mode. This type of lock is obtained automatically with stan-
dard DML commands such as UPDATE, INSERT, or DELETE.

SHARE (S) Permits concurrent queries but prohibits updates to the
table; this mode is required to create an index on a table
and is automatically obtained when using the CREATE INDEX
statement.

SHARE ROW EXCLUSIVE (SRX) Used to query a whole table and to allow other users to
query the table but prevents other users from locking the
table in SHARE mode or updating rows.

EXCLUSIVE (X) The most restrictive locking mode; permits queries on the
locked table but prohibits DML by any other users. This
mode is required to drop the table and is automatically
obtained when using the DROP TABLE statement.

Manual lock requests wait in the same queue as implicit locks and are satisfied in a FIFO
manner as each request releases the lock with an implicit or explicit COMMIT or ROLLBACK.

	 Managing Data Concurrency	 589

You can explicitly obtain locks on individual rows by using the SELECT … FOR UPDATE
statement, as you can see in the following example:

SQL> select * from hr.employees
 where manager_id = 100 for update;

Not only does this query show the rows that satisfy the query conditions, but it also
locks the selected rows and prevents other transactions from locking or updating these
rows until a COMMIT or ROLLBACK occurs.

Oracle never escalates locks. Row locks are not escalated to table lock,
even if all rows in the table are modified by a transaction. A transaction
holds exclusive row locks for all rows inserted, updated, or deleted within
the transaction.

NOWAIT Mode

Using NOWAIT in a LOCK TABLE statement returns control to the user immediately if any locks
already exist on the requested resource, as you can see in the following example:

SQL> lock table hr.employees
 in share row exclusive mode
 nowait;
lock table hr.employees
 *
ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

SQL>

This is especially useful in a PL/SQL application if an alternative execution path can
be followed if the requested resource is not yet available. NOWAIT can also be used in the
SELECT … FOR UPDATE statement.

WAIT Mode

You can tell Oracle to wait a specified number of seconds to acquire a DML lock. If you do
not specify a NOWAIT or WAIT clause, the database waits indefinitely if the table is locked by
another user. In the following example, Oracle will wait for 60 seconds to acquire the lock.
If the lock is not acquired within 60 seconds, an error is returned.

SQL> lock table hr.employees
 in share row exclusive mode wait 60;

590	 Chapter 11  ■  Managing Data Concurrency and Undo

DDL Lock Waits
A DDL lock protects the definition of a schema object when a DDL operation is performed
on the object. Only individual schema objects that are modified are locked during DDL
operations.

When DML statements have rows locked in a table or if the table is manually locked by
a user, DDL statements on the table fail with the ORA-00054 error. To have the DDL state-
ments wait for a specified number of seconds before throwing the ORA-00054 error, you can
set the initialization parameter DDL_LOCK_TIMEOUT. The default value is 0, which means the
error is issued immediately. You can specify a value up to 1,000,000 seconds.

SQL> alter table hr.employees modify salary number (15,2);
alter table hr.employees modify salary number (15,2)
 *
ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

SQL> show parameter ddl_lock
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
ddl_lock_timeout integer 0
SQL>

Detecting and Resolving Lock Conflicts
Although locks are a common and sometimes unavoidable occurrence in many databases,
they are usually resolved by waiting in the queue. In some cases, you may need to resolve the
lock problem manually (such as if a user makes an update at 4:59 p.m. and does not perform
a COMMIT before leaving for the day).

In the next few sections, we will describe in more detail some of the reasons that lock
conflicts occur and how to detect lock conflicts, and we’ll discuss a more specific and serious
type of lock conflict: a deadlock.

Understanding Lock Conflicts
In addition to the proverbial user who makes a change at 4:59 p.m. and forgets to perform
a COMMIT before leaving for the day, other more typical lock conflicts are caused by long-
running transactions that perform hundreds, thousands, or even hundreds of thousands of
DML commands in the overnight batch run but are not finished updating the tables when
the normal business day starts. The uncommitted transactions from the overnight batch
jobs may lock tables that need to be updated by clerical staff during the business day, caus-
ing a lock conflict.

	 Managing Data Concurrency	 591

Another typical cause of lock conflicts is using unnecessarily high locking levels. In the
“Packaged Applications and Locking” sidebar earlier in this chapter, we described a third-
party application that routinely locked resources at the table level instead of at the row level
to be compatible with every SQL-based database on the market. Developers may unneces-
sarily code updates to tables with higher locking levels than required by Oracle.

Detecting Lock Conflicts Using SQL Developer

Detecting locks in Oracle Database 12c using SQL Developer makes your job easy; you
don’t need to query against V$SESSION, V$TRANSACTION, V$LOCK, and V$LOCKED_OBJECT to
see who is locking what resource. Also, you can learn the various data dictionary views
involved in identifying a session and locks in this exercise.

Let’s lock some tables for demonstration purposes. Log in to the database as HR user and
lock some tables.

SQL> show user
USER is "HR"

SQL> lock table employees in exclusive mode;
Table(s) Locked.

SQL> lock table departments, locations in share mode;
Table(s) Locked.

Find the session in SQL Developer using Monitor Session from the Tools menu. To remove
the clutter, filter the user column by clicking on the funnel icon for user HR. See the follow-
ing graphic, which shows the Monitor Session screen of SQL Developer.

592	 Chapter 11  ■  Managing Data Concurrency and Undo

Now, using another SQL Plus or SQL Developer connection, log in to the database as HR.
When you refresh the Monitor Session screen, there should be two sessions from HR.
Execute the following SQL statement:

SELECT * FROM employees;

Although employees table is locked in exclusive mode (the highest lock mode in Oracle),
we can still query the table. Let’s try to update.

UPDATE employees SET salary = salary + 100;

The statement waits indefinitely. Let’s use SQL Developer to find out what is happen-
ing. In the following graphic, the session by Samuel OS user is active and executing an
UPDATE statement.

The Contention tab in the bottom portion shows the locked table and why the HR session
from user Samuel is waiting.

Click on the third icon at the top (Run Report in SQL Worksheet), just before the Refresh.
This action will copy the SQL statement executed by the SQL Developer tool to find the
session and lock information to a worksheet window. Review this SQL to learn the col-
umns in V$SESSION view.

Cancel the UPDATE statement and issue a new update on the table that is locked in
share mode.

UPDATE locations SET country_id = country_id;

The result is the same. Once the table is locked in share or exclusive mode, we cannot
perform any updates on the table. Issue a commit or rollback on the first session, thereby
ending the transaction. This will clear the lock and make the UPDATE successful.

	 Managing Data Concurrency	 593

Perform the two update statements, one each in two different sessions. Do both of the
statements succeed, or does the second one wait for the first update to either commit or
roll back?

UPDATE employees set salary=salary WHERE employee_id = 206;
UPDATE employees set first_name = first_name WHERE employee_id = 206;

The Reports section of SQL Developer also has useful lock- and blocking-lock-related
information. Select the Report menu option under View to get the reports available in
SQL Developer. Under the Database Administration folder, choose Locks. The following
graphic shows the Blocking Lock screen, with the SQL statement that is waiting. In this
screen, you can see the sessions and SQL statements by the waiter and blocker.

Click the Run Report in SQL Worksheet icon to display the underlying SQL code for this
screen, which you can use to investigate the V$LOCK columns.

Understanding and Resolving Deadlocks
To resolve a lock conflict, the user holding the lock can either COMMIT or ROLLBACK the cur-
rent transaction. If you cannot contact the user and it is an emergency, you can select the
session holding the lock and click the Kill Session button on the Monitor Session screen of
SQL Developer (refer to the graphic in the “Detecting Lock Conflicts Using SQL Developer”
sidebar, earlier in this chapter). The next time the user whose session has been killed tries to
execute a command, the error message ORA-00028: Your session has been killed will be
returned. Again, this is an option of last resort: the user will lose all the statements executed in
the session since the last COMMIT.

594	 Chapter 11  ■  Managing Data Concurrency and Undo

A more serious type of lock conflict is a deadlock. A deadlock is a special type of lock
conflict in which two or more users are waiting for a resource locked by the other users.
As a result, neither transaction can complete without some kind of intervention: the session
that first detects a deadlock rolls back the statement waiting on the resource with the error
message ORA-00060: Deadlock detected while waiting for resource. Oracle automati-
cally resolves deadlocks without user/DBA intervention.

In Table 11.3, two sessions are attempting to update a row locked by the other session.

Tabl e 11. 3    Deadlock Scenario

Session 1 Time Session 2

update employees set salary =
salary * 1.2 where employee_id
= 102;

11:29 update employees set manager =
100 where employee_id = 109;

update employees set salary =
salary * 1.2 where employee_id
= 109;

11:44

11:50 update employees set manager =
100 where employee_id = 102;

Prior to 11:44, session 1 and session 2 updated two different rows in the database and did
not commit the transaction. At 11:44, session 1 issued an UPDATE statement against the same
row locked by session 2. This causes session 1 to hang, waiting for the lock to be released by
session 2. The lock held by session 2 will be released only when session 2 performs a commit
or rollback. At 11:50, when session 2 is trying to update a row already locked by session 1,
you have a deadlock situation: session 1 waiting on session 2 and session 2 waiting on session
1. When this situation occurs, Oracle throws out the ORA-00060 error and fails the statement.
Remember, the transaction is not rolled back, because only the statement is in error. In this
example, session 2 will get the ORA-00060 error when the update at 11:50 is issued, but ses-
sion 1 will wait until session 2 commits or rolls back.

Deadlocks often occur when transactions explicitly override the default locking mecha-
nism of Oracle Database 12c by using LOCK TABLE. With Oracle’s default locking mechanism,
Oracle Database 12c does not escalate locks and does not use read locks for queries but uses
row-level locking; therefore, deadlocks are often avoided.

The data dictionary view DBA_LOCK is a very handy way for the DBA to look
for locks and determine whether any session is blocking other users. A ses-
sion with a value of Blocking in the BLOCKING_OTHERS column may have to
be manually terminated using the ALTER SYSTEM KILL SESSION statement.
DBA_WAITERS is another view that shows only the sessions that are waiting on
a lock. This view shows the holding session and the waiting session.

	 Exam Essentials	 595

Summary
In this chapter, you learned how undo is managed and how locks work in Oracle Database
12c. The undo tablespace is important for two types of database users: those who want to
query a table and receive consistent results and those who want to make changes to a table
and have the option to roll back the data to its original state when the transaction started.
Using undo data, Oracle retrieves only committed changes in the database for a query and
gives writers the ability to not block the readers.

You can configure an undo in the database with a handful of initialization parameters.
UNDO_MANAGEMENT defines the mode in which undo is managed and can be either MANUAL or
AUTO. UNDO_TABLESPACE identifies the current undo tablespace, which can be switched while
the database is open to users; however, only one undo tablespace can be active at a time.
UNDO_RETENTION specifies the desired minimum amount of time for which undo should be
retained, to help long-running queries and flashback operations.

You can use EM Database Express to both proactively monitor and resize the undo
tablespace. For databases whose long-running queries have priority over successful DML
transactions, you can specify that an undo tablespace retain expired undo information at
the expense of failed transactions.

Although Oracle usually manages locks at the minimum level to ensure that two sessions
do not try to simultaneously update the same row in a table, you can explicitly lock a table
at a number of levels. In addition, you can lock a subset of rows in a table to prevent updates
or locks from other transactions with the FOR UPDATE clause in the SELECT statement. Readers
never block other readers or writers; writers never block readers.

You learned some reasons that lock conflicts occur and how to resolve them; a special
kind of lock conflict, a deadlock, occurs when two users are waiting on a resource locked
by the other user. Deadlocks, unlike other types of lock conflicts, are resolved quickly and
automatically by Oracle long before any manual lock resolution is attempted.

Exam Essentials

List the features supported by undo data in an undo tablespace.    Enumerate the four
primary uses for undo data: rollback, read consistency, database recovery, and flashback
operations. Show how the rollback requirements for users who perform long transactions
can interfere with read consistency required for query users. Be able to identify and use the
method to preserve expired undo at the expense of transactions.

Understand when undo and redo are generated.    Undo is generated whenever data is
changed in the database, and the change is written to redo as well. Undo writing will also
generate redo. Rollback of a transaction also generates redo.

Summarize the steps for monitoring, configuring, and administering the undo tablespace.   
Set the initialization parameters required to use an undo tablespace. Be able to review the
status of the undo tablespace using EM Database Express, and use the Undo Advisor to

596	 Chapter 11  ■  Managing Data Concurrency and Undo

resize the undo tablespace when conditions warrant it. Alter the initialization parameter
UNDO_RETENTION to configure how long undo information needs to be retained for long-
running queries.

Know the purpose of the Undo Advisor.    Optimize the UNDO_RETENTION parameter as
well as the size of the undo tablespace by using Undo Advisor. Use the graph on the Undo
Advisor screen to perform what-if analyses given the undo retention requirements.

Learn how undo data is used to produce consistent query results.    When long-running
queries run, data in the underlying table might change. Oracle produces a consistent query
result by obtaining the prechange data from the undo segments to build the query result.

Know when the ORA-01555 Snapshot too old error happens.    When Oracle could not
constitute a consistent view of the data as it existed at the start of the query, the error is
produced. Tuning UNDO_RENTENTION can help avoid the error.

Be able to monitor locking and resolve lock conflicts.    Identify the reasons for database
lock conflicts, and explain how to resolve them. Show an example of a more serious type
of lock conflict, a deadlock.

Understand the WAIT options for acquiring a lock.    The LOCK TABLE statement includes the
WAIT clause to specify how long to wait to acquire a lock. You can set the initialization param-
eter DDL_LOCK_TIMEOUT to specify the number of seconds to wait when trying to acquire a
DDL lock.

List the types of lock modes available when locking a table.    Identify the locks available,
from least restrictive to most restrictive. Be able to request a lock with either a LOCK or
SELECT statement and return immediately if the lock is not available.

Be clear on when locks happen and who is affected.    Oracle locks only the row changed
for DML operations. Other rows in the table are available for writers, and all rows are
available for readers.

	 Review Questions	 597

Review Questions

	 1.	 Changes made with an UPDATE statement in a transaction are permanent in the data-
base and visible to other users after what occurs?

	 A.	 DBWR flushes the changes to disk.

	 B.	 You issue a SAVEPOINT statement.

	 C.	 You issue a COMMIT statement.

	 D.	 A checkpoint occurs.

	 2.	 Which of the following commands returns an error if the transaction starts with SET
TRANSACTION READ ONLY?

	 A.	 ALTER SYSTEM

	 B.	 SET ROLE

	 C.	 ALTER USER

	 D.	 None of the above

	 3.	 Guaranteed undo retention can be specified for which of the following objects?

	 A.	 A tablespace

	 B.	 A table

	 C.	 The database

	 D.	 A transaction

	 E.	 The instance

	 4.	 Which of the following lock modes permits concurrent queries on a table but prohibits
updates to the locked table?

	 A.	 ROW SHARE

	 B.	 ROW EXCLUSIVE

	 C.	 SHARE ROW EXCLUSIVE

	 D.	 All of the above

	 5.	 Select the statement that is not true regarding undo tablespaces.

	 A.	 Undo tablespaces will not be created if they are not specified in the CREATE
DATABASE command.

	 B.	 Two undo tablespaces can be active if a new undo tablespace was specified and the
old one contains pending transactions.

	 C.	 You can switch from one undo tablespace to another while the database is online.

	 D.	 UNDO_MANAGEMENT cannot be changed dynamically while the instance is running.

598	 Chapter 11  ■  Managing Data Concurrency and Undo

	 6.	 To resolve a lock conflict, which of the following methods can you use? Choose all
that apply.

	 A.	 Oracle automatically resolves the lock after a short but predefined time period by
killing the session that is holding the lock.

	 B.	 The DBA can kill the session holding the lock.

	 C.	 The user can either roll back or commit the transaction that is holding the lock.

	 D.	 Oracle automatically resolves the lock after a short but predefined period by killing
the session that is requesting the lock.

	 7.	 Two transactions occur at the wall clock times in the following table. What happens
at 10:05?

Session 1 Time Session 2

update customer set region
= 'H' where state='WI' and
county='GRANT';

9:51

9:59 update customer set mgr=201
where state='IA' and
county='JOHNSON';

update customer set region='H'
where state='IA' and
county='JOHNSON';

10:01

10:05 update customer set mgr=201
where state='WI' and
county='GRANT';

	 A.	 Session 2 will wait for session 1 to commit or roll back.

	 B.	 Session 1 will wait for session 2 to commit or roll back.

	 C.	 A deadlock will occur, and both sessions will hang unless one of the users cancels
their statement or the DBA kills one of the sessions.

	 D.	 A deadlock will occur, and Oracle will cancel one of the statements.

	 E.	 Neither session is updating the same column, so no waiting or deadlock will occur.

	 Review Questions	 599

	 8.	 If all extents in an undo segment fill up, which of the following occurs next? Choose
all that apply.

	 A.	 A new extent is allocated in the undo segment if all existing extents still contain
active transaction data.

	 B.	 Other transactions using the segment are moved to another existing segment with
enough free space.

	 C.	 A new undo segment is created, and the transaction that filled up the undo segment
is moved in its entirety to another undo segment.

	 D.	 The first extent in the segment is reused if the undo data in the first extent is
not needed.

	 E.	 The transaction that filled up the undo segment spills over to another undo segment.

	 9.	 Which of the following commands returns control to the user immediately if a table is
already locked by another user?

	 A.	 LOCK TABLE HR.EMPLOYEES IN EXCLUSIVE MODE WAIT DEFERRED;

	 B.	 LOCK TABLE HR.EMPLOYEES IN SHARE MODE NOWAIT;

	 C.	 LOCK TABLE HR.EMPLOYEES IN SHARE MODE WAIT DISABLED;

	 D.	 LOCK TABLE HR.EMPLOYEES IN EXCLUSIVE MODE NOWAIT DEFERRED;

	10.	 Undo information falls into all the following categories except for which one?

	 A.	 Uncommitted undo information

	 B.	 Undo information required in case an instance crash requires a roll forward
operation when the instance is restarted

	 C.	 Committed undo information required to satisfy the undo retention interval

	 D.	 Expired undo information that is no longer needed to support a running transaction

	11.	 Undo segments are owned by which user?

	 A.	 SYSTEM

	 B.	 The user who initiated the transaction

	 C.	 SYS

	 D.	 The user who owns the object changed by the transaction

	12.	 The EM Database Express Undo Advisor uses what to recommend the new size of the
undo tablespace?

	 A.	 The value of the parameter UNDO_RETENTION

	 B.	 The number of Snapshot too old errors

	 C.	 The current size of the undo tablespace

	 D.	 The desired amount of time to retain undo data

	 E.	 The most recent undo generation rate

600	 Chapter 11  ■  Managing Data Concurrency and Undo

	13.	 Choose the option that is true regarding locks in Oracle Database 12c.

	 A.	 When session 1 has a table locked using the LOCK TABLE…EXCLUSIVE MODE statement,
all DML statements and queries wait until session 1 does a COMMIT or ROLLBACK.

	 B.	 When SELECT…FOR UPDATE is performed, the table is locked.

	 C.	 The DDL_LOCK_TIMEOUT parameter can be set to TRUE to not return the
ORA-00054 error.

	 D.	 The LOCK TABLE statement can include the WAIT clause to specify the number of
seconds to wait for acquiring the lock.

	14.	 The following table shows the timestamp and actions by two users. Choose the best
option that describes the outcome of the actions.

Time John Sara

10:14 Select * from hr.employees

10:15 Update hr.employees set salary
= 100 where employee_id = 206

10:16 Commit;
Select * from hr.employees

10:18 Commit;

10:20 Select * from hr.employees;
Commit;

	 A.	 John’s query will return the same results all three times it is executed as they are
run in the same session.

	 B.	 John’s queries run at 10:16 and 10:20 produce the same result, which is different
from the one at 10:14.

	 C.	 John’s query run at 10:16 waits until 10:18 to produce results, waiting for the com-
mit to happen.

	 D.	 John’s queries run at 10:14 and 10:16 produce the same result, which is different
from the one at 10:20.

	15. 	Which statement is true regarding the locking behavior of Oracle Database 12c?

	 A.	 Readers block writers.

	 B.	 Writers block readers.

	 C.	 Readers block writers.

	 D.	 Writers do not block readers.

	 Review Questions	 601

	16.	 Identify the operation that does not generate redo.

	 A.	 An INSERT statement reading from a global temporary table into a persistent table

	 B.	 An INSERT statement reading from a persistent table into a global temporary table

	 C.	 Roll back an UPDATE operation

	 D.	 Writing undo records during a DML operation

	17.	 User Maria just called to let you know that the long-running query she runs every
week just received a Snapshot Too Old error. What is the best action you can take?

	 A.	 Tell Maria to rerun the query.

	 B.	 Increase Undo Retention.

	 C.	 The materialized view used in the query is stale and needs to be refreshed.

	 D.	 Increase the undo tablespace size.

	18.	 Which two statements regarding undo and transactions are true?

	 A.	 Multiple active transactions can write concurrently to the same extent in an
undo segment.

	 B.	 Multiple active transactions can write concurrently to the same undo segment.

	 C.	 Each transaction acquires an extent in the undo segment and does not share
the extent.

	 D.	 Each transaction acquires a segment in the undo tablespace and does not share
the segments.

	19.	 Which statement ends a transaction?

	 A.	 UPDATE

	 B.	 ALTER TABLE

	 C.	 ALTER SESSION

	 D.	 ALTER SYSTEM

	20.	 Which statement regarding lock is true?

	 A.	 A developer must lock the row before performing an update to prevent others from
changing the same row.

	 B.	 When a row in a table is locked, the table is locked and no other transactions can
update the table.

	 C.	 When two sessions try to update the same row at the same time, both sessions fail.

	 D.	 When a session tries to update the row already updated by another session, it waits
until the other session does a commit or rollback.

Chapter

12
Understanding Oracle
Network Architecture

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Configuring the Oracle Network Environment

■■ Configure Oracle Net Services.

■■ Use tools for configuring and managing the Oracle network.

■■ Configure client-side network.

■■ Understand database resident connection pooling.

■■ Configure communication between databases.

Networks have evolved from simple terminal-based systems
to complex multitiered systems. Today’s networks can com-
prise many computers on multiple operating systems using

a wide variety of protocols and communicating across wide geographic areas. Although
networks have become increasingly complex, they also have become easier to use and
manage. For instance, we all take advantage of the Internet without knowing or caring
about the components that make this communication possible because the complexity of
this huge network is completely hidden from us.

The experienced Oracle database administrator has seen this maturation process in the
Oracle network architecture as well. From the first version of SQL*Net to the latest releases
of Oracle Net, Oracle has evolved its network strategy and infrastructure to meet the
demands of the rapidly changing landscape of network communications.

This chapter highlights the areas you need to consider when implementing an Oracle
network strategy and when managing an Oracle Database 12c network. We’ll also discuss
the most common network configurations. This chapter introduces the features of Oracle
Net—the connectivity-management software that is the backbone of the Oracle network
architecture. We’ll explain how to configure the main client- and server-side components of
Oracle Net, and we’ll discuss the tools you have at your disposal to perform these tasks.

As the number of users connecting to Oracle databases in the enterprise grows, the
system requirements of the servers increase—particularly the memory and process require-
ments. When a system starts to encounter these capacity issues, you need to know which
alternatives are available within the Oracle environment that can address the problem. A
configuration alternative that may help to overcome this capacity problem is Oracle Shared
Server or using Database Resident Connection Pooling (DRCP).

Introducing Network Configurations
When designing an Oracle infrastructure, you can select from three basic types of network
configurations:

■■ Single-tier

■■ Two-tier

■■ n-tier

Single-tier is the simplest type. It has been around for years and is characterized by the
use of terminals for serial connections to the Oracle server. The two-tier configuration is

	 Introducing Network Configurations	 605

also referred to as the client/server architecture, and more recently the n-tier architecture
has been introduced. Let’s take a look at each of these configuration alternatives.

Single-Tier Architecture
Single-tier architecture was the standard for many years before the birth of the personal
computer. Applications using single-tier architecture are sometimes referred to as green-
screen applications because most of the terminals that used them, such as the IBM 3270,
had green screens. Single-tier architecture is commonly associated with mainframe-type
applications.

This architecture is still in use today for many mission-critical applications, such as order
processing and fulfillment and inventory control, because it is the simplest architecture to
configure and administer. Because the terminals are directly connected to the host computer,
the complexities of network protocols and multiple operating systems don’t exist.

When single-tier architecture is used—for example, in mainframes—users interact
with the database using terminals, which are nongraphical, character-based devices. In this
type of architecture, client terminals are directly connected to larger server systems such
as mainframes. All the intelligence exists on the mainframe, and all the processing takes
place there. Simple serial connections also exist on the mainframe. Although no complex
network architecture is necessary, a single-tier architecture is somewhat limiting in terms
of scalability and flexibility (see Figure 12.1). The user PC makes a direct connection (using
tools like Putty) to the database server to use the database (using tools like SQL*Plus).

F igur e 12 .1     Single-tier architecture

MainframeDumb terminal

Direct connection

Two-Tier Architecture
Two-tier architecture gained popularity with the introduction of the personal computer
and is commonly referred to as client/server computing. In a two-tier environment, clients
connect to servers over a network using a network protocol, which is the agreed-upon
method for the client to communicate with the server. Transmission Control Protocol/
Internet Protocol (TCP/IP) is a popular network protocol and has become the de facto
standard of network computing. Whether you choose TCP/IP or some other network pro-
tocol, both the client and the server must be able to understand it. Figure 12.2 shows an
example of two-tier architecture.

606	 Chapter 12  ■  Understanding Oracle Network Architecture

F igur e 12 . 2     Two-tier architecture

ServerIntelligent client P/C

Network connection
utilizing a protocol

such as TCP/IP

This architecture has definite benefits over single-tier architecture. First, client/server com-
puting introduces the graphical user interface (GUI). This interface is easier to understand and
learn, and it offers more flexibility than the traditional character-based interfaces of the single-
tier architecture. Also, two-tier architecture allows the client computer to share the application
process load. To a certain degree, this reduces the processing requirements of the server.

The two-tier architecture does have some faults, even though at one time, this configu-
ration was thought to be the panacea of all networking architectures. Unfortunately, the
main problem—that being scalability—persists. Notice that the term client/server contains
a slash (/). The slash represents the invisible component of the two-tier architecture and the
one that is often overlooked—the network! The limitation of client/server computing is one
of scalability.

When prototyping projects, many developers fail to consider the network component
and soon find out that what worked well in a small environment does not scale effectively to
larger, more complex systems. The two-tier architecture model is subject to a great deal of
redundancy because application software is required on every PC. As a result, many com-
panies end up with bloated computers and large servers that still do not perform adequately.
What is needed is a more scalable model for network communications. That is what n-tier
architecture provides.

n-Tier Architecture
The next logical step after two-tier architecture is n-tier architecture. Instead of dividing
application processing work between a client and a server, you divide the work among three
or more machines. The n-tier architecture introduces middleware components, such as appli-
cation servers or web servers, situated between the client and the database server, which can
be used for a variety of tasks, including the following:

■■ Moving data between machines that work with different network protocols

■■ Serving as firewalls that can control client access to the servers

■■ Offloading processing of the business logic from the clients and servers to the middle tier

■■ Executing transactions and monitoring activity between clients and servers to balance
the load among multiple servers

■■ Acting as a gateway to bridge existing systems to new systems

The Internet is an example of the ultimate n-tier architecture, with the user’s browser
providing a consistent presentation interface. This common interface means less training
of staff and also increases the potential reuse of client-side application components.

	 An Overview of Oracle Net Features	 607

This is part of the reason n-tier architecture is rapidly becoming the architecture of choice
for enterprise networks. This model is scalable and divides the tasks of presentation, business
logic and routing, and database processing among many machines, which means that this
model accommodates large applications. Many factors are driving n-tier computing, such as
the Internet and Oracle cloud computing, which uses a large number of back-end processors
to scale database services and connectivity.

By reducing the processing load on the database servers, those servers can do more work
with the same number of resources. Also, the transaction servers can balance the flow of
network transactions intelligently, and application servers can reduce the processing and
memory requirements of the client (see Figure 12.3).

F igur e 12 . 3     Connection requests in n-tier architecture

Application
server

Database
server

Client

Internet

HTTP
request

App
server

Oracle
Net

RDBMS

Oracle
Net

TCP/IP

An Overview of Oracle Net Features
Oracle Net is the glue that bonds the Oracle network together. It is responsible for han-
dling client-to-server and server-to-server communications, and it can be configured on
the client, the middle-tier application, web servers, and the Oracle server. Oracle Net man-
ages the flow of information in the Oracle network infrastructure. First, it establishes the
initial connection to the Oracle server, and then it acts as the messenger, passing requests
from the client back to the server or passing them between two Oracle servers. Oracle Net
handles all negotiations between the client and server during the client connection.

In addition to functioning as an information manager, Oracle Net supports the use of
middleware products such as Oracle Application Server and Oracle Connection Manager.
These products allow n-tier architectures to be used in the enterprise, which increases the
flexibility and performance of application designs. To provide a further explanation of the
features of Oracle Net, the following sections discuss in detail the five categories of network-
ing solutions that Oracle Net addresses:

■■ Connectivity

■■ Manageability

■■ Scalability

■■ Security

■■ Accessibility

608	 Chapter 12  ■  Understanding Oracle Network Architecture

Connectivity
A client can interact with an Oracle database in many ways. A client can be running a
PC-based application or a dumb terminal application, or perhaps the client is connecting
to the database via the Internet. Let’s take a look at how Oracle supports connectivity to
the database through these and other interfaces:

Multiprotocol Support    Oracle Net supports a wide range of industry-standard protocols
such as TCP/IP and named pipes. This support is handled transparently and allows Oracle
Net to connect to a wide range of computers and a wide range of operating environments.

Multiple Operating Systems    Oracle Net can run on many operating systems, from
Windows to all variants of Unix to large mainframe-based operating systems. This range
allows users to bridge existing systems to other Unix or PC-based systems, which increases
the data access flexibility of the organization without making wholesale changes to the
existing systems.

Java and JDBC    Applications written in Java can take advantage of the Java Database
Connectivity (JDBC) drivers provided with Oracle to connect to an Oracle server. The
two basic types of JDBC drivers are JDBC Oracle Call Interface (OCI) and JDBC thin.

The JDBC OCI driver is a client-side installed driver that is used if the Java application is
resident on a client computer. It uses OCI to interact with the Oracle Net infrastructure.
Figure 12.4 shows how a client and server communicate when using a JDBC OCI connection.

F igur e 12 . 4     Oracle JDBC OCI connection

Application

Database
server

Client

JDBC OCI
driver

Oracle
Net

RDBMS

Oracle
Net

TCP/IP
network

In this example, the Java application installed on the client uses the JDBC OCI driver and
Oracle database server. When an application makes a database request, it uses the JDBC OCI
driver to translate the JDBC calls and send them to Oracle Net. Oracle Net is used on both
the client and the server to broker all communications between the two end points.

The JDBC thin driver is written entirely in Java and, as such, is platform independent. It
does not have to be installed on a client computer (which is why it’s called a thin driver). The
driver interfaces directly with a layer of the Oracle Net infrastructure called the two-task
common layer.

Manageability
Oracle Net provides a variety of features that allow you to manage the components of
an Oracle network. Let’s review the key manageability features of Oracle Net.

	 An Overview of Oracle Net Features	 609

Web Applications
Oracle Net supports a variety of connectivity solutions from a web browser interface.
Connections can be made through a middle-tier web or application server or directly from
a web browser to an Oracle service.

When a middle-tier solution is used, the web browser uses HTTP to contact a database
service and request information. Typically, an application or web server receives this request
and hands it off to Oracle Net, which manages the connection between the web server and
the database server. Once the database server receives the connection request, the request is
processed and passed back to the web server. The web server then sends the response to the
client’s web browser. This type of request fulfillment requires that the middle-tier application
server be loaded with the Oracle Net software, but the client does not require any additional
software.

Oracle also supports web connectivity directly from a web client. For example, a Java
applet running within a web browser can use a JDBC driver to connect directly to an Oracle
server without the need for an application or web server.

Location Transparency
Oracle Net provides the infrastructure to manage the database location. This is important
especially in large organizations that support many databases and clients. Each database
in the organization is represented as one or more services. Database services are defined by
one or more service names. The actual definition of the service names is managed within
Oracle Net. The definition holds information about the type and location of the service on
the network. This layer of abstraction provides location transparency to the client and cen-
tralizes the management of connection information within Oracle Net, which simplifies the
job of managing the network.

Directory Naming
Directory naming allows service names to be resolved through a centralized naming reposi-
tory. The central repository takes the form of a Lightweight Directory Access Protocol
(LDAP)–compliant server. LDAP is a protocol and language that defines a standard method
for storing, identifying, and retrieving services. It provides a simplified way to manage direc-
tories of information, whether this information is about users in an organization or Oracle
services connected to a network. The LDAP server allows for a standard form of managing
and resolving names in an Oracle environment. The quality of these services excels because
LDAP provides a single, industry-standard interface to a directory service such as Oracle
Internet Directory (OID). By using OID, you ensure the security and reliability of the direc-
tory information because information is stored in the Oracle database.

Scalability
Many enterprise systems are growing rapidly, supporting larger and larger databases and
user communities. Your network capabilities need to be able to support this growth. Oracle
Net provides features that allow you to expand your network reach and maximize your
system resources to meet these demands.

610	 Chapter 12  ■  Understanding Oracle Network Architecture

Oracle Shared Server
Oracle Shared Server is an optional configuration of the Oracle server that allows support
for a large number of concurrent connections without increasing physical resource require-
ments. This is accomplished by sharing resources among groups of users.

Oracle Shared Server is discussed in detail later in the chapter in the section
“An Overview of Oracle Shared Server.”

Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) is an optional configuration of the Oracle
server, enhancing middle-tier connection pools that share connections between threads in a
middle-tier process. This architecture significantly reduces the resource required to support
many client connections.

Database Resident Connection Pooling is discussed in detail later in the
chapter in the section “Using Database Resident Connection Pooling.”

Connection Manager
Oracle Connection Manager is a middleware solution that provides three additional scal-
ability features. It usually resides on a computer separate from the database server and client
computers. Oracle Connection Manager is a proxy server that forwards connection requests
to databases or other proxy servers. To a user running Oracle Net, the Connection Manager
looks like a database server. An application can connect to a Connection Manager machine
and have the Connection Manager redirect the Oracle Net packets to an Oracle database
server running on a different machine.

Multiplexing    Connection Manager can group many client connections and send them as a
single multiplexed network connection to the Oracle server. This reduces the total number
of network connections that the server has to manage.

Network Access    You can configure Connection Manager with rules that restrict access
by IP address. You can set up this rules-based configuration to accept or reject client con-
nection requests. Also, connections can be restricted by point of origin, destination server,
or Oracle server.

Cross-Protocol Connectivity    This feature allows clients and servers that use different
network protocols to communicate. Connection Manager acts as a translator, providing
two-way protocol conversion.

Oracle Connection Manager is controlled by a set of background processes that manage
the communications between clients and servers. Figure 12.5 provides an overview of the
Connection Manager architecture.

	 An Overview of Oracle Net Features	 611

F igur e 12 .5     The Connection Manager architecture

Client machines

Many simultaneous
connections

One Shared Server connection
carrying all of the client requests

CMGW
process

CMADMIN
process

Oracle
server

Oracle Connection
Manager

Oracle server
running Shared Server

Security
The threat of data tampering and database security is an issue of major concern in many
organizations as network systems continue to grow in number and complexity and as users
gain increasing access to systems. Sensitive business transactions are being conducted with
greater frequency and, in many cases, are not protected from unauthorized tampering or
message interception. Oracle Net is capable of providing organizations with a secure net-
work environment to conduct business transactions. Many tools and options are available
in Oracle Database 12c to protect sensitive information.

Advanced Security
Oracle Advanced Security not only provides the tools necessary to ensure secure transmis-
sions of sensitive information, but it also provides mechanisms to mask data in the Oracle
enterprise. Oracle Advanced Security in Oracle Database 12c comprises Oracle Database
Transparent Data Encryption (TDE) and Oracle Data Redaction.

TDE helps to encrypt data so that only authorized users are able to read it. TDE allows
applications to continue working seamlessly as before, and does not require any application
modification. It automatically encrypts data when it is written to disk, and then automati-
cally decrypts the data when applications access it.

Oracle Data Redaction masks column data. Data Redaction performs the redaction at
application runtime, when the user tries to view the data.

612	 Chapter 12  ■  Understanding Oracle Network Architecture

Firewall Support
Firewalls are an important security mechanism in corporate networks. Firewalls are
generally a combination of hardware and software that is used to control network traffic
and prevent intruders from compromising corporate network security. Firewalls fall into
two broad categories:

IP-Filtering Firewalls    IP-filtering firewalls monitor the network packet traffic on IP net-
works and filter out packets that either originated or did not originate from specific groups
of machines. The information contained in the IP packet header is interrogated to obtain
this information. Vendors of this type of firewall include Network Associates and Axent
Communications.

Proxy-Based Firewalls    Proxy-based firewalls prevent information from outside the fire-
wall from flowing directly into the corporate network. The firewall acts as a gatekeeper,
inspecting packets and sending only the appropriate information to the corporate network.
This prevents any direct communication between clients outside the firewall and applica-
tions inside the firewall. Check Point Software Technologies and Cisco are examples of
vendors that market proxy-based firewalls.

Oracle works closely with the vendors of both types of firewalls to ensure support
of database traffic through these types of mechanism. Oracle supplies the Oracle Net
Application Proxy Kit to the firewall vendors. This product can be incorporated into
the firewall architecture to allow database packets to pass through the firewall and still
maintain a high degree of security.

Know Thy Firewall

It is important to understand your network infrastructure, the network routes you are
using to obtain database connections and the type of firewall products you are using. In
more than one situation, we’ve seen firewalls cause connectivity issues between a client
and an Oracle server.

For instance, a small patch was applied to a firewall when a friend was working as a DBA
for one of his former employers. In this case, employees started experiencing intermit-
tent disconnects from the Oracle database. After many days of investigation and network
tracing, the team pinned down the exact problem. The database team then contacted the
firewall vendor, who sent a new patch that corrected the problem.

In another instance, the development staff started experiencing a similar connection prob-
lem. It turned out that the networking routes for the development staff had been modified to
connect through a new firewall, with connections timing out after 20 minutes. This timeout
was too short for this department. Increasing the timeout parameter solved the problem.

These are examples of the types of network changes you need to be aware of to avoid
unnecessary downtime and to avoid wasting staff time and resources.

	 Configuring Oracle Net on the Server	 613

Accessibility
In many organizations, workers need to be able to communicate across a variety of systems
and databases. They spend a lot of time bringing together data from different systems. The
accessibility features of Oracle Net have capabilities that allow you to communicate with
non-database data sources. This ability opens up new opportunities to provide customers
with accurate and timely information. In this section, we’ll discuss the options available in
Oracle Database 12c to access data that resides in a non-Oracle database and to execute
programs that are not SQL or PL/SQL.

Heterogeneous Services
The Heterogeneous Services component provides the ability to communicate with non-Oracle
databases and services. These services allow organizations to leverage and interact with their
existing data stores without having to necessarily move the data to an Oracle server.

The suite of Heterogeneous Services comprises the Oracle Transparent Gateway and
Generic Connectivity. These products allow Oracle to communicate with non-Oracle data
sources in a seamless configuration. Heterogeneous Services also integrates existing systems
with the Oracle environment, which allows you to leverage your investment in those systems.
These services also allow for two-way communication and replication from Oracle data
sources to non-Oracle data sources.

External Procedures
In some development efforts, interfacing with procedures that reside outside the database
may be necessary. These procedures are typically written in a third-generation language,
such as C. Oracle Net provides the ability to invoke such external procedures from Oracle
PL/SQL callouts. When a call is made, a process is started that acts as an interface between
Oracle and the external procedure. This callout process defaults to the name extproc. The
listener is then responsible for supplying information, such as a library or procedure name
and any parameters, to the called procedure. These programs are then loaded and executed
under the control of the extproc process.

Configuring Oracle Net on the Server
Now that you understand the basic features Oracle Net provides, you need to understand
how to configure the major components of Oracle Net. You must configure Oracle Net
on the server in order for client connections to be established. The following sections will
focus on how to configure the network elements of the Oracle server. It will also describe
the types of connection methods that Oracle Net supports. We will then discuss how to
manage Oracle Net on the server and troubleshoot connections from the server if clients
experience connection problems.

614	 Chapter 12  ■  Understanding Oracle Network Architecture

Understanding the Oracle Listener
The Oracle listener is the main server-side Oracle networking component that allows con-
nections to be established between client computers and an Oracle database. You can think
of the listener as a big ear that listens for connection requests to Oracle services.

The type of Oracle service being requested is part of the connection descriptor information
supplied by the process requesting a connection, and the service name resolves to an Oracle
database. The listener can listen for any number of databases configured on the server, and it
is able to listen for requests being transported on a variety of protocols. A client connection
can be initiated from the same machine that the listener resides on, or it may come from some
remote location.

The listener is controlled by a centralized file called listener.ora. Typically, only one
listener.ora file is configured per machine; there may be numerous listeners on a server,
and this file contains all the configuration information for every listener configured on the
server (multiple listener.ora files are possible per machine, but as best practice, are not
recommended). If multiple listeners are configured on a single server, they are usually set up
for failover purposes or to balance connection requests and minimize the burden of connec-
tions on a single listener.

The content and structure of the listener.ora file is discussed later in this
chapter in the section “Managing Oracle Listeners.”

Every listener is a named process that runs on the database server. The default name of
the Oracle listener is LISTENER, and it is typically created when you install Oracle. If you
configure multiple listeners, each must have a unique name. Now that you have a basic
understanding of the Oracle listener, let’s explore the main function of the listener, which
is responding to client connection requests.

How Do Listeners Respond to Connection Requests?
A listener can respond to a client request for a connection in several ways. The response
depends on several factors, such as how the server-side network components are configured
and what type of connection the client is requesting. The listener then responds to the con-
nection request in one of two ways.

The listener can spawn a new process and pass control of the client session to the process.
In a dedicated server environment, every client connection is serviced by its own server-side
process. Server-side processes are not shared among clients. Two types of dedicated connec-
tion methods are possible: direct and redirect. Each method results in a separate process that
handles client processing, but the mechanics of the actual connection-initiation process are
different. For remote clients to use dedicated connections, the listener process must be running
on the same physical server as the database or databases for which it is listening.

The listener can also pass control of a connection request to a dispatcher. This type
of connection takes place in an Oracle Shared Server environment. There are also two
types of connection methods when using Oracle Shared Server: direct and redirect. DRCP

	 Configuring Oracle Net on the Server	 615

complements middle-tier connection pools or applications that do not have application con-
nection pools to share resources, and scale the connections supported to multiple fold.

Let’s take a look at each of these connection-method types.

Dedicated Connections: Direct Handoff Method

Direct handoff connections are possible when the client and database exist on the same
server. For example, a direct handoff method is used when the client connection request
originates from the same machine on which the listener and database are running.

The following steps, which show the connection process for the bequeath connections,
are illustrated in Figure 12.6:

F igur e 12 .6     Dedicated connections: direct handoff method

Dedicated
server process

Database Server

Listener
on server

Client

sqlplus scott/tiger@prod

1

2
3

	 1.	 The client contacts the Oracle listener after resolving the service name.

	 2.	 The listener starts a dedicated process, and the client connection inherits the dedicated-
server-process network-connect end point from the listener.

	 3.	 The client now has an established connection to the dedicated server process.

Dedicated Connections: Redirect Method

Redirect connections occur in a dedicated server environment when the client exists on a
machine that is separate from the listener and database server. The listener must inform the
client of the address of the spawned process in order for the process to contact the newly
created dedicated server process.

The following steps, which show the connection process for redirect connections in a
dedicated server environment, are illustrated in Figure 12.7:

	 1.	 The client contacts the Oracle listener after resolving the service name.

	 2.	 The listener starts a dedicated process.

616	 Chapter 12  ■  Understanding Oracle Network Architecture

	 3.	 The listener sends an acknowledgment back to the client with the address of the
dedicated-server-connect end point on the database server to which the client
will connect.

	 4.	 The client establishes a connection to the dedicated-server-connect end point.

F igur e 12 .7     Dedicated connections: redirect method

Dedicated
server process

Database Server

Listener
on server

Client

sqlplus scott/tiger@prod

1
3

2
4

Oracle Shared Server: Direct Handoff Method

When you are using Oracle Shared Server, the client connection can also be established using a
direct handoff method. This would be the case, for example, when the client request originates
from the same machine on which the listener and database are running. Figure 12.8 outlines
the connection steps when using Oracle Shared Server and the direct handoff method:

	 1.	 The client contacts the Oracle listener after resolving the service name.

	 2.	 The Oracle listener passes the connection request to the dispatcher with least load.

	 3.	 The client now has an established connection to the dispatcher process.

	 4.	 LREG (process monitor) sends information to the listener about the number of connec-
tions being serviced by the dispatchers.

Oracle Shared Server: Redirect Method

The listener can also redirect the user to a server process or a dispatcher process when
using Oracle Shared Server. This type of connection can occur when the operating system
does not directly support direct handoff connections or the listener is not on the same
physical machine as the Oracle server.

	 Configuring Oracle Net on the Server	 617

F igur e 12 . 8     Oracle Shared Server: direct handoff method

Dispatcher
process

Database Server

Listener
on server

Client

sqlplus scott/tiger@prod

1

4
2

3

LREG

The following steps are illustrated in Figure 12.9:

	 1.	 The client contacts the Oracle server after resolving the service name.

	 2.	 The listener sends information to the client, redirecting the client to the dispatcher port.
The original network connection between the listener and the client is disconnected.

	 3.	 The client then sends a connect signal to the server or dispatcher process to establish a
network connection.

	 4.	 The dispatcher or server process sends an acknowledgment to the client.

	 5.	 LREG sends information to the listener about the number of connections being serviced
by the dispatchers. The listener uses this information to maintain consistent loads between
the dispatchers.

F igur e 12 . 9     Oracle Shared Server: redirect connection method

Dispatcher
process

Database Server

Listener
on server

Client

sqlplus scott/tiger@prod

1
2

5
4

3

LREG

618	 Chapter 12  ■  Understanding Oracle Network Architecture

Database Resident Connection Pooling

For DRCP, the connection request typically originates from the application server. The
following steps are illustrated in Figure 12.10.

	 1.	 The client (or middle-tier application) contacts the Oracle server after resolving the
service name.

	 2.	 The listener sends information to the client, redirecting the client to the DRCP connec-
tion broker.

	 3.	 When an application wants to communicate with the database, the pooled-server pro-
cess connection to the connection broker is handed off to the client.

	 4.	 The application then sends a connect signal to the server process to establish a network
connection. The server process sends an acknowledgment to the application (client). At
this point, the connection behaves like a dedicated session.

	 5.	 After the request is finished, the server process is released into the pool. The connection
from the client is restored to the broker.

F igur e 12 .10     Database Resident Connection Pooling

Connect id/pwd@db

Pooled Servers

Client

Listener

Database Server

Connection
Broker

4 5 3

21

Managing Oracle Listeners
You can configure the server-side listener files in a number of ways. As part of the initial
Oracle installation process, the installer prompts you to create a default listener (see
Figure 9.15 in Chapter 9, “Creating and Operating Oracle Database 12c”). This creates a
basic listener configuration file (listener.ora).

You can administer and manage the Oracle network file configurations by using Oracle
Net Manager, Oracle Enterprise Manager Cloud Control, the server control utility srvctl,
or the command-line facility lsnrctl. In the next few sections, you will learn to configure
and manage the listener and service name files using these tools.

	 Configuring Oracle Net on the Server	 619

Managing Listeners with Oracle Net Manager
Oracle Net Manager is a tool you can use to create and manage most client- and server-
side configuration files. Oracle Net Manager has evolved from the Oracle 7 tool, Network
Manager, to the latest Oracle Database 12c version. Throughout this evolution, Oracle has
continued to enhance the functionality and usability of the tool.

If you are using a Windows environment, you can start Oracle Net Manager by
choosing Start ➢ Programs ➢ Your Oracle 12c Programs choice ➢ Configuration and
Migration Tools ➢ Net Manager. In a Unix environment, you can start it by running
netmgr from your $ORACLE_HOME/bin directory.

Figure 12.11 shows an example of the Oracle Net Manager opening screen.

F igur e 12 .11     The Oracle Net Manager opening screen

A simplistic version of Net Manager is available as a tool named NetCA
(Network Configuration Assistant). This can be invoked on Windows by
using the Net Configuration Assistant program or on Unix by running
$ORACLE_HOME/bin/netca. You can add, modify, and delete simple lis-
tener configurations using this tool. Because this tool has only a subset
of features offered in Net Manager, NetCA is not discussed in detail here.
However, we do encourage you to invoke and explore the tool.

Configuring Listener Services Using Oracle Net Manager

Oracle Net Manager provides an easy-to-use graphical interface for configuring most of the
network files you will be using. By using Oracle Net Manager, you can ensure that the files
are created in a consistent format, which will reduce the potential for connection problems.

620	 Chapter 12  ■  Understanding Oracle Network Architecture

When you first start Oracle Net Manager, the opening screen displays a tree structure
with a top level called Oracle Net Configuration. If you click the plus (+) sign next to this
icon, you will see the Local folder. The choices under the Local folder relate to different
network configuration files. Here are the network file choices and what each configures:

Icon File Configured

Profile sqlnet.ora

Service Naming tnsnames.ora

Listeners listener.ora

Creating the Listener

Earlier we said that, by default, Oracle creates a listener called LISTENER when it is initially
installed. The default settings that Oracle uses for the listener.ora file are as follows:

Section of the File Setting

Listener name LISTENER

Port 1521

Protocols TCP/IP and IPC

Hostname Default Host Name

SID name Default Instance

You can use Oracle Net Manager to create a nondefault listener or change the definition
of existing listeners. Oracle Net Manager has a wizard interface for creating most of the
basic network elements, such as the listener.ora and tnsnames.ora files.

Follow these steps to create the listener:

	 1.	 Click the plus (+) sign next to the Local icon.

	 2.	 Click the Listeners folder.

	 3.	 Click the plus sign icon, or choose Edit ➪ Create to open the Choose Listener Name
dialog box.

	 4.	 Oracle Net Manager defaults to LISTENER or to LISTENER1 if the default listener is
already created. Click OK if this is correct, or enter a new name and then click OK to
open the Listening Locations screen, as shown in Figure 12.12.

	 Configuring Oracle Net on the Server	 621

F igur e 12 .12     The Listening Locations screen

	 5.	 To configure the listening locations, click the Listening Locations drop-down list, and
make your selection. Then click the Add Address button at the bottom of the screen to
open a new window.

The prompts on this screen depend on your protocol. By default, TCP/IP information
is displayed. If you are using TCP/IP, the Host and Port fields are filled in for you.
The host is the name of the machine in which the listener is running, and the port is
the listening location for TCP/IP connections. The default value for the port is 1521.

	 6.	 To save your information, choose File ➪ Save Network Configuration, and then look
in the directory where the file was saved.

You can also add listeners by following these steps. Listeners must have unique names
and listen on separate ports, so assign the listener a new name and a new port (1522, for
example). You also must assign service names to the listener. You’ll see how to add service
information in the next section.

Oracle Net Manager actually creates three files during this process: listener.ora,
tnsnames.ora, and sqlnet.ora. The tnsnames.ora file does not contain any information.

622	 Chapter 12  ■  Understanding Oracle Network Architecture

The sqlnet.ora file may contain a few entries at this point, but you can ignore them for the
time being. The listener.ora file contains information, as shown in the following code:

listener.ora Network Configuration File: /u01/app/oracle/product/12.1.0/
dbhome_1/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = btlnx63)(PORT = 1522))
)

ADR_BASE_LISTENER1 = /u01/app/oracle

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = btlnx63)(PORT = 1521))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
)

ADR_BASE_LISTENER = /u01/app/oracle

To figure out where the files are stored, just look at the top banner of the
Oracle Net Manager screen.

Adding Service-Name Information to the Listener

After you create the listener with the name, protocol, and listening location information,
you can define the network services to which the listener is responsible for connecting. This
is called static service registration, because Oracle is not automatically registering the service
with the listener. In releases of Oracle prior to Oracle8i, static service registration was the
only method to associate services with a listener.

A listener can listen to an unlimited number of network service names. Follow these
steps to add the service name information:

	 1.	 To select the listener to configure, click the Listeners icon, and highlight the name of
the listener that you want to configure.

	 2.	 From the drop-down list at the top right of the screen, select Database Services.

	 Configuring Oracle Net on the Server	 623

	 3.	 Click the Add Database button at the bottom of the screen. This opens the window
that allows you to add the database (see Figure 12.13).

F igur e 12 .13     The Database Services screen

	 4.	 Enter values in the Global Database Name, Oracle Home Directory, and SID fields.
The entries for SID and Global Database Name are the same if you are using a flat
naming convention.

	 5.	 Choose File ➪ Save to save your configuration.

Here is an example of the completed listener.ora file:

listener.ora Network Configuration File: /u01/app/oracle/product/12.1.0/
dbhome_1/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = btlnx63)(PORT = 1522))
)

SID_LIST_LISTENER1 =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = OCPSAMPLE)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0/dbhome_1)
 (SID_NAME = C12DB1)
)
)

ADR_BASE_LISTENER1 = /u01/app/oracle

624	 Chapter 12  ■  Understanding Oracle Network Architecture

Table 12.1 describes each of the listener.ora parameters for the Listening Location
section of the listener.ora file.

Tabl e 12 .1    Parameters for the Listening Location Section of listener.ora

Parameter Description

Listener_Name Indicates the starting point of a listener definition. This is
actually the name of the listener being defined. The default
name is LISTENER.

DESCRIPTION Describes each of the listening locations.

ADDRESS Contains address information about the locations where the
listener is listening.

PROTOCOL Designates the protocol for this listening location.

HOST Holds the name of the machine on which the listener resides.

PORT Contains the address on which the listener is listening.

SID_LIST_Listener Defines the list of Oracle services for which the listener (named
LISTENER) is configured.

SID_DESC Describes each Oracle SID.

GLOBAL_DBNAME Identifies the global database name. This entry should match the
SERVICE_NAMES entry in the init.ora file for the Oracle service.

ORACLE_HOME The Oracle Home location on the server.

SID_NAME Oracle SID name for the Oracle instance.

Optional listener.ora Parameters
You can set optional parameters that add functionality to the listener. To do so,
select a parameter from the General Parameters drop-down list at the top right of the
screen. Table 12.2 describes these parameters and where you can find them in Oracle
Net Manager.

	 Configuring Oracle Net on the Server	 625

Tabl e 12 . 2    Optional listener.ora Parameter Definitions

Net Manager Prompt listener.ora Parameter Description

Startup Wait Time STARTUP_WAIT_TIME Defines how long a listener
will wait before it responds to
a STATUS command in the lsn-
rctl command-line utility.

(Not available in Net
Manager)

INBOUND_CONNECT_TIMEOUT Defines how long a listener will
wait for a valid response from a
client once a session is initiated.
The default is 10 seconds.

Save Configuration On
Shutdown

SAVE_CONFIG_ON_STOP Specifies whether modifica-
tions made during an lsnrctl
session should be saved when
exiting.

Enable ADR ADR_BASE Specify if log and trace files are
written to Automatic Diagnostic
Repository location. If checked,
cannot specify the location for
trace and log location.

Log File LOG_FILE. Will not be in the
listener.ora file if the default
setting is used. By default, lis-
tener logging is enabled with
the log created in the default
location.

Specifies where a listener will
write log information. This is
ON by default and defaults to
$ORACLE_HOME/network/log/
listener.log.

Trace Level TRACE_LEVEL. Not present if
tracing is disabled. The default
is OFF.

Sets the level of detail if listener
connections are being traced.
Valid values include Off, User,
Support, and Admin.

Trace File TRACE_FILE Specifies the location of listener
trace information. Defaults to
$ORACLE_HOME/network/trace/
listener.trc.

Require A Password
For Listener Operations

PASSWORDS Specifies password required to
perform administrative tasks
in the lsnrctl command-line
utility.

626	 Chapter 12  ■  Understanding Oracle Network Architecture

Understanding Service Registration

Oracle Database 12c allows two types of service registration. Static service registration
occurs when entries are added to the listener.ora file manually by using one of the
Oracle tools. It is static because you are adding this information manually. Static service
registration is necessary if you will be connecting to pre-Oracle8i instances using Oracle
Enterprise Manager or if you will be connecting to external services.

Another way to manage listeners that does not require manual updating of service
information in the listener.ora file is called dynamic service registration. Dynamic
service registration allows an Oracle instance to automatically register itself with an
Oracle listener. The benefit of this feature is that it does not require you to perform any
updates of server-side network files when new Oracle instances are created. Dynamic
service registration will be covered in more detail later in this chapter in the section
“Dynamically Registering Services.”

As you will see, you cannot add some parameters directly from the Oracle Net Manager
and must do so manually. These optional parameters also have the listener name appended
to them so that you can identify the listener definition to which they belong. For example,
if the parameter STARTUP_WAIT_TIME is set for the default listener, the parameter created is
STARTUP_WAIT_TIME_LISTENER.

Oracle EM Database Express cannot be used to manage a listener or ser-
vices, but Oracle EM Cloud control can be used. You can add, stop, start,
and configure the listener.

Managing Listeners with lsnrctl
You can also use a command-line interface, lsnrctl, to administer the listener. This tool gives
you full configuration and administration capabilities. If you have been using Oracle, this tool
should be familiar. This command-line interface has been around since the early releases of the
Oracle product. Other Oracle network components, such as Connection Manager, also have
command-line tools that are used to administer their associated processes.

In Windows, the listener runs as a service. Services are programs that
run in the background in Windows. You can start the listener from the
Windows Services panel. Choose Start ➢ Settings ➢ Control Panel ➢
Services. Then select the name of the listener service from the list of
services. If the name of your listener is LISTENER, for example, look for
an entry such as OracleOraDB12Home1TNSListenerO12C01_LISTENER.
Select the listener name, and click Start.

	 Configuring Oracle Net on the Server	 627

To invoke the command-line utility, type lsnrctl at the command line. The following
code shows a resulting login screen:

$ lsnrctl

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 28-NOV-2013 15:35:53

Copyright (c) 1991, 2013, Oracle. All rights reserved.

Welcome to LSNRCTL, type "help" for information.

LSNRCTL>

The listener has commands to perform various functions. You can type help at the
LSNRCTL> prompt to display a list of these commands. The SET command is used to set
configuration parameters, and the SHOW command displays the current value.

LSNRCTL> help
The following operations are available
An asterisk (*) denotes a modifier or extended command:

start stop status services
version reload save_config trace
spawn quit exit set*
show*

LSNRCTL> help show
The following operations are available after show
An asterisk (*) denotes a modifier or extended command:

rawmode displaymode
rules trc_file
trc_directory trc_level
log_file log_directory
log_status current_listener
inbound_connect_timeout startup_waittime
snmp_visible save_config_on_stop
dynamic_registration enable_global_dynamic_endpoint
oracle_home pid
connection_rate_limit valid_node_checking_registration
registration_invited_nodes registration_excluded_nodes
remote_registration_address

628	 Chapter 12  ■  Understanding Oracle Network Architecture

LSNRCTL> help set
The following operations are available after set
An asterisk (*) denotes a modifier or extended command:

rawmode displaymode
trc_file trc_directory
trc_level log_file
log_directory log_status
current_listener inbound_connect_timeout
startup_waittime save_config_on_stop
dynamic_registration enable_global_dynamic_endpoint
connection_rate_limit valid_node_checking_registration
registration_invited_nodes registration_excluded_nodes

LSNRCTL>

You can perform a variety of functions from within the lsnrctl utility. Let’s take a look
at the most common functions you’ll perform on the listener using this utility.

Starting the Listener

To start the default listener named LISTENER, type start at the prompt. To start a different
listener, type start and then that listener name. For example, typing start listener1 starts
the LISTENER1 listener.

The following code shows the results of starting the default listener:

LSNRCTL> start listener1
Starting /u01/app/oracle/product/12.1.0/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 12.1.0.1.0 - Production
System parameter file is /u01/app/oracle/product/12.1.0/dbhome_1/network/admin/
listener.ora
Log messages written to /u01/app/oracle/product/12.1.0/dbhome_1/network/log/
listener1.log
Trace information written to /u01/app/oracle/product/12.1.0/dbhome_1/network/
trace/listener1.trc
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=1522)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1522)))
STATUS of the LISTENER

Alias listener1
Version TNSLSNR for Linux: Version 12.1.0.1.0 - Production
Start Date 28-NOV-2013 15:39:03

	 Configuring Oracle Net on the Server	 629

Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level support
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/product/12.1.0/dbhome_1/network/admin/
listener.ora
Listener Log File /u01/app/oracle/product/12.1.0/dbhome_1/network/log/
listener1.log
Listener Trace File /u01/app/oracle/product/12.1.0/dbhome_1/network/trace/
listener1.trc
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=1522)))
Services Summary...
Service "OCPSAMPLE" has 1 instance(s).
 Instance "C12DB1", status UNKNOWN, has 1 handler(s) for this service...
The command completed successfully
LSNRCTL>

This listing shows a summary of information, including the services that the listener is
listening for, the log locations, and whether tracing is enabled for the listener.

Reloading the Listener

If the listener is running and modifications are made to the listener.ora file manually, with
Oracle Net Manager or with Enterprise Manager, you must reload the listener to refresh the
listener with the most current information. The reload command rereads the listener.ora
file for the new definitions. As you can see, it is not necessary to stop and start the listener to
reload it. Although stopping and restarting the listener can also accomplish a reload, using
the reload command is better because the listener is not actually stopped, which makes this
process more efficient. The following code shows an example of the reload command:

LSNRCTL> reload listener1
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1522)))
The command completed successfully
LSNRCTL>

Reloading the listener has no effect on clients connected to the Oracle server.

In the previous code example, Oracle reread the listener.ora file and applied any
changes you made to the file against the currently running listener process. You can see the
address, protocol, and port designation of the default listener. Notice that this listener is
listening on port 1522. Security best practices advice you not run the listener on the default
known ports.

630	 Chapter 12  ■  Understanding Oracle Network Architecture

Showing the Status of the Listener

You can display the status of the listener by using the status command. The status com-
mand shows whether the listener is active, the locations of the logs and trace files, how long
the listener has been running, and the services for the listener. This is a quick way to verify
that the listener is up and running with no problems.

The following code shows the result of the lsnrctl status command. Note that no
listener name is specified; therefore, the status of default listener listener is shown:

LSNRCTL> status
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 12.1.0.1.0 - Production
Start Date 28-NOV-2013 12:36:14
Uptime 0 days 3 hr. 5 min. 2 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/product/12.1.0/dbhome_1/network/admin/
listener.ora
Listener Log File /u01/app/oracle/diag/tnslsnr/btlnx63/listener/alert/
log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=btlnx63)(PORT=5500))(Security=(my_
wallet_directory=/u01/app/oracle/admin/C12DB1/xdb_wallet))(Presentation=HTTP)
(Session=RAW))
Services Summary...
Service "C12DB1" has 1 instance(s).
 Instance "C12DB1", status READY, has 1 handler(s) for this service...
Service "C12DB1XDB" has 1 instance(s).
 Instance "C12DB1", status READY, has 1 handler(s) for this service...
Service "bt1pdb" has 1 instance(s).
 Instance "C12DB1", status READY, has 1 handler(s) for this service...
Service "c12pdb1" has 1 instance(s).
 Instance "C12DB1", status READY, has 1 handler(s) for this service...
The command completed successfully
LSNRCTL>

This code example depicts a listener that has recently been started. You also see what the
log file and parameter file locations are for the listener. This is a good facility to use to get a
quick listing of vital information for the listener.

	 Configuring Oracle Net on the Server	 631

Use lsnrctl status to see how long the listener was up. Look for Uptime.

Listing the Services for the Listener

The lsnrctl services command displays information about the services, such as whether
the services have any dedicated, prespawned server processes or dispatched processes asso-
ciated with them, and how many connections have been accepted and rejected per service.
Use this method to check whether a listener is listening for a particular service.

The following code shows an example of running the services command:

LSNRCTL> services listener1
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1522)))
Services Summary...
Service "OCPSAMPLE" has 1 instance(s).
 Instance "C12DB1", status UNKNOWN, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0
 LOCAL SERVER
The command completed successfully
LSNRCTL>

In this example, you can see that the listener is listening for connections to the service
OCPSAMPLE. The line "DEDICATED" established:0 refused:0 shows you how many con-
nections to this service have been accepted or rejected by the listener. One reason why a
listener may reject servicing a request is if the database is not available.

Other Commands in lsnrctl
You can run other commands in lsnrctl. Table 12.3 summarizes these other commands.
Type the command at the LSNRCTL> prompt to execute it.

Tabl e 12 . 3    A Summary of the lsnrctl Commands

Command Definition

change_password Allows a user to change the password needed to stop the listener.

exit Exits the lsnrctl utility.

quit Performs the same function as exit.

save_config Copies the listener.ora file called listener.bak when changes
are made to the listener.ora file from lsnrctl.

632	 Chapter 12  ■  Understanding Oracle Network Architecture

Command Definition

services listener Lists a summary of services and details information about the
number of connections established and the number of connec-
tions refused for each protocol service handler.

start listener Starts the named listener.

status listener Shows the status of the named listener.

stop listener Stops the named listener.

trace Turns on tracing for the listener.

version Displays the version of the Oracle Net software and protocol
adapters.

Using the set Commands in lsnrctl

The lsnrctl utility also has commands called set commands. To issue these commands,
type set commandname at the LSNRCTL> prompt. You use the set commands to modify the
listener.ora file. For example, you can use this command to set up logging and tracing.
You can set most of these parameters using the Oracle Net Manager.

To display the current setting of a parameter, use the show command, which displays
the current settings of the parameters set using the set command. Table 12.4 lists the most
commonly used lsnrctl set commands. Type set or show to display a listing of all the
commands (shown earlier in this section).

Tabl e 12 . 4    A Summary of the lsnrctl set Commands

Command Description

current_listener Sets the listener to modify or show the name of
the current listener.

displaymode Sets the display for the lsnrctl utility to RAW,
COMPACT, NORMAL, or VERBOSE.

log_status Shows whether logging is on or off for the listener.

log_file Shows the name of the listener log file.

log_directory Shows the log directory location.

tabl e 12 . 3    A Summary of the lsnrctl Commands  (continued)

	 Configuring Oracle Net on the Server	 633

Command Description

rawmode Shows more detail on STATUS and SERVICES
when set to ON. Values are ON or OFF.

startup_waittime Sets the length of time that a listener will wait to
respond to a status command in the lsnrctl
command-line utility.

spawn Starts external services that the listener is listen-
ing for and that are running on the server.

save_config_on_stop Saves changes to the listener.ora file when
exiting lsnrctl.

trc_level Sets the trace level to OFF, USER, ADMIN, or
SUPPORT.

trc_file Sets the name of the listener trace file.

trc_directory Sets the name of the listener trace directory.

inbound_connect_timeout Sets the time in seconds for the client to com-
plete the connection request.

valid_node_checking_registration When set to on, only local IP address connec-
tions are allowed.

Stopping the Listener

To stop the listener, you must issue the lsnrctl stop command. This command stops the
default listener. To stop a nondefault listener, include the name of the listener. For example,
to stop LISTENER1, type lsnrctl stop listener1. If you are in the lsnrctl> facility, you
will stop the current listener defined by the current_listener setting. To see what the cur-
rent listener is set to, use the show command. The default value is LISTENER.

Stopping the listener does not affect clients already connected to the database. It only
means that no new connections can use this listener until the listener is restarted.

The following code shows what the stop command looks like:

$ lsnrctl stop listener1

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 28-NOV-2013 15:52:10
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1522)))
The command completed successfully

634	 Chapter 12  ■  Understanding Oracle Network Architecture

The listener writes status, trace, startup, shutdown, and connection information to a
listener log file named listener.log. This file can be found under <ADR>/diag/tnslsnr/
listener/trace.

Dynamically Registering Services
Oracle databases can automatically register their presence with an existing listener. The
instance registers with the listener defined on the local machine. Dynamic service registra-
tion allows you to take advantage of other features, such as load balancing and automatic
failover. The LREG process is responsible for registering this information with the listener.

When dynamic service registration is used, you will not see the service listed in the
listener.ora file. To see the service listed, run the lsnrctl services command. Be
aware that if the listener is started after the Oracle instance, there may be a time lag
before the instance actually registers information with the listener.

For an instance to automatically register with a listener, the listener must be configured as
a default listener, or you must specify the init.ora parameter LOCAL_LISTENER. The LOCAL_
LISTENER parameter defines the location of the listener with which you want the Oracle server
to register. You may specify the connection description for the parameter or use a tns alias
resolved by the tnsnames.ora file.

When an instance starts, LREG polls the listener to determine whether it is
running. If the listener is running, then LREG passes its relevant parameters.
If it is not running, then LREG periodically attempts to contact it. You can
register the instance with the listener by executing ALTER SYSTEM REGISTER.

You must configure two other init.ora parameters to allow an instance to register
information with the listener. Two parameters are used to allow automatic registration:
INSTANCE_NAME and SERVICE_NAMES.

The INSTANCE_NAME parameter is set to the name of the Oracle instance you want to reg-
ister with the listener. The SERVICE_NAMES parameter is a combination of the instance name
and the domain name. The domain name is set to the value of the DB_DOMAIN initialization
parameter. For example, if your DB_DOMAIN is set to BJS.COM and your Oracle instance is
DBA, set the parameters as follows:

Instance_name = DBA
Service_names = DBA.BJS.COM

If you are not using domain names, set the INSTANCE_NAME and SERVICE_NAMES parameters
to the same values.

One optional parameter to configure for dynamic registration is the REMOTE_LISTENER.
A remote listener is a listener residing on one computer that redirects connections to a
database instance on the same or different computer. Remote listeners are typically used in
an Oracle Real Application Clusters (Oracle RAC) environment, or when local and SCAN
listeners are used in the environment. The syntax for configuring REMOTE_LISTENER is the
same as LOCAL_LISTENER.

	 Configuring Oracle Net on the Server	 635

Dynamic service registration is configured in the database initialization
file. It does not require any configuration in the listener.ora file. How-
ever, listener configuration must be set to listen on the ports named in the
database initialization file.

Oracle Net Logging and Tracing on the Server
If a network problem persists, you can use logging and tracing to help resolve it. Oracle
generates information into log files and trace files that can assist you in tracking down
network connection problems. You can use logging to find general information about the
success or failure of certain components of the Oracle network. You can use tracing to get
in-depth information about specific network connections.

By default, Oracle produces logs for clients and the Oracle listener.

■■ Logging records significant events, such as starting and stopping the listener, along
with certain kinds of network errors. Errors are generated in the log in the form of an
error stack. The listener log records information such as the version number, connection
attempts, and the protocols for which it is listening. You can enable logging at the client,
middle-tier, and server locations.

■■ Tracing, which you can also enable at the client, middle-tier, or server location, records
all events that occur on a network, even when an error does not occur. The trace file pro-
vides a great deal of information that logs do not, such as the number of network round-
trips made during a network connection or the number of packets sent and received
during a network connection. Tracing enables you to collect a thorough listing of the
actual sequence of the statements as a network connection is being processed. This gives
you a much more detailed picture of what is occurring with connections that the listener
is processing.

Use Oracle Net Manager to enable most logging and tracing parameters. Many of the
logging and tracing parameters are found in the sqlnet.ora file. Let’s take a look at how to
enable logging and tracing for the various components in an Oracle network.

Server Logging
By default, the listener is configured to enable the generation of a log file. The log file records
information about listener startup and shutdown, successful and unsuccessful connection
attempts, and certain types of network errors. Here’s what everything means by default:

■■ The listener log location is <DIAGNOSTIC_DEST>/diag/tnslsnr/<hostname>/
listener/trace on Unix.

■■ The default name of the file is listener.log.

636	 Chapter 12  ■  Understanding Oracle Network Architecture

■■ The XML version of the listener log is under <DIAGNOSTIC_DEST>/diag/
tnslsnr/<hostname>/listener/alert, and the filename is log.xml.

■■ If the DIAGNOSTIC_DEST parameter is not defined, Oracle defaults it to $ORACLE_BASE.

Use Tracing Sparingly

Use tracing only as a last resort if you are having connectivity problems between the cli-
ent and server. Complete all the server-side checks described earlier before you resort to
tracing. The tracing process generates a significant amount of overhead, and depending on
the trace level set, it can create some rather large files. This activity will impede system I/O
performance because of all the information that is written to the logs, and if left unchecked,
it could fill your disk or file system.

We were once involved with a large project that was using JDBC to connect to the Oracle
server. We were having difficulty with connections being periodically dropped between the
JDBC client and the Oracle server. We enabled tracing to try to find the problem. We did
eventually correct the problem (it was with how our DNS names server was configured),
but the tracing was left on inadvertently. When the system eventually went into production,
the trace files grew so large that they filled the disk where tracing was being collected. To
prevent this from happening, periodically ensure that the trace parameters are not turned
on, and if they are, turn them off.

Information in the listener.log file contains information about connection attempts,
the name of the program executing the request, and the name of the client attempting to
connect. The last field contains a zero if a request was successfully completed.

Server Tracing
As mentioned earlier, tracing gathers information about the flow of traffic across a network
connection. Data is transmitted back and forth in the form of packets. A packet contains
sender information, receiver information, and data. Even a single network request can gen-
erate a large number of packets.

In the trace file, each line starts with the name of the procedure executed in one of the
Oracle Net layers and is followed by a set of hexadecimal numbers. The hexadecimal numbers
are the actual data transmitted. If you are not encrypting the data, sometimes you will see the
actual data after the hexadecimal numbers.

	 Configuring Oracle Net for the Client	 637

If you are doing server-to-server communications and have a sqlnet.ora file
on the server, you can enter information in the Server Information section
located on the Tracing tab of the Profile screen in Oracle Net Manager trac-
ing. This provides tracing information for server-to-server communications.

Enabling Server Tracing
You can enable server tracing from the same Oracle Net Manager screens shown earlier.
Simply click the Tracing Enabled radio button. The default trace file location is $DIAGNOSTIC_
DEST/diag/tnslsnr/hostname/listener/trace in Unix. You can set the trace level to OFF,
USER, ADMIN, or SUPPORT. The USER level detects specific user errors. The ADMIN level contains
all the user-level information along with installation-specific errors. SUPPORT is the highest
level and can produce information that might be beneficial to Oracle Support personnel.
This level also can produce large trace files.

The following example shows a section of the listener.ora file with the logging and
tracing parameters enabled:

TRACE_LEVEL_LISTENER = ADMIN
TRACE_FILE_LISTENER = LISTENER.trc
LOGGING_LISTENER = ON
LOG_FILE_LISTENER = LISTENER.log

Configuring Oracle Net for the Client
Once the Oracle server is properly configured, you can focus on configuring the clients to
allow for connectivity to the Oracle server. It is important to understand how to configure
Oracle clients because without proper knowledge of how to do this, you are limited in your
connection choices to the server. As a DBA, you must understand the network needs of the
organization, the type of connectivity that is required, and client/server connections versus
n-tier connectivity, for example, in order to make the appropriate choices about client-side
configuration. This section should help clarify the client-side connectivity options available
to you and show you how to troubleshoot client connection problems.

Client-Side Names Resolution Options
When a client needs to connect to an Oracle server, the client must supply three pieces of
information: their user ID, password, and net service name. The net service name provides
the necessary information, in the form of a connect descriptor, to locate an Oracle service
in a network.

638	 Chapter 12  ■  Understanding Oracle Network Architecture

This connect descriptor describes the path to the Oracle server and its service name, which
is an alias for an Oracle database. The location where this information is kept depends on
the names resolution method you choose. The five methods of net service name resolution are
Oracle Internet Directory, external naming, host naming, Oracle Easy Connect, and local
naming. Normally, you choose just one of these methods, but you can use any combination.

Oracle Internet Directory is advantageous when you are dealing with complex networks
that have many Oracle servers. When you choose this method, you can configure and manage
net service names and connect descriptor information in a central location.

External naming uses a non-Oracle facility to manage and resolve Oracle service names.
For example, if an organization uses an external names resolution method such as Network
Information Service (NIS), the database service information could be stored in this external
location and used by clients to resolve service names.

You need to be only casually familiar with the Oracle Internet Direc-
tory and the external-naming resolution options. For a more detailed
description of how to configure and use external naming, please consult
“Oracle® Database Net Services Administrator’s Guide 12c Release 1
(12.1) Part Number E17610-09.” You can find the Oracle documentation at
http://tahiti.oracle.com.

In the following sections, we will take a closer look at the host naming, Oracle Easy
Connect, and local naming methods.

The Host Naming Method
In small networks with few Oracle servers to manage, you can take advantage of the host
naming method. Host naming is advantageous when you want to reduce the amount of con-
figuration work necessary. Host naming saves you from configuring the clients, although it
does have limitations. The following are the four prerequisites to using host naming:

■■ You must use TCP/IP as your network protocol.

■■ You must not use any advanced networking features, such as Oracle Connection
Manager.

■■ You must have an external naming service, such as DNS, or a HOSTS file available to
the client.

■■ The listener must be set up with the GLOBAL_DBNAME parameter equal to the name of
the machine.

Now let’s discuss how to configure this naming method.

Configuring the Host Naming Method
By default, Oracle attempts to use the host naming method from the client only after it attempts
connections using local naming. To override this default search path for resolving names, set

http://tahiti.oracle.com

	 Configuring Oracle Net for the Client	 639

the NAMES.DIRECTORY_PATH parameter in the sqlnet.ora file on the client so that it searches for
host naming only. The following is an example of the sqlnet.ora file:

SQLNET.ORA Network Configuration File:
Generated by Oracle configuration tools.

NAMES.DEFAULT_DOMAIN = bjs.com
NAMES.DIRECTORY_PATH= (HOSTNAME)

The host naming and the Oracle Easy Connect methods do not require any
client-side configuration files. We’ll discuss these connection methods
later in this section.

You can check TCP/IP connectivity from the client using the TCP/IP utility ping. The
ping utility attempts to contact the server by sending a small request packet. The server
responds in kind with an acknowledgment.

The server must be configured with a listener running TCP/IP, and the listener must be
listening on the default port 1521. If the instance has not been dynamically registered with
the listener, you must configure the listener with the GLOBAL_DBNAME parameter.

The Oracle Easy Connect Method
The Oracle Easy Connect method is a connection resolution technique introduced in
Oracle 10g. This method is similar to the host naming method described in the previous sec-
tion but adds parameters that allow for a port and service-name specification. By default, the
Oracle Easy Connect names resolution method is configured when Oracle Net is installed.

Like the host naming method, the Oracle Easy Connect method eliminates the need
for any connection information to be configured on the client. This makes for less setup
and administrative work. It enhances the host naming method by allowing for a port and
service specification. Remember from the previous section that the host naming method
requires a listener to be listening on the default port 1521. Allowing a port specification
addresses one of the limitations of the host naming method. Using the Oracle Easy Connect
method requires that certain conditions be met:

■■ Oracle Net Services (version 10g or higher) must be installed on the client.

■■ Oracle Net TCP/IP services must be enabled and supported on both the client and
the server.

■■ No advanced connection descriptor features are allowed such as connection pooling or
external procedure calls.

Table 12.5 describes the connect descriptor components when you are using the Oracle
Easy Connect method. Here is the syntax to use Easy Connect method.

CONNECT username/password@[//]host[:port][/service_name][:server][/instance_name]

640	 Chapter 12  ■  Understanding Oracle Network Architecture

Tabl e 12 .5    Easy Connect Components

Syntax Component Description

// Optional: Used when you are connecting via a URL.

Host Required: The host or IP address to connect to.

Port Optional: The port to connect to. The default is 1521.

Service Name The service name for the database. The default is the hostname
of the computer on which the database resides. If the database
name is different from the hostname, enter the service name or
specify the default service name in the listener.ora file using
the DEFAULT_SERVICE_listener_name parameter.

Server Optional: Specify the type of server to use: dedicated, shared,
or pooled.

Instance Name Optional: Specify an instance name to connect to, typically
applicable for RAC instances.

Here is an example of how to connect to a database using the Easy Connect method:

CONNECT scott/tiger@btlnx63:1522/DB12C1

The example shows how a user connects to the database service DB12C1 that is running
on the btlnx63 server and has an Oracle listener listening for TCP/IP connections on port
1522. As stated previously, this method is configured automatically when you install Oracle
Net. If you want the Oracle Easy Connect method to be the first method chosen by a client
when a connection request is made, you can modify the NAMES.DIRECTORY_PATH parameter
in the sqlnet.ora file. The following discussion shows how to do this.

You can use the Oracle Net Manager tool to configure the Easy Connect method as
the default names resolution method. Start the Oracle Net Manager tool, and then follow
these steps:

	 1.	 Choose Local ➪ Profile Pane in the Navigator pane.

	 2.	 Select Naming from the panel on the right.

	 3.	 Select the Methods tab.

	 4.	 Select EZCONNECT in the Selected Methods list. You can click the promote arrows
to move EZCONNECT to the top of the Selected Methods list.

	 5.	 Choose File ➪ Save Network Configuration to save your changes.

When you check your sqlnet.ora file, you should see the following entry:

NAMES.DIRECTORY_PATH=(EZCONNECT,TNSNAMES)

	 Configuring Oracle Net for the Client	 641

Web applications can connect to the Oracle database using JDBC Connec-
tion syntax. jdbc:oracle:thin:@<hostname>:<port>/<service_name>.
For example, to connect to database name sales on server sal01 as database
user Scott with password tiger, use the connect string connection =
DriverManager.getConnection ("jdbc:oracle:thin:@sal01:1521:sales",
"scott", "tiger");.

The Local Naming Method
The local naming method is probably the most widely used and well-known method for
resolving net service names. Most users know this method as the tnsnames.ora method
because it uses the tnsnames.ora file.

To use the local naming method, you must configure the tnsnames.ora file, which can be
in any location, as long as the client can get to it. The default location for the tnsnames.ora
file and the sqlnet.ora file is %ORACLE_HOME%\network\admin in Windows and $ORACLE_HOME/
network/admin in Unix systems. If you want to change the location of this file, set the envi-
ronmental variable TNS_ADMIN. In Unix-based systems, you can export TNS_ADMIN to the
user’s shell environment or in the user’s profile. In Windows, this setting is in the registry. The
Windows registry key that stores the TNS_ADMIN depends on your particular setup. Generally,
it is somewhere under Hkey_local_machine/software/oracle, but it may be at a lower level,
depending on your configuration, or set as an environment variable.

Most installations probably keep the files in these default locations on the client and
server. Some users create shared disks and place the tnsnames.ora and sqlnet.ora files in
this shared location to take a centralized approach to managing these files. If server-to-server
communication is necessary, these files need to be on the server. The default location on the
server is the same as the default location on the client.

Now that you understand the local naming method, we will discuss how to configure
this method using Oracle Net Manager.

Configuring the Local Naming Method Using Oracle Net Manager
To configure the local naming method, you may use Oracle Net Manager. To start this
configuration, open Net Manager, and select Service Naming on the Local tab. Click the
plus sign (+) on the left side of the screen, or choose Edit ➪ Create.

The Oracle Net Manager starts the Net Service Name Wizard, which guides you through
the process of creating the net service names definition. The following steps detail how to
configure the local naming method:

	 1.	 When you configure a client to use the local naming method, you must first choose a
net service name. This is the name that users enter when they are referring to the loca-
tion to which they want to connect. The name you supply here should not include the
domain portion if you are using the hierarchical naming mode. Figure 12.14 shows an
example of choosing the net service name. Click the Next button to continue.

642	 Chapter 12  ■  Understanding Oracle Network Architecture

	 2.	 The next step is to enter the type of protocol that the client should use when they connect
to the server for this net service name. By default, TCP/IP is chosen (see Figure 12.15).
The list of protocols depends on your platform. Click the Next button to continue.

	 3.	 The next step is to choose the hostname and port. This step depends on the protocol
you chose in the previous step. If you chose TCP/IP, you are prompted for the hostname
and the port number. The hostname is the name of the machine on which the listener
process is running. The port number is the listening location for the listener. The default
port is 1521 (see Figure 12.16).

F igur e 12 .14     Choosing a net service name

F igur e 12 .15     Choosing a network protocol

	 4.	 The next step is to define the service name. For Oracle Database 12c, the service
name does not have to be the same as the ORACLE_SID because a database can have

	 Configuring Oracle Net for the Client	 643

multiple service names. This is the service name that is supplied to the listener, so the
listener has to be listening for this service. You can also select the connection type
from one of these choices:

■■ Database Default

■■ Shared Server

■■ Dedicated Server

■■ Pooled Server

F igur e 12 .16     Choosing a hostname and a port

Figure 12.17 shows an example of the Oracle Net Manager service name screen.

F igur e 12 .17     Choosing the service name

644	 Chapter 12  ■  Understanding Oracle Network Architecture

	 5.	 The last step is to test the net service name and verify that all the connection information
entered is correct. Click the Test button to test the network connection.

Click the Finish button to create the tnsnames.ora entry. You can edit the entry, as
shown in Figure 12.18.

After you complete all this, save your changes by choosing File ➢ Save Network
Configuration. This creates and saves the tnsnames.ora file.

F igur e 12 .18     The Oracle Net Manager tnsnames.ora Wizard

Contents and Structure of the tnsnames.ora File
You created the tnsnames.ora file using the Oracle Net Manager, so open the tnsnames.ora
file to view its contents. The tnsnames.ora file is located in the same location as the TNS_ADMIN
variable setting, which defaults to the $ORACLE_HOME/network/admin directory. Here is an
example of the tnsnames.ora file:

OCP12C =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = btlnx63)(PORT = 1522))
)

	 Configuring Oracle Net for the Client	 645

 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = C12DB1)
 (INSTANCE_NAME = C12DB1)
)
)

Table 12.6 summarizes the parameters in the tnsnames.ora file.

Tabl e 12 .6    The tnsnames.ora Parameters

Parameter Description

DESCRIPTION Starts the connect descriptor section of the file.

ADDRESS_LIST Starts a list of all connect descriptor address information.

ADDRESS Specifies the connect descriptor for the net service name.

PROTOCOL Specifies the protocol used, such as TCP/IP.

HOST Specifies the name of the machine on which the listener is run-
ning. An IP address can also be specified in TCP/IP.

PORT Specifies the listening location of the listener specific to TCP/IP.

CONNECT_DATA Starts the services section for this net service name.

SERVICE_NAME Defines which service to connect to, which can be the same as
the ORACLE_SID or the global database name. Databases can now
be referred to by more than a single service name.

INSTANCE_NAME Specifies the instance name to connect to.

The Easy Connect string btlnx63:1522/DB12C1:SHARED/DB12C11 can be translated to
the following local naming connect:

(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=1522))
 (CONNECT_DATA=
 (SERVICE_NAME=DB12C1)
 (SERVER=SHARED)
 (INSTANCE_NAME=DB12C11)))

646	 Chapter 12  ■  Understanding Oracle Network Architecture

Although it is not recommended, you can edit the tnsnames.ora,
listener.ora, and sqlnet.ora files using your favorite editor and add
or modify entries. Using a tool like Net Manager will prevent errors in
these files.

Troubleshooting Client-Side Connection Problems
Connection problems can also occur from the Oracle client. Several areas affect the ability
of a client to connect successfully to the server. The client must be able to contact both the
computer on which the Oracle server is located and the listener listening for connections to
the Oracle server. The client must also be able to resolve the net service name. Let’s look at
the checks to perform on the client to verify connectivity to the Oracle server and to detect
and troubleshoot client-side connection problems. Use the following list to help you system-
atically check various aspects of the client connection process:

■■ Verify that the client can contact the server.

■■ Determine the network route that the client is taking to the server.

■■ Verify local naming configuration files.

■■ Check for multiple-client network configuration files.

■■ Check network file locations.

■■ Check the NAMES.DIRECTORY_PATH parameter.

■■ Check the NAMES.DEFAULT_DOMAIN parameter.

■■ Check the client protocol adapters installed.

■■ Check for any common client-side error codes.

Oracle provides the tnsping utility to verify that the local naming entry
defined in the tnsnames.ora file can talk to the service name defined in the
listener.ora file. You can find tnsping in the $ORACLE_HOME/bin directory.
It also provides the time it took to reach the listener in milliseconds.

Checking Network File Locations
One of the most common problems encountered is clients moving network files and not
setting the TNS_ADMIN environmental variable to the new file location. Oracle expects the
tnsnames.ora and sqlnet.ora files to be in the default location. If it cannot locate the files
and you have not set TNS_ADMIN, you will receive an ORA-12154 error message. You will also
receive this error if the supplied net service name is invalid or the NAMES.DEFAULT_DOMAIN
value is mismatched in tnsnames.ora and sqlnet.ora files. The following code shows an
example of this error message:

$ sqlplus system@ocp12c1

	 Configuring Oracle Net for the Client	 647

SQL*Plus: Release 12.1.0.1.0 Production on Sat Nov 30 01:06:07 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password:
ERROR:
ORA-12154: TNS:could not resolve the connect identifier specified

If you decide to move network files, be sure to set the TNS_ADMIN environ-
mental variable to the location of the files. Oracle first searches the default
location for the files and then searches the TNS_ADMIN location for the files.

Checking NAMES.DIRECTORY_PATH
Make sure the client has the proper names resolution setting. The NAMES.DIRECTORY_PATH
parameter in the sqlnet.ora file controls the order in which the client resolves net service
names. If the parameter is not set, the default is local naming, OID, and then host naming.

If this parameter is set incorrectly, the client may never check the appropriate names
resolution type. For example, if you are using local naming and the parameter is set to
HOSTNAMES, the tnsnames.ora file will never be used to resolve the net service name. You
will receive an ORA-12154 "Could Not Resolve the Connect Identifier Specified"
error message.

Checking NAMES.DEFAULT_DOMAIN
NAMES.DEFAULT_DOMAIN is another common error. It was more common in older releases of
Oracle because the parameter defaulted to the value WORLD. Check the client sqlnet.ora file
to see whether the parameter is set. If the parameter has a value and you are using unquali-
fied net service names, the parameter value is appended to the end of the net service name.
An unqualified service name is a service name that does not contain domain information.

For example, if you entered sqlplus matt/casey@PROD and the NAMES.DEFAULT_DOMAIN
is set to WORLD, Oracle appends .WORLD to the net service name; as a result, Oracle passes
the command as sqlplus matt/casey@PROD.WORLD. You will receive an ORA-12154 "Could
Not Resolve the Connect Identifier Specified" error message if the service name
should not include the .WORLD domain extension. You use this parameter only if you are
using a hierarchical naming convention.

Checking for Client-Side Error Codes
You should next check for client-side error codes. Here is a summary of some of the com-
mon client-side Oracle error messages you might encounter. They are discussed in detail in
the following sections.

ORA-12154 "TNS: Could not resolve connect identifier specified"
ORA-12198 "TNS: Could not find path to destination"

mailto:casey@PROD.WORLD

648	 Chapter 12  ■  Understanding Oracle Network Architecture

ORA-12203 "TNS: Unable to connect to destination"
ORA-12533 "TNS: Illegal address parameters"
ORA-12541 "TNS: No listener"

ORA-12154    This indicates that the client cannot find the service listed in the tnsnames.ora
file. Some of the causes of this were previously described, such as the file is not in the proper
directory or the TNS_ADMIN variable is not specified or specified incorrectly.

ORA-12198 and ORA-12203    These indicate that the client found an entry for the service in
the tnsnames.ora file but the service specified was not found. Check to make sure the service
specified in the tnsnames.ora file actually points to a valid database service.

ORA-12533    This indicates that you have configured the ADDRESS section of the tnsnames.ora
file incorrectly. Check to make sure the syntax is correct or re-create the definition using the
Oracle Net Manager tool.

ORA-12541    This indicates that the client contacted a server that does not have a listener
running on the specified port. Make sure the listener is started on the server and that the
listening port specifications on the client and the server match.

An Overview of Oracle Shared Server
Oracle Shared Server is an optional configuration of Oracle Server that allows the server
to support a larger number of concurrent connections without increasing physical resource
requirements. It does so by sharing resources among groups of users.

Shared Server is suitable for high-think applications. High-think applications are com-
posed of small transactions with natural pauses in the transaction patterns, which makes
them good candidates for Oracle Shared Server connections. Many web-based applications fit
this model. These types of applications are typically form-based and involve submissions of
small amounts of information to the database with small result sets returned to the client.

Oracle manages dedicated server and shared server connections differently. As a DBA,
you need to be able to identify these differences. This knowledge will help you better under-
stand the advantages and disadvantages of Oracle Shared Server and when it might be
advantageous to use Oracle Shared Server in your environment.

Dedicated Server vs. Shared Server
If you have ever gone to an upscale restaurant, you may have had your own personal
waitperson. That waitperson is there to greet you and escort you to your seat. They take
your order for food and drinks and even help prepare your order. No matter how many
other patrons enter the restaurant, your waitperson is responsible for serving only your
requests. Therefore, your service is consistent—if the person is a good waitperson.

A dedicated server environment works in much the same way. Every client connection
is associated with a dedicated server process, sometimes called a shadow process, on the
machine where the Oracle server exists. No matter how many other connections are made to

	 An Overview of Oracle Shared Server	 649

the server, the same dedicated server is always responsible for processing only your requests.
You use the services of that server process until you disconnect from the Oracle server.

Most restaurants operate more like shared servers. When you walk in, you are assigned a
waitperson, but they may be responsible for serving many other tables. This is good for the
restaurant because they can serve more customers without increasing the staff. It may be fine
for you as well, if the restaurant is not too busy and the waitperson is not responsible for too
many tables. Also, if most of the orders are small, the staff can keep up with the requests,
and the service will be as good as if you had your own waitperson.

In a diner, things work slightly differently; the waitperson takes your order and places it
on a turnstile. If the diner has multiple cooks, the order is picked up from the turnstile and
prepared by one of the available cooks. When the cook completes the preparation of the din-
ner, it is placed in a location where the waitperson can pick it up and bring it to your table.

This is how an Oracle Shared Server environment works. In an Oracle Shared Server
environment, dispatcher processes are responsible for servicing client requests. These
processes are capable of handling requests from many clients. This is different from the
dedicated server environment, where a single client process is handled by a single server
process. Like the waitperson in the diner, a dispatcher can be responsible for taking the
orders of many clients.

When using Oracle Shared Server, idle connections can be reused and
allow several users to connect to the database, thus improving scalability.

When you request something from the server, it is the dispatcher’s responsibility to take
your request and place it in a location called a request queue. The request queue functions
like the turnstile in the diner analogy. All dispatcher processes place their client requests in
one request queue, which is a structure contained in the system global area (SGA).

Shared Server processes, like cooks in a diner, are responsible for fulfilling the client
requests. The Oracle Shared Server process executes the request and places the result into an
area of the SGA called a response queue. Every dispatcher has its own response queue. The
dispatcher picks up the completed request from the response queue and returns the results to
the client. Figure 12.19 illustrates the following processing steps for a Shared Server request:

	 1.	 The client passes a request to the dispatcher serving it.

	 2.	 The dispatcher places the request on a request queue in the SGA.

	 3.	 One of the Shared Server processes executes the request.

	 4.	 The Shared Server places the completed request on the dispatcher’s response queue of
the SGA.

	 5.	 The dispatcher picks up the completed request from the response queue.

	 6.	 The completed request is passed back to the client.

Requests placed in the request queue are processed on a first-in, first-
out basis (FIFO). Currently, there is no way to prioritize requests within
the queue.

650	 Chapter 12  ■  Understanding Oracle Network Architecture

F igur e 12 .19     Request processing in Shared Server

SQL>SELECT ename
 FROM emp;
ENAME

SMITH
JONES

2 rows selected.

Dispatcher
Process

Client computer Server computer

Request queue Response queue

Shared Server
Process Oracle

SGA

3 4

1

2 5
6

Advantages and Disadvantages of Shared Server
Oracle Shared Server is used when server resources, such as memory and active processes,
become constrained. People tend to throw more hardware at problems such as these; this
will likely remedy the problem, but it may be an unnecessary expense.

If your system is experiencing these problems, Oracle Shared Server allows you to support
the same number or a greater number of connections without requiring additional hardware.
As a result, Oracle Shared Server tends to decrease the overall memory and process require-
ments on the server. Because clients are sharing processes, the total number of processes is
reduced. This translates into resource savings on the server.

Shared Server also allows for connection pooling. Connection pooling enables the
database server to disconnect an idle Oracle Shared Server connection to service an
incoming request. The idle connection is still active and is re-enabled once the client
makes the next request. The connection pooling feature of Oracle Shared Server allows
it to handle a larger number of requests without having to start additional dispatcher
processes. You configure connection pooling by adding attributes to one of the Oracle
Shared Server parameters.

	 An Overview of Oracle Shared Server	 651

See the section “Configuring Connection Pooling with the Dispatch-
ers Parameter” later in this chapter to see how connection pooling is
configured.

Shared Server is also required to take advantage of certain network options, such as
connection multiplexing and client access control, which are features of Oracle Connection
Manager. Oracle Connection Manager is a facility provided by Oracle that controls access
to database services and multiplex connections in an Oracle environment. The access con-
trol component of Oracle Connection Manager allows you to configure rules that allow or
disallow fulfillment of a connection request. The multiplexing component acts as a concen-
trator feature. It funnels multiple client sessions through a shared network connection from
the Oracle Connection Manager server to the database server.

Oracle Shared Server also has some disadvantages. Applications that generate a significant
amount of network traffic or result in large result sets are not good candidates for Shared
Server connections. Think of the earlier diner analogy. Your service is fine until two parties
of twelve people show up. All of a sudden, the waitperson is overwhelmed with work from
these two other tables, and your service begins to suffer. The same thing would happen in a
Shared Server environment. If requests for large quantities of information start going to the
dispatchers, the dispatchers can become overwhelmed, and you can see performance suffer
for the other clients connected to the dispatcher. This, in turn, increases your response times.
Dedicated processes better serve these types of applications.

Some functions are not allowed when you are using an Oracle Shared Server connection.
You cannot start up, shut down, or perform certain kinds of recovery of an Oracle server
when you are connected via a shared server.

Also, you should not perform certain administrative tasks using Oracle Shared Server
connections, including bulk loads of data, index and table rebuilds, and table analysis. These
types of tasks deal with manipulating large datasets and should use dedicated connections.

Oracle Shared Server is a scalability enhancement option, not a performance enhance-
ment option. If you are looking for a performance increase, Shared Server is not what you
should be configuring. Use Shared Server only if you are experiencing the system constraint
problems discussed earlier in this chapter. You will always have equal or better performance
in a dedicated server environment.

Oracle Shared Server Infrastructure
As described in the previous section, you manage client connections quite differently when
using Oracle Shared Server as opposed to using a dedicated server. To accommodate the
change, several modifications take place inside the internal memory structures of the Oracle
server. The way in which the database and listener interact is also affected when using
Oracle Shared Server. It is important to understand these changes when configuring and
managing Oracle Shared Server.

652	 Chapter 12  ■  Understanding Oracle Network Architecture

Certain changes are necessary to the memory structures within Oracle to provide the
Shared Server capability. Let’s see what changes within the Oracle infrastructure are
needed to provide this support.

PGA and SGA Changes When Using Oracle Shared Server
When Oracle Shared Server is configured, Oracle adds two new types of structures to the
SGA: request queues and response queues. These structures do not exist in a dedicated
server environment. There is one request queue for all dispatchers, but each dispatcher
has its own response queue. Therefore, if you have four dispatchers, you will have one
request queue and four response queues. The request queue is located in the SGA where
the dispatcher places client requests. A Shared Server process executes each request and
places the completed request in the dispatcher’s response queue.

In a dedicated server environment, each server has a memory segment called a program
global area (PGA). The PGA is an area of memory where information about each client ses-
sion is maintained. This information includes bind variables, cursor information, and the
client’s sort area. In an Oracle Shared Server environment, this information is moved from
the PGA to an area of the SGA called the user global area (UGA). You can configure a spe-
cial area of the SGA called the large pool to accommodate the bulk of the UGA.

Each connection being serviced by a dispatcher is bound to a shared memory segment and
forms a virtual circuit. The dispatcher uses the shared memory segment to manage commu-
nications between the client and the Oracle database. The Oracle Shared Server processes use
the virtual circuits to send and receive information to the appropriate dispatcher process.

To limit the amount of UGA memory a session can allocate, set the
PRIVATE_SGA resource limit in the user’s profile.

The Role of the Listener in an Oracle Shared Server Environment
The listener plays an important role in the Oracle Shared Server environment. The listener
supplies the client with the address of the dispatcher to connect to when a user requests con-
nections to an Oracle Shared Server. The listener maintains a list of dispatchers available
from the Oracle Shared Server. The Oracle background process LREG notifies the listener
as to which dispatcher is responsible for servicing each virtual circuit. The listener is then
aware of the number of connections that the dispatcher is managing. This information
allows the listener to take advantage of dispatcher load balancing.

Load balancing allows the listener to make intelligent decisions about which dispatcher
to redirect client connections to so that no one dispatcher becomes overburdened. When
the listener receives a connection request, it looks at the current connection load for each
dispatcher and redirects the client connection request to the least-loaded dispatcher. The lis-
tener determines the least-loaded dispatcher for all nodes if Real Application Clusters (RAC)
are being used, followed by the least-loaded instance for the node, and finally by the least-
loaded dispatcher for the instance. By doing so, the listener ensures that connections are
evenly distributed across dispatchers.

	 An Overview of Oracle Shared Server	 653

The listener can either redirect the client connection to an available dispatcher or
directly hand off the request to the dispatcher. The latter is performed whenever possible
and is done typically when the listener and database service exist on the same node. When
the listener and database service exist on different nodes, the redirection method is used.

When a client connection terminates, the listener is updated to reflect the change in the
number of connections that the dispatcher is handling.

Configuring the Oracle Shared Server
You can configure Oracle Shared Server in a number of ways. You can configure it at the time
the database is created, you can use Enterprise Manager to configure it after the database has
been created, or you can manually configure it by editing initialization parameters. We’ll dis-
cuss the parameters necessary to configure Oracle Shared Server. We’ll also give examples of
how to configure Shared Server at database creation or after the database is created using EM.

Defining the Shared Server Parameters
You configure Oracle Shared Server by adding parameters to the Oracle initialization file.
These parameters identify the number and type of dispatchers, the number of shared servers,
and the name of the database you want to associate with Shared Server.

One advantage of Oracle Database 12c is that all the parameters necessary to manage
Oracle Shared Server can be changed dynamically. This fulfills one of your primary goals
of ensuring the highest degree of database availability possible. Let’s take a look at the
parameters used to manage Oracle Shared Server.

Using the DISPATCHERS Parameter

The DISPATCHERS parameter defines the number of dispatchers that should start when the
instance is started. This parameter specifies the number of dispatchers and the type of proto-
col to which the dispatchers can respond. If you configured your database using the Database
Configuration Assistant, this parameter may already be configured.

You can add dispatchers dynamically using the ALTER SYSTEM command.
The DISPATCHERS parameter has a number of optional attributes. Table 12.7 describes sev-

eral of them. You need to specify only ADDRESS, DESCRIPTION, or PROTOCOL for a DISPATCHERS
definition. All the attributes for this parameter can be abbreviated.

Tabl e 12 .7    Summary of DISPATCHER Attributes

Attribute Abbreviations Description

ADDRESS ADD or ADDR Specifies the network protocol address of the end point
on which the dispatchers listen.

CONNECTIONS CON or CONN The maximum number of network connections per dis-
patcher. The default value varies by operating system.

654	 Chapter 12  ■  Understanding Oracle Network Architecture

Attribute Abbreviations Description

DESCRIPTION DES or DESC The network description of the end point where the
dispatcher is listening, including the protocol being
listened for.

DISPATCHERS DIS or DISP The number of dispatchers to start when the instance is
started. The default is 1.

LISTENER LIS or LIST The address of the listener to which LREG sends connec-
tion information. This attribute needs to be set only when
the listener is nonlocal, it uses a port other than 1521, the
default port and the LOCAL_LISTENER parameter have not
been specified, or the listener is resident on a different
network node.

PROTOCOL PRO or PROT The network protocol for the dispatcher to listen for. This
is the only required attribute.

SESSIONS SES or SESS The maximum number of network sessions allowable for
this dispatcher. This will vary by operating system but
predominantly defaults to 16KB.

SERVICE SER or SERV The Oracle net service name that the dispatcher registers
with the listener. If it is not supplied, the dispatcher regis-
ters with the services listed in the SERVICE_NAMES initial-
ization parameter.

POOL POO Provides connection pooling capabilities to provide the
ability to handle a larger number of connections.

The two main attributes are DISPATCHERS and PROTOCOL. For example, if you want to con-
figure three TCP/IP dispatchers and two IPC dispatchers, you set the parameter as follows:

DISPATCHERS = "(PRO=TCP)(DIS=3)(PRO=IPC)(DIS=2)"

You must consider several factors (discussed in the following section) when determining
the appropriate setting for the DISPATCHERS parameter.

Determining the Number of Dispatchers to Start

The number of dispatchers you start depends on your particular configuration. Your operat-
ing system may place a limit on the number of connections that one dispatcher can handle.
Consult your operating-system documentation to obtain this information.

When determining the number of dispatchers to start, consider the type of work that
the database sessions will be performing and the number of concurrent connections that
your database will be supporting. The more data-intensive the operations and the larger

Tabl e 12 .7    Summary of DISPATCHER Attributes  (continued)

	 An Overview of Oracle Shared Server	 655

the number of concurrent connections, the fewer sessions each dispatcher should handle.
Generally speaking, a starting point is to allow 50 concurrent sessions for each dispatcher.

You can use the following formula to determine the number of dispatchers to configure
initially:

Number of Dispatchers = CEIL (maximum number of concurrent sessions /
 connections per dispatcher)

For example, if you have 500 concurrent TCP/IP connections and you want each dispatcher
to manage 50 concurrent connections, you need 10 dispatchers. You set your DISPATCHERS
parameter as follows:

DISPATCHERS = "(PRO=TCP)(DIS=10)"

You can determine the number of concurrent connections by querying the V$SESSION
view. This view shows you the number of clients currently connected to the Oracle server.
Here is an example of the query:

SQL> select sid,serial#,username,server,program from v$session
 2 where username is not null;
 SID SERIAL# USERNAME SERVER PROGRAM
--------- --------- ---------- --------- ---------------
 7 13 SCOTT DEDICATED SQLPLUS.EXE
 8 12 SCOTT DEDICATED SQLPLUS.EXE
 9 4 SYSTEM DEDICATED SQLPLUS.EXE

In this example, three users are connected to the server. You can ignore any sessions that
do not have a username because these would be the Oracle background processes such as
PMON and SMON. If you take a sampling of this view over a typical work period, you get
an idea of the average number of concurrent connections for your system. You can then use
this number as a guide when you establish the starting number of dispatchers.

Managing the Number of Dispatchers

You can start additional dispatchers or remove dispatchers dynamically using the ALTER
SYSTEM command. You can start any number of dispatchers up to the MAX_DISPATCHERS
setting, which is discussed next. Here is an example of adding three TCP/IP dispatchers
to a system configured with two TCP/IP dispatchers:

ALTER SYSTEM SET DISPATCHERS="(PRO=TCP)(DIS=5)";

Notice that you set the number to the total number of dispatchers you want, not to the
number of dispatchers you want to add.

You use additional attributes to the DISPATCHERS parameter to configure connection
pooling.

Configuring Connection Pooling with the DISPATCHERS Parameter

Connection pooling gives Oracle Shared Server the ability to handle a larger volume of con-
nections by automatically disconnecting idle connections and using the idle connections to

656	 Chapter 12  ■  Understanding Oracle Network Architecture

service incoming client requests. If the idle connections become active again, the connection
to the dispatchers is automatically reestablished. This provides added scalability to Oracle
Shared Server. If you manage applications that have a large number of possible client connec-
tions but also have a large number of idle connections, you might want to consider configur-
ing this Oracle Shared Server option. Web applications are good candidates for connection
pooling because they are typically composed of a large client base with small numbers of
concurrent connections.

You enable connection pooling by adding attributes to the DISPATCHERS parameter. The
POOL attribute specifies that a dispatcher is allowed to perform connection pooling. Set this
attribute to the value ON to enable connection pooling for a dispatcher. You also need to
specify the TICK attribute, which sets the number of 10-minute increments of inactivity for
a connection to be considered idle.

Here is an example that turns on connection pooling:

DISPATCHERS="(PROTOCOL=tcp)(DISPATCHERS=1)(POOL=on)(TICK=1)
 (CONNECTIONS=500)(SESSIONS=1000)"

In this example, you want to turn on connection pooling. An idle connection is considered
any connection with 10 minutes of inactivity. You want the TCP/IP dispatcher to handle a
maximum of 500 concurrent connections and a maximum of 1,000 sessions per dispatcher.

Using the MAX_DISPATCHERS Parameter

You should set the MAX_DISPATCHERS parameter to the maximum number of dispatchers you
anticipate needing for Oracle Shared Server. In Oracle Database 12c, this parameter can be
set dynamically using the ALTER SYSTEM command. The maximum number of processes that
a dispatcher can run concurrently is operating-system dependent. Use the following formula
to set this parameter:

MAX_DISPATCHERS = (maximum number of concurrent sessions/connections
 per dispatcher)

Here is an example of the parameter and adjusting the parameter using the ALTER
SYSTEM command:

ALTER SYSTEM SET MAX_DISPATCHERS=10;

In the ALTER SYSTEM example, the MAX_DISPATCHERS parameter is being set to 10.
This will be the maximum number of dispatchers that Oracle Shared Server can start
simultaneously.

Using the SHARED_SERVERS Parameter

The SHARED_SERVERS parameter specifies the minimum number of shared servers to start
and retain when the Oracle instance is started. A setting of 0 or no setting means that
shared servers will not be used. If dispatchers have been configured, the default value of
SHARED_SERVERS is 1. This parameter can be changed dynamically, so even if shared serv-
ers are not configured when the instance starts, they can be configured without bringing
the Oracle instance down and restarting it.

	 An Overview of Oracle Shared Server	 657

The number of servers necessary depends on the type of activities your users are perform-
ing. Oracle monitors the response queue loads, starts additional shared servers as needed, and
removes these shared servers when the servers are no longer needed. Generally, for the types
of high-think applications that will be using shared server connections, 25 concurrent con-
nections per shared server should be adequate. If the users are going to require larger result
sets or are doing more intensive processing, you’ll want to reduce this ratio.

Here is an example of setting the SHARED_SERVERS parameter:

SHARED_SERVERS = 3

You can start additional Oracle shared servers or reduce the number of Oracle shared
servers dynamically using the ALTER SYSTEM command. You can start any number of Oracle
shared servers up to the MAX_SERVERS setting. Here is an example of adding three additional
Oracle shared servers to a system initially configured with two shared servers:

ALTER SYSTEM SET SHARED_SERVERS = 5;

Notice that you set the number to the total number of Oracle shared servers you want,
not to the number of Oracle shared servers you want to add.

Using the SHARED_SERVER_SESSIONS Parameter

The SHARED_SERVER_SESSIONS parameter specifies the total number of Oracle Shared Server
sessions that are allowed for the Oracle instance. If the number of Oracle Shared Server client
connections reaches this limit, any clients that attempt to connect via an Oracle Shared Server
connection will receive the following error message:

ERROR:
ORA-00018 maximum number of sessions exceeded

Once the number of Oracle Shared Server connections falls below this number, addi-
tional Shared Server connections can be established. Using this parameter limits the
total number of Shared Server sessions. Dedicated server connections are still allowed if
this limit is reached. This parameter can be set in the Oracle initialization file and can
be modified dynamically using the ALTER SYSTEM command. Here is an example of how
you specify the initialization parameter:

SHARED_SERVER_SESSIONS = 2

Here is an example of how to dynamically modify the parameter using the ALTER
SYSTEM command:

ALTER SYSTEM SET SHARED_SERVER_SESSIONS = 5;

Using the MAX_SHARED_SERVERS Parameter

The MAX_SHARED_SERVERS parameter sets the maximum number of Oracle shared servers
that can be running concurrently. This number can be modified dynamically using the
ALTER SYSTEM command. Generally, you should set this parameter to accommodate your

658	 Chapter 12  ■  Understanding Oracle Network Architecture

heaviest work times. If no value is specified for MAX_SHARED_SERVERS, the number of Oracle
shared servers that can be started is unlimited, which is also the default setting.

The V$SHARED_SERVER_MONITOR view can assist in determining the maximum number of
Oracle shared servers that have been started since the Oracle instance was started.

Here is an example of the parameter and the ALTER SYSTEM command that will change
the value MAX_SHARED_SERVER to 20:

ALTER SYSTEM SET MAX_SHARED_SERVERS = 20;

Using the CIRCUITS Parameter

The CIRCUITS parameter manages the total number of virtual circuits allowed for all incom-
ing and outgoing network sessions. There is no default value for this parameter, and it does
influence the total size of the SGA at system startup. Generally, you do not manually config-
ure this parameter unless there is a need to specifically limit the number of virtual circuits.

Here is an example of the parameter:

CIRCUITS = 200

You can also use the ALTER SYSTEM command to change the parameter as follows:

ALTER SYSTEM SET CIRCUITS = 300;

Now that you understand the parameters that are needed to use the Oracle Shared
Server, you need to know how to configure these parameters.

Managing a Shared Server
If the Oracle Shared Server parameters were configured dynamically using the ALTER SYSTEM
command or at database creation, it isn’t necessary to stop and start the server. After you con-
figure the Oracle Shared Server parameters, you need to understand how to view information
about Oracle Shared Server. Oracle provides a set of dynamic performance views that you can
use to gather information about the Oracle Shared Server configuration and the performance
of Oracle Shared Server. You can also gather information about Oracle Shared Server connec-
tions by using the lsnrctl utility.

In the following sections, we will explain how to display information about Oracle Shared
Server connections using the listener utility and discuss the various dynamic performance
views used to manage Shared Server.

Displaying Information about Shared Server Connections
Using the Listener Utility
You can use the lsnrctl command-line listener utility to display information about the
dispatcher processes. Remember from the previous section that the Oracle background
process LREG registers dispatcher information with the listener. The listener keeps track
of the current connection load for all the dispatchers.

	 An Overview of Oracle Shared Server	 659

Use the lsnrctl services query to view information about dispatchers. The following
example shows a listener listening for two TCP/IP dispatchers:

$ lsnrctl services

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 30-NOV-2013 01:48:43
Copyright (c) 1991, 2013, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=btlnx63)(PORT=1521)))
Services Summary...
Service "C12DB1" has 1 instance(s).
 Instance "C12DB1", status READY, has 2 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:3 refused:0 state:ready
 LOCAL SERVER
 "D000" established:3 refused:0 current:0 max:500 state:ready
 DISPATCHER <machine: btlnx63, pid: 32320>
 (ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=13370))
Service "C12DB1XDB" has 1 instance(s).
 Instance "C12DB1", status READY, has 0 handler(s) for this service...
Service "bt1pdb" has 1 instance(s).
 Instance "C12DB1", status READY, has 2 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:3 refused:0 state:ready
 LOCAL SERVER
 "D000" established:3 refused:0 current:0 max:500 state:ready
 DISPATCHER <machine: btlnx63, pid: 32320>
 (ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=13370))
Service "c12pdb1" has 1 instance(s).
 Instance "C12DB1", status READY, has 2 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:3 refused:0 state:ready
 LOCAL SERVER
 "D000" established:3 refused:0 current:0 max:500 state:ready
 DISPATCHER <machine: btlnx63, pid: 32320>
 (ADDRESS=(PROTOCOL=tcp)(HOST=btlnx63)(PORT=13370))

Notice that the listing displays how many connections each dispatcher is managing, the
listening location of the dispatcher, and the process ID of the dispatcher. The display also
shows how many total client connections were established and how many were refused by
each dispatcher since the time it was started. This summary information can be helpful

660	 Chapter 12  ■  Understanding Oracle Network Architecture

when looking at how well the connections are balanced across all the dispatchers. It also
can be helpful to see how many connections were refused. A connection can be refused if a
user supplies an invalid user ID or password or reaches the MAX_SHARED_SERVER limit.

Requesting a Dedicated Connection in a Shared Server Environment
You can configure Oracle Shared Server connections and dedicated server connections to
connect to a single Oracle server. This is advantageous if you have a mix of database activity.
Some types of activities are well suited to Oracle Shared Server connections, and other types
of activities are better suited to dedicated connections.

By default, if Oracle Shared Server is configured, a client is connected to a dispatcher
unless the client explicitly requests a dedicated connection. As part of the connection descrip-
tor, the client has to send information requesting a dedicated connection. Clients can request
dedicated connections if the names resolution method is local naming. You cannot use this
option with host naming. If local naming is being used, you can make the necessary changes
to the tnsnames.ora file to allow dedicated connections. You can make these changes manu-
ally, or you can use Oracle Net Manager.

Configuring Dedicated Connections Manually

If you are using local naming, you can add a parameter to the service-name entry in the
tnsnames.ora file. The parameter (SERVER=DEDICATED) is added to the DBA net service
name. Here is an example of the entry in the tnsnames.ora file:

ORCL4DBA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = XYZ01)(PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = orcl)
 (SERVER = DEDICATED) # Request a dedicated connection for DBA
)
)

You can accomplish the same thing using the Easy Connect method as well:

XYZ01:1521/ORCL:DEDICATED

Configuring Dedicated Connections Using Oracle Net Manager

You can use Oracle Net Manager to modify the connection type for a service. In Windows,
Oracle Net Manager is a tool; in Unix, you open Oracle Net Manager by executing netmgr.

After you start Oracle Net Manager, follow these steps:

	 1.	 Under Service Naming in the left pane, select the service name you want to modify.

	 2.	 Click the Connection Type drop-down list in the Service Identification section, and
choose Dedicated Server.

	 Understanding Database Resident Connection Pooling	 661

Choosing the Appropriate Connection Method Makes a Difference

As a DBA, you’ve configured Oracle Shared Server and are monitoring the dispatchers
and Shared Server performance daily. The Shared Server environment has been running
smoothly for months, but your monitoring starts to indicate that the wait times have
increased significantly over the past week. You are also starting to receive complaints
from the user community regarding system response time.

You start to investigate whether there have been any significant changes to the hardware,
the network, or the database application. You confer with the systems administration and
network group and find that no changes have taken place. Then your discussion with the
applications group reveals that a new ad hoc reporting utility has been installed and a
small number of administrators are starting to use the tool. These users are connecting
via Oracle Shared Server and are requesting large datasets via the ad hoc reporting tool.

You suggest to the applications team that the administrators connect to the database
using dedicated connections to alleviate the load on the shared servers. After modify-
ing the appropriate network files, you again monitor the Shared Server wait times and
discover that the waits have fallen back in line with what you were seeing prior to the
deployment of the ad hoc reporting tool.

Understanding Database Resident
Connection Pooling
DRCP was introduced in Oracle Database 11g to address scalability requirements where
there are large numbers of connections to the database with minimal resource usage. DRCP
has a set of dedicated database server processes known as pooled servers that can be shared
across multiple applications. A pooled server is a combination of server process and database
session. A connection broker process manages the pooled servers at the database instance
level. DRCP configuration can coexist with a database running dedicated or shared server
architecture.

Database Resident Connection Pooling allows multiple Oracle clients to share a server-
side pool of sessions. To share the pool, the user ID must be the same. Clients can connect
and disconnect without the overhead of creating a new server side session. DRCP is most
suitable for applications that connect and disconnect frequently, but use the same database
credentials for all connections—most PHP applications behave this way.

662	 Chapter 12  ■  Understanding Oracle Network Architecture

Configuring DRCP
DCHP is started or enabled using the Oracle supplied package DBMS_CONNECTION_POOL.
To start the pool, execute the START_POOL procedure after logging into the database using
SYSDBA connection as follows:

SQL> execute dbms_connection_pool.start_pool;

Once the pool is started, it remains active until it is explicitly shut down using the
STOP_POOL procedure. The pool is automatically restarted during the database cycle, if
the pool was active during shutdown.

When users or applications are connecting to the database, it must use the POOLED server
type in the connection, by using:

Easy Connect: host:port/service_name:POOLED

Local Naming: Use SERVER = POOLED in the CONNECT_DATA section.

JDBC: jdbc:oracle:thin:@//host:port/service_name:POOLED

When the pool is started, the default configuration and status of the pool can be viewed
by querying the DBA_CPOOL_INFO dictionary view as follows:

SQL> select * from dba_cpool_info;

CONNECTION_POOL : SYS_DEFAULT_CONNECTION_POOL
STATUS : ACTIVE
MINSIZE : 4
MAXSIZE : 40
INCRSIZE : 2
SESSION_CACHED_CURSORS : 20
INACTIVITY_TIMEOUT : 300
MAX_THINK_TIME : 120
MAX_USE_SESSION : 500000
MAX_LIFETIME_SESSION : 86400
NUM_CBROK : 1
MAXCONN_CBROK : 40000

The previous code output is formatted using Tom Kyte’s print_
table procedure, for readability of the output. The print_table
procedure can be found at http://asktom.oracle.com/pls/
apex/f?p=100:11:0::::P11_QUESTION_ID:1035431863958.

The configuration parameters can be modified using the DBMS_CONNECTION_POOL
.CONFIGURE_POOL procedure. The procedure changes the configuration of all parameters,

thin:@//host:port/service_name:POOLED
http://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:1035431863958

	 Understanding Database Resident Connection Pooling	 663

either with the supplied new value in the procedure or by using default value for the
parameter. The parameters to the procedure are pretty much the same columns in
the DBA_CPOOL_INFO view.

DBMS_CONNECTION_POOL.CONFIGURE_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL',
 minsize IN NUMBER DEFAULT 4,
 maxsize IN NUMBER DEFAULT 40,
 incrsize IN NUMBER DEFAULT 2,
 session_cached_cursors IN NUMBER DEFAULT 20,
 inactivity_timeout IN NUMBER DEFAULT 300,
 max_think_time IN NUMBER DEFAULT 120,
 max_use_session IN NUMBER DEFAULT 500000,
 max_lifetime_session IN NUMBER DEFAULT 86400,
 num_cbrok IN NUMBER DEFAULT 1,
 maxconn_cbrok IN NUMBER DEFAULT 40000);

When you want to change only one parameter at a time and do not want to impact the
other parameters, use the procedure ALTER_POOL instead of CONFIGURE_POOL. For example,
if you want to change the increment number of pooled servers when pooled servers are
unavailable at application request time, use the code as follows:

SQL> EXECUTE dbms_connection_pool.alter_param('','incrsize',5);

To restore all of the configuration parameters to their default values, use the procedure
RESTORE_DEFAULTS as in:

SQL> EXECUTE dbms_connection_pool.restore_defaults();

Even though all of the procedures in DBMS_CONNECTION_POOL accept the
pool name as a parameter, as of Oracle Database 12c Release 1, only one pool
can be configured, and its name must be SYS_DEFAULT_CONNECTION_POOL if
specified. The first parameter to all of the procedures is the pool name, which
defaults to SYS_DEFAULT_CONNECTION_POOL.

Comparing Connection Architectures
To understand more about DRCP, let’s compare the architecture with dedicated and shared
server architecture. Figure 12.20 details the architectural differences between a dedicated
connection, shared connection, and pooled connection. This section describes Figure 12.20
and gives a summary review of the architectures.

664	 Chapter 12  ■  Understanding Oracle Network Architecture

F igur e 12 . 20     Comparing Oracle connection architectures

Client
Request
Comes In

Memory
Usage

Client
Disconnects

Client

PGA SGA

Server Process

Dispatcher

DB

DBSession

HandoffSession Shared
Server

Dedicated
Connection

Dedicated Shared Pooled

PGA
(Server proc mem +
sess. mem) x
connections

(# shared servers x
server proc mem)
+ (# connections x
sess. mem)

pooled servers x
(sess mem + server
proc mem) +
connections x 35 kb

Client Connection
Broker

DBSession

Client

Handoff

Pooled
Server

As shown in Figure 12.20, when a new connection request from a client is made, a dedi-
cated server process is started and a dedicated session is created. The client communicates
directly with the database using the dedicated server process. All the requests from the client
are processed by this process. The session memory is allocated from PGA, and database server
memory usage is in direct proportion to the number of connections. Each client connection
has a process and session. When the client disconnects, the session and server process are ter-
minated, and memory resources are given back to the server.

In the shared server architecture, a predefined number of server processes are started as
defined by the SHARED_SERVERS initialization parameter. When a new connection request from
a client is made, the listener redirects the connection to the dispatcher. When a request from a
client is made, it goes to the request queue, and an available shared server process satisfies the
request and gives the result to the response queue. From there, the result is given to the client
by the dispatcher. The session memory is allocated from SGA, and the database memory usage
is proportional to the number of shared server processes started. Each client has a dedicated
session but no dedicated process. The request is fulfilled by any available process. When the
client disconnects, the session is terminated and the dispatcher process is either terminated or
given back to the session multiplexing pool.

	 Understanding Database Resident Connection Pooling	 665

In the pooled server architecture, when the connection broker is started, it starts the
dedicated server processes and session. When a new connection request from a client is
made, the listener directs the connection to the connection broker. The connection broker
hands off an already established server process and session to the client. At this point, the
connection is similar to a dedicated server. The session memory is allocated from PGA,
similar to a dedicated server. The database memory usage is proportional to the number of
pooled servers started. When the client disconnects, the process is handed back to the con-
nection broker, which could be reused by a subsequent connection request with the same
database user ID. If PHP application is used, the application server retains a network con-
nection to the connection broker.

Oracle Shared Server and pooled server architectures require Oracle Net,
even if the client is on the same machine as the database. A dedicated
session can connect to the database directly without Oracle Net on the
database machine.

Deciding on the Connection Method
Deciding which connection method to use depends on the applications that use the database
and the amount of resources you have on the database server. The following may be used as
a general guideline.

Use a dedicated connection when:

■■ The resources on the database server are not constrained.

■■ Clients connect from various sources, connect with different database user IDs, or stay
connected for a long time.

■■ You are running a batch job, where no idle time is involved.

■■ You are running RMAN backups or performing certain database administrative tasks
such as database startup and shutdown.

■■ You are connecting to the database without using Oracle Net.

■■ Certain applications like Oracle EBS do not support the use of shared servers, or the
application holds the connection from the application server to database.

Use a shared server when:

■■ The resources on the database server are constrained.

■■ You are increasing the scalability of applications without any application architec-
tural change.

■■ You are increasing the number of clients simultaneously connected to the database.

Use DRCP when:

■■ There are many connection requests to the database and most connections use the
same database account.

666	 Chapter 12  ■  Understanding Oracle Network Architecture

■■ The connections are short, like typical PHP applications.

■■ You are sharing resources between multiple client applications and middle-tier appli-
cation servers.

■■ You are reducing resource usage on the database host and increasing scalability.

Communicating Between Databases
So far in this chapter you have learned how an application or user connects to the database,
how the components communicate, how the various connection architectures work. In this
section, you will learn how an Oracle database can communicate with another database and
share information. Communication between Oracle databases is facilitated through database
link and the configuration known as distributed database system. A distributed database
system allows applications to access data from local and remote databases. In a homogenous
distributed database system, each database is an Oracle database. In a heterogeneous distrib-
uted database system, at least one of the databases is not an Oracle database.

Any heterogeneous distributed database system that connects to a non-
Oracle database from an Oracle database uses Oracle transparent gateways.
The transparent gateway has agents specific to the type of database. If the
non-Oracle database supports protocols such as ODBC or OLE, then generic
connectivity instead of transparent gateways can be used. Heterogeneous
communication is beyond the scope of the OCA test.

Introduction to Database Links
A database link is the main component in the distributed database system. The database
link helps a user access data from two databases as if the data is local to the database.
Database links establish a connection from a source database to a target database, and
this connection is always one-way. If you need two-way communication, another database
link must be created with the source and target destination reversed.

There are two types of database links: private and public. A private database link is
owned by a user, and the link is visible and accessible only to that user. You must log in as
the user or schema to the database to create a private database link, meaning you cannot
qualify the database link with a schema name and create the link under that user. A public
database link is owned by the PUBLIC user and is accessible to all users in the database.

The database link configuration includes the username, the password, and the Oracle Net
connection information used to connect to the remote database. To access a table or view

	 Communicating Between Databases	 667

from the remote database, you have to add @database_link_name to the table or view name.
For example, if you are connected to the sales database in Chicago and want to see the sales
information from Boston using a database link with the name SALES_BOSTON, you may do
the following query:

SQL> SELECT 'CHICAGO' location, sum(amount) FROM OM.ORDERS_SUMMARY
 UNION ALL
 SELECT 'BOSTON' location, sum(amount) FROM OM.ORDERS_SUMMARY@SALES_BOSTON;

There is one database initialization parameter that determines how the database links
are named. If the GLOBAL_NAMES parameter is set to TRUE, the database link name must be
the same as the database name to which it connects.

Creating Database Links
A private database link is created using the CREATE DATABASE LINK statement, and the public
database link is created using the CREATE PUBLIC DATABASE LINK statement. The rest of the
syntax for both statements is exactly the same, as shown here:

CREATE [PUBLIC] DATABASE LINK dblink_name
[CONNECT TO user_name IDENTIFIED BY password]
USING connect_string;

The name of the database link is dblink_name. If the database link name does not have
the domain name appended or it does not have any part separated by a dot (.), Oracle auto-
matically appends the domain name to the database link name. For example, if the database
domain name is BJS.COM, then if you specify the dblink name as SALES, Oracle creates the
dblink name as SALES.BJS.COM. If the dblink name specified is SALES.BOSTON, then the link
name created is also SALES.BOSTON, irrespective of the domain name.

Objects in the remote database are referenced as schema.schema_object@
database_link_name. A private or public synonym may be created to mask
the link name or to improve readability and portability of code.

The CONNECT TO clause specifies the username and password to connect to the remote
database. This is known as a fixed user database link. The user_name and password por-
tion may be omitted in order to use the same credentials that were used to connect to the
local database to connect to the remote database. This type of dblink is called connected
user database link. The database link privileges depend on the user connecting to the
remote database. It is not a good practice to use fixed user public database links that can
update information on the remote database because the public link is accessible to every
user in the local database.

668	 Chapter 12  ■  Understanding Oracle Network Architecture

Current user database links use the keywords CONNECT TO CURRENT_USER,
and they recognize invoker rights in stored programs. Current user data-
base links use a global user authenticated by an X.509 certificate and must
be available on both databases. If the PL/SQL procedure or function owned
by user JOHN is created with invoker rights, and if user MARY tries to exe-
cute the PL/SQL program, the database link used in the program will con-
nect to the remote database using the ID and password of MARY. If the PL/
SQL program is not created with invoker rights (default), then the database
link in the program will connect as the owner of the program (JOHN) to the
remote database.

The CONNECT TO clause specifies the Oracle Net connect information. You can provide a
connection alias resolved by a tnsnames.ora file, the easy connection syntax, or the detailed
Oracle Net connection syntax.

Table 12.8 shows a few examples of database link-creation statements to clarify the
definitions.

Tabl e 12 . 8    Database Link Examples

Code Explanation

create database link sales.boston
connect to om identified by ompwd
using 'bostondb';

A private fixed user database link. The Oracle
Net alias bostondb will be resolved using the
tnsnames.ora file entry.

create public database link sales
.boston connect to om identified by
ompwd using 'bs1svr:1522/bosdb';

A public fixed user database link. No
tnsnames.ora is required to connect to a
remote database as Easy Connect information
is used to create the link. Connect to service
name bosdb on host bs1svr through listener
listening on port 1522.

create public database link sales
.boston using '(DESCRIPTION =
(ADDRESS_LIST = (ADDRESS = (PROTOCOL
= TCP)(HOST = bs1svr)(PORT = 1522)))
(CONNECT_DATA = (SERVICE_NAME =
bosdb)))';

A public connected user database link. The ID
and password used to connect in the database
link will be the same ID and password used to
connect to the local database. No tnsnames
.ora is required, as Oracle Net connect infor-
mation is provided in the link definition.

	 Summary	 669

Summary
This chapter provided the foundation of knowledge you will need when you are designing,
configuring, and managing the Oracle network infrastructure. Oracle Net manages the
flow of information from client computers to Oracle servers and forms the foundation of
all networked computing in the Oracle environment. Oracle Net provides services that can
be divided into five main categories: connectivity, directory services, scalability, security,
and accessibility.

Oracle Net provides support to n-tier architecture, where middleware components such
as application servers are situated between the client and database server.

The listener is the main server-side component in the Oracle Net environment.
Listener configuration information is stored in the listener.ora file, and you manage
the listener using the lsnrctl command-line utility. You configure the listener by using the
Oracle Net Manager. The Oracle Net Manager provides a graphical interface for creating
most of the Oracle Net files you will use for Oracle, including the listener.ora file. If
multiple listeners are configured, each one has a separate entry in the listener.ora file.

Depending on your network environment, the client configuration setups can vary from
no work to configuring a number of files on the client. Local naming is the most popular of
the names resolution methods, and it uses the tnsnames.ora file, which is typically located
on each client, to resolve net service names. The client looks up the net service name in the
tnsnames.ora file and uses the resulting connection descriptor information to connect to
the Oracle server.

Shared Server is a configuration of the Oracle server that allows you to support a greater
number of connections without the need for additional resources. In this configuration, user
connections share processes called dispatchers. Dispatchers replace the dedicated server pro-
cesses in a dedicated server environment. The Oracle Server is also configured with shared
server processes that can process the requests of many clients. You add a number of param-
eters to the init.ora file to configure Shared Server. You can add dispatchers and shared
servers dynamically after the Oracle server is started. You can add more shared servers and
dispatchers up to the maximum value specified.

Database Resident Connection Pooling architecture improves the scalability and perfor-
mance of web applications that connect to the database for a short duration and has large
amounts of connections. The connection broker is started with a specified number of server
processes. When clients connect, the server process is handed off to the client.

Communication between databases is achieved through database links. An object from the
remote database is accessed using schema.schema_object@database_link_name. A database
link can be private or public. Private links are accessible only to the user who owns the link.
A fixed user link hard codes the user ID and password to connect to the remote database in
the configuration definition. A connected user link uses the ID and password used to connect
to the local database to connect to the remote database.

670	 Chapter 12  ■  Understanding Oracle Network Architecture

Exam Essentials

Understand what Oracle Net is and the functionality it provides.    Be able to list the catego-
ries of functionality that Oracle Net provides and explain the functionality that falls into each
category. Also understand what functionality the Oracle Shared Server, Oracle Connection
Manager, and Database Resident Connection Pooling options provide. In addition, be able to
define Oracle Advanced Security and know when to use it.

Be able to define the main responsibilities of the Oracle listener.    To fully understand the
function of the Oracle listener, you should understand how the listener responds to client
connection requests.

Be able to define the listener.ora file and the ways in which the file is created.    To
understand the purpose of this file, know its default contents and how to change it using
the various Oracle tools. In addition, be able to define the sections of the file and know the
definitions of the optional parameters it contains. Also understand the structure of the
listener.ora file when one or more listeners are configured.

Understand how to use the lsnrctl command-line utility.    To start up and shut down
the listener, know how to use the lsnrctl command-line utility. Be able to explain the
command-line options for the lsnrctl utility, such as services, status, and reload.
When using this utility, also know the options available to you, and be able to define the
various set commands.

Understand the concepts of static and dynamic service registration.    Be able to define
the difference between static service registration and dynamic service registration, and
know the advantages of using dynamic service registration over static service registration.
Also, be aware of the situations in which you have to use static service registration. Lastly,
be familiar with the initialization parameters that you will need to set in order to enable
dynamic service registration.

Define the Oracle client-side names resolution options.    Be able to define the Oracle
client-side names resolution options. Know in which situations to use local naming,
Oracle Easy Connect, host naming, and OID.

Define the local naming method.    In addition to knowing the meaning of the local naming
method and what it does, understand how to use the Oracle Net Manager to configure this
names resolution method. Understand the primary file used in the local naming method,
the tnsnames.ora file.

Define the contents and structure of the tnsnames.ora file.    Be able to describe the
tnsnames.ora file and the various sections of the file and to explain how the file is used.
Understand the contents of the tnsnames.ora file so that you can identify syntax problems
with the structure of entries in the file. Be familiar with the common locations of this file
and how to set the TNS_ADMIN parameter to override the default location of this and the
other client-side network files.

	 Exam Essentials	 671

Define and correct client-side errors.    Understand the types of client-side connection errors
that can occur. Be able to define these errors and understand the situations in which a client
might encounter them.

Define Oracle Shared Server.    Be able to list the advantages of Shared Server compared to
a dedicated server and when it is appropriate to consider both options.

Define Oracle Database Resident Connection Pooling.    Be able to list the advantages
of DRCP compared to a dedicated server or shared server and when it is appropriate to
consider DRCP.

Understand the changes that are made in the SGA and the PGA.    Make sure you understand
that in a Shared Server environment, many PGA structures are moved in the large pool inside
the SGA. This means the SGA will become larger and that the large pool will need to be con-
figured in the init.ora file.

Know how to configure Oracle Shared Server.    Be able to define each of the parameters
involved in the configuration of Oracle Shared Server. Know what parameters can be dynami-
cally modified and what parameters require the Oracle instance to be restarted to take effect.

Know how to configure clients for different connection methods.    Be able to configure
clients that need a dedicated connection to Oracle if it is running in Shared Server mode.
Know how to connect to DRCP pool.

Learn the various methods a database link can be configured.    Understand the difference
between private and public database links. Know how to configure fixed user database
links and connected user database links.

672	 Chapter 12  ■  Understanding Oracle Network Architecture

Review Questions

	 1.	 Which of the following files must be present on the Oracle server to start a nondefault
Oracle listener?

	 A.	 listener.ora

	 B.	 lsnrctl.ora

	 C.	 sqlnet.ora

	 D.	 tnsnames.ora

	 2.	 Which of the following is the correct way to start a listener called LISTENER?

	 A.	 lsnrctl startup listener

	 B.	 lsnrctl start

	 C.	 netca start

	 D.	 netmgr start listener

	 3.	 When dynamic service registration is used, you will not see the service listed in which
of the following files where it would normally be located?

	 A.	 sqlnet.ora

	 B.	 tnsnames.ora

	 C.	 listener.ora

	 D.	 None of the above

	 4.	 Connection Manager provides which of the following?

	 A.	 Multiplexing

	 B.	 Cross-protocol connectivity

	 C.	 Network access control

	 D.	 All of the above

	 5.	 Which is a requirement for using host naming?

	 A.	 You must use tnsnames.ora on the client.

	 B.	 You must be using TCP/IP.

	 C.	 You must have an OID present.

	 D.	 You must have a sqlnet.ora file present on the client.

	 E.	 None of the above.

	 Review Questions	 673

	 6.	 Which statements regarding Database Resident Connection Pooling (DRCP) are true?
(Choose two.)

	 A.	 When a DRCP pooled server connection is made by an application, it is equivalent
to a dedicated server connection.

	 B.	 When a database has DRCP enabled, all connections default to a pooled connec-
tion unless DEDICATED server is explicitly specified in the connect string.

	 C.	 When an application using the DRCP connection disconnects, the server connec-
tion (process) is handed off to the broker.

	 D.	 When using the Oracle Net Easy Connect method, it is not possible to utilize DRCP.

	 7.	 A client receives the following error message:

"ORA-12154 TNS:could not resolve the connect identifier specified"

Which of the following could be possible causes of the error? Choose all that apply.

	 A.	 The listener is not running on the Oracle server.

	 B.	 The user entered an invalid net service name.

	 C.	 The user supplied the correct net service name, but the net service name is mis-
spelled in the tnsnames.ora file on the client file.

	 D.	 The listener is not configured to listen for this service.

	 8.	 What portion of the tnsnames.ora file specifies the name or IP address of the server
where the listener process is listening?

	 A.	 CONNECT_DATA

	 B.	 SERVER

	 C.	 SERVICE_NAME

	 D.	 HOST

	 9.	 A client wants to connect to the database service dbprod.com located on the dbprod.com
server through a nondefault port (1522) using Oracle Easy Connect. Which of the fol-
lowing connect strings are the choices for the client to use? (Choose two.)

	 A.	 CONNECT scott/tiger@dbprod.com:1522

	 B.	 CONNECT scott/tiger@1522:dbprod.com/dbprod.com

	 C.	 CONNECT scott/tiger@//dbprod.com/1522:dbprod.com

	 D.	 CONNECT scott/tiger@dbprod.com:1522/dbprod.com

mailto:tiger@dbprod.com:1522
mailto:tiger@1522:dbprod.com/dbprod.com
mailto:tiger@dbprod.com:1522/dbprod.com

674	 Chapter 12  ■  Understanding Oracle Network Architecture

	10.	 All of the following are reasons to configure the server using Shared Server except
which one?

	 A.	 Overall memory utilization is reduced.

	 B.	 The system is predominantly used for decision support with large result sets
returned.

	 C.	 The system is predominantly used for small transactions with many users.

	 D.	 The number of idle connections on the server is reduced.

	11.	 Which of the following is true about Shared Server?

	 A.	 Dedicated connections cannot be made when Shared Server is configured.

	 B.	 It is recommended that DSS type batch jobs be performed when connected via
Shared Server.

	 C.	 The database can be started when connected via Shared Server.

	 D.	 The database cannot be stopped when connected via Shared Server.

	12.	 The administrator wants to allow a user to connect via a dedicated connection
into a database configured in Shared Server mode. Which of the following options
accomplishes this?

	 A.	 (SERVER=DEDICATED)

	 B.	(CONNECT=DEDICATED)

	 C.	(INSTANCE=DEDICATED)

	 D.	(MULTITHREADED=FALSE)

	 E.	 None of the above

	13.	 In which of the following files would you find the Shared Server configuration
parameters?

	 A.	 listener.ora

	 B.	 mts.ora

	 C.	 init.ora

	 D.	 tnsnames.ora

	 E.	 sqlnet.ora

	14.	 What is the first step that the dispatcher performs after it receives a request from the user?

	 A.	 Pass the request to a shared server.

	 B.	 Place the request in a request queue in the PGA.

	 C.	 Place the request in a request queue in the SGA.

	 D.	 Process the request.

	 Review Questions	 675

	15.	 When configured in Shared Server mode, which of the following is contained in the PGA?

	 A.	 Cursor state

	 B.	 Sort information

	 C.	 User session data

	 D.	 Stack space

	 E.	 None of the above

	16.	 Which of the following is false about request queues?

	 A.	 They reside in the SGA.

	 B.	 They are shared by all the dispatchers.

	 C.	 Each dispatcher has its own request queue.

	 D.	 The shared server processes remove requests from the request queue.

	17.	 What is the process that notifies the listener after a database connection is established?

	 A.	 SMON

	 B.	 PMON

	 C.	 LREG

	 D.	 LGWR

	18.	 Which network architecture connection uses session memory from the SGA?

	 A.	 Dedicated Server

	 B.	 Shared Server

	 C.	 Database Resident Connection Pooling

	 D.	 All of the above

	19.	 Communication between two Oracle databases is configured using:

	 A.	 Database Resident Connection Pooling

	 B.	 Database link

	 C.	 Connection Manager

	 D.	 Oracle Net Manager

	20.	 DBA user MIKE ran the SQL statement CREATE DATABASE LINK SCOTT.SALES_LINK
.BJS.COM CONNECT TO SALES_INT IDENTIFIED BY SALESPWD1 USING 'ocasvr:1522/
ocadb'. Choose the option that is true.

	 A.	 Use of 'ocasvr:1522/ocadb' is invalid in database link definition.

	 B.	 A private database link is created under user MIKE.

	 C.	 A private database link is created under user SCOTT.

	 D.	 If the SALES_INT user does not exist or its password is not SALESPWD1, the database
link will not be created.

Chapter

13
Implementing
Security and Auditing

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Administering User Security

■■ Create and manage database user accounts.

■■ Grant and revoke privileges.

■■ Create and manage roles.

■■ Create and manage profiles.

✓✓ Implementing Oracle Database Auditing

■■ Explain DBA responsibilities for security and auditing.

■■ Enable standard database auditing and unified auditing.

One of the key functions of a DBA is to protect the data and
database by controlling database access; DBAs must also
keep track of key database activities. They must maintain the

security, integrity, performance, and availability of their databases. In this chapter, you
will learn about managing database security, including how to manage user accounts;
implement password expiration and complexity rules; and configure security policies
using object, system, and role privileges. To further enhance your ability to monitor and
manage database access, you will also learn how to use auditing mechanisms to fine-tune
your security policy, identify attempts to access areas of your database that a user is not
authorized to visit, and identify intrusion attempts.

Creating and Managing User Accounts
One of the most basic administrative requirements for a DBA is to identify and manage
the users. The first step to doing this is to make sure each user who connects to the Oracle
Database 12c database has an account. An account shared between many users is difficult
to troubleshoot and audit and is, therefore, a poor security practice that should be avoided.

You create a new database account with the CREATE USER statement. When you create
a new account, at a minimum the user should have a unique username and authentication
method. You can optionally assign additional attributes to the user account with the CREATE
USER statement. To change or assign new attributes to an existing user account, use the
ALTER USER statement.

The terms user account, account, user, and schema are all interchangeable
and refer to a database user account. A schema is a user who owns objects.
All schemas are users, but not all users are schemas.

The following is an example of the CREATE USER statement with common optional clauses:

SQL> CREATE USER james
 IDENTIFIED BY mia0101
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp
 QUOTA UNLIMITED ON users

	 Creating and Managing User Accounts	 679

 PROFILE default
 PASSWORD EXPIRE
 ACCOUNT UNLOCK;

User created.

SQL>

The username must adhere to the database object-naming convention. It must begin
with a letter, have no more than 30 characters, and be comprised of only letters, numbers,
and $, #, _. In the following sections, you’ll learn about the clauses presented in the CREATE
USER statement.

At the time of this writing, multitenant databases are not part of the OCA
exam objectives. When creating users in multitenant databases, you may
use the CONTAINER=ALL clause to create a common user in all pluggable
databases connected to the root container. Common usernames must
begin with C##. To create a local user in a pluggable database, use the
CONTAINER=CURRENT clause connected to the pluggable database.

Configuring Authentication
When a user connects to an Oracle database instance, the user account must be authenti-
cated. Authentication involves validating the identity of the user and confirming that the
user has the authority to use the database. Oracle offers three authentication methods for
your user accounts: password authentication (the most common), external authentication,
and global authentication.

We’ll cover each of these authentication methods in the following sections.

Password-Authenticated Users
When a user with password authentication attempts to connect to the database, the database
verifies that the username is a valid database account and that the password supplied matches
that user’s password as stored in the database.

Password-authenticated user accounts are the most common and are sometimes referred
to as database-authenticated accounts. With a password-authenticated account, the database
stores the encrypted password in the data dictionary. For example, to create a password-
authenticated user named rajesh with a password of welcome, you execute the following:

SQL> CREATE USER rajesh IDENTIFIED BY welcome;

The keywords IDENTIFIED BY password (in this case, the password is welcome) tell the
database that this user account is a password-authenticated account.

680	 Chapter 13  ■  Implementing Security and Auditing

The user passwords in Oracle 11g databases and later versions are case
sensitive. In earlier releases of Oracle, user passwords were case insensi-
tive. The default value of the SEC_CASE_SENSITIVE_LOGON parameter is
TRUE; to disable case sensitivity for passwords, change the value to FALSE.

Externally Authenticated Users
When an externally identified user attempts to connect to the database, the database
verifies that the username is a valid database account and trusts that the operating sys-
tem has performed authentication.

Externally authenticated user accounts do not store or validate passwords in the data-
base. These accounts are sometimes referred to as OPS$ accounts, because when Oracle
introduced them in Oracle 6, the account had to be prefixed with the keyword OPS$. With
all releases of the database since then, including Oracle Database 12c, you can configure this
OS_AUTHENT_PREFIX in the initialization file or spfile. For example, to create an externally
authenticated user named oracle using the default OS_AUTHENT_PREFIX, you would execute
the following:

CREATE USER ops$oracle IDENTIFIED EXTERNALLY;

The keywords IDENTIFIED EXTERNALLY tell the database that this user account is an
externally authenticated account. If you log in to the server as user oracle, you can log in
to the database without providing a username or password, as shown here:

SQL> show parameter os_authent_prefix

NAME TYPE VALUE
------------------------------------ ----------- -------------
os_authent_prefix string ops$

SQL> host id
uid=5000(oracle) gid=5001(oinstall) groups=5001(oinstall),5000(dba),54323(oper),
54324(backupdba),54325(dgdba),54327(asmdba),54328(asmoper),54329(asmadmin) conte
xt=system_u:unconfined_r:unconfined_t:s0

SQL> create user ops$oracle identified externally;
User created.

SQL> grant connect to ops$oracle;
Grant succeeded.

SQL> connect /
Connected.

	 Creating and Managing User Accounts	 681

SQL> show user
USER is "OPS$ORACLE"
SQL>

Externally authenticated accounts are frequently used for administrative scripts so that a
password does not have to be embedded in a human-readable script.

Globally Authenticated Users
When a globally identified user attempts to connect to the database, the database verifies
that the username is valid and passes the connection information to the advanced security
option for authentication. The advanced security option supports several mechanisms for
authentication, including biometrics, X.509 certificates, Kerberos, and RADIUS.

Globally authenticated user accounts do not store or validate passwords in the database
as a password-authenticated account does. These accounts rely on authentication provided
by a service supported through the advanced security option.

The syntax for creating a globally authenticated account depends on the service called, but
all use the keywords IDENTIFIED GLOBALLY, which tells the database to engage the advanced
security option for authentication. Here is an example:

CREATE USER spy_master IDENTIFIED GLOBALLY AS 'CN=spy_master, OU=tier2,
 O=security, C=US';

Assigning Tablespaces and Quotas
Every user is assigned a default tablespace. When a user creates tables or indexes, they are
created on the tablespace specified by the TABLESPACE clause. If the TABLESPACE clause is
not provided, the segments will be created on the user’s default tablespace. If you execute
a CREATE TABLE statement and do not explicitly specify a tablespace, the database uses
your default tablespace.

If you do not explicitly assign a default tablespace to a user at the time you create the user,
the database assigns the database’s default tablespace to the new user account. To assign a
default tablespace to either a new user via a CREATE USER statement or an existing user, use
the keywords DEFAULT TABLESPACE tablespace_name, like this:

CREATE USER rajesh IDENTIFIED BY welcome
DEFAULT TABLESPACE users;

Or use an ALTER USER statement:

ALTER USER rajesh
DEFAULT TABLESPACE users;

By default, the database default tablespace is SYSTEM. If the database was created using
DBCA, the default tablespace would be USERS. To change the database default tablespace

682	 Chapter 13  ■  Implementing Security and Auditing

(the value that users inherit if no default tablespace is provided), use the ALTER DATABASE
statement, like this:

ALTER DATABASE DEFAULT TABLESPACE users;

Assigning a Temporary Tablespace
Every user is assigned a temporary tablespace in which the database stores temporary
segments. Temporary segments are created during large sorting operations, such as ORDER
BY, GROUP BY, SELECT DISTINCT, MERGE JOIN, or CREATE INDEX.

Temporary segments are also used when a temporary table is used. The database creates
and drops temporary segments transparently to the user. Because of the transitory nature
of temporary segments, you must use a dedicated tablespace of type TEMPORARY for your
user’s temporary tablespace setting.

If you do not explicitly assign a temporary tablespace when the user is created, the data-
base assigns the database default temporary tablespace to the new user account. Use the
keywords TEMPORARY TABLESPACE tablespace_name to assign a temporary tablespace either
to a new user via the CREATE USER statement:

CREATE USER rajesh IDENTIFIED BY welcome
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp;

or to an existing user via an ALTER USER statement:

ALTER USER rajesh
TEMPORARY TABLESPACE temp;

If the SYSTEM tablespace is locally managed at the time of database creation, you’re
required to provide a non-SYSTEM temporary-type tablespace as the database default tem-
porary tablespace. To change the database default temporary tablespace, use the ALTER
DATABASE statement, like this:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp;

You can query the data dictionary view DATABASE_PROPERTIES to see
the current default tablespace and temporary tablespace assignment
for the database. You may also use the OEM Database Express 12c option
“Current Database Properties” under the Configuration drop-down menu.

Assigning Space Quotas
By default, Oracle Database 12c does not allocate a space quota in any tablespace when the
user is created. To create segments (tables, indexes, and so on) in any tablespace, the user

	 Creating and Managing User Accounts	 683

must have a quota of space allotted on the tablespace. Tablespace quotas limit the amount
of disk space a user can consume. The default quota is none. You can assign a space usage
quota at the same time you create a user with the CREATE USER statement:

CREATE USER dchip IDENTIFIED BY "Seek!r3t"
QUOTA 100M ON USERS;

Or you can assign the quota after the user has been created. Just use the ALTER USER
statement:

ALTER USER bart
QUOTA UNLIMTED ON USERS;

The special keyword UNLIMITED tells the database that the user should not have a preset
limit on the amount of space their objects can consume.

The user can create objects in any tablespace if the user has the UNLIMITED TABLESPACE
system privilege. You will learn about system privileges later in the chapter in the “Granting
System Privileges” section.

A feature called deferred segment creation was introduced in Oracle 11g Release 2. So when
a new table is created, no space quota is needed because the segment is created only when the
first row is inserted. This means that a quota of zero does not automatically prevent tables
from being created in a schema, as was the case in previous releases. Here is an example to
show this scenario: user Simon is created with database defaults (default permanent tablespace,
temporary tablespace, profile) and granted privileges in one statement. Simon is able to create
the table, but is not able to insert a row, because at row insert, the segment is created in the
tablespace and has no quota.

SQL> GRANT CREATE SESSION, CREATE TABLE to simon IDENTIFIED BY simonpwd;
Grant succeeded.

SQL> CONNECT simon/simonpwd
Connected.

SQL> CREATE TABLE T1 (C1 NUMBER);
Table created.

SQL> INSERT INTO T1 VALUES (4);
INSERT INTO T1 VALUES (4)
 *
ERROR at line 1:
ORA-01950: no privileges on tablespace 'USERS'

684	 Chapter 13  ■  Implementing Security and Auditing

The encrypted user password is stored in the dictionary table USER$. The
password column has the 10g hash, and the spare4 column has the 11g hash.
You may use the encrypted value directly in the CREATE USER or ALTER USER
statement to use the same password for the user. This is useful when you
duplicate user in another database or when you drop and recreate. The syn-
tax is CREATE USER btsj IDENTIFIED BY VALUES 'FD6C945489780TER72C'.

Assigning a Profile and Account Settings
In addition to default and temporary tablespaces, every user is assigned a profile. A profile
serves two purposes:

■■ It can limit the usage of some resources.

■■ It can enforce password-management rules.

The default profile is appropriately named default. To explicitly assign a profile to a user,
include the keywords PROFILE profile_name in the CREATE USER or ALTER USER statement.
For example, to assign the profile named adminuser_profile to the new user jiang as well
as to the existing user hamish, execute the following SQL code:

CREATE USER jiang IDENTIFIED BY "kneehow.ma"
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp
PROFILE adminuser_profile;

ALTER USER hamish
PROFILE adminuser_profile;

If you want users to change their passwords the first time they log in to the database, you
can set the PASSWORD EXPIRE option. Every user will be forced to change their password at
the first login. Here is an example of creating a user with an expired password:

SQL> CREATE USER shelly IDENTIFIED BY welcome
 PASSWORD EXPIRE;

User created.

SQL> GRANT CONNECT TO shelly;
SQL> connect shelly/welcome
ERROR:
ORA-28001: the password has expired

Changing password for shelly

	 Creating and Managing User Accounts	 685

New password:
Retype new password:
SQL> SHOW user
SQL> USER is "SHELLY"

By default, the user account is unlocked at creation. To lock the user account, use the
ACCOUNT LOCK option.

To create and manage user accounts using EM Database Express, choose Users under
the Security drop-down menu, as shown in Figure 13.1.

F igur e 13 .1     The EM Database Express Users screen

The screen shows all users in the database, with information such as account status,
password expiration date, default and temporary tablespaces, and profile assignment.
Clicking the Create User button on this screen opens the screen to create a new user, as
shown in Figure 13.2. The Create Like button can duplicate a user account.

The Create User option has three dialog screens. The Show SQL button shows the SQL
code used to create the user and privileges. Here is an example of SQL code generated by
the dialogue:

create user "OCATRAIN1" identified by ******* profile "DEFAULT" password expire
account unlock default tablespace "USERS" temporary tablespace "TEMP";

grant SELECT ANY TABLE to "OCATRAIN1";
grant "CONNECT" to "OCATRAIN1";
grant "RESOURCE" to "OCATRAIN1";
grant "SELECT_CATALOG_ROLE" to "OCATRAIN1";

The Actions drop-down menu in the Users screen (see Figure 13.1) provides the options
to Create User, Drop User, View Details Of User, Alter The Properties Of User, Alter
Tablespace Assignments, Alter Privileges And Roles, and Manage Object Privileges.

686	 Chapter 13  ■  Implementing Security and Auditing

Removing a User from the Database
You use the DROP USER statement to remove a user from the database. You can optionally
include the keyword CASCADE to tell the database to recursively drop all objects owned by
that user.

To drop both user rajesh and all the objects he owns (this action also purges any
Recycle Bin objects), execute the following:

DROP USER rajesh CASCADE;

F igur e 13 . 2     The Grid Control’s Create User screen

	 Granting and Revoking Privileges	 687

If a user is currently connected to the database, the user cannot be dropped. Dropping
a user implicitly drops any object privileges (but not role or system privileges) for which
the user was the grantor. The data dictionary records both the grantee and the grantor for
object privileges, but only the grantee is recorded for role and system privileges.

Managing Default User Accounts
The SYS and SYSTEM user accounts are always created when an Oracle database is created.
Other special accounts can be created to support installed products, such as Recovery
Manager (RMAN) or XMLDB. When created via the DBCA, these special accounts are
locked and expired, leaving only SYS and SYSTEM open. The SYS and SYSTEM accounts
are the data dictionary owner and an administrative account, respectively.

If your database is created via any means other than the DBCA, ensure that the accounts
are locked and expired and that the default passwords are changed. You expire and lock an
account using the ALTER USER statement like this:

ALTER USER mdsys PASSWORD EXPIRE ACCOUNT LOCK;

Depending on the functionality installed in your Oracle database, you may need to lock
and expire several default user accounts. The data dictionary view DBA_USERS_WITH_DEFPWD
shows the database user accounts created by Oracle and having a default password.

Granting and Revoking Privileges
Privileges allow a user to access database objects or execute stored programs that are
owned by another user. Privileges also enable a user to perform system-level operations,
such as connecting to the database, creating a table, or altering the database. A user has
complete privileges on the objects it owns, the privileges are required only on objects
owned by some other user (schema).

Privileges are assigned to a user, to the special user PUBLIC, or to a role with the GRANT
statement, and they can be rescinded with the REVOKE statement.

The Oracle Database 12c database has three types of privileges:

Object Privileges    These include permissions on schema objects such as tables, views,
sequences, procedures, and packages. To use a schema object owned by another user, you
need privileges on that object.

System Privileges    These include permissions on database-level operations, such as connect-
ing to the database, creating users, altering the database, consuming unlimited amounts of
tablespace, and querying all tables in the database.

Role Privileges    These include permissions granted to a user by way of a role. A role is a
named group of privileges. Object and system privileges can be granted to a role.

We’ll cover each of these privileges and how to grant them in the following sections.

688	 Chapter 13  ■  Implementing Security and Auditing

Granting Object Privileges
Object privileges bestow upon the grantee the permission to use a schema object owned by
another user in a particular way. As you’ll see, there are several types of object privileges,
some of which apply only to certain schema objects. For example, the INDEX privilege applies
only to tables, and the SELECT privilege applies to tables, views, and sequences.

The following object privileges can be granted individually, can be granted grouped in a
list, or can be granted with the keyword ALL to implicitly grant all available object privileges
for a particular schema object.

Be careful when using ALL. It may implicitly grant powerful privileges.

Table Object Privileges
Oracle Database 12c provides several object privileges for tables. These privileges give the
table owner considerable flexibility in controlling how schema objects are used and by whom.

Commonly Granted Privileges

The following privileges are commonly granted, and you should know them well:

SELECT    This is the most commonly used privilege for tables. With this privilege, the table
owner permits the grantee to query the specified table with a SELECT statement.

INSERT    This permits the grantee to create new rows in the specified table with an
INSERT statement.

UPDATE    This permits the grantee to modify existing rows in the specified table with an
UPDATE statement.

DELETE    This permits the grantee to remove rows from the specified table with a
DELETE statement.

Powerful Administrative Privileges on Tables

The following are powerful administrative privileges on tables; grant them cautiously:

ALTER    This permits the grantee to execute an ALTER TABLE statement on the specified
table. This privilege can be used to add, modify, or rename columns in the table, to move
the table to another tablespace, or even to rename the specified table.

DEBUG    This permits the grantee to access, via a debugger, the PL/SQL code in any triggers
on the specified table.

INDEX    This permits the grantee to create new indexes on the table. These new indexes will be
owned by a user other than the one that owns the table, which is an unusual practice. In most
cases, the indexes on a table are owned by the same user who owns the table. The owner of the
table does not need the INDEX privilege to create an index.

REFERENCES    This permits the grantee to create foreign key constraints that reference the
specified table.

	 Granting and Revoking Privileges	 689

Viewing Object Privileges

Object privileges can be queried from the database using the dictionary view DBA_TAB_
PRIVS (or using ALL_TAB_PRIVS or USER_TAB_PRIVS; if you’re using a multitenant database,
you may use CDB_TAB_PRIVS as well). Let’s find out what privileges are included when ALL
privilege is granted.

User HR executes the following SQL code to grant ALL privileges on EMPLOYEES table to
user OE.

SQL> grant all on hr.employees to oe;

To view the privileges granted to OE by this action, query DBA_TAB_PRIVS, like this:

SQL> col grantee format a7
SQL> col grantor format a7
SQL> col privilege format a20
SQL> SELECT grantee, grantor, privilege
 FROM dba_tab_privs
 WHERE owner = 'HR'
 AND table_name = 'EMPLOYEES';

GRANTEE GRANTOR PRIVILEGE
------- ------- --------------------
OE HR FLASHBACK
OE HR DEBUG
OE HR QUERY REWRITE
OE HR ON COMMIT REFRESH
OE HR REFERENCES
OE HR UPDATE
OE HR SELECT
OE HR INSERT
OE HR INDEX
OE HR DELETE
OE HR ALTER

11 rows selected.

SQL>

690	 Chapter 13  ■  Implementing Security and Auditing

View Object Privileges
Oracle Database 12c offers a smaller set of object privileges for views than it does for tables:

SELECT    This is the most commonly used privilege for views. With this privilege, the view
owner permits the grantee to query the view.

INSERT    This permits the grantee to execute an INSERT statement on the specified view to
create new rows.

UPDATE    This permits the grantee to modify existing rows in the specified view with
an UPDATE statement.

DELETE    This permits the grantee to execute a DELETE statement on the specified view to
remove rows.

DEBUG    This permits the grantee to access, via a debugger, the PL/SQL code in the body of
any trigger on this view.

REFERENCES    This permits the grantee to create foreign key constraints on the specified view.

Sequence Object Privileges
Oracle Database 12c provides only two object privileges for sequences:

SELECT    This permits the grantee to access the current and next values (CURRVAL and
NEXTVAL) of the specified sequence.

ALTER    This lets the grantee change the attributes of the specified sequence with an
ALTER statement.

Stored Functions, Procedures, Packages, and Java Object Privileges
Oracle Database 12c provides only two object privileges for stored PL/SQL programs:

DEBUG    This permits the grantee to access, via a debugger, all the public and private variables
and types declared in the specified program. If the specified object is a package, both the
specification and the body are accessible to the grantee. The grantee can also use a debugger
to place breakpoints in the specified program.

EXECUTE    This permits the grantee to execute the specified program. If the specified
object is a package, any program, variable, type, cursor, or record declared in the pack-
age specification is accessible to the grantee.

How to Grant Privileges
You use the GRANT statement to confer object privileges on either a user or a role. The
optional keywords WITH GRANT OPTION additionally allow the grantee to confer these
privileges on other users and roles. For example, to give SELECT, INSERT, UPDATE, and

	 Granting and Revoking Privileges	 691

DELETE privileges on the table CUSTOMERS to the role SALES_MANAGER, execute the follow-
ing statement while connected as the owner of table CUSTOMERS:

GRANT SELECT, INSERT, UPDATE, DELETE ON customers TO sales_manager;

If you grant privileges to the special user PUBLIC, you make them available to all current
and future database users. For example, to give all database users the SELECT privilege on
table CUSTOMERS, execute the following while connected as the owner of the table:

GRANT SELECT ON customers TO public;

When you extend a privilege to another user or role, you can also extend the ability for
that grantee to turn around and grant the privilege to others. To extend this extra option,
include the keywords WITH GRANT OPTION in the GRANT statement. For example, to give the
SELECT privilege on table SALES.CUSTOMERS to the user SALES_ADMIN together with the per-
mission for SALES_ADMIN to grant the SELECT privilege to others, execute the following:

GRANT SELECT ON sales.customers TO sales_admin WITH GRANT OPTION;

You can include the WITH GRANT OPTION keywords only when the grantee is a user or the
special account PUBLIC. You cannot use WITH GRANT OPTION when the grantee is a role.

If you grant an object privilege using the WITH GRANT OPTION keywords and later revoke
that privilege, the revoke cascades, and the privileges created by the grantee are also revoked.
For example, Mary grants SELECT privileges on her table clients to Zachary with the WITH
GRANT OPTION keywords. Zachary then creates a view based on the table mary.clients and
grants the SELECT privilege on it to Rex. If Mary revokes the SELECT privilege from Zachary,
the revoke cascades and removes the privilege from Rex. See Figure 13.3 for an illustration of
this example.

F igur e 13 . 3     Revoking an object privilege will cascade.

ZacharyMary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

ZacharyMary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

Zachary is dropped.

Mary Rex

Rex loses privileges.

692	 Chapter 13  ■  Implementing Security and Auditing

With object privileges, the database records both the grantor and the grantee. Therefore,
a grantee can obtain a privilege from more than one grantor. When this multiple grant of
the same privilege occurs, revoking one of these grants does not remove the privilege. To
remove the privilege, all grants must be revoked, as shown in Figure 13.4.

F igur e 13 . 4     Revoking an object privilege with multiple grant paths

Zachary

Charlie

Zachary

Charlie

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

GRANT SELECT ON
mary.clients

Zachary is dropped.

Rex retains privileges.

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

GRANT SELECT ON
mary.clients

Charlie

Mary Rex

GRANT SELECT ON clients
WITH GRANT OPTION

GRANT SELECT ON
mary.clients

Continuing with our example, Mary has granted SELECT privileges on her table clients
to Zachary using WITH GRANT OPTION. Zachary has then granted SELECT on mary.clients to
Rex. Mary has also granted SELECT on her table clients to Charlie, who has in turn granted
to Rex. Rex now has the SELECT privilege from more than one grantee. If Zachary leaves
and his account is dropped, the privilege from Charlie remains, and Rex can still select from
mary.clients.

SQL Developer provides a very good interface for managing users and privi-
leges. From the DBA menu, choose Security and then Users. You can then
view object privileges, system privileges, and the roles assigned to a user.

Granting System Privileges
In general, system privileges permit the grantee to execute Data Definition Language (DDL)
statements—such as CREATE, ALTER, and DROP—or Data Manipulation Language (DML)

	 Granting and Revoking Privileges	 693

statements system-wide. Oracle Database 12c has more than 200 system privileges, all of
which are listed in the data dictionary view SYSTEM_PRIVILEGE_MAP.

You will not be required to know all these privileges for the certification
exam (thank goodness!), because many are for features that fall outside
the scope of the exam. Pay attention to the database-related and table-
related system privileges.

You should be familiar with the following groups of privileges.

Database
Oracle Database 12c gives you the following database-oriented system privileges:

ALTER DATABASE    This permits the grantee to execute the ALTER DATABASE statement.

ALTER SYSTEM    This permits the grantee to execute the ALTER SYSTEM statement.

AUDIT SYSTEM    This permits the grantee to execute AUDIT and NOAUDIT statements to
perform statement auditing.

AUDIT ANY    This permits the grantee to execute AUDIT and NOAUDIT statements to perform
object auditing on objects in any schema.

CREATE PLUGGABLE DATABASE    This permits the grantee to create pluggable databases in a
multitenant database.

Debugging

Oracle Database 12c gives you two debugging-oriented system privileges.

DEBUG CONNECT SESSION    This permits the grantee to connect the current session to
a debugger.

DEBUG ANY PROCEDURE    This permits the grantee to debug all PL/SQL and Java code in the
database. This system privilege is equivalent to granting the object privilege DEBUG for every
applicable object in the database.

Indexes

Oracle Database 12c gives you three system privileges related to indexes:

CREATE ANY INDEX    This permits the grantee to create an index in any schema.

ALTER ANY INDEX    This permits the grantee to alter indexes in any schema.

DROP ANY INDEX    This permits the grantee to drop indexes from any schema.

694	 Chapter 13  ■  Implementing Security and Auditing

Job Scheduler

Oracle Database 12c gives you several system privileges related to the job scheduler:

CREATE JOB    This permits the grantee to create jobs, programs, or schedules in their
own schema.

CREATE ANY JOB    This permits the grantee to create jobs, programs, or schedules in
any schema.

The CREATE ANY JOB privilege gives the grantee the ability to execute
programs using any other user’s credentials. Grant it cautiously.

EXECUTE ANY PROGRAM    This permits the grantee to use any program in a job in their
own schema.

EXECUTE ANY CLASS    This permits the grantee to specify any job class for jobs in their
own schema.

MANAGE SCHEDULER    This permits the grantee to create, alter, or delete any job class,
window, or window group.

Procedures

Oracle Database 12c gives you several system privileges related to stored procedures:

CREATE PROCEDURE    This permits the grantee to create procedures in their own schema.

CREATE ANY PROCEDURE    This permits the grantee to create procedures in any schema.

ALTER ANY PROCEDURE    This permits the grantee to recompile any procedure in the database.

DROP ANY PROCEDURE    This permits the grantee to remove procedures from any schema.

EXECUTE ANY PROCEDURE    This permits the grantee to run any procedure in any schema.

Profiles
Oracle Database 12c gives you three system privileges related to user profiles:

CREATE PROFILE    This permits the grantee to create profiles. Causing a profile to be used
requires an ALTER USER statement (which requires the ALTER USER privilege).

ALTER PROFILE    This permits the grantee to modify existing profiles.

DROP PROFILE    This permits the grantee to drop profiles from the database.

Roles
Oracle Database 12c gives you several system privileges related to roles. Because roles deal
with security, some of these privileges are very powerful.

CREATE ROLE    This permits the grantee to create new roles.

	 Granting and Revoking Privileges	 695

ALTER ANY ROLE    This permits the grantee to change the password for any role in
the database.

DROP ANY ROLE    This permits the grantee to remove any role from the database.

GRANT ANY ROLE    This permits the grantee to grant any role to any user or revoke any role
from any user or role.

The GRANT ANY ROLE privilege permits grantees to assign or rescind power-
ful administrative roles, such as SCHEDULER_ADMIN and IMP_FULL_DATABASE,
to or from any user, including themselves or other DBAs. Grant it cautiously.

Sequences
Oracle Database 12c gives you several system privileges to manage sequences:

CREATE SEQUENCE    This permits the grantee to create new sequences in their own schema.

CREATE ANY SEQUENCE    This permits the grantee to create new sequences in any schema.

ALTER ANY SEQUENCE    This permits the grantee to change the characteristics of any
sequence in the database.

DROP ANY SEQUENCE    This permits the grantee to remove any sequence from any schema in
the database.

SELECT ANY SEQUENCE    This permits the grantee to select from any sequence.

Sessions
Oracle Database 12c gives you four session-oriented system privileges:

CREATE SESSION    This permits the grantee to connect to the database. This privilege is
required for user accounts but may be undesirable for application owner accounts.

ALTER SESSION    This permits the grantee to execute ALTER SESSION statements to enable
and disable SQL_TRACE.

ALTER RESOURCE COST    This permits the grantee to change the way Oracle calculates
resource cost for resource restrictions in a profile.

For more information on managing resource consumption, see the
“Controlling Resource Usage by Users” section later in this chapter.

RESTRICTED SESSION    This permits the grantee to connect when the database has been
opened in RESTRICTED SESSION mode, typically for administrative purposes. User accounts
should not normally be granted this privilege.

696	 Chapter 13  ■  Implementing Security and Auditing

Synonyms
Oracle Database 12c gives you several system privileges related to synonyms:

CREATE SYNONYM    This permits the grantee to create new synonyms in their own schema.

CREATE ANY SYNONYM    This permits the grantee to create new synonyms in any schema.

CREATE PUBLIC SYNONYM    This permits the grantee to create new public synonyms, which
are accessible to all users in the database.

DROP ANY SYNONYM    This permits the grantee to remove any synonyms in any schema.

DROP PUBLIC SYNONYM    This permits the grantee to remove any public synonym from
the database.

Tables
Oracle Database 12c gives you several system privileges for managing tables:

CREATE TABLE    This permits the grantee to create new tables in their own schema.

CREATE ANY TABLE    This permits the grantee to create new tables in any schema.

ALTER ANY TABLE    This permits the grantee to alter existing tables in any schema.

DROP ANY TABLE    This permits the grantee to drop tables from any schema.

COMMENT ANY TABLE    This permits the grantee to assign table or column comments to any
table or view in any schema.

SELECT ANY TABLE    This permits the grantee to query any table or view in any schema.

INSERT ANY TABLE    This permits the grantee to insert new rows into any table in any schema.

UPDATE ANY TABLE    This permits the grantee to modify rows in any table in any schema.

DELETE ANY TABLE    This permits the grantee to delete rows from tables in any schema.

LOCK ANY TABLE    This permits the grantee to execute a LOCK TABLE statement to explicitly
lock a table in any schema.

FLASHBACK ANY TABLE    This permits the grantee to execute a SQL flashback query, using
the AS OF syntax, on any table or view in any schema.

See Chapter 15, “Using Backup and Recovery,” for more information on
using flashback queries.

Tablespaces
Oracle Database 12c gives you the following system privileges to control tablespace
management:

CREATE TABLESPACE    This permits the grantee to create new tablespaces.

	 Granting and Revoking Privileges	 697

ALTER TABLESPACE    This permits the grantee to alter existing tablespaces with the ALTER
TABLESPACE statement.

DROP TABLESPACE    This permits the grantee to delete tablespaces from the database.

MANAGE TABLESPACE    This permits the grantee to alter a tablespace with the ONLINE,
OFFLINE, BEGIN BACKUP, or END BACKUP command.

UNLIMITED TABLESPACE    This permits the grantee to consume unlimited disk space in
any tablespace. This system privilege is equivalent to granting an unlimited quota in each
tablespace to the specified grantee.

Triggers
Oracle Database 12c gives you several system privileges to control trigger management:

CREATE TRIGGER    This permits the grantee to create new triggers on tables in their
own schema.

CREATE ANY TRIGGER    This permits the grantee to create new triggers on tables in
any schema.

ALTER ANY TRIGGER    This permits the grantee to enable, disable, or compile existing
triggers on tables in any schema.

DROP ANY TRIGGER    This permits the grantee to remove triggers from tables in any schema.

ADMINISTER DATABASE TRIGGER    This permits the grantee to create new ON DATABASE triggers.
The grantee must also have the CREATE TRIGGER or CREATE ANY TRIGGER privilege before they
can create an ON DATABASE trigger.

Users
Oracle Database 12c gives you several system privileges to control who can manage
user accounts:

CREATE USER    This permits the grantee to create new database users.

ALTER USER    This permits the grantee to change the authentication method or password
and assign quotas, temporary tablespaces, default tablespaces, or profiles for any user in
the database. All users can change their own password without this privilege.

The ALTER USER privilege allows the grantee to change the authentica-
tion method or password for any user (and also change it back). This
makes it possible for the grantee to masquerade as another user. Grant
this privilege cautiously.

DROP USER    This permits the grantee to remove users together with any objects they own
from a database.

698	 Chapter 13  ■  Implementing Security and Auditing

Views
Oracle Database 12c gives you several system privileges to manage views. Note that some
of these privileges include the word TABLE and not VIEW. These privileges apply to either
tables or views.

CREATE VIEW    This permits the grantee to create new views in their own schema.

CREATE ANY VIEW    This permits the grantee to create new views in any schema.

DROP ANY VIEW    This permits the grantee to remove views from any schema.

COMMENT ANY TABLE    This permits the grantee to assign table or column comments to any
table or view in any schema.

FLASHBACK ANY TABLE    This permits the grantee to execute a SQL flashback query, using
the AS OF syntax, on any table or view in any schema.

Administrative Privileges
Oracle Database 12c gives you five system privileges for administering your database that
are very powerful. These privileges should not be granted lightly. The administrative privi-
leges are “special” system privileges in that administrators who are granted these privileges
can access a database instance even if the database is not open and perform administrative
operations without having any other privileges.

SYSDBA    The most powerful system privilege, this permits the grantee to create, alter,
drop, start up, or shut down databases; enable ARCHIVELOG and NOARCHIVELOG mode;
recover a database; and create an spfile; in addition to having all the system privileges
the database has to offer, including RESTRICTED SESSION. When this privilege is used, the
user connected to the database is SYS.

SYSOPER    Only slightly less powerful than SYSDBA, this privilege permits the grantee to
start up, shut down, alter, mount, back up, and recover a database. The grantee can create
or alter an spfile and enter restricted session mode. When this privilege is used, the user
connected to the database is PUBLIC.

SYSBACKUP    Use this privilege to perform RMAN backup and recovery operations from
RMAN or through SQL. This privilege also gives the grantee the ability to start and stop
the database instance, create an spfile, create or drop a database, and create control files.
When this privilege is used, the user connected to the database is SYSBACKUP.

SYSDG    The SYSDG administrative privilege allows the grantee to perform Data Guard
operations with Data Guard Broker or the DGMGRL command-line interface. When this
privilege is used, the user connected to the database is SYSDG.

SYSKM    The SYSKM administrative privilege allows the grantee to manage transparent data
encryption wallet operations. When this privilege is used, the user connected to the database
is SYSKM.

	 Granting and Revoking Privileges	 699

Similar to the SYSDBA privilege, the SYSASM privilege is very powerful and
used to administer an Automatic Storage Management (ASM) instance.

Database administrative users SYSBACKUP, SYSDG, and SYSKM cannot
be dropped.

Others
Oracle Database 12c gives you several system privileges for managing your database
that don’t fit into the earlier categories. These privileges include powerful administrative
capabilities and should not be granted lightly.

ANALYZE ANY    This permits the grantee to execute an ANALYZE statement on tables, indexes,
or clusters in any schema.

PURGE DBA_RECYCLEBIN    This permits the grantee to purge objects owned by any user from
dba_recyclebin.

GRANT ANY OBJECT PRIVILEGE    This permits the grantee to assign object privileges on any
object in any schema.

GRANT ANY PRIVILEGE    This permits the grantee to assign any system privilege to other
users or roles.

GRANT ANY ROLE    This permits the grantee to assign any role to other users or roles. This
privilege also gives the grantee permission to revoke any role.

SELECT ANY DICTIONARY    This permits the grantee to select from the SYS-owned data
dictionary tables, such as TAB$ or SYSAUTH$.

How to Grant System Privileges
As with object privileges, you use the GRANT statement to confer system privileges on either
a user or a role. Unlike object privileges, the optional keywords WITH ADMIN OPTION are
required to additionally allow the grantee to confer these privileges on other users and roles.
For example, to give the CREATE USER, ALTER USER, and DROP USER privileges to the role
APPL_DBA, you execute the following statement:

GRANT create user, alter user, drop user TO appl_dba;

System and role privileges require the wording WITH ADMIN OPTION; object
privileges require the wording WITH GRANT OPTION. Because the function is
so similar but the syntax is different, be sure you know when to use ADMIN
and when to use GRANT—a question involving this subtle difference may
appear on the exam.

700	 Chapter 13  ■  Implementing Security and Auditing

As with object privileges, you can grant system privileges to the special user PUBLIC.
Granting privileges to PUBLIC allows anyone with a database account and the CONNECT
privilege to exercise this privilege. In general, because system privileges are more powerful
than object privileges, take care when granting a system privilege to PUBLIC. For example,
to give all current and future database users the FLASHBACK ANY TABLE privilege, execute
the following:

GRANT flashback any table TO public;

To give the INDEX ANY TABLE privilege to the role APPL_DBA, together with the permission to
allow anyone with the role APPL_DBA to grant this privilege to others, execute the following:

GRANT index any table TO appl_dba WITH ADMIN OPTION;

If you grant a system privilege WITH ADMIN OPTION and later revoke that privilege, the
privileges created by the grantee will not be revoked. Unlike object privileges, the revocation
of system privileges does not cascade. Think of it this way: WITH GRANT OPTION includes the
keyword GRANT and so implies that a revoke cascades, but WITH ADMIN OPTION does not men-
tion GRANT, so a revoke has no effect. Here’s an example. Mary grants the SELECT ANY TABLE
privilege to new DBA Zachary with ADMIN OPTION. Zachary then grants this privilege to
Rex. Later, Zachary gets promoted and leaves the department, so Mary revokes the SELECT
ANY TABLE privilege from Zachary. Rex’s privilege remains unaffected. You can see this in
Figure 13.5.

This behavior differs from object privileges, because the database does not record both
grantor and grantee for system privileges—only the grantee is recorded.

F igur e 13 .5     Revoking system privileges

Zachary

Mary grants to Zachary.
GRANT SELECT ANY TABLE

WITH ADMIN OPTION

Rex

Zachary grants to Rex.

GRANT SELECT ANY TABLE

Rex

Zachary is dropped and
Rex retains privileges.

GRANT SELECT ANY TABLE

The database only records the privilege granted, not who granted it.

	 Granting and Revoking Privileges	 701

The data dictionary view DBA_SYS_PRIVS lists all the system privileges
granted in the database.

Role Privileges
Role privileges confer on the grantee a group of system, object, and other role privileges.
Users who have been granted a role inherit the privileges that have been granted to that role.
Roles can be password protected, so users may have a role granted to them yet not be able to
use that role in all database sessions. We’ll cover roles and role privileges—including how
to grant them—in the following section, “Creating and Managing Roles.”

Creating and Managing Roles
A role is a tool for administering privileges. Privileges can be granted to a role, and then
that role can be granted to other roles and users. Users can, therefore, inherit privileges via
roles. Roles serve no other purpose than to administer privileges.

To create a role, use the CREATE ROLE statement. You can optionally include an IDENTIFIED
BY clause that requires users to authenticate themselves before enabling the role. Roles requir-
ing authentication are typically used inside an application, where a user’s activities are con-
trolled by the application. To create the role APPL_DBA, execute the following:

CREATE ROLE appl_dba;

To enable a role, execute a SET ROLE statement, like this:

SET ROLE appl_dba IDENTIFIED BY seekwrit;

The data dictionary view DBA_ROLE_PRIVS lists all the role privileges granted
in the database.

How to Grant Role Privileges
As with object and system privileges, you use the GRANT statement to confer role privileges
on either a user or another role. Also, like system privileges, the optional keywords WITH
ADMIN OPTION allow the grantee to confer these privileges on other users and roles. For
example, to give the OEM_MONITOR role to user charlie, execute the following:

GRANT oem_monitor TO charlie;

As with the other privileges, you can grant role privileges to the special user PUBLIC.
Granting privileges to PUBLIC allows anyone with a database account to exercise this

702	 Chapter 13  ■  Implementing Security and Auditing

privilege. For example, to give all current and future database users use of the plustrace
role, execute the following:

GRANT plustrace TO public;

To give the INDEX ANY TABLE privilege to the role APPL_DBA, together with the permission to
allow anyone with the role APPL_DBA to grant this privilege to others, execute the following:

GRANT index any table TO appl_dba WITH ADMIN OPTION;

When it comes to granting a role WITH ADMIN OPTION, roles behave like system privileges,
and subsequent revocations do not cascade.

If the role granted to a user is not the default role, the user must enable the role in
the session to be able to use the role. In the following sections, you will learn to work
with roles in a session.

Enabling Roles

Roles can be enabled—or disabled, for that matter—selectively in each database session. If
you have two concurrent sessions, the roles in effect for each session can be different. Use
the SET ROLE role_list statement to enable one or more roles. role_list is a comma-
delimited list of roles to enable. This list can include the keyword ALL, which enables all the
roles granted to the user. You can optionally append a list of roles to exclude from the ALL
list by specifying ALL EXCEPT exclusion_list.

If a role has a password associated with it, the keywords IDENTIFIED BY password must
immediately follow the role name in the role_list.

For example, to enable the password-protected role HR_ADMIN, together with the unpro-
tected role EMPLOYEE, execute the following:

SET ROLE hr_admin IDENTIFIED BY "my!seekrit", employee;

To enable all roles except HR_ADMIN, run this:

SET ROLE ALL EXCEPT hr_admin;

You can enable as many roles as have been granted to you, up to the MAX_ENABLED_ROLES
initialization parameter.

Identifying Enabled Roles

The roles that are enabled in your session are listed in the data dictionary view SESSION_
ROLES. To identify these enabled roles for your session, run the following:

SELECT role FROM session_roles;

These roles include the roles that have been granted to you, the roles that have been
granted to the special user PUBLIC, and the roles that you have inherited by way of other roles.
To identify the roles granted to either user or the special user PUBLIC, run the following:

SELECT granted_role FROM user_role_privs
WHERE username IN (USER, 'PUBLIC');

	 Granting and Revoking Privileges	 703

The role DBA includes the role SCHEDULER_ADMIN, which in turn has system privileges (such
as CREATE ANY JOB). A user who has been granted the DBA role inherits the SCHEDULER_ADMIN
role indirectly. To identify the roles that are both enabled in your session and granted directly
to you or PUBLIC, but not those roles that you inherited, run this:

SELECT role FROM session_roles
INTERSECT
SELECT granted_role FROM user_role_privs
WHERE username IN (USER, 'PUBLIC');

In your sessions, you can disable only these directly granted and public roles.

Disabling Roles

Roles can be disabled in a database session either en masse or by exception. Use the SET ROLE
NONE statement to disable all roles. Use the SET ROLE ALL EXCEPT role_list statement to
enable all roles except those in the comma-delimited role_list.

There is no way to selectively disable a single role. Also, you cannot disable roles that you
inherit by way of another role without disabling the parent role. For example, if you have
been granted the DBA, RESOURCE, and CONNECT roles, you inherit several roles through the
DBA role when it is enabled. If you want to disable the SCHEDULER_ADMIN role you inherited
through the DBA role, you cannot do that. The options you have are that you can disable the
DBA role or you can create a new role similar to the DBA role without the SCHEDULER_ADMIN
role and use that role.

Setting Default Roles

Roles that are enabled by default when you log on are called default roles. You do not need to
specify a password for default roles and do not have to execute a SET ROLE statement to enable
a default role. Change the default roles for a user account with an ALTER USER DEFAULT ROLE
role_list statement. The role_list can include the keywords ALL, NONE, and EXCEPT, in the
same manner as with a SET ROLE statement.

Including a password-protected role in the role_list defeats the purpose of password
protecting the role because it is automatically enabled without the password. When you
create a role, you are implicitly granted that role with the admin option, and it is config-
ured as a default role for your account.

For example, to create the role EMPLOYEE, grant it to user scott, and configure all of
scott’s roles except PLUSTRACE as default roles, run the following:

CREATE ROLE employee;
GRANT employee TO scott;
ALTER USER scott DEFAULT ROLE ALL EXCEPT plustrace;

Because the creator of a role automatically has that role assigned as a default role, admin-
istrative users (such as SYS or SYSTEM) who create many roles may need to alter their default
role list. If you attempt to log on with more default roles than allowed by the MAX_ENABLED_
ROLES initialization parameter, you will raise an exception, and your logon will fail.

704	 Chapter 13  ■  Implementing Security and Auditing

A Password-Protected Role

Lucinda works in HR and needs to be able to modify an employee’s salary after they have a
review and their raise is approved. The HR application ensures that the raise is approved and
falls within corporate guidelines. Although Lucinda needs to be able to change employee
salaries, she should be allowed to do so only from within the HR application, because it
ensures that business rules are followed.

You wisely choose to use a password-protected role to satisfy these requirements. Update
privilege on the salary table is granted to the password-protected role salary_admin.
Lucinda is then granted the salary_admin role, but she is not told the password for it. The
HR application has the password encoded within it, so when Lucinda runs the HR applica-
tion, unknown to her, a SET ROLE salary_admin IDENTIFY BY password statement is
executed, enabling the role and allowing her to change the salary.

If Lucinda tries to execute an UPDATE statement on the salary table from SQL*Plus, she
will get an insufficient privileges error.

Default Database Roles
When you create a new database, Oracle Database 12c creates several roles in the data-
base based on the options you chose at the database creation. The following are a few of
the important roles that are created automatically during database creation:

CONNECT    This role has only one privilege, CREATE SESSION.

RESOURCE    This role has the privileges required to create common objects in the
user’s schema.

DBA    This is the most powerful role in the database. Only database administrators
should be given this role. This role has all the system privileges and several administra-
tive privileges.

SELECT_CATALOG_ROLE    This role gives the user access to query the data dictionary views.

EXECUTE_CATALOG_ROLE    This role gives the user privileges to execute the packages and
procedures in the data dictionary.

DELETE_CATALOG_ROLE    This role gives the user the ability to delete records from the standard
audit table (SYS.AUD$).

	 Granting and Revoking Privileges	 705

To list all the roles defined in the database, query the data dictionary view DBA_ROLES.
To view the system privileges granted to a role, query the DBA_SYS_PRIVS dictionary view.
For example, the following query lists the system privileges granted to the RESOURCE role:

SQL> SELECT grantee, privilege, admin_option
 FROM dba_sys_privs
 WHERE grantee = 'RESOURCE';

GRANTEE PRIVILEGE ADM
-------------------- -------------------- ---
RESOURCE CREATE TRIGGER NO
RESOURCE CREATE SEQUENCE NO
RESOURCE CREATE TYPE NO
RESOURCE CREATE PROCEDURE NO
RESOURCE CREATE CLUSTER NO
RESOURCE CREATE OPERATOR NO
RESOURCE CREATE INDEXTYPE NO
RESOURCE CREATE TABLE NO

Applying the Principle of Least Privilege
The principle of least privilege states that each user should be given only the minimal privileges
needed to perform their job. This principle is a central tenet to the initially closed philosophy
whereby all access is initially closed or unavailable and access is opened on a need-to-know
basis. Highly secure environments typically operate under an initially closed philosophy. The
contrasting philosophy is an initially open philosophy, whereby all access is by default open to
all users and only sensitive areas are closed. Academic or learning environments typically oper-
ate under an initially open philosophy.

Many IT organizations want the most secure policies for production systems, which calls
for the initially closed approach to security. To support the need for administrators and pro-
grammers to quickly learn new technology, these shops frequently create “sandbox” systems
that follow the initially open philosophy. These sandbox systems afford their limited users the
learning benefit of the initially open approach, while not storing or giving gateway access to
any sensitive information elsewhere in the enterprise.

To implement the principle of least privilege on your production or development sys-
tems, you should take several actions, or best practices, while setting up or locking down
the database. Let’s take a look at these:

Protect the data dictionary.     Ensure that users with the SELECT ANY TABLE privilege cannot
access the tables that underlie the data dictionary by setting O7_DICTIONARY_ACCESSIBILITY =
FALSE. This is the default setting.

706	 Chapter 13  ■  Implementing Security and Auditing

Revoke unnecessary privileges from PUBLIC.     By default, several packages and roles are
granted to the special user PUBLIC. Review these privileges, and revoke the EXECUTE privilege
from PUBLIC if not necessary. Some of these packages include the following:

UTL_TCP    This permits the grantee to establish a network connection to any waiting
TCP/IP network service. Once a connection is established, arbitrary information can
be sent and received directly from the database to and from the other TCP services
on your network. If your organization is concerned about information exchange over
TCP/IP, revoke the EXECUTE privilege on this package from PUBLIC. Grant privileges on
this package only to those users who need it.

UTL_SMTP    This permits the grantee to send arbitrary email. If your organization is
concerned about information exchange via email, revoke the EXECUTE privilege on this
package from PUBLIC. Grant privileges on this package only to those users who need it.

UTL_HTTP    This permits the grantee to send and receive arbitrary data via the HTTP pro-
tocol. If your organization is concerned about information exchange via HTTP, revoke the
EXECUTE privilege on this package from PUBLIC. Grant privileges on this package only to
those users who need it.

UTL_FILE    This permits the grantee to read and write text data to and from arbitrary
operating-system files that are in the designated directories. UTL_FILE does not manage
concurrency, so multiple user sessions can step on each other, overwriting changes via
UTL_FILE. Consider revoking the EXECUTE privilege on this package from PUBLIC.

DBMS_OBFUSCATION_TOOLKIT and DBMS_CRYPTO    These permit the grantee to employ
encryption technologies. In a managed environment using encryption, the keys are stored
and managed. If encryption keys are lost, the encrypted data is undecipherable. Consider
revoking the EXECUTE privilege on these packages from PUBLIC.

You can revoke the EXECUTE privileges like this:

REVOKE EXECUTE ON utl_tcp FROM PUBLIC;
REVOKE EXECUTE ON utl_smtp FROM PUBLIC;
REVOKE EXECUTE ON utl_http FROM PUBLIC;
REVOKE EXECUTE ON utl_file FROM PUBLIC;
REVOKE EXECUTE ON dbms_obfuscation_toolkit FROM PUBLIC;
REVOKE EXECUTE ON dbms_crypto FROM PUBLIC;

You can query the data dictionary to see what other packages may need to be locked down
by revoking the EXECUTE privilege from PUBLIC. Here is a query to list the packages, owned
by user SYS, that have the EXECUTE privilege granted to PUBLIC:

SELECT * FROM DBA_TAB_PRIVS
WHERE GRANTEE = 'PUBLIC'
AND PRIVILEGE = 'EXECUTE'
AND OWNER = 'SYS';

	 Granting and Revoking Privileges	 707

Limit the users who have administrative privileges.     Grant administrative privileges to
user accounts cautiously. Some powerful administrative privileges and roles to exercise
caution with include the following:

SYSDBA    This gives the grantee the highest level of privileges with the Oracle Database
12c software. A clever user with the SYSDBA role can circumvent most database security
measures. There is usually no good reason to grant this role to any account except SYS,
and the SYS password should be both cautiously guarded and changed regularly. Also,
guard operating-system accounts carefully. If you are logged on to the database server
using a privileged operating-system account, you might be able to connect to the database
with SYSDBA authority and no password by entering connect / as sysdba in SQL*Plus.

DBA    This permits the grantee to assign privileges and manipulate data throughout the
database. A clever user with the DBA role can circumvent most database security measures.
Grant this role only to those users who need it.

The ANY system privileges    SELECT ANY TABLE, GRANT ANY ROLE, DELETE ANY TABLE,
and so on, permit the grantee to assign privileges and manipulate data throughout the
database. A malicious user with one of these roles can wreak havoc in your database.
Grant these privileges only to those users who need them.

Do not enable REMOTE_OS_AUTHENT.     The default setting for the initialization parameter
REMOTE_OS_AUTHENT is FALSE. There is rarely a reason to enable this feature. When set to
TRUE, this parameter tells the database to trust any client to authenticate externally authenti-
cated accounts. For example, if you have an externally identified account named ORACLE that
has DBA privileges for use in administrative scripts running on the database server (a common
practice), setting this parameter to TRUE will allow someone with a notebook or desktop PC
and a locally created ORACLE account to connect to your database with DBA credentials and no
password.

Identifying Unused Privileges
A major concern in existing databases and applications is that users have excessive privi-
leges because over granting privileges is easier than identifying what is really required. This
is not a problem as long as the user uses only the application to connect to the database.
Direct connection to the database provides an opportunity to misuse the privileges.

To achieve the least privilege principle, unused privileges need to be identified and revoked.
Oracle Database 12c offers a DBMS_PRIVILEGE_CAPTURE package to identify user privileges.
The procedures available in this package are

■■ CREATE_CAPTURE
■■ ENABLE_CAPTURE
■■ DISABLE_CAPTURE
■■ GENERATE_RESULT
■■ DROP_CAPTURE

708	 Chapter 13  ■  Implementing Security and Auditing

We will give a brief overview of the privilege-capture functionality. As the subprograms
or procedure names indicate, you must first define a policy using the CREATE_CAPTURE pro-
cedure. The policy can be at the database level analysis, at the role level, or it can be based
on a context. Once policy is created, it is not enabled by default. Use the ENABLE_CAPTURE
program to enable the policy.

After enabling capture, run the application or the programs while connected as the
user in review and perform all necessary functions. After the analysis period, you dis-
able the policy using the DISABLE_CAPTURE program. Once the policy is disabled, you are
ready to generate the results using the GENERATE_RESULT program. The DROP_CAPTURE, as
the name indicates, is to drop the capture policy. The capture must be disabled before it
can be dropped. You provide a name for the policy when creating it, and that name is the
parameter for all the other programs.

By running the GENERATE_RESULT, the following data dictionary views are populated:

DBA_USED_xxx
DBA_USED_xxx_PATH
DBA_UNUSED_xxx
DBA_UNUSED_xxx_PATH

The DBA_USED_ views show the privileges used by the user for the policy. The DBA_UNUSED_
views show the privileges that are assigned to the user, but are not used. The _PATH views
show the privilege path (how the privilege was given to the user and through which role).

The following code shows a simple example using the procedures and the dictionary
views mentioned in this section. User OE has obtained privileges on certain objects owned
by HR, and you want to identify the privileges used by OE and revoke the unused privileges.

As SYSTEM user (or user with CAPTURE_ADMIN role), you create and enable the capture.

SQL> show user
USER is "SYSTEM"
SQL> exec SYS.DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE (-
 name => 'REVIEW_OE_PRIV', -
 description => 'Review OE privileges', -
 type => dbms_privilege_capture.g_context, -
 condition => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''OE'' ');

PL/SQL procedure successfully completed.

SQL>
SQL> exec SYS.DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE (-
 name => 'REVIEW_OE_PRIV');

PL/SQL procedure successfully completed.

SQL>

	 Granting and Revoking Privileges	 709

Now as OE user, you perform a few actions.

SQL> show user
USER is "OE"
SQL> select count(*) from hr.employees;
 COUNT(*)

 107

SQL> update hr.employees set salary = salary where employee_id = 120;
1 row updated.

Next, you connect back as SYSTEM user and disable the capture. Then you generate the
results to query the views.

SQL> show user
USER is "SYSTEM"
SQL> exec SYS.DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE (-
 name => 'REVIEW_OE_PRIV');

PL/SQL procedure successfully completed.

SQL> exec SYS.DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT (-
 name => 'REVIEW_OE_PRIV');

PL/SQL procedure successfully completed.

Then you review which system privileges were used by OE during the analysis period.

SQL> SELECT username, sys_priv
 FROM dba_used_sysprivs;

USERNAME SYS_PRIV
---------- --------------------
OE CREATE SESSION

Then review which object privileges were used by OE during the analysis period. DBA_
USED_PRIVS view shows both the system and the object privileges used.

SQL> SELECT username, object_name, obj_priv
 FROM dba_used_objprivs;

710	 Chapter 13  ■  Implementing Security and Auditing

USERNAME OBJECT_NAME OBJ_PRIV
---------- ---------------------- ---------------
OE EMPLOYEES SELECT
OE ORA$BASE USE
OE DUAL SELECT
OE PRODUCT_PRIVS SELECT
OE DUAL SELECT
OE DBMS_APPLICATION_INFO EXECUTE
OE EMPLOYEES UPDATE

The DBA_UNUSED_PRIVS view shows the privileges that are unused and potentially
revoked from OE. Part of the output is truncated in the following.

SQL> SELECT username, sys_priv, obj_priv, object_owner, object_name
 FROM dba_unused_privs;

USERNAME SYS_PRIV OBJ_PRIV OBJECT_ OBJECT_NAME
---------- -------------------- --------------- ------- ----------------------
OE REFERENCES HR EMPLOYEES
OE ALTER HR EMPLOYEES
OE DELETE HR EMPLOYEES
OE INDEX HR EMPLOYEES
OE INSERT HR EMPLOYEES
OE EXECUTE SYS DBMS_STATS
OE SELECT HR COUNTRIES
OE REFERENCES HR COUNTRIES
OE SELECT HR LOCATIONS
OE REFERENCES HR LOCATIONS
… … …
OE CREATE DATABASE LINK
OE UNLIMITED TABLESPACE
… … …
OE CREATE TRIGGER
OE CREATE TYPE
OE CREATE OPERATOR
OE CREATE INDEXTYPE
OE DELETE XDB APP_USERS_AND_ROLES
OE INSERT XDB APP_USERS_AND_ROLES

After you are satisfied with the analysis, drop the capture.

	 Controlling Resource Usage by Users	 711

SQL> exec SYS.DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE (-
 name => 'REVIEW_OE_PRIV');

PL/SQL procedure successfully completed.

Controlling Resource Usage by Users
Oracle Database 12c lets you limit some resources that your user accounts consume. Disk-
space limits are governed by tablespace quotas (discussed in “Assigning Tablespace and
Quotas” earlier in the chapter); CPU and memory limits are implemented with profiles.

CPU and session-oriented resource limits are managed through profiles. Profiles let you
set limits for several resources, including CPU time, memory, and the number of logical reads
performed during a user session or database call. A database call is either a parse, an execute,
or a fetch. Usually, the database implicitly performs these calls for you. You can explicitly
make these database calls from Java, PL/SQL, or Oracle Call Interface (OCI) programs.

A logical read is a measure of the amount of work the database performs while executing
SQL statements. Statements that generate more logical reads require the database to perform
more work than statements generating fewer logical reads. Technically, a logical read is
counted for each row accessed via ROWID (index access) and for each data block accessed via
a multiblock read (full-table scan or index fast-full scan).

To enable resource limit restrictions with profiles, first enable them in the database by
setting the initialization parameter resource_limit to TRUE, like this:

ALTER SYSTEM SET resource_limit = TRUE SCOPE = BOTH;

To assign resource limits to a profile, use the CREATE PROFILE or ALTER PROFILE statement
with one or more of the kernel resource parameters. The following is an example of the CREATE
PROFILE statement, with all the resources that can be controlled. A resource value of DEFAULT
indicates that the value is derived from the DEFAULT profile. Initially, the DEFAULT profile has all
the system resources set to UNLIMITED.

CREATE PROFILE "TEST1" LIMIT
CPU_PER_SESSION DEFAULT
CPU_PER_CALL DEFAULT
CONNECT_TIME DEFAULT
IDLE_TIME 10
SESSIONS_PER_USER DEFAULT
LOGICAL_READS_PER_SESSION DEFAULT
LOGICAL_READS_PER_CALL 250000
PRIVATE_SGA 25000
COMPOSITE_LIMIT DEFAULT;

712	 Chapter 13  ■  Implementing Security and Auditing

Each resource is explained here:

CONNECT_TIME    This limits any session established by a user having this profile set to the
specified number of minutes. Connection time is sometimes called wall clock time to dif-
ferentiate it from CPU time. When a session exceeds the specified number of minutes, the
database rolls back any uncommitted changes and terminates the session. The next call to
the database raises an exception. You can use the special value UNLIMITED to tell the data-
base that there is no limit to a session's duration. Set this parameter in a CREATE PROFILE
or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CONNECT_TIME 10;
ALTER PROFILE data_analyst LIMIT CONNECT_TIME UNLIMITED;

CPU_PER_CALL    This limits the amount of CPU time that can be consumed by any single
database call in any session established by a user with this profile. The specified value is in
hundredths of a second and applies to a parse, an execute, or a fetch call. These calls are
implicitly performed by the database for any SQL statement executed in SQL*Plus and can
be explicitly called from OCI, Java, and PL/SQL programs. When this limit is breached, the
statement fails and is automatically rolled back, and an exception is raised. The user can
then commit or roll back any uncommitted changes in the transaction. Set this parameter
in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CPU_PER_CALL 3000;
ALTER PROFILE data_analyst LIMIT CPU_PER_CALL UNLIMITED;

CPU_PER_SESSION    This limits the amount of CPU time that can be consumed in any session
established by a user with this profile. The specified value is in hundredths of a second and
applies to a parse, an execute, or a fetch. When this limit is breached, the current statement
fails, the transaction is automatically rolled back, and an exception is raised. The user can
then commit or roll back any uncommitted changes in the transaction before logging off. Set
this parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT CPU_PER_CALL 30000;
ALTER PROFILE data_analyst LIMIT CPU_PER_CALL UNLIMITED;

IDLE_TIME    This limits the duration of time between database calls to the specified number
of minutes. If a user having this profile exceeds this setting, the next statement fails, and
the user is allowed to either commit or roll back any uncommitted changes before logging
off. Long-running statements are not affected by this setting. Set IDLE_TIME in a CREATE
PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT IDLE_TIME 10;
ALTER PROFILE daemon LIMIT IDLE_TIME UNLIMITED;

LOGICAL_READS_PER_CALL    This caps the amount of work that any individual database call
performs to the specified number of logical reads. The database call is either a parse, an
execute, or a fetch. If the limit is exceeded, the database rolls back the statement, returns an

	 Controlling Resource Usage by Users	 713

error to the calling program, and allows the user to either commit or roll back any uncom-
mitted changes. Logical reads are computed as the sum of consistent gets plus current mode
gets. Set this parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE agent LIMIT LOGICAL_READS_PER_CALL 2500;
ALTER PROFILE data_analyst LIMIT LOGICAL_READS_PER_CALL 1000000;

LOGICAL_READS_PER_SESSION    This limits the amount of database work that a user’s ses-
sion can consume to the specified number of logical reads. When the limit is exceeded,
the current statement fails and an exception is raised, and the user must either commit or
roll back the transaction and end the session. Logical reads are computed as the sum of
consistent gets plus current mode gets. Set this parameter in a CREATE PROFILE or ALTER
PROFILE statement like this:

CREATE PROFILE agent LIMIT LOGICAL_READS_PER_SESSION 250000;
ALTER PROFILE data_analyst
 LIMIT LOGICAL_READS_PER_SESSION 35000000;

PRIVATE_SGA    This limits the amount of system global area (SGA) memory in bytes that
a user connecting with shared servers (via a multi-threaded server [MTS]) can allocate to
the persistent area in the program global area (PGA). This area contains bind information
among other items. Set this parameter in a CREATE PROFILE or ALTER PROFILE statement
like this:

CREATE PROFILE agent LIMIT PRIVATE_SGA 2500;
ALTER PROFILE data_analyst LIMIT PRIVATE_SGA UNLIMITED;

SESSIONS_PER_USER    This restricts a user with this profile to the specified number of
database sessions. This setting can be useful to discourage DBAs from all connecting to a
shared administrative account to do their work when corporate policy indicates that they
should be connecting to their individual accounts. Set this parameter in a CREATE PROFILE
or ALTER PROFILE statement like this:

CREATE PROFILE admin_profile LIMIT SESSIONS_PER_USER 2;
ALTER PROFILE data_analyst LIMIT SESSIONS_PER_USER 6;

COMPOSITE_LIMIT    This limits the number of service units that can be consumed dur-
ing a user session. Service units are calculated as the weighted sum of CPU_PER_SESSION,
LOGICAL_READS_PER_SESSION, CONNECT_TIME, and PRIVATE_SGA values. The weight-
ings are established with the ALTER RESOURCE COST statement and can be viewed from
the RESOURCE_COST data dictionary view. This COMPOSITE_LIMIT allows you to cap the
resource consumption of user groups in more complex ways than a single resource limit.
Set this parameter in a CREATE PROFILE or ALTER PROFILE statement like this:

CREATE PROFILE admi_profile LIMIT COMPOSITE_LIMIT UNLIMITED;
ALTER PROFILE data_analyst LIMIT COMPOSITE_LIMIT 100000;

714	 Chapter 13  ■  Implementing Security and Auditing

To enforce the resource limits established with profiles, you must enable them by setting
the initialization parameter RESOURCE_LIMIT to TRUE. The default setting is FALSE. Set this
parameter with the ALTER SYSTEM statement, like this:

ALTER SYSTEM SET resource_limit = TRUE SCOPE=BOTH;

You can also use profiles to manage passwords, which is discussed in the next section.

Implementing Password Security Features
For users who are configured for database authentication, password-security rules are enforced
with profiles and password complexity rules with verification functions. Profiles have a set of
standard rules that define how long a password can remain valid, the elapsed time, the number
of password changes before a password can be reused, the number of failed login attempts that
will lock the account, and how long the account will remain locked.

If you want a parameter to inherit the setting from the DEFAULT profile, set the parameter’s
value to the keyword DEFAULT. Explicitly assign password rules to a profile using the CREATE
PROFILE or ALTER PROFILE statement. The following is an example of the CREATE PROFILE
statement, with all the password features that can be controlled:

CREATE PROFILE "TEST2" LIMIT
PASSWORD_LIFE_TIME 60
PASSWORD_GRACE_TIME 7
PASSWORD_REUSE_MAX 2
PASSWORD_REUSE_TIME 4
PASSWORD_LOCK_TIME DEFAULT
FAILED_LOGIN_ATTEMPTS 5
PASSWORD_VERIFY_FUNCTION DEFAULT;

Each option is discussed in detail here with examples:

FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME    The FAILED_LOGIN_ATTEMPTS
parameter specifies how many times in a row the user can fail password authentica-
tion. If this limit is breached, the account is locked for PASSWORD_LOCK_TIME days. If the
PASSWORD_LOCK_TIME parameter is set to UNLIMITED and a user exceeds FAILED_LOGIN_
ATTEMPTS, the account must be manually unlocked. You can set these parameters in a
CREATE PROFILE or ALTER PROFILE statement like this:

-- lock account for 10 minutes if 3 consecutive logins fail
CREATE PROFILE agent LIMIT
 FAILED_LOGIN_ATTEMPTS 3
 PASSWORD_LOCK_TIME 10/1440;

-- remove failed login restrictions
ALTER PROFILE student LIMIT FAILED_LOGIN_ATTEMPTS UNLIMITED;

	 Controlling Resource Usage by Users	 715

-- manually unlock an account
ALTER USER scott ACCOUNT UNLOCK;

The default value for FAILED_LOGIN_ATTEMPTS in Oracle Database 12c is 10 and for
PASSWORD_LOCK_TIME is 1 day.

PASSWORD_LIFE_TIME and PASSWORD_GRACE_TIME    The PASSWORD_LIFE_TIME parameter
specifies the maximum number of days that a password can remain in force, and PASSWORD_
GRACE_TIME is the number of days after the first successful login following password expira-
tion during which the user will be reminded to change their password but allowed to log in.
After the PASSWORD_GRACE_TIME limit is reached, the user must change their password. If you
set PASSWORD_LIFE_TIME to a value and set PASSWORD_GRACE_TIME to UNLIMITED, users will be
reminded to change their password every time they log in but never forced to actually do so.
You can set these two parameters in a CREATE PROFILE or ALTER PROFILE statement like this:

-- limit the password lifetime to 90 days
-- during the last 14 days the user will be reminded
-- to change the password
CREATE PROFILE agent LIMIT
 PASSWORD_LIFE_TIME 90 - 14
 PASSWORD_GRACE_TIME 14;

-- set no limit to password lifetime
ALTER PROFILE student LIMIT
 PASSWORD_LIFE_TIME UNLIMITED
 PASSWORD_GRACE_TIME DEFAULT;

The default value for PASSWORD_LIFE_TIME in Oracle Database 12c is 180 days and for
PASSWORD_GRACE_TIME is 7 days.

PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX    The PASSWORD_REUSE_TIME parameter
specifies the minimum number of days that must transpire before a password can be reused.
PASSWORD_REUSE_MAX specifies the minimum number of password changes that must occur
before a password can be reused. If you specify a value for one of these two parameters and
UNLIMITED for the other, passwords can never be reused. If you set both PASSWORD_REUSE_
TIME and PASSWORD_REUSE_MAX to UNLIMITED (the default), these parameters are essentially
disabled. You can set these password parameters in a CREATE PROFILE or ALTER PROFILE
statement like this:

-- require at least 4 password changes and 1 year
-- before a password may be reused.
CREATE PROFILE agent LIMIT
 PASSWORD_REUSE_TIME 365
 PASSWORD_REUSE_MAX 4;

716	 Chapter 13  ■  Implementing Security and Auditing

-- remove password reuse constraints
ALTER PROFILE student LIMIT
 PASSWORD_REUSE_TIME UNLIMITED
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Password Lock Time to Two Hours

Several password attributes are durations expressed in days. These durations are normally
set with integer values, such as 1, 15, 30, 90, or 365 days.

The default password lock time for Oracle Database 12c is 1 day, and the unit used to express
the lock time is in days. A few of the clients we’ve worked for needed the password lock to go
away after two hours if the user tried to enter an incorrect password too many times. How do
you set the value in hours or minutes when the unit is in days?

All these password profile attributes take fractional values as well; therefore, you can
represent hours and minutes. Because there are 1,440 minutes in a day, you can repre-
sent 5 minutes as 5/1,440 days and represent 5 seconds as 5/86,400 days. The following
code sets the password lock time to two hours:

ALTER PROFILE student LIMIT PASSWORD_LOCK_TIME 2/24;

You can represent the value using decimal numbers; for example, the following code sets
the password lock time to six hours:

ALTER PROFILE student LIMIT PASSWORD_LOCK_TIME .25;

Using a fractional number of days is a great way to try combinations of values and observe
the results of setting these password rules.

PASSWORD_VERIFY_FUNCTION    The PASSWORD_VERIFY_FUNCTION parameter lets you codify
additional rules that will be verified when a password is changed. These rules usually verify
password complexity such as minimal password length or check that a password does
not appear in a dictionary. The PL/SQL function used in the PASSWORD_VERIFY_FUNCTION
parameter must be created under the user SYS and must have three parameters of type
VARCHAR2. These parameters must contain the username in the first parameter, the new
password in the second, and the old password in the third. You can set this parameter in a
CREATE PROFILE or ALTER PROFILE statement like this:

-- use a custom password function
CREATE PROFILE agent LIMIT PASSWORD_VERIFY_FUNCTION my_function;

	 Controlling Resource Usage by Users	 717

-- disable use of a custom function
ALTER PROFILE student LIMIT PASSWORD_VERIFY_FUNCTION DEFAULT;

Implementing a Corporate Password-Security Policy

Many companies have security policies requiring that several password complexity rules
be followed. For your Oracle database, these rules can be incorporated into a password
verify function. This real-world scenario highlights an example of three password complex-
ity requirements and how they are satisfied through a password verify function named
MY_PASSWORD_VERIFY.

The first rule specifies that the password must be at least six characters in length. The sec-
ond rule disallows passwords containing some form of either the username or the word
password. The third rule requires the password to contain at least one alphabetic character,
at least one digit, and at least one punctuation character. If the new password fails any of
these tests, the function raises an exception, and the password change fails.

After creating this function as user SYS, assign it to a profile, like this:

ALTER PROFILE student LIMIT password_verify_function my_password_verify;

Any user having the student profile will need to abide by the password rules enforced by
the my_password_verify function:

CREATE OR REPLACE FUNCTION my_password_verify
 (username VARCHAR2
 ,password VARCHAR2
 ,old_password VARCHAR2
) RETURN BOOLEAN
IS

BEGIN
 -- Check for the minimum length of the password
 IF LENGTH(password) < 6 THEN
 raise_application_error(-20001
 ,'Password must be at least 6 characters long');
 END IF;

 -- Check that the password does not contain any
 -- upper/lowercase version of either the user name
 -- or the keyword PASSWORD

718	 Chapter 13  ■  Implementing Security and Auditing

 IF (regexp_like(password,username,'i')
 OR regexp_like(password,'password','i')) THEN
 raise_application_error(-20002
 ,'Password cannot contain username or PASSWORD');
 END IF;

 -- Check that the password contains at least one letter,
 -- one digit and one punctuation character
 IF NOT(regexp_like(password,'[[:digit:]]')
 AND regexp_like(password,'[[:alpha:]]')
 AND regexp_like(password,'[[:punct:]]')
) THEN
 raise_application_error(-20003
 ,'Password must contain at least one digit '||
 'and one letter and one punctuation character');
 END IF;

 -- password is okey dokey
 RETURN(TRUE);
END;
/

Oracle Database 12c provides the PL/SQL code to create a password complexity verify
function. The script is called utlpwdmg.sql and is in the $ORACLE_HOME/rdbms/admin
directory. The name of the function created using this script is called ora12c_verify_
function. This script also creates ora12c_strong_verify_function for stringent pass-
word check requirements.

OEM Database Express can be used to create and manage profiles. Choose Profiles from
the Security drop-down menu. Figure 13.6 shows the Create Profile screen.

Auditing Database Activity
Auditing involves monitoring and recording specific database activity. Oracle Database 12c
Traditional Auditing supports four levels of auditing:

■■ Statement

■■ Privilege

■■ Object

■■ Fine-grained access

	 Auditing Database Activity	 719

F igur e 13 .6     Creating a profile with Database Express

These afford you two locations for recording these activities. Audit records can be stored
in either of these locations:

■■ Database

■■ Operating-system files

 You tell the Oracle Database 12c where to record audit-trail records by setting the ini-
tialization parameter audit_trail. The default is DB, as in AUDIT_TRAIL=DB (that is, if the
database was created using DBCA, otherwise the auditing is disabled), which tells the data-
base to record audit records in the database. AUDIT_TRAIL=DB,EXTENDED tells the database
to record audit records in the database together with bind variables (SQLBIND) and the SQL
statement triggering the audit entry (SQLTEXT). AUDIT_TRAIL=OS tells the database to record
audit records in operating-system files. You cannot change this parameter in memory, only
in your pfile or spfile. For example, the following statement will change the location of
audit records in the spfile and will be in effect after a database restart:

ALTER SYSTEM SET audit_trail=DB SCOPE=SPFILE;

The audit_trail parameter can also have the values XML and XML,EXTENDED. With
these two options, audit records are written to OS files in XML format. The value of
NONE disables auditing.

After changing the audit_trail parameter, you will need to bounce (shut down and
start up) your database instance for the change to take effect.

720	 Chapter 13  ■  Implementing Security and Auditing

When recorded in the database, most audit entries are recorded in the SYS.AUD$ table.
On Unix systems, operating-system audit records are written into files in the directory
specified by the initialization parameter audit_file_dest (which is set to $ORACLE_BASE/
admin/$ORACLE_SID/adump if the database is created using DBCA). On Windows systems,
these audit records are written to the Event Viewer log file.

The four levels of auditing are described in the following sections.

Certain database activities are always recorded in the OS audit files. Data-
base connections using administrator privileges such as SYSDBA and SYS-
OPER are recorded. Database startup and shutdown are also recorded in
the OS audit files.

Managing Statement Auditing
Statement auditing involves monitoring and recording the execution of specific types of SQL
statements. In the following sections, you will learn how to enable and disable statement
auditing as well as identify what statement auditing options are enabled.

Enabling Statement Auditing
You enable auditing of specific SQL statements with an AUDIT statement. For example,
to audit the SQL statements CREATE TABLE, DROP TABLE, and TRUNCATE TABLE, use the
TABLE audit option like this:

AUDIT table;

To record audit entries for specific users only, include a BY USER clause in the AUDIT
statement. For example, to audit CREATE, DROP, and TRUNCATE TABLE statements for user
juanita only, execute the following:

AUDIT table BY juanita;

Frequently, you want to record only attempts that fail—perhaps to look for users who
are probing the system to see what they can get away with. To further limit auditing to only
these unsuccessful executions, use a WHENEVER clause like this:

AUDIT table BY juanita WHENEVER NOT SUCCESSFUL;

You can alternatively specify WHENEVER SUCCESSFUL to record only successful statements.
If you do not include a WHENEVER clause, both successful and unsuccessful statements will
trigger audit records.

You can further configure non-DDL statements to record one audit entry for the trigger-
ing session or one entry for each auditable action during the session. Specify BY ACCESS or
BY SESSION in the AUDIT statement, like this:

AUDIT INSERT TABLE BY juanita BY ACCESS;

	 Auditing Database Activity	 721

There are many auditing options other than TABLE or INSERT TABLE. Table 13.1 shows
common statement-auditing options.

Tabl e 13 .1    Statement-Auditing Options

Statement-Auditing Option Triggering SQL Statements

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

DATABASE LINK CREATE DATABASE LINK
DROP DATABASE LINK

DELETE TABLE DELETE

EXECUTE PROCEDURE Execution of any procedure or function or access to any
cursor or variable in a package

GRANT PROCEDURE GRANT on a function, package, or procedure

GRANT SEQUENCE GRANT on a sequence

GRANT TABLE GRANT on a table or view

INDEX CREATEINDEX

INSERT TABLE INSERT into table or view

LOCK TABLE LOCK

NOT EXISTS All SQL statements

PROCEDURE CREATE FUNCTION
DROP FUNCTION
CREATE PACKAGE
CREATE PACKAGE BODY
DROP PACKAGE
CREATE PROCEDURE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

722	 Chapter 13  ■  Implementing Security and Auditing

Statement-Auditing Option Triggering SQL Statements

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

SELECT SEQUENCE SELECT on a sequence

SELECT TABLE SELECT from table or view

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION LOGON

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT
NOAUDIT

SYSTEM GRANT GRANT
REVOKE

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER (to enable or disable)

ALTER TABLE (to enable all or disable all)

UPDATE TABLE UPDATE on a table or view

Tabl e 13 .1    Statement-Auditing Options  (continued)

	 Auditing Database Activity	 723

Statement-Auditing Option Triggering SQL Statements

USER CREATE USER
ALTER USER
DROP USER

VIEW CREATE VIEW
DROP VIEW

Identifying Enabled Statement-Auditing Options
You can identify the statement-auditing options that have been enabled in your database by
querying the DBA_STMT_AUDIT_OPTS data dictionary view. For example, the following example
shows that SESSION auditing is enabled for all users, NOT EXISTS auditing is enabled for all
users, and TABLE auditing WHENEVER NOT SUCCESSFUL is enabled for user juanita:

SELECT audit_option, failure, success, user_name
FROM dba_stmt_audit_opts
ORDER BY audit_option, user_name;

AUDIT_OPTION FAILURE SUCCESS USER_NAME
-------------------- ---------- ---------- -------------
CREATE SESSION BY ACCESS BY ACCESS
NOT EXISTS BY ACCESS BY ACCESS
TABLE BY ACCESS NOT SET JUANITA

You can enable administrator auditing by setting the initialization parameter
AUDIT_SYS_OPERATIONS=TRUE. All the activities performed connected as SYS
or SYSDBA/SYSOPER privileges are recorded in the OS audit trail.

Disabling Statement Auditing
To disable auditing of a specific SQL statement, use a NOAUDIT statement, which allows the
same BY and WHENEVER options as the AUDIT statement. If you enable auditing for a specific
user, specify that user in the NOAUDIT statement as well. However, it is not necessary to
include the WHENEVER NOT SUCCESSFUL clause in the NOAUDIT statement.

For example, to disable the three audit options in the previous section, execute the
following three statements:

NOAUDIT session;
NOAUDIT not exists;
NOAUDIT table BY juanita;

724	 Chapter 13  ■  Implementing Security and Auditing

Examining the Audit Trail
Statement, privilege, and object audit records are written to the SYS.AUD$ table and made
available via the data dictionary views DBA_AUDIT_TRAIL and USER_AUDIT_TRAIL. These
data dictionary views cannot contain values for every record because these views are used
for three different types of audit records. For example, you can view the user, time, and
type of statement audited for user juanita by executing the following:

SELECT username, timestamp, action_name
FROM dba_audit_trail
WHERE username = 'JUANITA';

ORA USER TIMESTAMP ACTION_NAME
---------------- --------------------- -------------
JUANITA 15-Jun-2004 18:43:52 LOGON
JUANITA 15-Jun-2004 18:44:19 LOGOFF
JUANITA 15-Jun-2004 18:46:01 LOGON
JUANITA 15-Jun-2004 18:46:40 CREATE TABLE

If you enable AUDIT SESSION, the database creates one audit record when
a user logs on and updates that record when the user logs off successfully.
These session audit records contain some valuable information that can
help you narrow the focus of your tuning efforts. Among the information
recorded in the audit records are the username, logon time, logoff time,
and the number of physical reads and logical reads performed during the
session. By looking for sessions with high counts of logical or physical
reads, you can identify high-resource-consuming jobs and narrow the
focus of your tuning efforts.

Managing Privilege Auditing
Privilege auditing involves monitoring and recording the execution of SQL statements that
require a specific system privilege, such as SELECT ANY TABLE or GRANT ANY PRIVILEGE.
You can audit any system privilege. In the following sections, you will learn how to enable
and disable privilege auditing as well as identify which privilege-auditing options are
enabled in your database.

Enabling Privilege Auditing
You enable privilege auditing with an AUDIT statement, specifying the system privilege
that you want to monitor. For example, to audit statements that require the system privi-
lege CREATE ANY TABLE, execute the following:

AUDIT create any table;

	 Auditing Database Activity	 725

To record audit entries for specific users only, include a BY USER clause in the AUDIT
statement. For example, to audit SQL statements made by user juanita that require the
CREATE ANY TABLE privilege, execute the following:

AUDIT create any table BY juanita;

Just as you do with statement auditing, you can further configure non-DDL privileges to
record one audit entry for the triggering session or one for each auditable action during the
session by specifying BY ACCESS or BY SESSION in the AUDIT statement, like this:

AUDIT DELETE ANY TABLE BY juanita BY ACCESS;

Identifying Enabled Privilege-Auditing Options
You can report on the privilege auditing that has been enabled in your database by querying
the DBA_PRIV_AUDIT_OPTS data dictionary view. For example, the following report shows
that ALTER PROFILE auditing is enabled for all users and that ALTER USER and DELETE ANY
TABLE auditing is enabled for user juanita:

SELECT privilege, user_name
FROM dba_priv_audit_opts
ORDER BY privilege, user_name;

PRIVILEGE USER_NAME
-------------------- ----------------
ALTER PROFILE
DELETE ANY TABLE JUANITA
ALTER USER JUANITA

Disabling Privilege Auditing
To disable auditing of a system privilege, use a NOAUDIT statement. The NOAUDIT statement
allows the same BY options as the AUDIT statement. If you enable auditing for a specific user,
you need to specify that user in the NOAUDIT statement. For example, to disable the three
audit options in the previous section, execute the following three statements:

NOAUDIT alter profile;
NOAUDIT delete any table BY juanita;
NOAUDIT alter user BY juanita;

Managing Object Auditing
Object auditing involves monitoring and recording the execution of SQL statements that
require a specific object privilege, such as SELECT, INSERT, UPDATE, DELETE, or EXECUTE. Unlike
either statement or system privilege auditing, schema object auditing cannot be restricted to

726	 Chapter 13  ■  Implementing Security and Auditing

specific users—it is enabled for all users or no users. In the following sections, you will learn
how to enable and disable object-auditing options as well as identify which object-auditing
options are enabled.

Enabling Object Auditing
You enable object auditing with an AUDIT statement, specifying both the object and
object privilege that you want to monitor. For example, to audit SELECT statements on
the HR.EMPLOYEE_SALARY table, execute the following:

AUDIT select ON hr.employee_salary;

You can further configure these audit records to record one audit entry for the trigger-
ing session or one for each auditable action during the session by specifying BY ACCESS or
BY SESSION in the AUDIT statement. This access/session configuration can be defined dif-
ferently for successful or unsuccessful executions. For example, to make one audit entry
per auditable action for successful SELECT statements on the HR.EMPLOYEE_SALARY table,
execute the following:

-- one audit entry for each triggering statement
AUDIT select ON hr.employee_salary
 BY ACCESS WHENEVER SUCCESSFUL;

Another example, to make one audit entry for all unsuccessful SELECT access in the
session on the HR.EMPLOYEE_SALARY table.

-- one audit entry for the session experiencing one or more
-- triggering statements
AUDIT select ON hr.employee_salary
 BY SESSION WHENEVER NOT SUCCESSFUL;

Identifying Enabled Object-Auditing Options
The object-auditing options that are enabled in the database are recorded in the DBA_OBJ_
AUDIT_OPTS data dictionary view. Unlike the statement and privilege _AUDIT_OPTS views,
the DBA_OBJ_AUDIT_OPTS data dictionary view always has one row for each auditable object
in the database. There are columns for each object privilege that auditing can be enabled
on, and in each of these columns, a code is reported that shows the auditing options. For
example, the following report on the HR.EMPLOYEES table shows that no auditing is enabled,
for the INSERT object privilege and that the SELECT object privilege has auditing enabled
with one audit entry for each access when the access is successful and one audit entry for
each session when the access is not successful:

SELECT owner, object_name, object_type, ins, sel
FROM dba_obj_audit_opts
WHERE owner='HR'

	 Auditing Database Activity	 727

AND object_name='EMPLOYEE_SALARY';

OWNER OBJECT_NAME OBJECT_TY INS SEL
------------ ------------------------- --------- --- ---
HR EMPLOYEE_SALARY TABLE -/- A/S

The coding for the object privilege columns contains one of three possible values: a
hyphen (-) to indicate no auditing is enabled, an A to indicate BY ACCESS, or an S to indicate
BY SESSION. The first code (preceding the slash) denotes the action for successful statements,
and the second code (after the slash) denotes the action for unsuccessful statements.

Disabling Object Auditing
To disable object auditing, use a NOAUDIT statement, which allows the same WHENEVER
options as the AUDIT statement. For example, to disable the auditing of unsuccessful SELECT
statements against the HR.EMPLOYEES table, execute the following:

NOAUDIT select ON hr.employee_salary WHENEVER NOT SUCCESSFUL;

Using SQL Developer for Audit Management
You can also use SQL Developer to enable and disable auditing. Under the DBA menu,
choose Security and then Audit Settings, as shown in Figure 13.7.

F igur e 13 .7     The SQL Developer Audit Settings screen

728	 Chapter 13  ■  Implementing Security and Auditing

The Actions drop-down menu has three options. The Edit Audited Privileges option
enables or disables the auditing of privileges. Figure 13.8 shows the Audited Privileges screen.

F igur e 13 . 8     The SQL Developer Edit Audited Privileges screen

The Edit Audited Objects screen is shown in Figure 13.9. Object privilege auditing is
managed using this screen.

F igur e 13 . 9     SQL Developer Edit Audited Objects screen

	 Auditing Database Activity	 729

The Edit Audited Statements screen is shown in Figure 13.10. Statement privilege auditing
is managed using this screen.

F igur e 13 .10     The SQL Developer Edit Audited Statements screen

Purging the Audit Trail
Database audit records for statement, privilege, and object auditing are stored in the SYS.AUD$
table. Depending on how extensive your auditing and retention policies are, you will need to
periodically delete old audit records from this table. The database does not provide an inter-
face to assist in deleting rows from the audit table, so you will need to do so yourself. To purge
audit records older than 90 days, execute the following as user SYS:

DELETE FROM sys.aud$ WHERE timestamp# < SYSDATE -90;

You might want to copy the audit records into a different table for historical retention or
export them to an operating-system file before removing them. It is a good practice to audit
changes to the AUD$ table so that you can identify when changes were made.

Only the user SYS, a user with the DELETE ANY TABLE privilege, or a user to whom
SYS granted the DELETE privilege on SYS.AUD$ can delete the audit-trail records from
the SYS.AUD$ table.

Oracle Database 12c audits all DML statements against the SYS.AUD$ table.
The INSERT, UPDATE, MERGE, and DELETE statements against the SYS.AUD$
table are not deleted from the SYS.AUD$ table. You have to truncate the
SYS.AUD$ table to remove such records.

730	 Chapter 13  ■  Implementing Security and Auditing

Moving SYS.AUD$ to Another Tablespace
For space management purposes, Oracle supports moving the SYS.AUD$ table out of the
SYSTEM tablespace to another tablespace. A PL/SQL package is available for audit-trail
management. The following code shows the location of the audit-trail table, and using
the DBMS_AUDIT_MGMT package to move the table to SYSAUX tablespace.

SQL > select tablespace_name
 from dba_tables
 where table_name = 'AUD$';

TABLESPACE_NAME

SYSTEM

SQL> execute DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION(-
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD, -
 AUDIT_TRAIL_LOCATION_VALUE => 'SYSAUX');

PL/SQL procedure successfully completed.

SQL>
SELECT tablespace_name
FROM dba_tables
WHERE table_name = 'AUD$';

TABLESPACE_NAME

SYSAUX

Using the Audit Management Framework
Purging OS audit files, AUD$ and FGA_LOG$ records can be automated and completed in a secure
and documented procedure using the audit-trail management framework. If you already have
procedures set to delete records from AUD$, you may continue to use them, as they may be tuned
over years for better management and customized record deletions. To be able to utilize the
Oracle Database 12c audit-record purging feature, you need to do the following:

	 1.	 Initialize the audit cleanup infrastructure using INIT_CLEANUP.

	 2.	 Optionally, set the archive timestamp using SET_LAST_ARCHIVE_TIMESTAMP. By default,
records older than this timestamp are deleted when purge job is invoked.

	 Auditing Database Activity	 731

	 3.	 Purge the records using CLEAN_AUDIT_TRAIL.

	 4.	 Optionally, set up a job to clean records periodically using CREATE_PURGE_JOB.

If you are archiving records to another table, database, or location, you must do that
outside of this framework and use the SET_LAST_ARCHIVE_TIMESTAMP procedure to set the
archive date. Thus, records older than this are deleted when the job runs next time. If you
do not need to archive audit records, but delete them after a certain age, you must still use
this procedure to set the archive timestamp. If you do not intend to keep any records in the
audit trail when the purge job runs, use the “use_last_arch_timestamp => FALSE” param-
eter for the purge job.

The following dictionary views are used to support the audit management framework:

DBA_AUDIT_MGMT_CONFIG_PARAMS    This shows the current parameters values.

DBA_AUDIT_MGMT_LAST_ARCH_TS    This shows the last archive timestamp set for audit-
trail purges.

DBA_AUDIT_MGMT_CLEANUP_JOBS    This shows current cleanup jobs.

DBA_AUDIT_MGMT_CLEAN_EVENTS    This shows the history of purge events. The DBA needs to
manually purge records from this view if it grows too large.

The following query shows the audit management configuration parameters.

SQL>
SELECT *
FROM DBA_AUDIT_MGMT_CONFIG_PARAMS;

PARAMETER_NAME PARAMETER_VALUE AUDIT_TRAIL
--------------------------- --------------- ---------------------
DB AUDIT TABLESPACE SYSAUX STANDARD AUDIT TRAIL
DB AUDIT TABLESPACE SYSAUX FGA AUDIT TRAIL
AUDIT FILE MAX SIZE 10000 OS AUDIT TRAIL
AUDIT FILE MAX SIZE 10000 XML AUDIT TRAIL
AUDIT FILE MAX AGE 5 OS AUDIT TRAIL
AUDIT FILE MAX AGE 5 XML AUDIT TRAIL
DB AUDIT CLEAN BATCH SIZE 10000 STANDARD AUDIT TRAIL
DB AUDIT CLEAN BATCH SIZE 10000 FGA AUDIT TRAIL
OS FILE CLEAN BATCH SIZE 1000 OS AUDIT TRAIL
OS FILE CLEAN BATCH SIZE 1000 XML AUDIT TRAIL
DEFAULT CLEAN UP INTERVAL 24 STANDARD AUDIT TRAIL

“DEFAULT CLEAN UP INTERVAL” appears only for Standard Audit Trail because cleanup
is enabled only for AUD$ in this database. When Unified Auditing (discussed later) is enabled
in the database, more parameters will appear in this view.

732	 Chapter 13  ■  Implementing Security and Auditing

Managing Fine-Grained Auditing
Fine-grained auditing (FGA) lets you monitor and record data access based on the content of
the data. With FGA, you define an audit policy on a table and optionally a column. When the
specified condition evaluates to TRUE, an audit record is created, and an optional event-handler
program is called. You use the PL/SQL package DBMS_FGA to configure and manage FGA.

In the following sections, you will learn how to create, drop, enable, and disable fine-
grained auditing policies.

Creating an FGA Policy
To create a new FGA policy, use the packaged procedure DBMS_FGA.ADD_POLICY. This
procedure has the following parameters:

object_schema    This is the owner of the object to be audited. The default is NULL, which
tells the database to use the current user.

object_name    This is the name of the object to be monitored.

policy_name    This is a unique name for the new policy

audit_condition    This is a SQL expression that evaluates to a Boolean. When this condition
evaluates to either TRUE or NULL (the default), an audit record can be created. This condition
cannot directly use the SYSDATE, UID, USER, or USERENV functions; it cannot use subqueries or
sequences; and it cannot reference the pseudocolumns LEVEL, PRIOR, and ROWNUM.

audit_column    This is a comma-delimited list of columns that the database will look to
access. If a column in audit_column is referenced in the SQL statement and the audit_
condition is not FALSE, an audit record is created. Columns appearing in audit_column
do not have to also appear in the audit_condition expression. The default value is NULL,
which tells the database that any column being referenced should trigger the audit record.

handler_schema    This is the owner of the event handler procedure. The default is NULL,
which tells the database to use the current schema.

handler_module    This is the name of the event handler procedure. The default NULL tells
the database to not use an event handler. If the event handler is a packaged procedure, the
handler_module must reference both the package name and the program, using dot nota-
tion, like this:

UTL_MAIL.SEND_ATTACH_RAW

enable    This is a Boolean that tells the database whether this policy should be in effect.
The default is TRUE.

statement_types    This tells the database which types of statements to monitor. Valid values
are a comma-delimited list of SELECT, INSERT, UPDATE, and DELETE. The default is SELECT.

audit_trail    This parameter tells the database whether to record the SQL statement
and bind variables for the triggering SQL in the audit trail. The default value DBMS_FGA
.DB_EXTENDED indicates that the SQL statement and bind variables should be recorded in

	 Auditing Database Activity	 733

the audit trail. Set this parameter to DBMS_FGA.DB to save space by not recording the SQL
statement or bind variables in the audit trail.

audit_column_ops    This parameter has only two valid values: DBMS_FGA.ALL_COLUMNS and
DBMS_FGA.ANY_COLUMNS. When set to DBMS_FGA.ALL_COLUMNS, this parameter tells the data-
base that all columns appearing in the audit_column parameter must be referenced in order
to trigger an audit record. The default is DBMS_FGA.ANY_COLUMNS, which tells the database
that if any column appearing in the audit_column also appears in the SQL statement, an
audit record should be created.

To create a new disabled audit policy named COMPENSATION_AUD that looks for SELECT state-
ments that access the HR.EMPLOYEES table and references either SALARY or COMMISSION_PCT,
execute the following:

DBMS_FGA.ADD_POLICY(object_schema=>'HR' -
 ,object_name=>'EMPLOYEES' -
 ,policy_name=>'COMPENSATION_AUD' -
 ,audit_column=>'SALARY, COMMISSION_PCT' -
 ,enable=>FALSE -
 ,statement_types=>'SELECT');

Enabling an FGA Policy
Use the procedure DBMS_FGA.ENABLE_POLICY to enable an FGA policy. This procedure will
not raise an exception if the policy is already enabled. For example, you can enable the
COMPENSATION_AUD policy added in the previous section like this:

DBMS_FGA.ENABLE_POLICY(object_schema=>'HR' -
 ,object_name=>'EMPLOYEES' -
 ,policy_name=>'COMPENSATION_AUD');

If you use direct path inserts, be careful with FGA. If an FGA policy is enabled
on a table participating in a direct path insert, the auditing overrides the hint,
disabling the direct path access and causing conventional inserts. As with all
hints, the database does not directly tell you that your hint is being ignored.

Disabling an FGA Policy
To turn off an FGA policy, use the DBMS_FGA.DISABLE_POLICY procedure. Here is an example:

DBMS_FGA.DISABLE_POLICY(object_schema=>'HR' -
 ,object_name=>'EMPLOYEES' -
 ,policy_name=>'COMPENSATION_AUD');

734	 Chapter 13  ■  Implementing Security and Auditing

Dropping an FGA Policy
To remove an FGA policy, use the DBMS_FGA.DROP_POLICY procedure. For example, to drop
the COMPENSATION_AUD policy used in this section, run this:

DBMS_FGA.DROP_POLICY(object_schema=>'HR' -
 ,object_name=>'EMPLOYEES' -
 ,policy_name=>'COMPENSATION_AUD');

Identifying FGA Policies in the Database
Query the DBA_AUDIT_POLICIES data dictionary view to report on the FGA policies defined in
your database. For example, the following report shows that the policy named COMPENSATION_
AUD on the column SALARY in the table HR.EMPLOYEES is defined but not enabled:

SELECT policy_name ,object_schema||'.'||
 object_name object_name
 ,policy_column
 ,enabled ,audit_trail
FROM dba_audit_policies;

POLICY_NAME OBJECT_NAME POLICY ENABLED AUDIT_TRAIL
---------------- ------------ ------ ------- -----------
COMPENSATION_AUD HR.EMPLOYEES SALARY NO DB_EXTENDED

Audit records from this policy, when enabled, capture the standard auditing information
as well as the text of the SQL statement that triggered the auditing (DB_EXTENDED).

Reporting on the FGA Audit-Trail Entries
The DBA_FGA_AUDIT_TRAIL data dictionary view is used in reporting on the FGA audit entries
that have been recorded in the database. The following example shows audit-trail entries for
the COMPENSATION_AUD policy, listing the database username and the timestamp of the audit
record and computer from which the database connection was made:

SELECT db_user, timestamp, userhost
FROM dba_fga_audit_traiL
WHERE policy_name='COMPENSATION_AUD'

DB_USER TIMESTAMP USERHOST
------------ -------------------- --------------------
CHIPD 10-Jun-2004 09:48:14 XYZcorp\CHIPNOTEBOOK
JUANITA 19-Jun-2004 14:50:47 XYZcorp\HR_PC2

	 Auditing Database Activity	 735

Implementing Unified Auditing
The various audit statements and view audit-trail information discussed so far in this section
are also available in versions prior to Oracle Database 12c. The traditional auditing architec-
tures involve many audit-trail locations and tables to review information for the auditors, and
do not follow a standard. Every new product introduced in the database had to essentially
have a new audit table because the AUD$ table is limited. The Oracle Unified Audit feature
introduced in Oracle Database 12c addresses these issues and gives a standard interface and
single location for the audit trail.

Unified Auditing is a database option and is not enabled by default. The following query
shows if Unified Auditing is enabled or not.

SQL> SELECT VALUE FROM V$OPTION
 WHERE PARAMETER = 'Unified Auditing';

VALUE

FALSE

To enable Unified Auditing, shut down the database and listener, and then relink the
oracle executable using the following options:

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk uniaud_on ioracle ORACLE_HOME=$ORACLE_HOME

Unified Auditing is managed by creating and enabling audit policies. Unified audit-trail
records can be read using the UNIFIED_AUDIT_TRAIL view. This view includes audit records
from standard and fine-grained auditing, along with auditing of data pump, SQL loader,
database vault, label security, recovery manager, and real application security products.

Oracle Database 12c has two roles to support Unified Auditing. The AUDIT_ADMIN role
has privileges to create, alter, and drop audit policies. It also has privileges to enable or
disable audit policies for each business requirement, to view audit records, and to clean up
the audit trail. The AUDIT_VIEWER role is for users who only need to view the audit-trail
contents. Unified Auditing is owned by AUDSYS user, not SYS user.

Traditional auditing and Unified Auditing can coexist in an Oracle Database
12c database. Both audit-trail locations are populated based on the audits
enabled. It is recommended to migrate or use only pure Unified Audit facil-
ities to avoid the cost of writing audit records to multiple locations.

Privilege auditing in traditional auditing has to be enabled by setting the AUDIT_
SYS_OPERATIONS=true. The audit records are written to operating system files. With
Unified Auditing, privilege audit is enabled by default and can be queried using the

736	 Chapter 13  ■  Implementing Security and Auditing

same UNIFIED_AUDIT_TRAIL view. In a unified audit database, the following actions are
audited mandatorily without any policy:

CREATE AUDIT POLICY

ALTER AUDIT POLICY

DROP AUDIT POLICY

AUDIT

NOAUDIT

EXECUTE of DBMS_FGA

EXECUTE of DBMS_AUDIT_MGMT

When Unified Auditing is enabled, the following audit-related initializa-
tion parameters are ignored: AUDIT_TRAIL, AUDIT_FILE_DEST, AUDIT_
SYS_OPERATIONS, and AUDIT_SYSLOG_LEVEL. Fine-grained auditing still
uses DBMS_FGA.

Creating a Unified Audit Policy
To create an audit policy, the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role is
required. The high-level syntax of the CREATE AUDIT POLICY statement is

CREATE AUDITY POLICY policy_name audit_clauses
[WHEN 'audit_condition'
EVALUATE PER [STATEMENT | SESSION | INSTANCE]]

The audit_clauses have different options and syntax based on whether privilege,
statement, or role is audited. The audit_condition specifies a condition that determines
if the unified audit policy is enforced. If audit_condition evaluates to TRUE, then the
policy is enforced. If FALSE, then the policy is not enforced.

Audit policy can be based on privileges, actions, or roles. The privilege audit option audits
all events that exercise the specified system privilege. The Action Audit option indicates which
RDBMS action should be audited. The Role Audit option audits the use of all system or object
privileges granted directly to the role. Let’s demonstrate how to create an audit policy with a
few examples.

Create a policy to audit the system privilege use of SELECT ANY TABLE and ALTER
SESSION. System privileges can be audited from the SYSTEM_PRIVILEGE_MAP view. Here
is an example:

SQL> CREATE AUDIT POLICY ocatrain_syspriv_1
 PRIVILEGES SELECT ANY TABLE, ALTER SESSION;

Audit policy created.

	 Auditing Database Activity	 737

Create a policy to audit a system-wide database action when EXECUTE or ALTER DATABASE
LINK actions are performed. A list of auditable system-wide options is available in the
AUDITABLE_SYSTEM_ACTIONS table. Instead of auditing a specific action, the ALL clause
can be used to audit all system actions for the database, as in the following example:

SQL> CREATE AUDIT POLICY ocatrain_action_sys_priv_1
 ACTIONS execute, alter database link;

Audit policy created.

Create a policy to audit the use of all system or object privileges granted directly to the
roles RESOURCE and OLAP_DBA, as in this example:

SQL> CREATE AUDIT POLICY ocatrain_role_audit_1
 ROLES olap_dba, resource;

Audit policy created.

There is no need to create separate policies for each type of policy. A policy can have
privileges, actions, and roles, as in the following example:

SQL> CREATE AUDIT POLICY ocatrain_multi_1
 PRIVILEGES SELECT ANY TABLE, ALTER SESSION
 ACTIONS execute, alter database link
 ROLES olap_dba, resource;

Audit policy created.

 Auditing is not limited to system-wide auditing; an individual object or a group of objects
can be audited using ACTIONS. The ON clause specifies the objects; the ALL ON clause instructs
Oracle database to audit all actions on the specified object. Let’s review a few examples of
object-specific auditing.

Create a policy to audit the delete and insert operations on an HR.DEPARTMENTS table
as follows:

SQL> CREATE AUDIT POLICY ocatrain_obj1_hr
 ACTIONS delete, insert ON hr.departments;

Audit policy created.

Unified Auditing has a lot of flexibility regarding what to audit and how to avoid unneces-
sary audit records. The WHEN and EVALUATE clauses add lots of flexibility to auditing. The fol-
lowing audit policy looks for suspicious change activity from ODBC users to the database on
tables hr.employees and hr.departments. The ODBC users in the database follow a standard
naming convention that requires names to begin with ODBC (for example, John’s ID in the

738	 Chapter 13  ■  Implementing Security and Auditing

database is ODBCJOHN). In the WHEN condition, LIKE 'ODBC%' would have been easier, but LIKE
is not one of the operators allowed.

SQL> CREATE AUDIT POLICY ocatrain_hr_odbc_1
 ACTIONS delete, insert, update ON hr.employees,
 delete, insert, update ON hr.departments
 WHEN 'INSTR(SYS_CONTEXT (''USERENV'', ''SESSION_USER''), ''ODBC'') = 1'
 EVALUATE PER SESSION;

Audit policy created.

At the time of this writing, Oracle Database 12c Release 1 allows only a very limited
set of functions in the WHEN clause. The WHEN clause’s audit condition must be enclosed in
quotes; therefore, if the condition itself involves quotes, they must be quoted properly with
two consecutive single quotes.

The EVALUATE clause has three options:

PER STATEMENT specifies to evaluate the audit_condition for each auditable statement.

PER SESSION specifies to evaluate the audit_condition once during the session. The
audit_condition is evaluated for the first auditable statement that is executed during
the session.

PER INSTANCE specifies to evaluate the audit_condition once during the lifetime of
the instance.

Using Component Auditing

With Unified Auditing, you can adjust standard RDBMS components as well as additional
components. The components and actions that can be audited are viewable by querying
the auditable_actions_items view. The following query shows how many actions can be
audited in each component:

SQL> SELECT component, count(*) actions
 FROM auditable_system_actions
 GROUP BY component
 ORDER BY component;

COMPONENT ACTIONS
-------------------- ----------
Database Vault 13
Datapump 3
Direct path API 2
Label Security 18
Standard 166
XS 47

	 Auditing Database Activity	 739

If an audit policy is created outside of standard database functionality, the COMPONENT
keyword must follow ACTIONS, and it must identify the component. DATAPUMP, DIRECT_LOAD,
OLS, XS, and DV are valid components. The following example creates a policy to audit
datapump export actions:

SQL> CREATE AUDIT POLICY datapump_exp_aud
 ACTIONS COMPONENT=datapump export;

Audit policy created.

RMAN backup, restore, and recover operations are audited by default by
the unified audit. There is no need to create a policy or enable the policy.

Enabling and Disabling Audit Policies
Policy auditing is enabled by using the AUDIT POLICY statement. The syntax is

AUDIT POLICY policy
 [{ BY user [, user]... } | { EXCEPT user [, user]... }]
 [WHENEVER [NOT] SUCCESSFUL]

With a simple syntax, you can apply the audit policy to all users in the database, only
certain users in the database by using the BY clause, all users except a few users using the
EXCEPT clause, audit only successful executions, audit only unsuccessful executions, or
audit all executions.

Let’s use the policies created in the earlier examples, and enable some of them. Enable
the object auditing policy ocatrain_hr_odbc_1 for all users in the database (remember the
policy has filtering to monitor only ODBC users) as follows:

SQL> AUDIT POLICY ocatrain_hr_odbc_1;

Audit succeeded.

Enable the actions policy ocatrain_action_sys_priv_1 for users bthomas and
joshua whenever the action fails, and enable policy ocatrain_obj1_hr for all users
except jenna when the action succeeds, as follows:

SQL> AUDIT POLICY ocatrain_action_sys_priv_1
 BY bthomas, joshua WHENEVER NOT SUCCESSFUL;

Audit succeeded.

SQL> AUDIT POLICY ocatrain_obj1_hr

740	 Chapter 13  ■  Implementing Security and Auditing

 EXCEPT jenna WHENEVER SUCCESSFUL;

Audit succeeded.

To disable an audit policy, use the NOAUDIT POLICY statement. Here is an example:

SQL> NOAUDIT POLICY ocatrain_action_sys_priv_1;

Noaudit succeeded.

Predefined Unified Audit Policies

In Oracle Database 12c, the predefined unified audit policy ORA_SECURECONFIG is enabled by
default. This policy audits all Oracle Database 12c secure configuration audit options. There
are two other predefined policies created by Oracle: ORA_ACCOUNT_MGMT (audits events for
the user account and privilege management) and ORA_DATABASE_PARAMETER (audits the
changes made to the database parameters settings). They are not enabled by default.

To understand what the Oracle Database 12c audits by default with the ORA_SECURECONFIG
policy enabled, view the results of this query:

select POLICY_NAME, AUDIT_OPTION
from AUDIT_UNIFIED_POLICIES
where policy_name = 'ORA_SECURECONFIG'
order by AUDIT_OPTION;

Querying Audit Information and Audit Policies
For all types of audits, the information is queried from a single source: UNIFIED_AUDIT_
TRAIL. This view has several columns. This section mentions a few, and we encourage
you to create and enable several audit policies, and query the information in this view
to understand it better. The following query shows the audit information from the audit
policies created and enabled in this chapter:

 select UNIFIED_AUDIT_POLICIES, DBUSERNAME,
 ACTION_NAME, SYSTEM_PRIVILEGE_USED
 from unified_audit_trail
 where UNIFIED_AUDIT_POLICIES like 'OCATRAIN%';

DBUSERNAME, ACTION_NAME, UNIFIED_AUDIT_POLICIES, EVENT_TIMESTAMP, OBJECT_SCHEMA,
and OBJECT_NAME are the most commonly used columns to query and filter. There are many
more useful columns in UNIFIED_AUDIT_TRAIL, such as DBLINK_INFO, STATEMENT_ID, SCN,
and so on.

	 Auditing Database Activity	 741

When querying for component audit information, look for the columns prefixed with
the component name. For example, to query the datapump operations, you may use the
following query:

select DBUSERNAME, DP_TEXT_PARAMETERS1, DP_BOOLEAN_PARAMETERS1
from UNIFIED_AUDIT_TRAIL
where DBUSERNAME = 'SYSTEM';

Similarly, to query the RMAN operations, you may use the following:

select OS_USERNAME, RMAN_OBJECT_TYPE, RMAN_OPERATION
from UNIFIED_AUDIT_TRAIL
where RMAN_OPERATION is not null;

AUDIT_UNIFIED_POLICIES lists information on the policies created in the database. The
following query shows the policies created using examples in this chapter:

SQL> SELECT policy_name, audit_option, audit_option_type, audit_condition
 2 FROM audit_unified_policies
 3* WHERE policy_name like 'OCA%';

POLICY_NAME AUDIT_OPTION AUDIT_OPTION_TYPE
AUDIT_CONDITION
--
OCATRAIN_SYSPRIV_1 SELECT ANY TABLE SYSTEM PRIVILEGE
NONE
OCATRAIN_SYSPRIV_1 ALTER SESSION SYSTEM PRIVILEGE
NONE
OCATRAIN_MULTI_1 SELECT ANY TABLE SYSTEM PRIVILEGE
NONE
OCATRAIN_MULTI_1 ALTER SESSION SYSTEM PRIVILEGE
NONE
OCATRAIN_ACTION_SYS_PRIV_1 ALTER DATABASE LINK STANDARD ACTION
NONE
OCATRAIN_ACTION_SYS_PRIV_1 EXECUTE STANDARD ACTION
NONE
OCATRAIN_MULTI_1 ALTER DATABASE LINK STANDARD ACTION
NONE
OCATRAIN_MULTI_1 EXECUTE STANDARD ACTION
NONE
OCATRAIN_OBJ1_HR DELETE STANDARD ACTION
NONE
OCATRAIN_HR_ODBC_1 INSERT STANDARD ACTION
instr(SYS_CONTEXT ('USERENV', 'SESSION_USER'), 'ODBC') = 1

742	 Chapter 13  ■  Implementing Security and Auditing

OCATRAIN_HR_ODBC_1 DELETE STANDARD ACTION
instr(SYS_CONTEXT ('USERENV', 'SESSION_USER'), 'ODBC') = 1
OCATRAIN_HR_ODBC_1 UPDATE OBJECT ACTION
instr(SYS_CONTEXT ('USERENV', 'SESSION_USER'), 'ODBC') = 1
OCATRAIN_HR_ODBC_1 UPDATE OBJECT ACTION
instr(SYS_CONTEXT ('USERENV', 'SESSION_USER'), 'ODBC') = 1
OCATRAIN_OBJ1_HR INSERT OBJECT ACTION
NONE
OCATRAIN_ROLE_AUDIT_1 OLAP_DBA ROLE PRIVILEGE
NONE
OCATRAIN_ROLE_AUDIT_1 RESOURCE ROLE PRIVILEGE
NONE
OCATRAIN_MULTI_1 OLAP_DBA ROLE PRIVILEGE
NONE
OCATRAIN_MULTI_1 RESOURCE ROLE PRIVILEGE
NONE

The AUDIT_UNIFIED_ENABLED_POLICIES query lists the policies that are enabled in the
database as follows:

SQL> SELECT user_name, policy_name, enabled_opt, success, failure
 2* FROM audit_unified_enabled_policies;

USER_NAME POLICY_NAME ENABLED_ SUC FAI
---------- --------------------------- -------- --- ---
BTHOMAS OCATRAIN_ACTION_SYS_PRIV_1 BY YES YES
JOSHUA OCATRAIN_ACTION_SYS_PRIV_1 BY YES YES
JENNA OCATRAIN_OBJ1_HR EXCEPT YES NO
ALL USERS ORA_SECURECONFIG BY YES YES
ALL USERS OCATRAIN_HR_ODBC_1 BY YES YES

Purging Unified Audit Records
Unlike SYS.AUD$, UNIFIED_AUDIT_TRAIL cannot be deleted using DML statements. Trying
to do so will result in the following error:

SQL> delete from unified_audit_trail;
delete from unified_audit_trail
 *
ERROR at line 1:
ORA-02030: can only select from fixed tables/views

	 Auditing Database Activity	 743

Records from a unified audit trail are deleted using the DBMS_AUDIT_MGMT.CLEAN_AUDIT_
TRAIL procedure. You learned about using this procedure and other related procedures in the
“Using the Audit Management Framework” section earlier in the chapter.

The following code segment shows how to manually purge unified audit logs as well as how
to schedule a job to purge periodically, keeping only 60 days of audit records in the database:

REM Enable Automated Audit Trail Cleanup - 60 days
set serveroutput on
REM Set Archive TimeStamp - delete records older than 60 days
begin
 dbms_audit_mgmt.set_last_archive_timestamp(
 audit_trail_type => dbms_audit_mgmt.AUDIT_TRAIL_UNIFIED,
 last_archive_time => systimestamp-60);
end;
/
REM Onetime Manual Purge
begin
 dbms_audit_mgmt.clean_audit_trail(
 audit_trail_type => dbms_audit_mgmt.AUDIT_TRAIL_UNIFIED,
 use_last_arch_timestamp => true);
end;
/
REM Create Purge Job for Automated Purging
begin
 dbms_audit_mgmt.create_purge_job(
 audit_trail_type => dbms_audit_mgmt.AUDIT_TRAIL_UNIFIED,
 audit_trail_purge_interval => 24 /* 1 day */ ,
 audit_trail_purge_name => 'PURGE_DB_AUDIT_RECORDS',
 use_last_arch_timestamp => true);
end;
/
REM Schedule a Job for adjusting the archived date
REM Records are not archived, but need deleted after 60 days
begin
 dbms_scheduler.create_job (
 job_name => 'SET_AUDIT_ARCHIVE_DATE',
 job_type => 'PLSQL_BLOCK',
 job_action => 'DBMS_AUDIT_MGMT.set_last_archive_timestamp(
 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 last_archive_time => SYSTIMESTAMP-60);',
 start_date => systimestamp,
 repeat_interval => 'freq=daily; byhour=20',

744	 Chapter 13  ■  Implementing Security and Auditing

 end_date => null,
 enabled => true,
 comments => 'Job to support automatic audit trail purge');
end;
/

In the code, notice the audit_trail_type value DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD.
Table 13.2 shows the types of audit trails you can use to purge different types of records.

Tabl e 13 . 2    Types of Audit Trails

Constant Name Audit Trail Identified

AUDIT_TRAIL_ALL All audit trails (standard, unified, OS, XML)

AUDIT_TRAIL_AUD_STD Audit records in the SYS.AUD$ table

AUDIT_TRAIL_DB_STD Both standard audit (SYS.AUD$) and FGA audit (SYS.FGA_
LOG$) records

AUDIT_TRAIL_FGA_STD Fine-grained auditing (FGA) records in the SYS.FGA_LOG$ table

AUDIT_TRAIL_FILES Both operating system (OS) and XML audit trails

AUDIT_TRAIL_OS Audit records stored in operating system files

AUDIT_TRAIL_UNIFIED Unified audit trail

AUDIT_TRAIL_XML Audit records stored in XML files

Unified Auditing Internals
In standard auditing, the records are written to either the AUD$ or the FGA_LOG$ table, just
like any other table in the database. This causes performance overhead on the database when
auditing is enabled. To overcome the performance challenge, Oracle Database 12c uses the
SGA queues to store the audit records when Unified Auditing is used so the audit records are
written to memory and flushed to AUDSYS table, similar to the redo log buffer architecture.
When the SGA queue is full, the audit information is flushed by the background process GEN0.

Because the records are written to SGA first and stay there until the queue is full, there
is a possibility that the audit date might be lost if there is an instance crash. If audit data is
more critical than performance, you can enable immediate write mode for the database by
setting the audit-trail property.

	 Summary	 745

To change the audit engine to write records immediately to disk and to avoid losing records,
set the audit-trail property using the following code. This comes with a performance cost.

SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(-
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED, -
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_WRITE_MODE, -
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_IMMEDIATE_WRITE);

To change back to the default queued write mode, perform the following:

SQL> EXEC DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(-
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED, -
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_WRITE_MODE, -
 DBMS_AUDIT_MGMT.AUDIT_TRAIL_QUEUED_WRITE);

Sometimes, you might be looking for current audit information, and Oracle won’t have
written the information to AUDSYS table yet. To flush the information from the SGA memory
to AUDSYS table, use the following procedure:

SQL> EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

The AUDSYS user is a special user; you cannot use the AUDSYS user to log in to the database.
Also, the table that is written is a special one that is read only.

SQL> connect audsys/ocatest1
ERROR:
ORA-46370: cannot connect as AUDSYS user

SQL> SELECT table_name FROM dba_tables
 WHERE owner = 'AUDSYS';

TABLE_NAME

CLI_SWP$5b64e236$1$1

Summary
Oracle Database 12c gives you a well-stocked toolkit for managing users and securing the
database. You create and manage user accounts with the CREATE, ALTER, and DROP USER state-
ments. User passwords in Oracle Database 12c are case sensitive. You can assign tablespace
resources to be used for sorting (temporary tablespace) that are different than those for tables
or indexes (default permanent tablespace). By employing tablespace quotas and kernel resource

746	 Chapter 13  ■  Implementing Security and Auditing

limits in user profiles, you can limit the I/O, CPU, and memory resources your users consume.
Profiles are also used to enforce password complexity and password policies.

To protect data from unwanted access or manipulation, you can employ object and sys-
tem privileges. You can create and use roles to make managing these database privileges
easier. System privileges allow users to perform DDL operations on the database or to per-
form DML operations database wide. Object privileges provide access to read and modify
objects owned by another user. Role privileges give access to a role.

You can enable object, statement, privilege, and fine-grained auditing to help you
monitor and record sensitive database activity. In addition to traditional standard audit-
ing, Oracle Database 12c has a unified audit trail. All of the audit records are stored in
UNIFIED_AUDIT_TRAIL.

The Oracle Database 12c database has several powerful features (user accounts and
packages) that will need to be locked down in your production systems. In this chapter, you
learned which user accounts need to be locked, as well as which standard packages should
be locked down to better protect your company’s data. You also learned to use the privilege-
capture feature to identify both used and unused privileges to help enforce the principle of
least privilege.

Exam Essentials

Be familiar with the authentication methods.    Database accounts can be authenticated
by the database (identified by password), by the operating system (identified externally),
or by an enterprise security service (identified globally).

Know how to assign default and temporary tablespace to users.    Assign default and
temporary tablespaces with either a CREATE USER statement or an ALTER USER statement.
Understand which tablespace would be assigned if you omitted the DEFAULT TABLESPACE
clause when creating a user.

Be able to identify and grant object, system, and role privileges.    Know the difference
between these types of privileges and when to use each type.

Know the differences between the WITH ADMIN OPTION and WITH GRANT OPTION keywords.   
The ADMIN option applies to role or system privileges, but the GRANT option applies to object
privileges.

Know how to enable roles.    Know when a role needs to be enabled and how to enable it.

Be able to secure your database.    Make sure you know how to lock down your database.
Know how to use the privilege-capture feature to identify the used and unused privileges
for a user.

	 Exam Essentials	 747

Know how to implement password security.    Oracle Database 12c gives you several
standard password-security settings. Know what is available in a profile and what needs
to be implemented in a password-verifying function.

Know how to enable, disable, and identify standard auditing options.    Be able to describe
the types of auditing, how to enable them, and how to report on the audit trail.

Learn how to implement Unified Auditing.    Unified Auditing provides one unified loca-
tion to look for audit records. Know how to create audit policies, where to look for audit
records, and how to find out the policies and actions defined.

748	 Chapter 13  ■  Implementing Security and Auditing

Review Questions

	 1.	 Which of the following statements create an Oracle account but let the operating
system authenticate logons? (Choose two.)

	 A.	 create user ops$admin identified by os;

	 B.	 create user ops$admin identified externally;

	 C.	 create user ops$admin nopassword;

	 D.	 create user ops$admin authenticated by os;

	 2.	 If you want to capture the SQL statement and bind variables when performing a standard
statement audit, which value should the AUDIT_TRAIL parameter have?

	 A.	 NONE

	 B.	 DB

	 C.	 DB,EXTENDED

	 D.	 OS

	 E.	 OS,EXTENDED

	 3.	 Which of the following statements give user desmond the ability to alter table
gl.accounts?

	 A.	 grant alter on gl.accounts to desmond;

	 B.	 grant alter to desmond on gl.accounts;

	 C.	 grant alter table to desmond;

	 D.	 allow desmond to alter table gl.accounts;

	 4.	 Which of the following statements has the correct syntax and gives the ability to grant
the privilege to other users?

	 A.	 grant alter any table with grant option to desmond;

	 B.	 grant alter on gl.accounts to desmond with admin option;

	 C.	 grant alter any table to desmond with grant option;

	 D.	 grant alter any table to desmond with admin option;

	 Review Questions	 749

	 5.	 Examine the CREATE USER statement and choose which of the following options
best applies.

CREATE USER JOHN IDENTIFIED BY JOHNNY
DEFAULT TABLESPACE INDEX01
PASSWORD EXPIRE
QUOTA UNLIMITED ON DATA01
QUOTA UNLIMITED ON INDEX01;
GRANT CONNECT TO JOHN;

	 A.	 JOHN will not be able to log in to the database using SQL*Plus until the DBA
changes his password.

	 B.	 JOHN is authenticated by the database.

	 C.	 When tables are being created, if JOHN did not specify the TABLESPACE clause, the
table will be created on the DATA01 tablespace.

	 D.	 Specifying unlimited space quota on INDEX01 is a redundant step because INDEX01
is JOHN’s default tablespace.

	 6.	 User system granted the SELECT privilege on sh.products to user ian using WITH
GRANT OPTION. Ian then granted SELECT on sh.products to user stuart. Ian has left
the company, and his account has been dropped. What happens to Stuart’s privileges
on sh.products?

	 A.	 Stuart loses his SELECT privilege on sh.products.

	 B.	 Stuart retains his SELECT privilege on sh.products.

	 C.	 Stuart loses his SELECT privilege if Ian was dropped with the CASCADE REVOKE option.

	 D.	 Stuart retains his SELECT privilege if Ian was dropped with the NOCASCADE
REVOKE option.

	 7.	 User system granted the SELECT ANY TABLE privilege to user ian using WITH ADMIN
OPTION. Ian then granted SELECT ANY TABLE to user stuart. Ian has left the company,
and his account has been dropped. What happens to Stuart’s privileges?

	 A.	 Stuart loses his privileges.

	 B.	 Stuart retains his privileges.

	 C.	 Stuart loses his privileges if Ian was dropped with the CASCADE REVOKE option.

	 D.	 Stuart retains his privileges if Ian was dropped with the NOCASCADE REVOKE option.

	 8.	 Which of the following system privileges should be granted judiciously because they
can allow the grantee to masquerade as another user?

	 A.	 CREATE ANY JOB

	 B.	 ALTER USER

	 C.	 CREATE ANY PROCEDURE

	 D.	 All of the above

750	 Chapter 13  ■  Implementing Security and Auditing

	 9.	 Which of the following statements enables the role user_admin in the current session?

	 A.	 alter session enable role user_admin;

	 B.	 alter session set role user_admin;

	 C.	 alter role user_admin enable;

	 D.	 set role user_admin;

	10.	 Which of the following SQL statements allows user augustin to use the privileges asso-
ciated with the password-protected role info_czar that has been granted to him?

	 A.	 set role all;

	 B.	 alter user augustin default role all;

	 C.	 alter session enable role info_czar;

	 D.	 alter session enable info_czar identified by brozo;

	11.	 By default, how much space can any account use for a new table?

	 A.	 None

	 B.	 Up to the current free space in the tablespace

	 C.	 Unlimited space, including autoextends

	 D.	 Up to the default quota established at tablespace creation time

	12.	 Which of the following SQL statements disconnects a session after it has been idle for
30 minutes?

	 A.	 alter session set idle_timeout=30;

	 B.	 alter session set idle_timeout=1800;

	 C.	 alter profile default limit idle_time 30;

	 D.	 alter profile default set idle_timeout 30;

	13.	 Which of the following options prevents a user from reusing a password when they
change their password?

	 A.	 Setting the initialization parameter NO_PASSWORD_REUSE to TRUE

	 B.	 Altering that user’s profile to UNLIMITED for PASSWORD_REUSE_TIME and 1 for
PASSWORD_REUSE_MAX

	 C.	 Altering that user’s profile to UNLIMITED for both PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX

	 D.	 Using a password verify function to record the new password and comparing the
new passwords to those recorded previously

	 Review Questions	 751

	14.	 Examine the code, and choose the option that best describes the reason for error.

CREATE USER JOHN IDENTIFIED BY JOHN1;
CREATE ROLE HR_QUERY;
GRANT CONNECT, OEQUERY, SELECT ANY TABLE TO HR_QUERY;
ALTER USER JOHN DEFAULT ROLE ALL EXCEPT HR_QUERY;
GRANT HR_QUERY TO JOHN;
CONNECT JOHN/JOHN1
SELECT COUNT(*) FROM HR.EMPLOYEES;
Error: ORA-01031: insufficient privileges

	 A.	 John needs the SELECT_CATALOG_ROLE privilege.

	 B.	 HR_QUERY is not a default role for John.

	 C.	 The SELECT privilege on the HR.EMPLOYEES table is not granted to JOHN or HR_QUERY.

	 D.	 John should enable the role using the SET ROLE statement and a password.

	15.	 You created a database user using the following statement. Which option will connect
the user successfully to the database?

CREATE USER JOHN IDENTIFIED BY John1;
GRANT CONNECT TO JOHN;

	 A.	 CONNECT JOHN/JOHN1

	 B.	 CONNECT JOHN/john1

	 C.	 CONNECT john/John1

	 D.	 All of the above

	16.	 Which of the following SQL statements limits attempts to guess passwords by locking
an account after three failed logon attempts?

	 A.	 alter profile default limit failed_login_attempts 3;

	 B.	 alter system set max_logon_failures = 3 scope=both;

	 C.	 alter user set failed_login_attempts = 3;

	 D.	 alter system set failed_login_attempts = 3 scope=both;

	17.	 User JAMES has a table named JOBS created on the tablespace USERS. When you issue
the following statement, what effect will it have on the JOBS table?

ALTER USER JAMES QUOTA 0 ON USERS;

	 A.	 No more rows can be added to the JOBS table.

	 B.	 No new blocks can be allocated to the JOBS table.

	 C.	 No new extents can be allocated to the JOBS table.

	 D.	 The table JOBS cannot be accessed.

	 E.	 The table is truncated.

752	 Chapter 13  ■  Implementing Security and Auditing

	18.	 How do you manage fine-grained auditing?

	 A.	 With the AUDIT and NOAUDIT statements

	 B.	 With the DBMS_FGA package

	 C.	 With the GRANT and REVOKE statements

	 D.	 With the DBMS_AUDIT_MGMT package and CREATE_POLICY procedure

	19.	 Of the following privileges, which is the least privilege required to create and manage
Unified Auditing in a database, including purging of audit trail?

	 A.	 SYSDBA

	 B.	 DBA

	 C.	 AUDIT_ADMIN

	 D.	 AUDIT ANY

	20.	 Which statement regarding Unified Auditing is true?

	 A.	 Unified Auditing is enabled by setting the parameter AUDIT_TRAIL=UNIFIED.

	 B.	 Unified Auditing writes audit records to the table owned by user AUDSYS.

	 C.	 You have to log in as SYSDBA to purge the unified audit-trail records.

	 D.	 Audit records for RMAN and Datapump are written to audit tables in SYS schema.

Chapter

14
Maintaining
the Database
and Managing
Performance

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Performing Database Maintenance

■■ Manage the Automatic Workload Repository (AWR).

■■ Use the Automatic Database Diagnostic Monitor (ADDM).

■■ Describe and use the advisory framework.

■■ Set alert thresholds.

■■ Use automated tasks.

✓✓ Managing Performance

■■ Use Enterprise Manager to monitor performance.

■■ Use Automatic Memory Management.

■■ Use the Memory Advisor to size memory buffers.

✓✓ Managing Performance: SQL Tuning

■■ Manage optimizer statistics.

■■ Use the SQL Tuning Advisor.

■■ Use the SQL Access Advisor to tune a workload.

Successful database administrators are always on the lookout
for potential database problems that could adversely impact the
availability or performance of the systems they manage. They

are always looking for ways to prevent performance issues and system outages. Fortunately,
Oracle Database 12c comes with an array of proactive performance monitoring features and
an alert mechanism to help get ahead of potential issues to prevent them from impacting
business. Such issues can often be identified and fixed before users even notice. Appropriate
thresholds can be set based on business requirements for alert and failure notifications.

Oracle Database 12c periodically collects statistics on database objects and uses those
statistics to find the best execution plan for an SQL statement. Accurate statistics with
data distribution and value range are important so that the optimizer can figure out the
most optimal data-access path. The Automatic Workload Repository collects, analyzes,
and maintains the performance statistics of the database. Oracle Database 12c also offers
several advisors that help DBAs fine-tune the database components. Automatic Memory
Management greatly simplifies memory management so that the DBA doesn’t need to
size the various memory components in the SGA and PGA. In this chapter, you will learn
about all the database-management and performance-management tools available to DBAs
for better database management and for keeping the database healthy. All of these tools
can be accessed using SQL*Plus, SQL Developer, or Enterprise Manager.

This chapter is packed with a lot of information, so please take the time to
understand the material and practice. The examples use Oracle Enterprise
Manager Cloud Control extensively. We recommend that you install EM
Cloud Control and supplement your reading with topics from the Oracle
documentation found on http://docs.oracle.com.

Proactive Database Maintenance
You can monitor your systems for management and performance problems in essentially
two ways:

■■ Reactive monitoring involves monitoring a database environment after a performance
or management issue has arisen. For example, you start gathering performance statis-
tics using third-party tools, EM, or homegrown scripts after users call to tell you that
the system is slow. Obviously, this type of monitoring leaves a lot to be desired because
a problem has already arisen and the system users are already impacted. You can use

http://docs.oracle.com

	 Proactive Database Maintenance	 755

the techniques discussed in this chapter for reactive monitoring, but they are most
effective when used to perform proactive monitoring.

■■ Proactive monitoring allows you to identify and respond to common database-
performance and management issues before they occur. Most of the features in
Enterprise Manager Cloud Control are geared toward proactive monitoring.

The database maintenance framework in Oracle Database 12c consists of proactive tools
to help the database administrator keep the database functioning at its best:

■■ Automated tasks, such as collecting optimizer statistics

■■ Automatic Workload Repository

■■ Advisory Framework

■■ Server alerts and thresholds

The Automatic Diagnostic Repository, where the alert log and trace information are kept,
is used for reactive database maintenance.

The monitoring tools available in Enterprise Manager collect their information from a vari-
ety of sources, including data dictionary views, dynamic performance views, and the operating
system. Oracle Database 12c also makes extensive use of the cost-based optimizer statistics for
its proactive monitoring. However, discussing all the database-maintenance and performance
options available is not in the scope of this book; it is a large topic that warrants its own book.
In the following sections, you will instead learn the database-maintenance options available
in Oracle Database 12c that are relevant to the OCA certification exam. We encourage you to
install Oracle Enterprise Manager Cloud Control and explore through the items listed under
the Performance menu to learn and understand Oracle Database performance better. Let’s
start with an important component in database performance: optimizer statistics.

Managing Optimizer Statistics
Optimizer statistics are a collection of important statistical data that describe the contents
of the database. The query optimizer uses the optimizer statistics to find the best execution
plan to get to the row of data the query wants to find. The database collects statistics on
objects that have segments allocated as well as overall system statistics. The optimizer uses
the statistics to decide how to do the following:

■■ Access data and determine which indexes to use

■■ Join tables

■■ Evaluate expressions and conditions

The cost-based optimizer (CBO) uses these statistics to formulate efficient execution plans
for each SQL statement that is issued by application users. For example, the CBO may have
to decide whether to use an available index when processing a query. The CBO can make an
effective guess at the proper execution plan only when it knows the number of rows in the
table, the size and type of indexes on that table, and how many rows the CBO expects to be
returned by a query. Because of this, the statistics gathered and stored in the data dictionary
views are called optimizer statistics.

756	 Chapter 14  ■  Maintaining the Database and Managing Performance

The following are some of the statistics collected:

■■ Table and index statistics

■■ Total number of rows in a table and average row length

■■ Total number of blocks used

■■ Levels, clustering factor, and number of leaf blocks for indexes

■■ Column statistics

■■ Number of distinct values in a column

■■ Number of NULL values

■■ Low value and high value for a column

■■ Data distribution and data skew

■■ System statistics

■■ Disk I/O performance

■■ CPU performance

You can use the DBMS_STATS package to collect optimizer statistics in the database.
DBMS_STATS has several subprograms (procedures and functions) to collect and manage sta-
tistics. In the following sections, you will learn how to collect optimizer statistics and what
management options are available to maintain the statistics.

Optimizer statistics are a snapshot of statistical information at a specific
point in time. They are persistent across instance restarts because they are
stored in the data dictionary tables.

Collecting Statistics
In an Oracle Database 12c database, you’ll rarely need to manually collect statistics. The
default collection frequency and options are good for most of the database environments.
You may have to collect statistics manually when you bulk-load data into a table or when
you delete several rows from the table. Sometimes you may have to create histograms for
the optimizer to be able to make better execution plans based on the query.

When you create the database using DBCA, gathering optimizer statistics is automati-
cally set up and enabled using the Automated Maintenance Tasks (AutoTask) infrastructure.
AutoTask schedules maintenance tasks to run automatically, using the Oracle Scheduler,
during predefined maintenance windows. An automatic optimizer statistics-collection job
collects statistics on objects that have no statistics collected or have stale statistics. Oracle
Database 12c considers statistics stale when more than 10 percent of data in the table has
changed since statistics were last gathered on the table. This procedure also prioritizes the
objects that need the statistics collected and processes them first.

	 Proactive Database Maintenance	 757

You can enable and disable automatic optimizer statistics gathering by using the DBMS_
AUTO_TASK package. To disable automatic statistics gathering, use the DISABLE subprogram,
as shown here:

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE (
 client_name=>'auto optimizer stats collection',
 operation=>NULL, window_name=>NULL);
END;

If you disable automatic statistics gathering, make sure you collect statistics manually
so that the optimizer produces intelligent execution plans. To enable automatic statistics
gathering, use the ENABLE subprogram as follows:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE (
 client_name=>'auto optimizer stats collection',
 operation=>NULL, window_name=>NULL);
END;

To view the status of AutoTask jobs, you can run the following query:

SQL> SELECT client_name, status FROM dba_autotask_client;

CLIENT_NAME STATUS
-- --------
auto optimizer stats collection ENABLED
auto space advisor ENABLED
sql tuning advisor ENABLED

You can collect statistics manually by using the DBMS_STATS procedure from SQL*Plus or
by using Enterprise Manager Cloud Control.

Manually Collecting Stats Using SQL*Plus

Collecting statistics manually can be useful for tables and indexes with storage characteris-
tics that change frequently or that need to be analyzed outside the normal analysis window.
Statistics may also need to be collected manually if the data in the table is highly volatile,
such as when you truncate and load the table often. For such tables, you can collect the
statistics when the table is fully loaded and lock the statistics so that subsequent statistics-
gathering jobs do not override the statistics. The following example collects statistics on a
table and locks the statistics:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('HR','EMPLOYEES');
 DBMS_STATS.LOCK_TABLE_STATS('HR','EMPLOYEES');
END;

758	 Chapter 14  ■  Maintaining the Database and Managing Performance

Procedures are available to collect optimizer statistics at the database, schema, table, or
index level. Table 14.1 shows the optimizer’s statistics-gathering procedures.

Tabl e 14 .1    DBMS_STATS Statistics-Gathering Procedures

Procedure Name Purpose

GATHER_TABLE_STATS Collects table, column, and index stats

GATHER_INDEX_STATS Collects index stats

GATHER_SCHEMA_STATS Collects stats on all objects in the schema

GATHER_DATABASE_STATS Collects stats on all objects in all schemas of the
database

GATHER_DICTIONARY_STATS Collects statistics on SYS-owned dictionary objects

GATHER_FIXED_OBJECTS_STATS Collects stats on the dynamic performance tables
(fixed objects)

GATHER_SYSTEM_STATS Collects the runtime system statistics with workload

The following example collects statistics on all objects owned by the HR schema, sam-
pling 50 percent of rows for the statistics gathering:

SQL> EXEC DBMS_STATS.GATHER_SCHEMA_STATS('HR',estimate_percent=>50);
PL/SQL procedure successfully completed.
SQL>

For complete details on the many options available in the DBMS_STATS
package, see Chapter 153 of the "Oracle Database PL/SQL Packages and
Types Reference 12c Release 1 (12.1) Part E17602-14" documentation, avail-
able at http://docs.oracle.com.

Four constants are used with the GATHER_*_STATS procedures. These constants tell Oracle
to choose the automatic option, using internal algorithms, and they are the default values for
their respective parameters. The constants available in the DBMS_STATS package are

■■ AUTO_CASCADE: Lets Oracle decide whether to collect statistics for indexes when table
stats are collected.

■■ AUTO_DEGREE: Lets Oracle choose the best degree of parallelism based on the number of
CPUs available and the size of the object.

http://docs.oracle.com

	 Proactive Database Maintenance	 759

■■ AUTO_INVALIDATE: Lets Oracle decide whether to invalidate dependent cursors during
statistics collection.

■■ AUTO_SAMPLE_SIZE: Lets Oracle decide the best sample size for the table. Auto sample
size is generally recommended because the internal algorithms used by Oracle are very
good and generate a collection accuracy close to 100 percent sample.

Although each GATHER_*_STATS procedure has several parameters, the most commonly
used ones are discussed here.

■■ OWNNAME: The schema owner name.

■■ ESTIMATE_PERCENT: The percentage of rows to sample to get the statistics; 100 provides
accurate statistics, but collecting 100 percent on a large database is a very expensive
operation. Using auto sample size would be the best choice in this situation.

■■ METHOD_OPT: Use this procedure to tell Oracle to collect column statistics or to collect
histograms, etc.

■■ CASCADE: This parameter tells whether to collect index stats when table stats are collected.

■■ OPTIONS: Tells how the statistics should be collected: full or only stale stats.

■■ NO_INVALIDATE: When stats are collected on base tables, the SQL cursor can be
invalidated; therefore, a new plan can be generated if needed during the next run.
This parameter specifies if it is required to invalidate or not.

■■ DEGREE: The parallelism degree to be used for statistics collection.

Manually Collecting Stats Using EM Cloud Control 12c
You can use the EM Cloud Control Optimizer Statistics Wizard to manually collect statistics
for individual segments, schemas, or the database as a whole. To start the Wizard, choose SQL
from the Performance drop-down menu, and choose the Optimizer Statistics menu option.
Figure 14.1 shows the menu items available in the Manage Optimizer Statistics screen of
Oracle Enterprise Manager.

You can choose from several options in addition to gathering optimizer statistics, as shown
on the Manage Optimizer Statistics screen (Figure 14.1). Whenever you collect statistics, exist-
ing statistics are saved to history tables and preserved for 31 days. You can click the Restore
Optimizer Statistics link to restore old statistics. You can also lock, unlock, and delete statis-
tics. Similar to all EM management screens, once you choose the options, you can view the
SQL code that was used, which will help you to understand the options and syntax better.

The Related Links section of the Manage Optimizer Statistics screen has links you can
use to query and manage optimizer preferences and options. The Object Statistics link is
useful for determining the status of statistics on a particular object, if the stats are current or
stale, when it was analyzed, sample size used for analysis, and so on. The Global Statistics
Gathering Options and Object Level Statistics Gathering Preferences links let you change
the default options and set your own. The Job Scheduler and Automated Maintenance Tasks
links let you customize when the stats gathering jobs run.

Click the Gather Optimizer Statistics link on the Manage Optimizer Statistics screen.
You can collect statistics at the database, schema, object, or system level. Choose the
options needed to collect statistics, as shown in Figure 14.2.

760	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 .1     Manage Optimizer Statistics in OEM Cloud Control

You will be taken through scope, objects, options, schedule, and review screens. The
Objects screen is shown in Figure 14.2. The scope you select in the previous screen will
determine the objects that are presented. For example, in Figure 14.2, the scope is Schema;
therefore, you will be presented the option to pick the schemas for statistics collection (see
Figure 14.3).

If you have chosen to customize the options as shown in Figure 14.2, you will get a
screen similar to Figure 14.4 for choosing options. Select the options you’ll need for the
statistics collection.

You can collect the statistics immediately or at a later time using a schedule. Figure 14.5
shows the next screen, where you’ll select the scheduling options.

The final screen shows a summary of options chosen for you to review. Clicking the
Submit button will schedule the stats collection job to run. By clicking the Show SQL button,
you can also view the SQL behind the options you have chosen. Figure 14.6 shows the code
behind a statistics-gathering job for the options shown on the screen.

In the next section, you will learn how to set preferences for statistics gathering.

Defining Statistics Preferences
The default staleness percentage for statistics gathering is 10; if you want to change this and
other default options, you can set the preferences for statistics gathering using Enterprise
Manager or using DBMS_STATS directly. In this section, you will learn how to set preferences

	 Proactive Database Maintenance	 761

using EM Cloud Control, and using the Show SQL option, you can see the DBMS_STATS code
behind it.

F igur e 14 . 2     The Gather Optimizer Statistics screen in EM Cloud Control

F igur e 14 . 3     The Objects screen in Gather Optimizer Statistics

762	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 . 4     The options for Gather Optimizer Statistics

F igur e 14 .5     The scheduling options for Gather Optimizer Statistics

On the EM Cloud Control Manage Optimizer Statistics screen (shown earlier in
Figure 14.1), you can click the Global Statistics Gathering Options and Object Level
Statistics Gathering Preferences links.

Figure 14.7 shows the Global Statistics Gathering Options screen. Using this screen,
you can set the preferences at a global level, which is applicable to all the objects in all the
schemas, unless specific schema or object-level preferences are set.

Here you can change the retention period for how long the optimizer statistics history
is kept in the database (DBMS_STATS.ALTER_STATS_HISTORY_RETENTION), as well as other
default options (DBMS_STATS.SET_GLOBAL_PREFS). Table 14.2 shows the EM Cloud Control
option and its corresponding preference name when using DBMS_SQL.

	 Proactive Database Maintenance	 763

F igur e 14 .6     Show SQL for the Gather Optimizer Statistics

F igur e 14 .7     The Global Statistics Gathering Options screen in EM Cloud Control

If you want to minimize the time required to collect table statistics for partitioned
tables, you can set the global preference INCREMENTAL to TRUE, where only statistics on a
(new) partition are gathered and the table statistics are adjusted accordingly:

EXEC DBMS_STATS.SET_GLOBAL_PREFS ('INCREMENTAL', 'TRUE');

764	 Chapter 14  ■  Maintaining the Database and Managing Performance

The code generated using EM Cloud Control for the same is shown here. This displays the
default values for all preference settings without much explanation, except for INCREMENTAL,
which was modified.

DECLARE
estimate VARCHAR2(100) := ;
degreeValue VARCHAR2(100) := ;
currentGranularity VARCHAR2(100) := AUTO;
targetObjectClass VARCHAR2(100) := AUTO;
cascade VARCHAR2(100) := DBMS_STATS.AUTO_CASCADE;
invalidateCur VARCHAR2(100) := DBMS_STATS.AUTO_INVALIDATE;
createHist VARCHAR2(100) := FOR ALL COLUMNS SIZE AUTO;
retentionPeriod VARCHAR2(100) := 31;
stalePercentage VARCHAR2(100) := 10;
incremental VARCHAR2(100) := TRUE;
publish VARCHAR2(100) := TRUE;

BEGIN
dbms_stats.set_global_prefs('incremental', incremental);
END;

Tabl e 14 . 2    DBMS_STATS.SET_GLOBAL_PREFS Preferences

Preference Parameter EM Cloud Control Option Purpose

ESTIMATE_PERCENT Estimate Percentage Sets the percentage of rows in the table
to consider when estimating statistics

DEGREE Degree of Parallelism Specifies how many parallel processes
are used to gather stats

GRANULARITY Granularity Determines granularity of statistics to
collect for partitioned tables

NO_INVALIDATE Cursor Invalidation Determines whether dependent cursors
should be made invalid

CASCADE Cascade Determines whether index statistics
should be gathered when table statistics
are gathered

AUTOSTATS_TARGET Target Object Class Determines which objects are consid-
ered for automatic statistics collection

	 Proactive Database Maintenance	 765

Preference Parameter EM Cloud Control Option Purpose

STALE_PERCENT Stale Percent Sets the percentage of rows that
need to change before statistics are
gathered again

INCREMENTAL Incremental Gives global stats on the partitioned
table without doing a full scan

PUBLISH Publish Determines whether newly gathered
stats are published immediately

METHOD_OPT Histograms Sets options for collecting histograms

Similar to the global stats preferences, you can also set preferences on a table or
schema. Click the Object Level Statistics Gathering Preferences link on the Manage
Optimizer Statistics screen (Figure 14.1). Figure 14.8 shows the Object Level Statistics
Gathering Preferences screen when Edit Table Preferences is chosen.

F igur e 14 . 8     Object Level Statistics Gathering — The Add Table Preferences screen

To view the tables where preferences are set, enter the filters, if any (schema and/or table
name), and click Go. You have the following options on this screen:

■■ Click Add Table Preferences to set the table preferences on a new table (this runs
DBMS_STATS.SET_TABLE_PREFS).

■■ Click Edit Schema Preferences to add/edit schema preferences (this runs DBMS_STATS
.SET_SCHEMA_PREFS).

766	 Chapter 14  ■  Maintaining the Database and Managing Performance

■■ Select existing tables, and click Edit Preferences to edit (this runs DBMS_STATS.SET_
TABLE_PREFS).

■■ Select existing tables, and click Inherit Global to remove preferences (this runs DBMS_
STATS.DELETE_TABLE_PREFS).

The code related to the preferences set in Figure 14.8 is shown here.

BEGIN
dbms_stats.set_table_prefs('"HR"', '"EMPLOYEES"', 'ESTIMATE_PERCENT', DBMS_
STATS.AUTO_SAMPLE_SIZE);
dbms_stats.set_table_prefs('"HR"', '"EMPLOYEES"', 'DEGREE', DBMS_STATS.AUTO_
DEGREE);
dbms_stats.set_table_prefs('"HR"', '"EMPLOYEES"', 'NO_INVALIDATE', 'DBMS_STATS
.AUTO_INVALIDATE');
dbms_stats.set_table_prefs('"HR"', '"EMPLOYEES"', 'CASCADE', 'DBMS_STATS.AUTO_
CASCADE');
END;

Figure 14.9 shows the Object Level Statistics Gathering Preferences for Schema. Here you
choose the schema and set the preferences that are applicable to all objects in the schema.

F igur e 14 . 9     Object Level Statistics Gathering — The Edit Schema Preferences screen

The code used to set the preferences shown in Figure 14.9 is shown here:

BEGIN
dbms_stats.delete_schema_prefs('"OE"', 'ESTIMATE_PERCENT');
dbms_stats.set_schema_prefs('"OE"', 'DEGREE', DBMS_STATS.AUTO_DEGREE);
dbms_stats.set_schema_prefs('"OE"', 'NO_INVALIDATE', 'DBMS_STATS.AUTO_
INVALIDATE');

	 Proactive Database Maintenance	 767

dbms_stats.set_schema_prefs('"OE"', 'CASCADE', 'DBMS_STATS.AUTO_CASCADE');
dbms_stats.set_schema_prefs('"OE"', 'STALE_PERCENT', '5');
dbms_stats.set_schema_prefs('"OE"', 'INCREMENTAL', 'FALSE');
dbms_stats.set_schema_prefs('"OE"', 'PUBLISH', 'TRUE');
dbms_stats.set_schema_prefs('"OE"', 'METHOD_OPT', 'FOR ALL COLUMNS SIZE AUTO');
END;

The data dictionary view DBA_TAB_STAT_PREFS (or ALL_ or USER_) displays the tables with
a preference set. Remember, when you use the SET_SCHEMA_PREFS procedure, DBMS_STATS
adds an entry to this view for each table under the schema. When you use the SET_DATABASE_
PREFS procedure, DBMS_STATS adds an entry to this view for each table in the database except
system tables. To include system tables, set the third parameter to TRUE.

Let’s explore two key features of Oracle statistics gathering using table preferences.

Pending Statistics

In Oracle Database 12c, statistics gathering is divided into two steps: collect the statistics
and then publish them. By default, the statistics will be available (published) to all users
as soon as the stats are gathered. If you want to test the implications of the new statistics
before making them available to all users in the database, you can do so. It can be very
helpful to test new statistics to make sure they do not affect the database negatively.

To test the new statistics before making them available to all users, perform these steps:

	 1.	 Set the table preference parameter PUBLISH to FALSE. If you’re working with a lot of
tables, you can use the SET_SCHEMA_PREFS, SET_DATABASE_PREFS, or SET_GLOBAL_PREFS
procedure as appropriate. For demonstration purposes, the statistics on the HR.EMPLOY-
EES table are deleted in this example:

SQL> exec dbms_stats.delete_table_stats('HR','EMPLOYEES');
SQL> select table_name, num_rows, last_analyzed from dba_tables
 2 where owner = 'HR' and table_name = 'EMPLOYEES';
TABLE_NAME NUM_ROWS LAST_ANAL
---------- ---------- ---------
EMPLOYEES

SQL> select dbms_stats.get_prefs('PUBLISH','HR','EMPLOYEES')
 from dual;
DBMS_STATS.GET_PREFS('PUBLISH','HR','EMPLOYEES')

TRUE

SQL> exec dbms_stats.set_table_prefs('HR','EMPLOYEES','PUBLISH','FALSE');
PL/SQL procedure successfully completed.

768	 Chapter 14  ■  Maintaining the Database and Managing Performance

	 2.	 Using the DBMS_STATS package, gather table statistics as you normally would. Because
the PUBLISH preference is set to FALSE, you do not see the statistics:

SQL> exec dbms_stats.gather_table_stats('HR','EMPLOYEES');
PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables
 2 where owner = 'HR' and table_name = 'EMPLOYEES';
 NUM_ROWS LAST_ANAL
---------- ---------

	 3.	 You can verify the pending statistics by querying DBA_TAB_PENDING_STATS:

SQL> select table_name, num_rows, blocks, sample_size
 2 from dba_tab_pending_stats;
TABLE_NAME NUM_ROWS BLOCKS SAMPLE_SIZE
----------------- ---------- ---------- -----------
EMPLOYEES 107 5 107

	 4.	 Test your SQL code by making the pending statistics visible:

SQL> alter session set optimizer_use_pending_statistics = true;

	 5.	 When you’re ready to publish the statistics, execute the following:

SQL> exec dbms_stats.publish_pending_stats('HR','EMPLOYEES');
PL/SQL procedure successfully completed.

SQL> select num_rows, last_analyzed from dba_tables
 2 where owner = 'HR' and table_name = 'EMPLOYEES';
 NUM_ROWS LAST_ANAL
---------- ---------
 107 15-FEB-08

SQL> select table_name, num_rows, blocks, sample_size
 2 from dba_tab_pending_stats;
no rows selected

The PUBLISH_PENDING_STATS procedure accepts the schema name and the table name as
the first two parameters. If you specify NULL for the schema name, the default user’s schema
will be used. If you specify NULL for the table name, all pending stats on all tables in the
schema will be published.

	 Proactive Database Maintenance	 769

Changing the Default Staleness Threshold

Since Oracle10g, tables have had the default MONITORING enabled. The statistics-collec-
tion job looks for staleness of 10 percent or more for it to reanalyze the table. In Oracle
Database 12c, you can specify the threshold value for each table if you want to override
the 10 percent default using SET_TABLE_PREFS. Here’s an example:

SQL> exec dbms_stats.set_table_prefs('SH','CUSTOMERS','STALE_PERCENT','20');
PL/SQL procedure successfully completed.

SQL> DESCRIBE dba_tab_stat_prefs
 Name Null? Type
 -------------------------- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 TABLE_NAME NOT NULL VARCHAR2(30)
 PREFERENCE_NAME VARCHAR2(30)
 PREFERENCE_VALUE VARCHAR2(1000)

SQL> SELECT table_name, preference_name, preference_value
 FROM dba_tab_stat_prefs;

TABLE_NAME PREFERENCE_NAME PREFERENCE_VALUE
-------------- ---------------------- -------------------
CUSTOMERS STALE_PERCENT 20

You can also use the function GET_PREFS to verify the preference value. The function
returns the custom-defined preference value. If no such value is defined, it returns the
default.

SQL> SELECT dbms_stats.get_prefs('STALE_PERCENT','SH','CUSTOMERS')
 FROM dual;

DBMS_STATS.GET_PREFS('STALE_PERCENT','SH','CUSTOMERS')

20

SQL> SELECT dbms_stats.get_prefs('STALE_PERCENT','HR','EMPLOYEES')
 FROM dual;

DBMS_STATS.GET_PREFS('STALE_PERCENT','HR','EMPLOYEES')
--
10

770	 Chapter 14  ■  Maintaining the Database and Managing Performance

Extended Statistics

In Oracle Database 12c, you can tell the optimizer the relationship between columns by using
the extended statistics feature (multicolumn statistics). The extended statistics feature also
includes statistics on columns where a function is applied (function-based statistics). By collect-
ing extended statistics on columns, the optimizer will be able to estimate the selectivity better.

By using EM Cloud Control, you can set extended statistics in the Add Table Preferences
screen, shown in Figure 14.8. Click on the Statistics Extension tab and provide the relevant
information.

To collect multicolumn statistics (extended histograms), use the GATHER_TABLE_STATS pro-
cedure with the METHOD_OPT option, just as you would collect normal histogram statistics.

To create multicolumn statistics and function-based statistics, follow these two steps:

	 1.	 Create an extended statistics group using the DBMS_STATS.CREATE_EXTENDED_STATS func-
tion. The function returns the name of the extended stat group created. This function has
three arguments: the owner, the table name, and the extension. The “extension” could be
a combination of columns, up to 32, or an expression on a column (for function-based
statistics, discussed later).

	 2.	 Collect histogram statistics on the table using the GATHER_TABLE_STATS procedure. FOR
ALL COLUMNS SIZE SKEWONLY is a good option because Oracle collects histograms only
on columns with large data distribution.

Collecting Extended Table Statistics: An Example

Here we’ll demonstrate the extended statistics feature of Oracle Database 12c with an
example. The CUSTOMERS table is populated and has about 91,000 rows. Statistics are col-
lected on the table with the FOR ALL ROWS SIZE AUTO option:

SQL> select column_name, num_distinct, histogram
 2 from dba_tab_col_statistics
 3 where owner = 'BTHOMAS' and table_name = 'CUSTOMERS';

COLUMN_NAME NUM_DISTINCT HISTOGRAM
------------------------------ ------------ ---------------
CUST_COUNTRY 3 FREQUENCY
CUST_STATE 6 FREQUENCY
CUST_NAME 47692 NONE
SQL>
SQL> set autotrace traceonly explain
SQL> select * from customers where cust_country = 'India' and cust_state = 'TN';

	 Proactive Database Maintenance	 771

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1447 | 41963 | 137 (1)| 00:00:02 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 1447 | 41963 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("CUST_STATE"='TN' AND "CUST_COUNTRY"='India')

SQL> set autotrace off
SQL> SELECT dbms_stats.create_extended_stats('BTHOMAS','CUSTOMERS',
 '(CUST_COUNTRY, CUST_STATE)') EXTSTAT
 FROM dual;

EXTSTAT

SYS_STUZVS6GX30A0GN_5YRYSD2LPM

SQL>
SQL> exec dbms_stats.gather_table_stats(null, 'customers',
 method_opt=>'for all columns size skewonly');

PL/SQL procedure successfully completed.

SQL> select column_name, num_distinct, histogram
 2 from user_tab_col_statistics
 3* where table_name = 'CUSTOMERS'
SQL> /

COLUMN_NAME NUM_DISTINCT HISTOGRAM
------------------------------ ------------ ---------------
CUST_NAME 47692 HEIGHT BALANCED
CUST_STATE 6 FREQUENCY
CUST_COUNTRY 3 FREQUENCY
SYS_STUZVS6GX30A0GN_5YRYSD2LPM 8 FREQUENCY
SQL> set autotrace traceonly explain
SQL> select * from customers where cust_country = 'India' and cust_state = 'TN';

772	 Chapter 14  ■  Maintaining the Database and Managing Performance

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 86 | 2580 | 137 (1)| 00:00:02 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 86 | 2580 | 137 (1)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("CUST_STATE"='TN' AND "CUST_COUNTRY"='India')

As you can see in the example, before extended statistics were collected, the estimated
number of rows was 1,447; whereas after the extended statistics were collected, the num-
ber of rows the optimizer estimated to return was 86.

To drop the extended statistics, use the DROP_EXTENDED_STATISTICS procedure:

SQL> exec dbms_stats.drop_extended_stats(null,'CUSTOMERS',
 '(CUST_COUNTRY, CUST_STATE)');
PL/SQL procedure successfully completed.
SQL>

To define the extension and collect statistics in one step, you can do the following:

SQL> exec dbms_stats.gather_table_stats(null, 'customers',
 method_opt=>'for all columns size skewonly
 for columns (cust_country, cust_state)');
PL/SQL procedure successfully completed.

SQL> select extension_name, extension from user_stat_extensions
 2 where table_name = 'CUSTOMERS';

EXTENSION_NAME EXTENSION
------------------------------------ -----------------------------
SYS_STUZVS6GX30A0GN_5YRYSD2LPM ("CUST_COUNTRY","CUST_STATE")

In the next section, you’ll learn how to enable and disable automatic statistics collection
as well as perform other AutoTask jobs.

Configuring Automated Maintenance Tasks Using EM
Automated maintenance tasks are tasks that are started automatically at predefined intervals
to do proactive maintenance operations on the database in order to keep the database healthy.
The following are three automated maintenance tasks (known as AutoTask):

	 Proactive Database Maintenance	 773

Gathering Optimizer Statistics    Collects optimizer statistics for all schema objects in the
database for which there are no statistics or that have stale statistics.

Running the Segment Advisor    Identifies table and index segments that have space avail-
able for reclamation, and makes recommendations on how to reclaim the space.

Running the SQL Tuning Advisor    Analyzes high-load SQL statements and makes recom-
mendations to tune the SQL code, with the option to automatically implement SQL Profiles.

You can enable and disable AutoTask jobs using EM Cloud Control. Click on Automated
Maintenance Tasks in the Manage Optimizer Statistics screen (Figure 14.1). Figure 14.10
shows the Automated Maintenance Tasks screen.

F igur e 14 .10     The Automated Maintenance Tasks screen

SQL Profiles

A SQL profile is created by SQL Tuning Advisor, which contains auxiliary statistics specific
to a SQL statement. When profiling a SQL statement, SQL Tuning Advisor uses a set of bind
values as input and compares the optimizer estimate with values obtained by executing
fragments of the statement on a data sample. When significant variances are found, SQL
Tuning Advisor bundles corrective actions together in a SQL profile and then recommends
its acceptance. When SQL profiles are used, no changes to the application source code are
necessary. The use of SQL profiles by the database is transparent to the user and, there-
fore, is a very good SQL performance-improvement tool considered to be a magic wand.

By clicking the Configure button, you can enable or disable the default AutoTask jobs, as
well as adjust the days on which these tasks are run, as shown in Figure 14.11.

774	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 .11     The Configure Automated Maintenance Tasks screen

The SQL code behind the options chosen in Figure 14.11 is shown here:

BEGIN
dbms_auto_task_admin.disable(client_name => 'auto space advisor', operation =>
NULL, window_name => 'THURSDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'sql tuning advisor', operation =>
NULL, window_name => 'THURSDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'auto space advisor', operation =>
NULL, window_name => 'MONDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'sql tuning advisor', operation =>
NULL, window_name => 'MONDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'auto space advisor', operation =>
NULL, window_name => 'TUESDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'sql tuning advisor', operation =>
NULL, window_name => 'TUESDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'auto space advisor', operation =>
NULL, window_name => 'WEDNESDAY_WINDOW');
dbms_auto_task_admin.disable(client_name => 'sql tuning advisor', operation =>
NULL, window_name => 'WEDNESDAY_WINDOW');
END;

To completely disable any of the automated maintenance tasks, leave the operation and
window as NULL. The code to disable the SQL Tuning Advisor is shown here:

BEGIN
 dbms_auto_task_admin.disable(

	 Proactive Database Maintenance	 775

 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;

By default, there are seven predefined maintenance windows, each one
representing a day of the week. The weekend maintenance windows,
SATURDAY_WINDOW and SUNDAY_WINDOW, are longer in duration than the
weekday maintenance windows. The window group MAINTENANCE_WINDOW_
GROUP consists of these seven windows. Job scheduling and windows are
discussed in detail in Chapter 16, “Controlling Resources and Jobs.”

Gathering Performance Statistics
Oracle Database 12c generates several performance statistics that are used for self-tuning
purposes and are available for administrators to better tune the database. Most of the perfor-
mance statistics information is available through V$ dictionary views (also known as dynamic
performance views). The information in the V$ views is not persistent—that is, information is
lost when the database is shut down. Automatic Workload Repository (AWR) saves the per-
formance information in system tables and is made available for analysis through Enterprise
Manager and other third-party tools. AWR information is persistent across database
shutdowns.

The AWR data is captured at a system or database level, and session-level information is
captured using another mechanism called the Active Session History (ASH). You will learn
about AWR and ASH in the following sections.

Using Automatic Workload Repository
Two background processes are responsible for collecting the performance statistics:
Manageability Monitor (MMON) and Memory Monitor Light (MMNL). These pro-
cesses work together to collect performance statistics directly from the system global area
(SGA). The MMON process does most of the work by waking up every 60 minutes and
gathering statistical information from the data dictionary views, dynamic performance
views, and optimizer, and then storing this information in the database. The tables that
store these statistics are the Automatic Workload Repository. These tables are owned by
the user SYS and are stored in the SYSAUX tablespace.

To activate the AWR feature, you must set the pfile/spfile’s parameter STATISTICS_LEVEL
to the appropriate value. The values assigned to this parameter determine the depth of the
statistics that the MMON process gathers. Table 14.3 shows the values that can be assigned
to the STATISTICS_LEVEL parameter.

776	 Chapter 14  ■  Maintaining the Database and Managing Performance

Tabl e 14 . 3    Specifying Statistics Collection Levels

Collection Level Description

BASIC Disables the AWR and most other diagnostic monitoring and advisory
activities. Few database statistics are gathered at each collection
interval when operating the instance in this mode.

TYPICAL Activates the standard level of collection activity. This is the default
value and is appropriate for most environments.

ALL Captures all the statistics gathered by the TYPICAL collection level, plus
the execution plans and timing information from the operating system.

Once gathered, the statistics are stored in the AWR for the default duration of eight
days. However, you can modify both the frequency of the snapshots and the duration
for which they are saved in the AWR. One way to modify these intervals is by using the
Oracle-supplied package DBMS_WORKLOAD_REPOSITORY. The following SQL command
shows the DBMS_WORKLOAD_REPOSITORY package being used to change the AWR collection
interval to 1 hour and the retention period to 30 days:

SQL> execute dbms_workload_repository.modify_snapshot_settings
 (interval=>60,retention=>43200);
PL/SQL procedure successfully completed.

The 30-day retention value shown here is expressed in minutes: 60 minutes
per hour × 24 hours per day × 30 days = 43,200 minutes.

You can also change the AWR collection interval, retention period, and collection depth
using EM Cloud Control. Choose AWR from the Performance drop-down menu and select
AWR Administration (see Figure 14.12).

Click the Edit button to change the settings, as shown in Figure 14.13.
In Figure 14.13, the retention period for statistics gathered by the MMON process is set

to 30 days, and statistics are collected every 30 minutes. You can also modify the depth at
which statistics are collected by the AWR by clicking the Collection Level link. Clicking
this link opens the Initialization Parameters screen, where you can specify any of the three
predefined collection levels shown in Table 14.3. If you want to perform the same change
using SQL*Plus, the following code can be used:

SQL> EXEC DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(43200,30);

Take care when specifying the AWR statistics collection interval. Gath-
ering snapshots too frequently requires additional space in the SYSAUX
tablespace and adds database overhead each time the statistics are col-
lected. AWR does not use any space in the SGA.

	 Proactive Database Maintenance	 777

F igur e 14 .12     AWR Administration using EM Cloud Control

F igur e 14 .13     Changing AWR statistics collection and retention using EM

Using EM Cloud Control, you can view the AWR report. Click the Run AWR Report
button on the Automatic Workload Repository screen shown earlier in Figure 14.12. You
can get the same report using SQL*Plus by running the script $ORACLE_HOME/rdbms/admin/
awrrpt.sql. You have the option to get a text report or HTML report.

The Run Compare Periods Report button on the Automatic Workload Repository screen
(shown in Figure 14.12) is useful for comparing the AWR report from two different time-
frames. For example, if you are experiencing a performance issue today, and if you want to
compare the health and activity in the database to a week earlier, you could do so using the
Compare Periods report. The two time periods selected in an AWR Compare Periods report
can be of different durations because the report normalizes the statistics by the amount of
time spent on the database for each time period, and presents statistical data ordered by the
largest difference between the time periods. The compare period report can be invoked from
SQL*Plus using script $ORACLE_HOME/rdbms/admin/awrddrpt.sql.

You can manage the AWR snapshots with SQL*Plus by utilizing the DBMS_WORKLOAD_
REPOSITORY package, as described in the next section.

778	 Chapter 14  ■  Maintaining the Database and Managing Performance

AWR data resides in the SYSAUX tablespace objects owned by SYS schema.
You can use the dynamic performance view V$SYSAUX_OCCUPANTS to iden-
tify what else resides in the SYSAUX tablespace.

Managing AWR Snapshots Manually

You can create AWR snapshots by using the CREATE_SNAPSHOT procedure, as shown here:

SQL> EXECUTE DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();
PL/SQL procedure successfully completed.
SQL>

You can use the DROP_SNAPSHOT_RANGE procedure to delete a range of snapshots, and you
can query valid snapshot IDs from the DBA_HIST_SNAPSHOT view. The following example
shows how to query the DBA_HIST_SNAPSHOT view:

SQL> SELECT snap_id, begin_interval_time, end_interval_time
 2 FROM dba_hist_snapshot
 3 ORDER BY snap_id;

 SNAP_ID BEGIN_INTERVAL_TIME END_INTERVAL_TIME
---------- ------------------------------ ------------------------------
 1 24-SEP-13 02.06.11.000 AM 24-SEP-13 03.00.14.156 AM
 2 25-SEP-13 12.06.26.000 AM 25-SEP-13 12.17.55.437 AM
 3 25-SEP-13 12.17.55.437 AM 25-SEP-13 01.00.51.296 AM
 4 25-SEP-13 01.00.51.296 AM 25-SEP-13 02.00.22.109 AM
… … …
 27 27-SEP-13 07.03.17.375 PM 29-SEP-13 04.03.47.687 AM
 28 29-SEP-13 04.03.47.687 AM 29-SEP-13 05.00.39.437 AM
 29 29-SEP-13 05.00.39.437 AM 29-SEP-13 05.42.13.718 AM

To delete snapshots in the range 5–15, you can execute the following code. Note that the
ASH (discussed in the next section) data is also purged between the time periods specified
by the snapshot range.

SQL> BEGIN
 2 DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (5, 15);
 3 END;
 4 /
PL/SQL procedure successfully completed.
SQL>

Once AWR snapshots are taken and stored in the database, the Automatic Database
Diagnostic feature uses the AWR data, as described in the “Automatic Database Diagnostic
Monitoring” section.

	 Proactive Database Maintenance	 779

Active Session History
Active Session History (ASH) is data sampled at specified intervals from the current state
of all active sessions. The data is collected in memory and can be accessed by V$ views. The
ASH information is also written to a persistent store by the AWR snapshots.

The V$ACTIVE_SESSION_HISTORY provides the information collected by the ASH sampler.
The sessions are sampled every second by the MMNL process and are stored in a circular
buffer in SGA. Each session is stored as a row. The current and historical information is
available in the data dictionary view DBA_HIST_ACTIVE_SESS_HISTORY. ASH information
also includes the execution plan for each SQL captured.

Oracle provides a script to generate an ASH report, $ORACLE_HOME/rdbms/admin/ashrpt
.sql. You will be prompted for the report type (HTML or text), the begin time in minutes
prior to SYSDATE, the duration in minutes for the report, and a name for the report. You can
also use EM Cloud Control to generate the ASH report.

On the EM Cloud Control screen, select Performance Home from the Performance
drop-down menu and click the Run ASH Report button, as shown in Figure 14.14.

F igur e 14 .14     Performance Home in EM Cloud Control

The screen shown in Figure 14.15 captures parameters for the ASH report. Specify the
start time and end time for the report, and click the Generate Report button.

F igur e 14 .15     ASH report parameters

780	 Chapter 14  ■  Maintaining the Database and Managing Performance

The ASH report using SQL*Plus can be generated using the script $ORACLE_HOME/
rdbms/admin/ashrpt.sql. Similar to the AWR report, you can generate a text report
or HTML report.

Any session that is connected to the database and does not wait for a wait
event that belongs to the idle wait class is considered an active session.

AWR Baselines
It is a good practice to baseline your database when everything is working as expected.
When things go south, you can use this baseline to compare system statistics and perfor-
mance metrics. AWR baselines contain performance data from a specific time period that
is preserved for comparison when problems occur. This baseline data is excluded from the
AWR purging process.

You can create two types of baselines: a single baseline and a repeating baseline. A single
baseline is captured at a single fixed-time interval, such as October 5 between 10 a.m. and
1 p.m. A repeating baseline repeats during a time interval for a specific period, such as
every Friday between 10 a.m. and 1 p.m. You can create and delete AWR baselines using
EM Cloud Control or SQL*Plus.

Managing AWR Baselines Using SQL*Plus

To create a single baseline, use the CREATE_BASELINE procedure as shown in the following
code. You can include the optional expiration parameter to automatically delete the snap-
shot after the specified number of days.

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(
 start_snap_id => 27,
 end_snap_id => 29,
 baseline_name => 'OCP Example',
 expiration => 21);
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

To drop a baseline, use the DROP_BASELINE procedure as shown in the following code.
The cascade parameter specifies that only the baseline should be dropped, not the snapshots
associated with the baseline.

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(
 baseline_name => 'OCP Example',

	 Proactive Database Maintenance	 781

 cascade => FALSE);
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

You can create a baseline for the future date and time. These are called baseline templates.
The following code creates a baseline template:

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE(
 start_time => TO_DATE('01-JAN-15 05.00.00','DD-MON-YY HH.MI.SS'),
 end_time => TO_DATE('01-JAN-15 08.00.00','DD-MON-YY HH.MI.SS'),
 baseline_name => 'baseline_150101',
 template_name => 'template_150101',
 expiration => 21);
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

A repeating baseline is created using the following code. The example shows a baseline
captured every Friday at 9 a.m. for two years. The duration of the baseline is 9 a.m. to
12 p.m. The baselines will have a prefix of baseline_FRI, and they expire in 60 days.

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE(
 day_of_week => 'friday', hour_in_day => 9,
 duration => 3, expiration => 60,
 start_time => SYSDATE+1,
 end_time => ADD_MONTHS(SYSDATE, 24),
 baseline_name_prefix => 'baseline_FRI_',
 template_name => 'template_FRI');
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

AWR baselines and baseline templates are never dropped automatically
(or purged) from the database unless explicitly dropped by the DBA or the
expiration period ends.

782	 Chapter 14  ■  Maintaining the Database and Managing Performance

Managing AWR Baselines Using EM Cloud Control

Using EM Cloud Control to create, rename, and drop AWR baselines is easier than using
SQL*Plus, and it is error free. From the Performance drop-down menu, select Adaptive
Thresholds, and click the AWR Baselines link under Related Links. The current baselines
are displayed, as shown in Figure 14.16.

F igur e 14 .16     The AWR Baselines screen

Click the Create Preserved Snapshot Set button to create a new baseline. You will be pre-
sented with the option to create a baseline as shown in Figure 14.17. Enter the name of the
baseline. You can specify the snapshots to include in the baseline by using the snapshot IDs.

The Actions drop-down menu (shown in Figure 14.16) has an option to view the AWR
Report. You can drop a baseline by choosing the Delete Preserved Snapshot Set option. The
AWR Compare Periods report can be produced as well using the saved snapshots.

F igur e 14 .17     The AWR Create Preserved Snapshot screen

Automatic Database Diagnostic Monitoring
Following each AWR statistics-collection process, the Automated Database Diagnostic
Monitoring (ADDM) feature proactively analyzes the gathered statistics and compares
them to the statistics gathered by the previous two AWR snapshots. It is a self-advisor built

	 Proactive Database Maintenance	 783

in the database. By comparing the current statistics to two previous snapshots, the ADDM
can easily identify potential database problems such as these:

■■ CPU and I/O bottlenecks

■■ Resource-intensive SQL or PL/SQL or Java execution

■■ Lock contention

■■ Utilization of Oracle’s memory structures within the SGA

■■ RAC-specific issues

■■ Issues with Oracle Net configuration

■■ Data-concurrency issues

Based on these findings, the ADDM may recommend possible remedies. The goal of
these recommendations is to minimize DB Time. DB Time is composed of two types of time
measures for active database users: CPU time and wait time. This information is stored as
the cumulative time that all database users have spent either using CPU resources or waiting
for access to resources such as CPU, I/O, or Oracle’s memory structures. High or increasing
values for DB Time indicate that users are requesting increasingly more server resources and
may also be experiencing waits for those resources, which can lead to less than optimal per-
formance. In this way, minimizing DB Time is a much better way to measure overall database
performance than Oracle’s old ratio-based tuning methodologies.

To help you understand the concept of DB Time, Table 14.4 shows an example of how
DB Time is calculated for four sessions in the database for four seconds.

Tabl e 14 . 4    DB Time Calculation Example

Clock Time Session 1 Session 2 Session 3 Session 4 DB Time

3:00:01 Active - Using CPU Idle Active - Wait
on I/O

Active -
Using CPU

1+0+1+1=3

3:00:02 Active - Using CPU Active - Wait
on Lock

Idle Active - Wait
on I/O

1+1+0+1=3

3:00:03 Active - Using CPU Active - Wait
on I/O

Idle Idle 1+1+0+0=2

3:00:04 Active - Using CPU Active -
Using CPU

Active -
Using CPU

Active -
Using CPU

1+1+1+1=4

Total Elapsed Clock Time =4 Seconds Total DB
Time=12

The database takes a snapshot of the sessions every second. In the snapshot taken at
3:00:01, Sessions 1, 3, and 4 are active; session 2 is idle. So the DB Time is 1+0+1+1=3
seconds. In the next snapshot at 3:00:02, three sessions are active. After 4 seconds of

784	 Chapter 14  ■  Maintaining the Database and Managing Performance

wallclock time, the database has spent 12 seconds DB Time. Remember, DB Time is not
how much time the database spent, since only three seconds have passed. It’s the cumulative
time of all active sessions. After 4 seconds of wallclock time, the DB Time is 12 seconds.

DB Time is calculated by combining all the times from all active user ses-
sions into one number. Therefore, it is possible for the DB Time value to be
larger than the total time that the instance has been running. The goal of
database performance tuning is to reduce the DB Time of the system for
a given workload.

Once ADDM completes its comparison of the newly collected statistics to the previously
collected statistics, the results are stored in the AWR. You can use these statistics to establish
baselines against which future performance will be compared, and you can use deviations
from these baseline measures to identify areas that need attention. In this manner, ADDM
allows you to not only better detect and alert yourself to potential management and perfor-
mance problems in the database, but also allows you to automatically take corrective actions
to rectify those problems quickly and with little or no manual intervention.

The following sections introduce the interfaces, features, and functionality of ADDM
and explain how you can use this utility to monitor and manage database storage, security,
and performance. We’ll begin by examining the EM Cloud Control tools you can use to
view the results of ADDM analysis.

Set the initialization parameter CONTROL_MANAGEMENT_PACK_ACCESS to
either DIAGNOSTIC+TUNING (default) or DIAGNOSTIC to enable Automatic
Database Diagnostic Monitoring. Setting CONTROL_MANAGEMENT_PACK_
ACCESS to NONE disables ADDM. Setting STATISTICS_LEVEL to BASIC also
disables ADDM.

Using EM Cloud Control to View ADDM Analysis
EM Cloud Control graphically displays the results of the ADDM analysis. ADDM can be
invoked at various screens in EM Cloud Control.

■■ Select Advisor Home from the Performance menu, and choose ADDM.

■■ Click the Run ADDM button on the Performance home screen.

In the following sections, you’ll see sample output from each of the EM Cloud
Control screens.

Running ADDM from Advisor Home Screen

When ADDM is invoked from the Advisor Central screen, you are given the option to analyze
current performance or past performance. Current performance analysis captures an AWR
snapshot and compares the newly created snapshot to the previous one for analysis. For past

	 Proactive Database Maintenance	 785

period analysis, you choose a start snapshot and an end snapshot for comparison. Figure 14.18
shows the Run ADDM screen when invoked from Advisor Central.

F igur e 14 .18     The Run ADDM screen from Advisor Central in EM

As stated earlier, the ADDM automatically compares the most recent AWR snapshot to
previous AWR snapshots when formulating its recommendations. However, you can use
the Run ADDM To Analyze Past Performance option to manually select any two AWR
snapshot times and formulate ADDM recommendations for activity that occurred between
those two points in time. To start this process, click the Period Start Time radio button,
and then select a start date and time by clicking the point in the graph’s timeline that cor-
responds to the beginning period that you want to use. Repeat this process to specify the
end-process timestamp. In Figure 14.18, notice that the past period performance is chosen
to analyze the database performance between December 28, 1 a.m. and 2:30 a.m. Click the
OK button to see the findings.

ADDM analysis of I/O performance partially depends on DBIO_EXPECTED.
It describes the expected performance of the I/O subsystem (the aver-
age time it takes to read a single database block, in microseconds).
Oracle Database 12c uses the default value of 10,000 microseconds. This
parameter can be modified using the DBMS_ADVISOR.SET_DEFAULT_TASK_
PARAMETER procedure or from the Advisor Central screen of EM Cloud
Control by clicking the Change Default Parameters link.

Running ADDM from Performance Home

Clicking the Run ADDM Now button on the Performance Home screen brings up the same
dialogue screen you get when the first option on Figure 14.18 is chosen (Run ADDM To
Analyze Current Performance). Once you confirm the creation of a new snapshot dialogue
by clicking Yes, you will be presented with the analysis as shown in Figure 14.19. The output
of past performance analysis (Figure 14.18) has the same format and content as well.

786	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 .19     ADDM Performance Analysis findings

Click the View Snapshots button to view various statistics between the two snapshots,
including CPU, I/O, and memory performance. You can also view a detailed AWR report
between the two snapshots. The View Report button brings up the ADDM findings and
analysis report in text form. The text report can be obtained by running $ORACLE_HOME/
rdbms/admin/addmrpt.sql as well. The result of addmrpt.sql run, with its findings and
recommendations, is shown here:

 ADDM Report for Task 'TASK_123'

Analysis Period

AWR snapshot range from 66 to 67.
Time period starts at 28-DEC-13 02.30.05 AM
Time period ends at 28-DEC-13 03.00.12 AM

Analysis Target

Database 'OCADB1' with DB ID 6257179.
Database version 12.1.0.1.0.
ADDM performed an analysis of instance ocadb1, numbered 1 and hosted at
ocasvr1.bj.com.

	 Proactive Database Maintenance	 787

Activity During the Analysis Period

Total database time was 3629 seconds.
The average number of active sessions was 2.01.

Summary of Findings

 Description Active Sessions Recommendations
 Percent of Activity
 ------------------ ------------------- ---------------
1 Top SQL Statements 2.01 | 100 2
2 CPU Usage .2 | 9.81 2


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


 Findings and Recommendations

Finding 1: Top SQL Statements
Impact is 2.01 active sessions, 100% of total activity.

SQL statements consuming significant database time were found. These
statements offer a good opportunity for performance improvement.

 Recommendation 1: SQL Tuning
 Estimated benefit is 1 active sessions, 50% of total activity.
 --
 Action
 Run SQL Tuning Advisor on the SELECT statement with SQL_ID
 "5m8ggahzwr3ja".
 Related Object
 SQL statement with SQL_ID 5m8ggahzwr3ja.
 select count(*) from dba_segments, dba_tables, dba_synonyms
 Rationale
 The SQL spent 100% of its database time on CPU, I/O and Cluster waits.
 This part of database time may be improved by the SQL Tuning Advisor.
 Rationale

788	 Chapter 14  ■  Maintaining the Database and Managing Performance

 Database time for this SQL was divided as follows: 100% for SQL
 execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
 execution.

 Recommendation 2: SQL Tuning
 Estimated benefit is 1 active sessions, 50% of total activity.
 --
 Action
 Run SQL Tuning Advisor on the SELECT statement with SQL_ID
 "ahdm8cswnuqfg".
 Related Object
 SQL statement with SQL_ID ahdm8cswnuqfg.
 select count(*) from dba_synonyms, dba_segments, dba_views
 Rationale
 The SQL spent 100% of its database time on CPU, I/O and Cluster waits.
 This part of database time may be improved by the SQL Tuning Advisor.
 Rationale
 Database time for this SQL was divided as follows: 100% for SQL
 execution, 0% for parsing, 0% for PL/SQL execution and 0% for Java
 execution.

Finding 2: CPU Usage
Impact is .2 active sessions, 9.81% of total activity.
--
Host CPU was a bottleneck and the instance was consuming 99% of the host CPU.
All wait times will be inflated by wait for CPU.
Host CPU consumption was 99%.

 Recommendation 1: Application Analysis
 Estimated benefit is 2.01 active sessions, 100% of total activity.
 --
 Action
 Look at the "Top SQL Statements" finding for SQL statements consuming
 significant time on CPU. For example, the SELECT statement with SQL_ID
 "5m8ggahzwr3ja" is responsible for 50% of CPU usage during the analysis
 period.

 Recommendation 2: Host Configuration
 Estimated benefit is .2 active sessions, 9.81% of total activity.

	 Proactive Database Maintenance	 789

 Action
 Consider adding more CPUs to the host or adding instances serving the
 database on other hosts.
 Action
 Also consider using Oracle Database Resource Manager to prioritize the
 workload from various consumer groups.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Additional Information

Miscellaneous Information

Wait class "Application" was not consuming significant database time.
Wait class "Commit" was not consuming significant database time.
Wait class "Concurrency" was not consuming significant database time.
Wait class "Configuration" was not consuming significant database time.
Wait class "Network" was not consuming significant database time.
Wait class "User I/O" was not consuming significant database time.
Session connect and disconnect calls were not consuming significant database
time.
Hard parsing of SQL statements was not consuming significant database time.

End of Report
Report written to addmrpt_1_66_67.txt

You can also manually perform an ADDM analysis without EM Cloud Con-
trol by using the addmrpt.sql script located in the $ORACLE_HOME/rdbms/
admin directory. Specify the period to analyze using the snapshot IDs.

You can use the DBMS_ADDM package to manually analyze AWR snapshots. Table 14.5
shows some of the subprograms in DBMS_ADDM that can be used to manually manage
ADDM analysis.

790	 Chapter 14  ■  Maintaining the Database and Managing Performance

Tabl e 14 .5    Partial List of DBMS_ADDM Subprograms

Procedure Name Description

ANALYZE_DB Creates an ADDM analysis by specifying the begin and
end AWR snapshot IDs

DELETE Deletes an ADDM task

INSERT_FINDING_DIRECTIVE Excludes certain findings from ADDM reporting

INSERT_SEGMENT_DIRECTIVE Excludes a certain schema, object, or segment from
ADDM reporting (do not run Segment Advisor on these
segments)

INSERT_SQL_DIRECTIVE Excludes certain SQL from ADDM reporting

The DBA_ADVISOR_FINDINGS, DBA_ADVISOR_RECOMMENDATIONS, and DBA_
ADVISOR_ACTIONS dictionary views have a column named FILTERED. If the
value for this column is Y, the row in the view is filtered by a directive and
is not reported.

Although using EM Cloud Control to create and view ADDM results is by far the sim-
plest way to review ADDM recommendations, you can also query the ADDM data diction-
ary views directly. We’ll discuss some of these data dictionary views in the following section.

Using Data Dictionary Views to View ADDM Analysis
You can use more than 20 data dictionary views to examine the results of ADDM’s activities.
Table 14.6 describes five commonly used ADDM views that store the recommendation infor-
mation you saw in the EM Cloud Control pages.

Tabl e 14 .6    ADDM Data Dictionary Views

View Name Description

DBA_ADDM_TASKS Displays executed advisor tasks

DBA_ADDM_FINDINGS Describes the findings identified by the ADDM analysis

DBA_ADVISOR_OBJECTS Describes the objects that are referenced in the ADDM
findings and recommendations

	 Proactive Database Maintenance	 791

View Name Description

DBA_ADVISOR_RECOMMENDATIONS Describes the recommendations made based on
ADDM findings

DBA_ADVISOR_RATIONALE Describes the rationale behind each ADDM finding

DBA_ADDM_TASKS, DBA_ADDM_INSTANCES, and DBA_ADDM_FINDINGS are
extensions of the corresponding DBA_ADVISOR_ views but are specific for
ADDM tasks and findings.

The following SQL statement shows a sample query on the DBA_ADVISOR_FINDINGS data
dictionary view that identifies the type of performance problem that is causing the most
impact on the database:

SQL> SELECT task_id, type, message
 FROM dba_advisor_findings
 WHERE impact= (select MAX(impact) FROM dba_advisor_findings);

TASK_ID TYPE MESSAGE
------- --------- --
 114 PROBLEM SQL statements consuming significant database time were found.
 These statements offer a good opportunity for performance
 improvement.

The output from this query shows that SQL statements being executed in the database
are contributing to the poor database performance. By itself, the DBA_ADVISOR_FINDINGS
table does not identify which SQL statements are consuming the database time. Instead,
these are shown in the DBA_ADVISOR_OBJECTS data dictionary view and are identified by the
TASK_ID value shown in the query on DBA_ADVISOR_FINDINGS. A query on that view, using
the TASK_ID of 114 returned by the ADDM session that had the potential for the greatest
database impact, returns the SQL statements shown here:

SQL> SELECT attr4
 FROM dba_advisor_objects
 WHERE task_id = 114;

ATTR4
--
select count(*) from dba_segments, dba_tables, dba_synonyms
select count(*) from dba_synonyms, dba_segments, dba_views

792	 Chapter 14  ■  Maintaining the Database and Managing Performance

This query shows all the SQL statements that were captured by the AWR during the
snapshot period and that were used in the ADDM analysis for that same period.

The DBA_ADVISOR_ACTIONS data dictionary view shows the ADDM recommendations
for each finding. If you want to see the rationale behind each of the actions shown in
DBA_ADVISOR_ACTIONS, query the DBA_ADVISOR_RATIONALE data dictionary view. The DBA_
ADVISOR_RATIONALE view stores the ADDM recommendations that ADDM has formulated
based on the AWR data, like those stored in DBA_ADVISOR_FINDINGS and DBA_ADVISOR_
OBJECTS. The following example shows a sample query on the DBA_ADVISOR_RATIONALE
view using the TASK_ID of 114 identified earlier:

SQL> SELECT message
 FROM dba_advisor_rationale
 WHERE task_id = 114;

MESSAGE

The SQL spent 99% of its database time on CPU, I/O and Cluster waits. This part
of database time may be improved by the SQL Tuning Advisor.
Database time for this SQL was divided as follows: 100% for SQL execution, 0%
for parsing, 0% for PL/SQL execution and 0% for Java execution.
The SQL spent 100% of its database time on CPU, I/O and Cluster waits. This part
of database time may be improved by the SQL Tuning Advisor.
Database time for this SQL was divided as follows: 100% for SQL execution, 0%
for parsing, 0% for PL/SQL execution and 0% for Java execution.

As you can see from the complexity of these examples, examining the ADDM
results via EM Cloud Control is much easier than accessing the data diction-
ary views via SQL. From a practical standpoint, you would run SQL queries
against these ADDM views only if EM Cloud Control were unavailable.

Real-Time ADDM
Real-Time ADDM is a feature available in Oracle EM Cloud Control 12c. Real-Time
ADDM runs through a set of predefined criteria to analyze the current performance of the
database. After analyzing the problem, Real-Time ADDM identifies potential issues such
as deadlocks, hangs, shared pool connections, and other exception situations. It also helps
to resolve the problems without having to restart the database. Figure 14.20 presents the
results of a Real-Time ADDM analysis that shows the components verified by Real-Time
ADDM. You will have to provide a SYSDBA connection to the database and operating
system access to the server to be able to resolve the issues through Real-Time ADDM.

To gain further insight into the recommendations and information gathered by the
ADDM, Oracle Database 12c also provides several advisor utilities in EM Cloud Control.
We will discuss these advisors in the next section.

	 Proactive Database Maintenance	 793

F igur e 14 . 20     Real-Time ADDM results

The Advisory Framework
Oracle Database 12c comes with several advisors to help you proactively manage the database.
Figure 14.21 shows the Advisors Home screen, and the top portion shows the advisors avail-
able in Oracle Database 12c and how to invoke them. Advisors provide recommendations that
are key for a DBA to manage the database effectively.

F igur e 14 . 21     Advisor Home screen

794	 Chapter 14  ■  Maintaining the Database and Managing Performance

The advisors can be classified into the following:

■■ Memory

■■ SGA Advisor

■■ PGA Advisor

■■ Shared Pool Advisor

■■ Buffer Cache Advisor

■■ SQL

■■ SQL Tuning Advisor

■■ SQL Access Advisor

■■ SQL Repair Advisor

■■ Automatic Undo Management

■■ Undo Advisor

■■ Recovery

■■ MTTR Advisor

■■ Data Recovery Advisor

■■ Maximum Availability Architecture Advisor

■■ Space

■■ Segment Advisor

■■ Streams

■■ Streams Performance Advisor

■■ Testing

■■ SQL Performance Analyzer

You can click each advisor’s link on the Advisor Central screen and familiarize yourself
with the contents and recommendations. The advisors perform the following functions:

SQL Advisors    The SQL Tuning Advisor and SQL Access Advisor provide recommendations
and advice. They are discussed in the next section.

Memory Advisors    Memory advisors provide the optimal size for various memory parameters
for Automatic Memory Management (AMM) and Automatic Shared Memory Management
(ASMM). AMM and ASMM are discussed later in the chapter.

Segment Advisor    The Segment Advisor identifies whether a segment is a good candidate for
a shrink operation based on the level of fragmentation within the segment. The advisor also
keeps historical growth of the segment, which can be used for capacity planning. The Segment
Advisor is discussed in Chapter 10, “Understanding Storage and Space Management.”

Undo Advisor (Automatic Undo Management)    The Undo Advisor recommends the optimal
size for the undo tablespace based on the undo retention and flashback requirements. Undo
Advisor is discussed in Chapter 11, “Managing Data Concurrency and Undo.”

	 Proactive Database Maintenance	 795

MTTR Advisor    The MTTR Advisor provides the optimal value for the FAST_START_
MTTR_TARGET initialization parameter. This parameter determines the amount of time
required by the instance to start in the event of an instance crash. MTTR Advisor is dis-
cussed in Chapter 15, “Using Backup and Recovery.”

Data Recovery Advisor    The Data Recovery Advisor helps diagnose and repair data fail-
ures and corruptions. It analyzes the failure based on the symptoms and determines the
repair strategies. Data Recovery Advisor is discussed in Chapter 15.

Maximum Availability Architecture Advisor    The MAA advisor is a collection of tools to
ensure your data is safe and recoverable. Click on the link to find out how you can ensure
safety of the database and prevent data loss in the event of failures and disasters.

Streams Performance Advisor    Oracle Streams enable information sharing, using messaging
technology between databases or within a database. Streams are heavily used in data replica-
tion and data warehouse environments, and provide data availability during upgrade and
maintenance operations. The Streams Performance analyzer captures and advises on various
streams components.

SQL Repair Advisor     Run the SQL Repair Advisor after a SQL statement fails with a
critical error. The advisor analyzes the statement and advises if a patch is available to repair
the statement. Critical errors are mostly the errors that produce error code ORA-00600 or
ORA-07445. SQL Repair Advisor can be run from SQL*Plus using the subprograms in the
DBMS_SQLDIAG package.

SQL Performance Analyzer     SQL Performance Analyzer is used to test various scenarios
when a change is made to the system. The change could be an upgrade, hardware change,
parameter change, exadata migration, etc. The workload is captured from the production
(source) system and played in the target system to analyze the impact.

SQL tuning is an important component to help keep the database performing at its best. A
few bad SQL codes could bring the database to its knees. Oracle depends on optimizer statis-
tics to find the best execution plan for the SQL code. The SQL Advisors go a step further and
perform deep analysis of the SQL statements to recommend alternative execution plans and
additional indexes. Let’s briefly explore the SQL Tuning Advisor and SQL Access Advisor in
the next sections.

SQL Tuning Advisor
The SQL Tuning Advisor provides SQL tuning advice. You can use the top activity or current
session’s graphs to drill down to the SQL statement to tune. You can tune one statement or
multiple statements; however, the Tuning Advisor does not understand the interdependencies
between the statements. Advice can include restructuring SQL statements, creating additional
indexes, using materialized views, partitioning tables, refreshing the optimizer statistics, creat-
ing SQL Profile with better execution plan, or reusing a better plan found in the AWR.

The SQL Tuning Advisor can be accessed through either EM Cloud Control under
Performance menu or in EM Cloud Control wherever SQL statement information is provided,
such as on the Top Activity page, the Historical SQL page, the ADDM SQL findings, and
so on. Figure 14.22 shows the SQL Tuning Advisor screen when accessed from EM Cloud
Control Performance menu.

796	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 . 22     The SQL Tuning Advisor screen

From the Top Activity page, click on the SQL ID to view more information on the
SQL statement, and in the Actions drop-down menu, choose SQL Tuning Advisor to
tune the SQL statement. Figure 14.23 shows an example analysis and recommendations
from the Tuning Advisor.

In Figure 14.23, you can see three recommendations. The first one is to gather optimizer
statistics for the optimizer to build a better plan. The second recommendation is to create a
SQL profile. The Tuning Advisor also explains the benefits of each recommendation, so you
can determine if the recommendation is worth implementing. For many recommendations,
Tuning Advisor also provides the plan comparison. The third recommendation you see is
to restructure the SQL statement, because there is a Cartesian join. From a practical stand-
point, restructuring SQL to fix the missing join condition and collecting optimizer statistics
would be the best way to solve this SQL performance issue.

F igur e 14 . 23     Tuning Advisor recommendations

	 Proactive Database Maintenance	 797

As you learned in the section “Configuring Automated Maintenance Tasks Using EM,”
the SQL Tuning Advisor is automatically scheduled and enabled when the database is created
using DBCA or upgraded using DBUA. Automatic SQL tuning information can be accessed
from EM Cloud Control using the Automated Maintenance Tasks menu item under Oracle
Scheduler in the Administration menu. Figure 14.24 shows the Automated SQL Tuning
Result Summary screen. Here you can configure automated SQL tuning options, such as
enable or disable tasks, and decide whether the SQL profile recommendations made by the
Tuning Advisor should be automatically implemented.

In the screen, you can also see a summary of recommendations, which you can review
and implement.

The SQL Tuning task status and any recommendations are visible on the
Advisor Central page. When a SQL Tuning task is running, you can click the
Interrupt button to end the task. Note that closing the page or clicking Can-
cel will not stop the advisor task that is running in the database.

SQL Access Advisor
The SQL Access Advisor provides recommendations on schema modifications to optimize
data access paths. Specifically, it recommends how database performance can be improved
through partitioning, materialized views, indexes, and materialized view logs. SQL Access
Advisor is also accessed through the SQL menu item under Performance in EM Cloud
Control. Figure 14.25 shows the SQL Access Advisor screen. In this screen, you choose the
workload source and the SQL statements to analyze.

F igur e 14 . 24     Automated SQL tuning results

798	 Chapter 14  ■  Maintaining the Database and Managing Performance

Figure 14.26 shows the Access Advisor recommendations. Here you can specify the
type of structures, such as indexes or materialized views, that should be considered for
recommendation. You can also specify either a limited analysis or comprehensive analysis.
Comprehensive analysis requires more resources and takes longer.

The next two screens are used for scheduling and review. Once scheduled, the Access
Advisor will run, and the results can be accessed from Advisor Central.

The Advisor Central screen shown in Figure 14.20 has another tab, named
Checkers, next to the Advisors tab. Don’t forget to review it so that you’ll
understand the various integrity checks performed by the database.

In the next section, you’ll learn about another tool that will help you proactively monitor
the Oracle Database 12c database with timely alerts.

F igur e 14 . 25     The SQL Access Advisor

Monitoring Server-Generated Alerts
In addition to monitoring and making recommendations on SQL, memory, mean time to
recover, segments, and undo activity, an Oracle Database 12c database can also proactively
monitor itself for other types of problems related to configuration, security, and space man-
agement. To do so, you use the server-generated alerts feature.

A server-generated alert is an alert from Oracle Database 12c that says it suspects a prob-
lem with the database. These alerts are also an integral part of the ADDM architecture. They
notify you when a management or performance issue occurs and begin taking corrective

	 Proactive Database Maintenance	 799

actions—if you configured such actions. By default, the alert notifications are sent to a pre-
defined persistent queue named ALERT_QUE owned by SYS. EM Cloud Control reads this queue.

F igur e 14 . 26     SQL Access Advisor recommendations

There are two types of server-generated alerts: threshold based and event based. Threshold
alerts are triggered when a specified threshold is met, such as when a tablespace has reached
a certain capacity. Threshold alerts can be fired at a warning level (for example, 85 percent
tablespace capacity) or at a critical level (for example, 97 percent tablespace capacity). Event
alerts are triggered when a specified event occurs, such as a database error.

Viewing and Configuring Alerts Using EM Cloud Control
The EM Cloud Control Database home page displays the alerts when they are triggered. Alerts
can be reviewed using the Alert History menu item under Monitoring in the Administration
drop-down menu. The All Metrics menu item also shows alerts and metric violations. You can
also see the alert history by clicking the Alert link from the Oracle Database 12c home page.
You can configure the alerts by clicking the Metric and Collection Settings menu, as shown in
Figure 14.27.

Each alert can have two levels of severity: Warning and Critical. These two alert levels
allow you to achieve greater granularity. For example, you might want two thresholds set
up with regard to the archive destination. One might be a warning threshold that triggers an
alert when the archive destination is 80 percent full—causing a message to be displayed on
the EM Cloud Control main screen. In addition, you might want to set up a critical threshold
so that you receive an email whenever the archive destination device is 90 percent full. In this
manner, you can escalate a potential problem from an EM Cloud Control console message to
an email alert to a text alert as the problem gets worse.

800	 Chapter 14  ■  Maintaining the Database and Managing Performance

F igur e 14 . 27     The Metric and Collection Settings screen

You can also use warning and critical alerts to distinguish between
lower-severity problems, such as statistics indicating temporary poor
performance, and higher-severity problems, such as ORA-0600 error
messages in the database alert log. You can achieve this by defining
warning thresholds only for lower-severity alerts and defining warning
and critical alerts for higher-severity problems.

Viewing and Configuring Alerts Using SQL
You can use SQL*Plus to configure the alert thresholds and to view the alerts. The
DBMS_SERVER_ALERT package has the subprograms to define and query the thresholds.
The SET_THRESHOLD procedure is used to define the threshold, and the GET_THRESHOLD
procedure is used to retrieve threshold information.

You can also query the thresholds from the DBA_THRESHOLDS dictionary view. The following
is an example:

SQL> SELECT metrics_name, warning_value, critical_value
 FROM dba_thresholds
 WHERE metrics_name like 'Tablespace%'
SQL> /

	 Proactive Database Maintenance	 801

METRICS_NAME WARNING_VA CRITICAL_V
----------------------------------- ---------- ----------
Tablespace Bytes Space Usage 0 0
Tablespace Space Usage 85 97
SQL>

Threshold alerts are written to DBA_OUTSTANDING_ALERTS. Nonthreshold alerts are written
only to DBA_ALERT_HISTORY. Entries from DBA_OUTSTANDING_ALERTS are cleared when the alert
condition is cleared. The following is a query from the DBA_OUTSTANDING_ALERTS view:

SQL> SELECT reason FROM dba_outstanding_alerts;
REASON
--
db_recovery_file_dest_size of 4395630592 bytes is 97.27%
used and has 119794176 remaining bytes available.

Metrics "Database Time Spent Waiting (%)" is at 36.84571
for event class "Concurrency"

The V$METRIC view shows system-level metric values. Metric history is saved in the
V$METRIC_HISTORY view.

So far, you have seen several tools that help DBAs proactively monitor the database. They
cannot possibly identify all the potential issues and how to proactively avoid them. Errors and
database corruptions do happen. Oracle Database 12c has a reporting mechanism to analyze
the problem reactively and take measures to avoid issues in the future. You’ll learn about the
Automatic Diagnostic Repository in the next section.

Understanding Automatic Diagnostic Repository
The Automatic Diagnostic Repository (ADR) is a file-based repository for database diagnos-
tic data such as alert log files, trace files, core dump files, health monitor reports, and so on.
ADR replaces the BACKGROUND_DUMP_DEST, CORE_DUMP_DEST, and USER_DUMP_DEST locations.
The parameter, DIAGNOSTIC_DEST, specifies the base directory for the ADR. The default for
DIAGNOSTIC_DEST is $ORACLE_BASE if available; otherwise, it’s $ORACLE_HOME/log. ADR is a
vast topic and is not covered here in its entirety.

Within ADR base, there can be multiple ADR homes. Each ADR home is the base
directory for all the files belonging to an instance. The ADR home directory for an
instance is $DIAGNOSTIC_DEST/diag/rdbms/<dbname>/<instance name>.

The subdirectories under the DIAGNOSTIC_DEST are as follows:

DIAGNOSTIC_DEST/diag DIAGNOSTIC_DEST/diag
 rdbms tnslsnr
 <db_name> <machine_name>
 <instance_name> <listener_name>
 alert alert

802	 Chapter 14  ■  Maintaining the Database and Managing Performance

 cdump cdump
 hm incident
 incident incpkg
 incpkg lck
 ir metadata
 lck stage
 metadata sweep
 stage trace
 sweep
 trace

In Oracle Database 12c, an alert log file is written in XML format as well as in text
format. The XML-format file is under the alert directory, whereas the text-format file is
under the trace directory. The values for _DUMP_DEST parameters are ignored by Oracle
Database 12c databases. The new view V$DIAG_INFO gives file locations:

SQL> SELECT name, value FROM v$diag_info;

NAME
VALUE
--
Diag Enabled
TRUE
ADR Base
/u01/app/oracle
ADR Home
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1
Diag Trace
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/trace
Diag Alert
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/alert
Diag Incident
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/incident
Diag Cdump
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/cdump
Health Monitor
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/hm
Default Trace File
/u01/app/oracle/diag/rdbms/ocadb1/ocadb1/trace/ocadb1_ora_14885.trc
Active Problem Count
0
Active Incident Count
0

	 Proactive Database Maintenance	 803

The standard directory structure and diagnostic framework enables DBAs to package
and send trace-file and log information to Oracle Support for timely resolution to issues.
The ADR command interface (ADRCI) is a command-line tool available to view the ADR
information and to package incident and problem information into a ZIP file.

Internal errors ORA-00600 and ORA-07445 are considered critical errors. Other
errors considered as critical are listed in the view V$DIAG_CRITICAL_ERROR.

Using ADRCI to View the Alert Log File
You invoke the ADRCI command-line tool with the executable adrci, and you use the show
alert command to view the alert log file. You can use options such as -tail to view the
end of the file or -P to filter the output. You can also use the SPOOL command similar to
SQL*Plus to write the output to a file.

The help command in adrci displays all the available commands in ADRCI. Invoke
ADRCI using the adrci.exe executable on Windows or using the adrci executable on
Unix/Linux platforms.

$ adrci

ADRCI: Release 12.1.0.1.0 - Production on Sat Dec 28 10:05:05 2013
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.
ADR base = "/u01/app/oracle"

adrci> help
HELP [topic]
 Available Topics:
 CREATE REPORT
 ECHO
 EXIT
 HELP
 HOST
 IPS
 PURGE
 RUN
 SET BASE
 SET BROWSER
 SET CONTROL
 SET ECHO
 SET EDITOR
 SET HOMES | HOME | HOMEPATH
 SET TERMOUT

804	 Chapter 14  ■  Maintaining the Database and Managing Performance

 SHOW ALERT
 SHOW BASE
 SHOW CONTROL
 SHOW HM_RUN
 SHOW HOMES | HOME | HOMEPATH
 SHOW INCDIR
 SHOW INCIDENT
 SHOW LOG
 SHOW PROBLEM
 SHOW REPORT
 SHOW TRACEFILE
 SPOOL

 There are other commands intended to be used directly by Oracle, type
 "HELP EXTENDED" to see the list
adrci>

To find out the purpose and get detailed syntax information on a specific command, do
help <command>:

adrci> help show alert

 Usage: SHOW ALERT [-p <predicate_string>] [-term]
 [[-tail [num] [-f]] | [-file <alert_file_name>]]
 Purpose: Show alert messages.

 Options:
 [-p <predicate_string>]: The predicate string must be double-quoted.
 The fields in the predicate are the fields:
 ORIGINATING_TIMESTAMP timestamp
 NORMALIZED_TIMESTAMP timestamp
 ORGANIZATION_ID text(65)
 COMPONENT_ID text(65)
 HOST_ID text(65)
 HOST_ADDRESS text(17)
 MESSAGE_TYPE number
 MESSAGE_LEVEL number
 MESSAGE_ID text(65)
 MESSAGE_GROUP text(65)
 CLIENT_ID text(65)
 MODULE_ID text(65)
 PROCESS_ID text(33)

	 Proactive Database Maintenance	 805

 THREAD_ID text(65)
 USER_ID text(65)
 INSTANCE_ID text(65)
 DETAILED_LOCATION text(161)
 UPSTREAM_COMP_ID text(101)
 DOWNSTREAM_COMP_ID text(101)
 EXECUTION_CONTEXT_ID text(101)
 EXECUTION_CONTEXT_SEQUENCE number
 ERROR_INSTANCE_ID number
 ERROR_INSTANCE_SEQUENCE number
 MESSAGE_TEXT text(2049)
 MESSAGE_ARGUMENTS text(129)
 SUPPLEMENTAL_ATTRIBUTES text(129)
 SUPPLEMENTAL_DETAILS text(4000)
 PROBLEM_KEY text(65)

 [-tail [num] [-f]]: Output last part of the alert messages and
 output latest messages as the alert log grows. If num is not specified,
 the last 10 messages are displayed. If "-f" is specified, new data
 will append at the end as new alert messages are generated.

 [-term]: Direct results to terminal. If this option is not specified,
 the results will be open in an editor.
 By default, it will open in emacs, but "set editor" can be used
 to set other editors.

 [-file <alert_file_name>]: Allow users to specify an alert file which
 may not be in ADR. <alert_file_name> must be specified with full path.
 Note that this option cannot be used with the -tail option

 Examples:
 show alert
 show alert -p "message_text like '%incident%'"
 show alert -tail 20

adrci>

Similar to tail -f in Unix, where the output appended to a file is contin-
uously displayed, you can use tail -f in adrci as well to continuously
show the alert log when messages are added to it.

806	 Chapter 14  ■  Maintaining the Database and Managing Performance

Using EM to View the Alert Log File
You can also use EM Cloud Control to view the alert log contents. On the Cloud Control
home page, click the Alert Log Contents link under Related Links. You can view the last
50, 100, or up to 2,000 lines of the alert log. See Figure 14.28 showing the various menu
options to view alert log content under the Oracle Database menu.

F igur e 14 . 28     Alert log viewing options

In addition to viewing the alert log content and errors, there is an option to purge or
archive the alert log.

In the next section, you will learn the tools available to monitor the performance of the
database.

Managing Performance
Although AWR, ADDM, advisors, and ADR all help you proactively monitor and manage
your databases, you can use additional performance-specific features of EM Cloud Control
to further enhance the performance of your database. When thinking about tuning, you
should consider the following areas:

■■ Memory-allocation issues

■■ I/O contention (disk/SAN configuration)

■■ CPU contention

■■ Network issues

■■ SQL problems (bad SQL, optimizer plans)

Several dictionary and dynamic performance views are available in Oracle Database 12c
that help you tune and gather system information. When it comes to tuning, managing the

	 Managing Performance	 807

instance memory is very important. How much memory should you allocate for all the vari-
ous SGA components? In the following sections, you will learn how Oracle Database 12c
can help you take the guesswork out of database administration and tune the database.

Sources of Tuning Information
EM Cloud Control provides a wealth of information for improving database monitoring
and management, but you also need to be aware of several other sources of information
about database performance, including the following:

■■ The alert log

■■ Background and user trace files

■■ Dynamic performance views

■■ Data dictionary views

The Alert Log
The Oracle alert log records informational and error messages for a variety of activities
that have occurred against the database during its operation. These activities are recorded
in chronological order from the oldest to most recent. You can find the alert log in the ADR
directory that you learned about earlier.

The alert log frequently indicates whether gross tuning problems exist in the database.
Tables that are unable to acquire additional storage, sorts that are failing, and problems
with rollback segments are all examples of tuning problems that can show up as messages
in the alert log. Most of these messages are accompanied by an Oracle error message.

Background and User Trace Files
Oracle trace files are text files that contain session information for the process that created
them. Trace files can be generated by the Oracle background processes, through the use
of trace events, or by user server processes. These trace files can contain useful informa-
tion for performance tuning and system troubleshooting. Trace files are also located in the
ADR directories.

You can generate user trace files for a particular session by using the DBMS_MONITOR pack-
age. Many subprograms are available in this package to enable and disable trace; the most
common ones are SESSION_TRACE_ENABLE to start the tracing and SESSION_TRACE_DISABLE
to stop the tracing.

To use the SESSION_TRACE_ENABLE procedure, you must know the SID and SERIAL# on
the session, which you can get by querying the V$SESSION view. The third argument to the
procedure is waits, which is TRUE by default. The fourth argument is binds, which is FALSE
by default. By enabling the waits, the wait information is written to the trace file. By enabling
the binds, the bind variable values are also written to the trace file. Once you have the SID and
SERIAL# , you can enable trace for the session by doing the following:

SQL> BEGIN
 DBMS_MONITOR.SESSION_TRACE_ENABLE(session_id=>324,

808	 Chapter 14  ■  Maintaining the Database and Managing Performance

 serial_num=>54385,
 waits=>TRUE,
 binds=>TRUE);
 END;

To stop tracing, you have to pass in the SID and SERIAL# as parameters:

SQL> BEGIN
 DBMS_MONITOR.SESSION_TRACE_DISABLE(session_id=>324,
 serial_num=>54385);
 END;

You can also use EM Cloud Control to enable and disable trace. To see the sessions in
the instance, you can choose any of the following links under the Additional Monitoring
Links on the Performance tab in Database Control (see Figure 14.29):

■■ Top Consumers

■■ Instance Locks

■■ Instance Activity

F igur e 14 . 29     Additional Monitoring Links section on the Performance home screen

When you click the Top Consumers link, you will get an overview of the consumers.
Click the Top Sessions link to view the sessions in the instance. The session can be searched
by specifying filter criteria using the Search Sessions menu under the Performance tab. You
can also view the Blocking Sessions menu under the Performance tab, where you have the
option to trace as well. You can use the Enable SQL Trace and Disable SQL Trace buttons
on these screens to enable and disable tracing.

Session trace files are written to the trace directory under the ADR home screen.
Oracle Database 12c provides multiple tools to analyze trace files. The standard tool to
convert the trace file to a readable format is known as tkprof. It works on a single file,
and provides the SQL statements, execution and elapsed times, as well as explains the
plan. Oracle Support also provides the Trace Analyzer tool for download, which pro-
duces HTML output and is filled with a lot of useful information.

End-to-end application tracing and analysis of multiple trace files are made possible with
trcsess utility. It consolidates trace output from selected trace files based on criteria such as
Session ID, Client ID, Service name, Action name, and Module name. After trcsess merges
the trace information into a single output file, the output file can be processed by tkprof or
Trace Analyzer.

	 Managing Performance	 809

The 10046 trace event, which can be activated at the instance or session
level, is particularly useful for finding performance bottlenecks. See Note
171647.1 at http://metalink.oracle.com for a discussion of using the 10046
trace event as a tuning technique. Through EM Cloud Control, you can
enable trace capturing the waits and binds information. Another trace
event helpful to analyze optimizer behavior is 10053.

Dynamic Performance Views
As described in Chapter 8, “Introducing Oracle Database 12c Components and Architecture,”
Oracle Database 12c contains several dynamic performance views. Table 14.7 contains a
partial listing of some of the V$ views that are frequently used in performance tuning and
troubleshooting.

Tabl e 14 .7    A Partial Listing of Dynamic Performance Views

Name Description

V$SGAINFO Shows information about the size of the SGA’s components.

V$PGASTAT Shows information about PGA memory usage.

V$EVENT_NAME Shows database events that may require waits when requested by
the system or by an individual session.

V$SYSTEM_EVENT Shows events for which waits have occurred for all sessions access-
ing the system.

V$SESSION_EVENT Shows events for which waits have occurred, individually identified
by session.

V$SESSION_WAIT Shows events for which waits are currently occurring, individually
identified by session.

V$STATNAME Matches the name to the statistics listed only by number in
V$SESSTAT and V$SYSSAT.

V$SYSSTAT Shows overall system statistics for all sessions, both currently and
previously connected.

V$SESSTAT Shows statistics on a per-session basis for currently connected
sessions.

V$SESSION Shows current connection information on a per-session basis.

V$WAITSTAT Shows statistics related to block contention.

http://metalink.oracle.com

810	 Chapter 14  ■  Maintaining the Database and Managing Performance

Name Description

V$LOCK Lists the locks currently in the database.

V$PARAMETER Shows the initialization-parameter values that are currently in effect.

V$SPPARAMETER Shows the contents of the server parameter file (spfile); look for
value TRUE in column ISSPECIFIED to see if the parameter was
explicitly specified in the spfile, as opposed to default values.

V$FILESTAT Shows number of reads/writes and timing statistics for data files.

V$DATAFILE Shows data file properties.

V$TEMPFILE Shows temporary file properties.

V$TEMPSEG_USAGE Displays temporary segment usage by session.

In general, queries that incorporate V$SYSSTAT show statistics for the entire instance
since the time it was started. By joining this view to the other relevant views, you get the
overall picture of performance in the database. Alternatively, queries that incorporate
V$SESSTAT show statistics for a particular session. These queries are better suited for
examining the performance of an individual operation or process. EM Cloud Control
makes extensive use of these views when creating performance-related graphs.

Data Dictionary Views
Depending on the features and options installed, an Oracle database has hundreds of data
dictionary views. Table 14.8 contains a partial listing of some of the DBA views that are
used when you tune performance on a database.

Tabl e 14 . 8    A Partial Listing of Data Dictionary Views for Tuning and Troubleshooting

Name Description

DBA_TABLES Table storage, row, and block information.

DBA_INDEXES Index storage, row, and block information.

INDEX_STATS Index depth and dispersion information.

DBA_DATA_FILES Data file location, naming, and size information.

DBA_SEGMENTS General information about any space-consuming segment in the
database.

Tabl e 14 .7    A Partial Listing of Dynamic Performance Views  (continued)

	 Managing Performance	 811

Name Description

DBA_HISTOGRAMS Table and index histogram definition information.

DBA_OBJECTS General information about all objects in the database, including
tables, indexes, triggers, sequences, and partitions.

DBA_WAITERS Shows sessions that are waiting for another session to release a lock.

DBA_TABLESPACES Shows tablespaces in the database and their properties.

DBA_FREE_SPACE Shows the free space available in all tablespaces in the database.

DBA_HIST_* Views beginning in DBA_HIST_ show AWR historic information.

Important Performance Metrics
Throughput is another example of a statistical performance metric. Throughput is the amount
of processing that a computer or system can perform in a given amount of time—for example,
the number of customer deposits that can be posted to the appropriate accounts in four hours
under regular workloads. Throughput is an important measure when considering the scal-
ability of the system. Scalability refers to the degree to which additional users can be added to
the system without system performance declining significantly. New features such as Oracle
Database 12c’s Grid Computing capabilities make Oracle one of the most scalable database
platforms on the market.

Performance considerations for transactional systems usually revolve
around throughput maximization.

Another important metric related to performance is response time. Response time is
the amount of time it takes for a single user’s request to return the desired result when
using an application—for example, the time it takes for the system to return a listing of
all the customers who purchased products that require service contracts.

Performance-tuning considerations for decision-support systems usually
revolve around response time minimization.

You can use EM Cloud Control to both monitor and react to sudden changes in per-
formance metrics such as throughput and response time.

In the next section, we will revisit memory configuration and learn more about tuning
memory components.

812	 Chapter 14  ■  Maintaining the Database and Managing Performance

Tuning Memory
In Chapter 8, you learned about the architecture of Oracle Database 12c. An Oracle instance
consists of memory structures and background processes. The memory structure comprises
SGA and PGA, and it is important to size the SGA and PGA appropriately for better database
performance.

Fortunately, Oracle Database 12c provides a variety of automatic options to tune memory
so that DBAs don’t need to worry about tuning the individual memory components such
as the Java pool and the shared pool. In the following sections, you will revisit the memory
components and learn the options available to tune and manage.

Memory Components
The two primary memory components are SGA and PGA. SGA consists of the following
components. The parameters that control these pools are also provided for your reference.

■■ Shared pool: SHARED_POOL_SIZE
■■ Database buffer cache: DB_CACHE_SIZE
■■ Large pool: LARGE_POOL_SIZE
■■ Java pool: JAVA_POOL_SIZE
■■ Streams pool: STREAMS_POOL_SIZE
■■ Log buffer: LOG_BUFFER
■■ Result Cache: RESULT_CACHE_SIZE
■■ Database keep buffer cache: DB_KEEP_CACHE_SIZE
■■ Database recycle buffer cache: DB_RECYCLE_CACHE_SIZE
■■ Buffer cache for nonstandard block size: DB_nK_CACHE_SIZE
■■ Unified auditing queue size: UNIFIED_AUDIT_SGA_QUEUE_SIZE

The parameters that can be configured to manage the PGA are as follows:

■■ SORT_AREA_SIZE
■■ HASH_AREA_SIZE
■■ BITMAP_MERGE_AREA_SIZE
■■ CREATE_BITMAP_AREA_SIZE

As you can see from the previous components and parameters, correctly sizing these
pools and memory parameters can become complicated. Oracle Database 12c takes the
pain away from DBAs by providing these automatic memory-tuning options:

■■ Automatic SGA tuning using SGA_TARGET

■■ Automatic PGA tuning using PGA_AGGREGATE_TARGET
■■ Automatic Memory tuning (PGA and SGA) using MEMORY_TARGET

	 Managing Performance	 813

The following advisors views are available in Oracle Database 12c to tune the individual
components of memory:

■■ V$DB_CACHE_ADVICE to size the database buffer cache

■■ V$SHARED_POOL_ADVICE to size the shared pool

■■ V$JAVA_POOL_ADVICE to size the Java pool

■■ V$STREAMS_POOL_ADVICE to size the streams pool

Because of the multitenant architecture in Oracle Database 12c, most
dynamic performance views have a column named CON_ID. CON_ID will
have a value of 0 for a single-tenant database (known as non-CDB); in the
case of CDB, it indicates an item that pertains to the entire CDB. Value 1
indicates it is for root CDB, and any other number identifies the container
ID of the container database.

Automatic Shared Memory Management
Automatic Shared Memory Management (ASMM) was introduced in Oracle 10g and can
automatically tune five important SGA components as well as the area required (fixed size)
for internal allocations:

■■ SHARED_POOL_SIZE
■■ DB_CACHE_SIZE
■■ LARGE_POOL_SIZE
■■ JAVA_POOL_SIZE
■■ STREAMS_POOL_SIZE

To enable ASMM, you set the SGA_TARGET parameter, where you specify the total size for
the SGA. You still have to manually size the other SGA components, which in most cases do
not need much tuning. These components are as follows:

■■ LOG_BUFFER
■■ DB_KEEP_CACHE_SIZE
■■ DB_RECYCLE_CACHE_SIZE
■■ DB_nK_CACHE_SIZE

SGA_TARGET is a dynamic parameter; you can increase it to the maximum size specified by
the static parameter SGA_MAX_SIZE.

You can change a dynamic initialization parameter by using the ALTER
SYSTEM statement, whereas you should change static parameters in the
spfile or init.ora file first. The instance needs to be restarted for the new
value to take effect.

814	 Chapter 14  ■  Maintaining the Database and Managing Performance

You can still specify sizes for the five pools when using ASMM. Oracle will use the val-
ues specified as the minimum size for the components. To get full automatic tuning, the five
SGA components must be set to zero or not specified in the initialization file.

The STATISTICS_LEVEL parameter must be set to TYPICAL or ALL for the
Automatic Shared Memory Management feature to function.

You can tune the appropriate size of SGA_TARGET using the advisor view V$SGA_TARGET_
ADVICE. The V$SGAINFO view shows the sizes of various SGA components. Notice the granule
size. All SGA components allocate and deallocate space in units of granules.

SQL> SELECT name, bytes FROM v$sgainfo;

NAME BYTES
-------------------------------- ----------
Fixed SGA Size 2287864
Redo Buffers 8859648
Buffer Cache Size 318767104
Shared Pool Size 419430400
Large Pool Size 33554432
Java Pool Size 16777216
Streams Pool Size 16777216
Shared IO Pool Size 50331648
Data Transfer Cache Size 0
Granule Size 16777216
Maximum SGA Size 1252663296
Startup overhead in Shared Pool 125410800
Free SGA Memory Available 436207616

SQL> SELECT * FROM v$sga_target_advice;

The V$SGA_TARGET_ADVICE view has the following columns and shows the impact on
the database when the SGA size is reduced from the current level; it also indicates what
performance gains can be expected when SGA size is increased. The SGA_SIZE and SGA_
SIZE_FACTOR columns show the hypothetical size of SGA.

■■ SGA_SIZE
■■ SGA_SIZE_FACTOR
■■ ESTD_DB_TIME

	 Managing Performance	 815

■■ ESTD_DB_TIME_FACTOR
■■ ESTD_PHYSICAL_READS
■■ ESTD_BUFFER_CACHE_SIZE
■■ ESTD_SHARED_POOL_SIZE
■■ CON_ID

The V$SGA_RESIZE_OPS view has a circular history of the last 800 SGA
resize requests, both manual and automatic. V$SGA_CURRENT_RESIZE_OPS
displays information about SGA resize operations that are currently in
progress.

Automatic SQL Execution Memory Management
You can use Automatic SQL Execution Memory Management to tune the PGA using the
PGA_AGGREGATE_TARGET and WORKAREA_SIZE_POLICY parameters. Both parameters can be
dynamically modified.

PGA_AGGREGATE_TARGET specifies the target amount of memory available to the instance
(PGA memory) for all server processes. Setting a nonzero value for PGA_AGGREGATE_TARGET
automatically sets the WORKAREA_SIZE_POLICY parameter to AUTO, which means the
_AREA_SIZE parameters are automatically sized.

You can tune PGA performance by using the advisor view V$PGA_TARGET_ADVICE. The
advice is generated by simulating past workload.

Automatic Memory Management
Automatic Memory Management (AMM) further eases memory management. AMM
automatically tunes the SGA and PGA components. All you have to do is specify the total
memory available to the instance by using the MEMORY_TARGET parameter.

When AMM is used, Oracle automates the sizing of SGA and PGA, and it causes the
indirect transfer of memory from SGA to PGA, and vice versa, as required by the workload.
The default for SGA is 60 percent, and the default for PGA is 40 percent allocation when the
instance is started.

MEMORY_TARGET is a dynamic parameter; you can increase it up to the maximum specified
by the static parameter MEMORY_MAX_TARGET. By default, AMM is not enabled—the default
value for MEMORY_TARGET is zero.

You still can set SGA_TARGET, PGA_AGGREGATE_TARGET, and the various SGA pool param-
eters in the initialization file. Oracle will use these values as the minimum when configuring
the various pools. Table 14.9 shows some rules when you have configured the AMM and
ASMM memory parameters.

816	 Chapter 14  ■  Maintaining the Database and Managing Performance

Tabl e 14 . 9    Memory-Tuning Parameters Dependency

MEMORY_TARGET (MT) SGA_TARGET (ST) Result

MT=0

AMM is disabled.

ST=0

ASMM is disabled.

Must specify values for individual pools.

MT=0

AMM is disabled.

ST>0

ASMM is enabled.

Individual pools will be automatically
tuned. SGA and PGA memory will be
treated separately.

MT>0

AMM is enabled.

ST=0

ASMM is disabled.

Full automatic tuning of SGA and PGA.

MT>0

AMM is enabled.

ST>0

ASMM is enabled.

Automatic tuning of SGA and PGA, but
SGA will keep the minimum value specified
by ST.

You can adjust the MEMORY_TARGET parameter size after reviewing the advisor view
V$MEMORY_TARGET_ADVICE:

SQL> SELECT memory_size, memory_size_factor, estd_db_time, estd_db_time_factor
 FROM v$memory_target_advice;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR
----------- ------------------ ------------ -------------------
 900 .75 37040 1.0005
 1200 1 37021 1
 1500 1.25 37017 .9999
 1800 1.5 37017 .9999
 2100 1.75 37017 .9999
 2400 2 37017 .9999

If you want to know the size of all the AMM memory components, you can query the
V$MEMORY_DYNAMIC_COMPONENTS view:

SQL> SELECT component, current_size, min_size, max_size
 FROM v$memory_dynamic_components;

COMPONENT CURRENT_SIZE MIN_SIZE MAX_SIZE
------------------------------ ------------ ---------- ----------
shared pool 419430400 184549376 419430400
large pool 33554432 33554432 150994944
java pool 16777216 16777216 16777216

	 Managing Performance	 817

streams pool 16777216 16777216 16777216
SGA Target 822083584 822083584 822083584
DEFAULT buffer cache 268435456 268435456 503316480
KEEP buffer cache 0 0 0
RECYCLE buffer cache 0 0 0
DEFAULT 2K buffer cache 0 0 0
DEFAULT 4K buffer cache 0 0 0
DEFAULT 8K buffer cache 0 0 0
DEFAULT 16K buffer cache 0 0 0
DEFAULT 32K buffer cache 0 0 0
Shared IO Pool 50331648 50331648 50331648
Data Transfer Cache 0 0 0
PGA Target 436207616 436207616 436207616
ASM Buffer Cache 0 0 0

The V$MEMORY_RESIZE_OPS view has a circular history of the last 800
memory resize requests, both manual and automatic. V$MEMORY_CURRENT_
RESIZE_OPS displays information about memory resize operations that are
currently in progress.

Managing Memory Using EM Cloud Control
You can use EM Cloud Control to enable and disable various memory-tuning options as
well as monitor the memory components and their performance. You can use the infor-
mation on this screen to decide whether your Oracle Database 12c database needs more
memory allocated for better performance. Figure 14.20 shows the Advisor Central screen;
choose Memory Advisors from this screen. You will be presented with the screen shown in
Figure 14.30.

F igur e 14 . 3 0     The Memory Advisors screen in EM

818	 Chapter 14  ■  Maintaining the Database and Managing Performance

The Memory Advisors screen shows the current status of memory usage and provides
the option to enable or disable Automatic Memory Management. Click the Advice button,
and you can view the memory size suggestions.

If you disable AMM using the Disable button, EM automatically enables ASMM, as
shown in Figure 14.31.

F igur e 14 . 31     The ASMM screen in EM

If you disable ASMM, EM will prompt you to provide the sizes for individual compo-
nents, as shown in Figure 14.32.

F igur e 14 . 32     The Memory Components screen in EM

When you scroll down the Memory Advisors screen (Figure 14.30), a section will display
the SGA and PGA allocations. When using manual or ASMM, you can configure PGA as
well as see the PGA memory usage details under the PGA tab.

EM also shows several important performance metrics, discussed in the next section.

Review Figures 9.20 to 9.23 in Chapter 9, “Creating and Operating Oracle
Database 12c,” to revisit the memory configuration options available when
you create a database using DBCA.

	 Summary	 819

Memory Management on Highly Active Multi-Workload Databases

Automatic Memory Management (AMM) and Automatic Shared Memory Management
(ASMM) work for most databases. However, if you understand your database’s memory
requirements, you may be able to manage the memory allocations better. Automatic
configurations are good for nonproduction and most production databases. But if you
have databases with OLTP and DSS workloads or if you use automatic memory configu-
rations, you must configure minimum sizes for various pools, especially the shared pool
to prevent frequent allocation and deallocation of memory from these pools. Allocation
of memory takes memory away from another pool or buffer cache; hence, the opera-
tion is expensive performance-wise. If you have too many memory pool allocations in
the database, the database will suffer from performance issues and might also hang the
database. For practical reasons, it is better to keep the minimum size for the shared pool,
large pool, and buffer cache to prevent performance issues due to frequent memory pool
adjustments when using automatic memory and shared memory configurations.

Summary
Oracle Database 12c provides many tools for proactively identifying and fixing potential
performance and management problems in the database. In this chapter, you learned about
tools such as AWR, ADDM, ADR, AMM, and ASMM.

At the core of the monitoring system is the Automatic Workload Repository (AWR),
which uses the MMON background process to gather statistics from the SGA and store
them in a collection of tables owned by the user SYS.

Following each AWR statistics-collection interval, the Automatic Database Diagnostic
Monitoring (ADDM) feature examines the newly gathered statistics and compares them to
previous AWR statistics to establish baselines in an attempt to identify poorly performing
components of the database. The ADDM then summarizes these findings on the EM Cloud
Control main screen and Performance tab. Using these screens, you can identify and examine
the SQL statements that are contributing the most to DB Time. You can further explore the
opportunities for improving the performance or manageability of your database using the
EM Cloud Control advisors, which include the SQL Tuning Advisor, SQL Access Advisor,
Memory Advisor, Mean Time To Recover Advisor, Segment Advisor, Undo Management
Advisor, and so on.

In addition to alerts, you can find indicators of database performance in the database
alert log, user and background trace files, data dictionary views, and dynamic performance
views. Some data dictionary views do not contain accurate information about the segments

820	 Chapter 14  ■  Maintaining the Database and Managing Performance

in the database until after optimizer statistics are collected on those objects. Oracle
Database 12c has automated tasks to manage optimizer stats, to analyze SQL statements
for performance improvement, and to look for ways to reclaim unused space in objects.

Memory tuning is simplified in Oracle Database 12c using Automatic Memory
Management. AMM is configured using the MEMORY_TARGET parameter. If other memory
parameters are specified, they will be considered as the minimum for those components.
If you do not want to completely automate memory, the next level is to automate shared
Memory Management using the SGA_TARGET parameter.

EM Cloud Control summarizes several important performance metrics on the EM
Cloud Control Performance home screen. These metrics include performance statistics for
the host server, user sessions, and instance throughput.

Exam Essentials

Understand the Automatic Workload Repository.    Describe the components of the AWR
and how they are used to collect and store database performance statistics. Understand the
sections of the AWR report.

Describe the role of Automatic Database Diagnostic Monitor.    Know how ADDM uses the
AWR statistics to formulate tuning recommendations using historical and baseline metrics.

Explain how each advisor is used to improve performance.    Describe how you can use
each of the EM Cloud Control advisors shown on the Advisor Central screen to improve
database performance and manageability.

Describe how alerts are used to monitor performance.    Show how you can configure the
EM Cloud Control alert system to alert you via the console or via email whenever a moni-
tored event occurs in the database.

Remember the location of the alert log file.    The alert log file location is determined by
the DIAGNOSTIC_DEST parameter. Learn the location of the text alert log file and XML
alert log file.

Know how to manage the automated tasks.    Know the automated tasks of Oracle
Database 12c, and how to enable and disable those tasks. Learn the various options to
collect optimizer statistics.

Understand Automatic Memory Management.    Know the parameters that control the
memory management and how the pools are allocated.

Learn to configure Automatic Shared Memory Management.    Know the parameters that
control Shared Memory Management and how the pools are allocated. Learn how to provide
minimum values for each pool when ASMM is used.

Understand the sources of tuning information.    Know in which dynamic performance
views, data dictionary views, and log files, tuning information can be found outside the
EM Cloud Control monitoring system.

	 Review Questions	 821

Review Questions

	 1.	 Which of the following components of the Oracle architecture stores the statistics
gathered by the MMON process?

	 A.	 ADDM

	 B.	 AWR

	 C.	 ASMM

	 D.	 ADR

	 2.	 Which of the following options for the pfile/spfile’s STATISTICS_LEVEL parameter turns
off AWR statistics gathering and ADDM advisory services?

	 A.	 OFF

	 B.	 TYPICAL

	 C.	 ALL

	 D.	 BASIC

	 3.	 Which parameter is used to enable Automatic Memory Management?

	 A.	 AMM_TARGET

	 B.	 MEMORY_TARGET

	 C.	 SGA_TARGET

	 D.	 AUTOMATIC_MEMORY

	 4.	 Which two parameters configure automatic PGA memory management?

	 A.	 SGA_TARGET

	 B.	 PGA_AGGREGATE_TARGET

	 C.	 WORKAREA_SIZE_POLICY

	 D.	 PGA_AGGREGATE_LIMIT

	 5.	 Suppose you have used EM Database Control to drill down into ADDM findings and
have found that a single SQL statement is causing the majority of the I/O on your system.
Which of the following advisors is best suited to troubleshoot this SQL statement?

	 A.	 SQL Tuning Advisor

	 B.	 SQL Access Advisor

	 C.	 Both A and B

	 D.	 Neither A nor B

822	 Chapter 14  ■  Maintaining the Database and Managing Performance

	 6.	 Which SGA component cannot be dynamically changed after instance startup?

	 A.	 SHARED_POOL

	 B.	 JAVA_POOL_SIZE

	 C.	 LOG_BUFFER

	 D.	 None of the above

	 7.	 Which procedure is used to tell Oracle that the statistics gathered should not be
published?

	 A.	 DBMS_STATS.PUBLISH_STATS

	 B.	 DBMS_STATS.SET_TABLE_PREFS

	 C.	 DBMS_STATS.PENDING_STATS

	 D.	 DBMS_STATS.GATHER_TABLE_STATS

	 8.	 Which data dictionary view contains information explaining why ADDM made its
recommendations?

	 A.	 DBA_ADVISOR_FINDINGS

	 B.	 DBA_ADVISOR_OBJECTS

	 C.	 DBA_ADVISOR_RECOMMENDATIONS

	 D.	 DBA_ADVISOR_RATIONALE

	 9.	 Which of the following advisors determines if the space allocated to the shared pool,
large pool, or buffer cache is adequate?

	 A.	 SQL Tuning Advisor

	 B.	 SGA Tuning Advisor

	 C.	 Memory Advisor

	 D.	 Pool Advisor

	10.	 Which initialization parameter can disable memory advisors and Automatic Shared
Memory Management? (Choose the best answer.)

	 A.	 CONTROL_MANAGEMENT_PACK_ACCESS

	 B.	 STATISTICS_LEVEL

	 C.	 MEMORY_TARGET

	 D.	 Memory advisors cannot be disabled.

	11.	 Which statement regarding SGA_MAX_SIZE is true?

	 A.	 SGA_MAX_SIZE is modifiable after an instance is started, only when Automatic Mem-
ory Management is used.

	 B.	 SGA_MAX_SIZE is not dynamically modifiable.

	 C.	 SGA_MAX_SIZE is ignored when MEMORY_TARGET > 0.

	 D.	 SGA_MAX_SIZE must be specified when SGA_TARGET > 0.

	 Review Questions	 823

	12.	 When you configure an alert, which of the following types of alert thresholds can you
use to monitor a tablespace for diminishing free space?

	 A.	 Warning threshold

	 B.	 Critical threshold

	 C.	 Both A and B

	 D.	 Neither A nor B

	13.	 Multiple baseline metrics can be gathered and stored in the AWR. Why might you
want more than one metrics baseline?

	 A.	 You might want a separate baseline metric for each user.

	 B.	 You might want a separate baseline metric for daytime usage versus off-hours usage.

	 C.	 You might want a separate baseline metric for each schema.

	 D.	 You would never want more than one baseline metric, even though it is possible to
gather and store them.

	14.	 When does ADDM run? (Choose two.)

	 A.	 When an AWR snapshot is taken automatically by the MMON process

	 B.	 When an AWR snapshot is taken automatically by the MMNL process

	 C.	 When an AWR snapshot is taken manually by DBA

	 D.	 When the AutoTask process runs hourly to take workload snapshots

	15.	 Which statement about the MEMORY_TARGET parameter is not true?

	 A.	 It is a dynamic initialization parameter.

	 B.	 It represents the total maximum memory that can be allocated to the instance
memory (PGA and SGA combined).

	 C.	 Its default value is zero.

	 D.	 You will not get an error when SGA_TARGET and PGA_AGGREGATE_TARGET param-
eters are set to nonzero values.

	16.	 Which of the following is a performance metric that could be defined as “the amount
of work that a system can perform in a given amount of time”?

	 A.	 Response time

	 B.	 Uptime

	 C.	 Throughput

	 D.	 Runtime

824	 Chapter 14  ■  Maintaining the Database and Managing Performance

	17.	 Which parameter determines the location of the alert log?

	 A.	 CORE_DUMP_DEST

	 B.	 BACKGROUND_DUMP_DEST

	 C.	 ALERT_LOG_DEST

	 D.	 DIAGNOSTIC_DEST

	18.	 By default, how long will database statistics be retained in the AWR?

	 A.	 8 days

	 B.	 30 days

	 C.	 7 hours

	 D.	 Indefinitely

	19.	 Your users have called to complain that system performance has suddenly decreased
markedly. Which is the most likely place to look for the cause of the problem in EM
Database Control?

	 A.	 The Main screen

	 B.	 The Performance tab

	 C.	 The Administration tab

	 D.	 The Maintenance tab

	20.	 Using EM Database Control, you’ve identified the following SQL statement as the
source of a lot of disk I/O:

SELECT NAME, LOCATION, CREDIT_LIMIT FROM CUSTOMERS

		 What should you do first to try to improve performance?

	 A.	 Run the SQL Tuning Advisor.

	 B.	 Run the SQL Access Advisor.

	 C.	 Check the EM Database Control main screen for alerts.

	 D.	 Click the Alert Log Content link in the EM Database Control main screen.

Chapter

15
Using Backup
and Recovery

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Backup and Recovery Concepts

■■ Identify the importance of checkpoints, redo log files, and

archive log files.

✓✓ Backup and Recovery Configuration

■■ Configure the Fast Recovery Area.

■■ Configure ARCHIVELOG mode.

✓✓ Performing Database Backups

■■ Create consistent database backups.

■■ Back up your database without shutting it down.

■■ Create incremental backups.

■■ Automate database backups.

■■ Manage backups.

✓✓ Performing Database Recovery

■■ Determine the need for performing recovery.

■■ Use Recovery Manager (RMAN) and the Data Recovery

Advisor to perform recovery of the control file, redo log file,

and data file.

The most important commitment a DBA has is to protect all
transaction data the business has generated and not lose it.
In other words, as a DBA you want to configure your data-

base to minimize downtime while being able to recover quickly and without losing any
committed transactions when the database becomes unavailable for reasons beyond your
control. Fortunately, Oracle Database 12c makes it easy to configure a database to be
highly available and reliable.

First, we’ll look at the failures that can occur in an Oracle database and explore how
they can occur because of user or DBA mistakes or because of hardware or software failures
beyond your direct control. Each of these failures can require little or no action whatsoever,
as in the case of an instance failure, but at the other end of the spectrum, they may require a
recovery effort, as in the case of a disk crash containing the SYSTEM tablespace.

In this chapter, you will learn about the components you will use to minimize or elimi-
nate data loss in your database while at the same time keeping availability high. Next, you
will learn how to configure your database for recovery. This will include a discussion of
ARCHIVELOG mode and other required initialization parameters. Once your environment is
configured, you will need to know how to actually back it up, using the RMAN utility. You
will also learn how to automate and manage your backups as well as how to monitor one of
the key components in your backup strategy: the Fast Recovery Area.

Similar to backups, Oracle Database 12c makes it easy for you to recover from a num-
ber of database failures. To balance performance with recoverability, you will learn how to
tune instance recovery to minimize the amount of time Oracle requires to recover from an
instance failure while still providing a reasonable response time for ongoing transactions.
In a nutshell, your job is to increase the mean time between failures (MTBF) by providing
redundant components where possible and leveraging other Oracle high-availability features
such as Real Application Clusters (RAC) and Streams (an advanced replication technology).
Hand in hand with increasing MTBF is decreasing the mean time to recovery (MTTR) to
ensure compliance with any service-level agreements you have in place. Last, but certainly
not least, these efforts should help you minimize data loss in such a way that committed
transactions are never lost.

The Data Recovery Advisor was introduced in Oracle 11g, which automates most
of the recovery tasks and is integrated with Enterprise Manager (EM) Cloud Control.
Oracle’s administration tool, EM Cloud Control, makes configuring and performing
backups and recovery easier. Most, if not all, of the functionality available with the
command-line interface is available in a graphical user interface to save time and make
backup and recovery operations less error-prone.

	 Understanding and Configuring Recovery Components	 827

Understanding and Configuring
Recovery Components
As a database administrator, your primary goal is to keep the database open and available
for users, usually 24 hours a day, seven days a week. Your partnership with the server’s
system administrator includes the following tasks:

■■ Proactively solving common causes of failures

■■ Increasing the mean time between failure (MTBF)

■■ Ensuring a high level of hardware redundancy

■■ Increasing availability by using Oracle options such as Real Application Clusters (RAC),
Oracle Streams (an advanced replication technology), and Oracle Data Guard (a disaster
recovery solution)

■■ Decreasing the mean time to recover (MTTR) by setting the appropriate Oracle initializa-
tion parameters and ensuring that backups are readily available in a recovery scenario

■■ Minimizing or eliminating loss of committed transactions by using redo application,
replication, and Oracle Data Guard

A number of structures and events in the database directly support backup and recovery
operations. The control files maintain the list of database files in the database, along with a
record of the most recent database backups (if you are using RMAN for your backups). The
checkpoint (CKPT) background process works in concert with the database writer (DBWn)
process to manage the amount of time required for instance recovery; during instance recov-
ery, the redo log files are used to synchronize the data files. For more serious types of failures,
such as media failures, archived redo log files are applied to a restored backup copy of a data
file to synchronize the data files and ensure that no committed transactions are lost. Finally,
the Fast Recovery Area, introduced in Oracle 10g, is a common area for all recovery-related
files that makes your job much easier when backing up or recovering your database.

To maximize your database’s availability, it almost goes without saying that you want to
perform regularly scheduled backups. Most media failures require some kind of restoration
of a data file from a disk or tape backup before you can initiate media recovery.

In addition to regularly scheduled backups (see the section “Performing Backups” later
in this chapter), you can configure a number of other features to maximize your database’s
availability and minimize recovery time, such as multiplexing control files, multiplexing redo
log files, configuring the database in ARCHIVELOG mode, and using a Fast Recovery Area.

Understanding Control Files
The control file is one of the smallest, yet also one of the most critical, files in the database.
Recovering from the loss of one copy of a control file is relatively straightforward; recovering
from the loss of your only control file or all control files is more of a challenge and requires
more-advanced recovery techniques.

828	 Chapter 15  ■  Using Backup and Recovery

In the following section, you will get an overview of the control file architecture. You will
then learn how to maximize the recoverability of the control file in the section “Multiplexing
Control Files.”

Control File Architecture
The control file is a relatively small (in the megabyte range) binary file that contains
information about the structure of the database. You can think of the control file as
a metadata repository for the physical database. It has the structure of the database,
meaning the data files and redo log files constitute a database. The control file is created
when the database is created and is updated continuously with information required for
recovery and configuration of the database.

The control file is updated continuously and should be available at all times. Don’t edit
the contents of the control file; only Oracle processes should update its contents. When you
start up the database, Oracle uses the control file to identify and open the data files and
redo log files. Control files play a major role when recovering a database.

The contents of the control file include the following:

■■ The database name to which the control file belongs. A control file can belong to only
one database.

■■ The database-creation timestamp.

■■ The name, location, and online/offline status information of the data files.

■■ The name and location of the redo log files.

■■ Redo log archive information.

■■ Tablespace names.

■■ The current log sequence number, which is a unique identifier that is incremented and
recorded when an online redo log file is switched.

■■ The most recent checkpoint information.

■■ The beginning and ending of undo segments.

■■ Recovery Manager’s backup information. Recovery Manager (RMAN) is the Oracle
utility you use to back up and recover databases.

The control file size is determined by the MAX clauses you provide when you create
the database:

■■ MAXLOGFILES
■■ MAXLOGMEMBERS
■■ MAXLOGHISTORY
■■ MAXDATAFILES
■■ MAXINSTANCES

Oracle pre-allocates space for these maximums in the control file. Therefore, when you
add or rename a file in the database, the control file size does not change. The control file

	 Understanding and Configuring Recovery Components	 829

tracks all structural changes to the database. When you add a new file to the database or
relocate a file, an Oracle server process immediately updates the information in the control
file. Back up the control file after any structural changes. The log writer (LGWR) process
updates the control file with the current log sequence number. The checkpoint (CKPT) pro-
cess updates the control file with the recent checkpoint information. When the database is
in ARCHIVELOG mode, the archiver (ARCn) process updates the control file with information
such as the archive log filename and log sequence number.

The control file contains two types of record sections: reusable and not reusable. RMAN
information is kept in the reusable section. Items such as the names of the backup data files are
kept in this section, and once this section fills up, the entries are reused in a circular fashion
after the number of days specified by the initialization parameter CONTROL_FILE_RECORD_
KEEP_TIME is reached. Therefore, the control file can continue to grow because of new RMAN
backup information recorded in the control file before CONTROL_FILE_RECORD_KEEP_TIME is
reached. By default, seven days history is kept in the control file.

You can query the control filenames and their status by using EM Database Express, as
you have already seen in Chapter 8, “Introducing Oracle Database 12c Components and
Architecture.” The Control File Section (on the Server tab, under Storage) shows the record
information from the control file. It shows the size used in the control file for each section,
the total number of records that can be saved with the current size of the control file, and the
number or records used.

Reading and writing the control file blocks is different from reading and
writing data blocks. Oracle Database 12c reads and writes directly from
the disk to the program global area (PGA) for control files. Each process
allocates a small amount of its PGA memory for control file blocks.

Multiplexing Control Files
Because the control file is critical for database operation, at a minimum you must have two
copies of the control file; Oracle recommends a minimum of three copies. You duplicate the
control file on different disks either by using the multiplexing feature of Oracle or by using
the mirroring feature of your operating system. If you have multiple disk controllers on your
server, at least one copy of the control file should reside on a disk managed by a different
disk controller.

If you use the Database Configuration Assistant (DBCA) to create your database, control
files are multiplexed by default. The next section discusses how you can implement the multi-
plexing feature using an init.ora or using the server-side spfile.

The control filename can be queried from the database using
V$CONTROLFILE; information about the control file record sections is
stored in V$CONTROLFILE_RECORD_SECTION. The information found in
V$DATABASE comes from the control file.

830	 Chapter 15  ■  Using Backup and Recovery

Multiplexing Control Files Using init.ora

Multiplexing means keeping a copy of the same control file on different disk drives and ideally
on different controllers, too. To multiplex a control file, copy the control file to multiple loca-
tions and change the CONTROL_FILES parameter in the text-based initialization file init.ora to
include all control filenames. The following syntax shows three multiplexed control files:

CONTROL_FILES = ('/ora01/oradata/MYDB/ctrlMYDB01.ctl',
 '/ora02/oradata/MYDB/ctrlMYDB02.ctl',
 '/ora03/oradata/MYDB/ctrlMYDB03.ctl')

By storing the control file on multiple disks, you avoid the risk of a single point of failure.
When multiplexing control files, updates to the control file can take a little longer, but that is
insignificant when weighed against the benefits. If you lose one control file, you can restart
the database after copying one of the other control files or after changing the CONTROL_FILES
parameter in the initialization file.

When multiplexing control files, Oracle updates all the control files at the same time but
uses only the first control file listed in the CONTROL_FILES parameter for reading.

When creating a database, you can list the control filenames in the CONTROL_FILES
parameter, and Oracle creates as many control files as are listed. You can have a maximum
of eight multiplexed control file copies.

If you need to add more control file copies, follow these steps:

	 1.	 Shut down the database.

SQL> SHUTDOWN NORMAL

	 2.	 Copy the control file to more locations by using an operating-system command:

$ cp /u02/oradata/ord/control01.ctl /u05/oradata/ord/control04.ctl

	 3.	 Change the initialization-parameter file to include the new control filename(s) in the
parameter CONTROL_FILES by changing this:

CONTROL_FILES=('/u02/oradata/ord/control01.ctl',
'/u03/oradata/ord/control02.ctl',
'/u04/oradata/ord/control03.ctl')

to this:

CONTROL_FILES=('/u02/oradata/ord/control01.ctl',
'/u03/oradata/ord/control02.ctl',
'/u04/oradata/ord/control03.ctl',
'/u05/oradata/ord/control04.ctl')

	 4.	 Start the instance:

SQL> STARTUP

	 Understanding and Configuring Recovery Components	 831

This procedure is somewhat similar to the procedure for recovering from the loss of a
control file.

After creating the database, you can change the location of the control files, rename the
control files, or drop certain control files. You must have at least one control file for each
database. To add, rename, or delete control files, you need to follow the preceding steps.
Basically, you shut down the database, use the operating-system copy command (copying,
renaming, or deleting the control files accordingly), modify the init.ora parameter file,
and start up the database.

Multiplexing Control Files Using an spfile

Multiplexing using a binary spfile is similar to multiplexing using init.ora. The major
difference is in how the CONTROL_FILES parameter is changed. Follow these steps:

	 1.	 Alter the spfile while the database is still open:

SQL> ALTER SYSTEM SET CONTROL_FILES =
 '/ora01/oradata/MYDB/ctrlMYDB01.ctl',
 '/ora02/oradata/MYDB/ctrlMYDB02.ctl',
 '/ora03/oradata/MYDB/ctrlMYDB03.ctl',
 '/ora04/oradata/MYDB/ctrlMYDB04.ctl' SCOPE=SPFILE;

The use of the SCOPE=SPFILE qualifier means this parameter change won’t take effect
until after the instance is restarted. The contents of the binary spfile are changed immedi-
ately, but the old specification of CONTROL_FILES is used until the instance is restarted.

	 2.	 Shut down the database:

SQL> SHUTDOWN NORMAL

	 3.	 Copy an existing control file to the new location:

$ cp /ora01/oradata/MYDB/ctrlMYDB01.ctl /ora04/oradata/MYDB/ctrlMYDB04.ctl

	 4.	 Start the instance:

SQL> STARTUP

You can always create the spfile from the init file using the syntax CREATE
SPFILE FROM PFILE.

Understanding Checkpoints
The CKPT process controls the amount of time required for instance recovery. During a
checkpoint, CKPT updates the control file and the header of the data files to reflect the last
successful transaction by recording the last system change number (SCN). The SCN, which

832	 Chapter 15  ■  Using Backup and Recovery

is a number sequentially assigned to each transaction in the database, is also recorded in
the control file against the data filename that is taken offline or made read-only.

A checkpoint occurs automatically every time a redo log file switch occurs, either when
the current redo log file fills up or when you manually switch redo log files. The DBWn pro-
cesses in conjunction with CKPT routinely write new and changed buffers to advance the
checkpoint from where instance recovery can begin, thereby reducing the MTTR. It also
ensures that the database regularly writes dirty buffers in the buffer cache to disk and the
database writes all committed data to disk during a consistent database shutdown.

A full checkpoint (thread checkpoint) occurs when the DBA manually initiates a checkpoint
using the ALTER SYSTEM CHECKPOINT statement, when the database is shut down in normal or
immediate mode, or when an online redo log is switched. To avoid a large number of updates
to data files during redo log switches, whenever the DBWn process writes dirty buffers to data
files, it advances the checkpoint on those files. Therefore, during redo log switches, the CKPT
writes the checkpoint position only in the control file and does not update the data file headers.
This is known as an incremental checkpoint, which happens automatically. An incremental
checkpoint occurs when DBWn wakes up every 3 seconds and if there are any dirty blocks to
write to data file.

Note that the incremental checkpoint to the data file is written by the
DBWn process and not the CKPT process.

Understanding Redo Log Files
A redo log file records all changes to the database, before the changes are written to the
data files. The database maintains online redo log files to protect against data loss. To
recover from an instance or a media failure, redo log information is required to roll data
files forward to the last committed transaction. Ensuring that you have at least two mem-
bers for each redo log-file group dramatically reduces the likelihood of data loss because
the database continues to operate if one member of a redo log file is lost.

In the following sections, we will give you an architectural overview of redo log files, as
well as show you how to add redo log groups, add or remove redo log group members, and
clear a redo log group in case one of the redo log group’s members becomes corrupted.

Redo Log File Architecture
Online redo log files are filled with redo records. A redo record, also called a redo entry,
consists of a group of change vectors, each of which describes a change made to a single
block in the database. Redo entries record data that you can use to reconstruct all changes
made to the database, including the undo segments. When you recover the database by
using redo log files, Oracle reads the change vectors in the redo records and applies the
changes to the relevant blocks.

	 Understanding and Configuring Recovery Components	 833

The LGWR process writes redo information from the redo log buffer to the online redo
log files under a variety of circumstances:

■■ When a user commits a transaction, even if this is the only transaction in the log buffer.

■■ When the redo log buffer becomes one-third full.

■■ When the buffer contains approximately 1MB of changed records. This total does not
include deleted or inserted records.

■■ When a database checkpoint is performed.

■■ When 3 seconds have elapsed since the last redo log buffer write.

LGWR always writes its records to the online redo log file before DBWn
writes new or modified database buffer cache records to the data files.

Each database has its own set of online redo log groups. A redo log group can have
one or more redo log members (each member is a single file). If you have a RAC con-
figuration, in which multiple instances are mounted to one database, each instance has
one online redo thread, and at least two groups under each thread. That is, the LGWR
process of each instance writes to the same online redo log files, and hence Oracle has to
keep track of the instance from where the database changes are coming. Single-instance
configurations will have only one thread, and that thread number is 1. The redo log
file contains both committed and uncommitted transactions. Whenever a transaction is
committed, a system change number is assigned to the redo records to identify the com-
mitted transaction.

The redo log group is referenced by an integer; you can specify the group number when
you create the redo log files—either when you create the database or when you create a
redo log group after you create the database. You can also change the redo log configura-
tion (adding, dropping, or renaming files) by using database commands. The following
example shows a CREATE DATABASE command:

CREATE DATABASE "MYDB01"
… … …
LOGFILE '/ora02/oradata/MYDB01/redo01.log' SIZE 100M,
 '/ora03/oradata/MYDB01/redo02.log' SIZE 100M;

This example creates two log-file groups; the first file is assigned to group 1, and the
second file is assigned to group 2. You can have more files in each group; this practice is
known as the multiplexing of redo log files, which we’ll discuss later in this chapter in the
section “Multiplexing Redo Log Files.” You can specify any group number—the range will
be between 1 and the initialization parameter MAXLOGFILES. Oracle recommends that all

834	 Chapter 15  ■  Using Backup and Recovery

redo log groups be the same size. The following is an example of creating the log files by
specifying the group number:

CREATE DATABASE "MYDB01"
… … …
LOGFILE GROUP 1 '/ora02/oradata/MYDB01/redo01.log' SIZE 100M,
 GROUP 2 '/ora03/oradata/MYDB01/redo02.log' SIZE 100M;

V$LOG shows the redo log groups, size, SCN number, and status. V$LOGFILE
shows the members in each group. V$LOG_HISTORY shows, as the name sug-
gests, the log history, which includes the sequence number, SCN number,
and time associated with each log.

Log Switch Operations
The LGWR process writes to only one redo log-file group at any time. The file that is
actively being written to is known as the current log file. The log files that are required for
instance recovery are known as the active log files. The other log files are known as inactive.
Oracle automatically recovers an instance when starting up the instance by using the online
redo log files. Instance recovery can be needed if you do not shut down the database cleanly
or if your database server crashes.

The log files are written in a circular fashion. A log switch occurs when Oracle finishes
writing to one log group and starts writing to the next log group. A log switch always
occurs when the current redo log group is completely full and log writing must continue.
You can force a log switch by using the ALTER SYSTEM command. A manual log switch can
be necessary when maintenance is performed on the redo log files using the ALTER SYSTEM
SWITCH LOGFILE command.

Whenever a log switch occurs, Oracle allocates a sequence number to the new redo
log group before writing to it. As stated earlier, this number is known as the log sequence
number. If there are lots of transactions or changes to the database, the log switches can
occur too frequently. Size the redo log files appropriately to avoid frequent log switches.
Oracle writes to the alert log file whenever a log switch occurs.

Redo log files are written sequentially on the disk, so the I/O will be fast
if there is no other activity on the disk. (The disk head is always properly
positioned.) Keep the redo log files on a separate disk for better perfor-
mance. If you have to store a data file on the same disk as the redo log file,
do not put the SYSTEM, UNDOTBS, SYSAUX, or any very active data or index
tablespace file on this disk. A commit cannot complete until a transaction’s
information has been written to the redo logs, so maximizing the through-
put of the redo log files is a top priority.

	 Understanding and Configuring Recovery Components	 835

Database checkpoints are closely tied to redo log file switches. You learned about check-
points earlier in the chapter in the section “Understanding Checkpoints.” A checkpoint is
an event that flushes the modified data from the buffer cache to the disk and updates the
control file and data files. A checkpoint is initiated when the redo log file is filled and a log
switch occurs; when the instance is shut down with NORMAL, TRANSACTIONAL, or IMMEDIATE;
when a tablespace status is changed to read-only or put into BACKUP mode; or when other
values specified by certain parameters (discussed later in this section) are reached.

You can force a checkpoint if needed, as shown here:

ALTER SYSTEM CHECKPOINT;

Forcing a checkpoint ensures that all changes to the database buffers are written to the
data files on disk.

Another way to force a checkpoint is by forcing a log-file switch:

ALTER SYSTEM SWITCH LOGFILE;

The size of the redo log affects the checkpoint performance. If the size of the redo log
is smaller and the transaction volume is high, a log switch occurs often, and so does the
checkpoint. The DBWn process writes the dirty buffer blocks whenever a checkpoint occurs.
This situation might reduce the time required for instance recovery, but it might also affect
the runtime performance. You can adjust checkpoints primarily by using the initialization
parameter FAST_START_MTTR_TARGET. It is used to ensure that recovery time at instance
startup (if required) will not exceed a certain number of seconds.

You can use the FAST_START_MTTR_TARGET parameter to tune checkpoint
frequency; its value determines how long an instance can take to start after
an instance crash.

Multiplexing Redo Log Files
You can keep multiple copies of the online redo log file to safeguard against damage to these
files. When multiplexing online redo log files, LGWR concurrently writes the same redo log
information to multiple identical online redo log files, thereby eliminating a single point of
redo log failure. All copies of the redo file are the same size and are known as a redo group,
which is identified by an integer. Each redo log file in the group is known as a redo member.
You must have at least two redo log groups for normal database operation.

When multiplexing redo log files, keeping the members of a group on different disks is
preferable so that one disk failure will not affect the continuing operation of the database. If
LGWR can write to at least one member of the group, database operation proceeds as normal;
an entry is written to the alert log file. If all members of the redo log-file group are not avail-
able for writing, Oracle hangs, crashes, or shuts down. An instance recovery or media recovery
can be needed to bring up the database, and you can lose committed transactions.

836	 Chapter 15  ■  Using Backup and Recovery

You can create multiple copies of the online redo log files when you create the database. For
example, the following statement creates two redo log-file groups with two members in each:

CREATE DATABASE "MYDB01"
… … …
LOGFILE
 GROUP 1 ('/ora02/oradata/MYDB01/redo0101.log',
 '/ora03/oradata/MYDB01/redo0102.log') SIZE 500M,
 GROUP 2 ('/ora02/oradata/MYDB01/redo0201.log',
 '/ora03/oradata/MYDB01/redo0202.log') SIZE 500M;

The maximum number of log-file groups is specified in the clause MAXLOGFILES, and the
maximum number of members is specified in the clause MAXLOGMEMBERS. You can separate
the filenames (members) by using a space or a comma.

In the following sections, you will learn how to create a new redo log group, add a new
member to an existing group, rename a member, and drop a member from an existing group.
In addition, we’ll show you how to drop a group and clear all members of a group in certain
circumstances.

Redo Log Troubleshooting

In the case of redo log groups, it’s best to be generous with the number of groups and the
number of members for each group. After estimating the number of groups that would
be appropriate for your installation, add one more. The slight additional work involved in
maintaining either additional or larger redo logs is small in relation to the time needed to
fix a problem when the number of users and concurrent active transactions increase.

The space needed for additional log-file groups is minimal and is well worth the effort up
front to avoid the undesirable situation in which writes to the redo log file are waiting on
the completion of writes to the database files or the archived log file destination.

Creating New Groups

You can create and add more redo log groups to the database by using the ALTER DATABASE
command. The following statement creates a new log-file group with two members:

ALTER DATABASE ADD LOGFILE
 GROUP 3 ('/ora02/oradata/MYDB01/redo0301.log',
 '/ora03/oradata/MYDB01/redo0302.log') SIZE 100M;

	 Understanding and Configuring Recovery Components	 837

If you omit the GROUP clause, Oracle assigns the next available number. For example, the
following statement also creates a multiplexed group:

ALTER DATABASE ADD LOGFILE
 ('/ora02/oradata/MYDB01/redo0301.log',
 '/ora03/oradata/MYDB01/redo0302.log') SIZE 100M;

To create a new group without multiplexing, use the following statement:

ALTER DATABASE ADD LOGFILE
 '/ora02/oradata/MYDB01/redo0301.log' REUSE;

You can add more than one redo log group by using the ALTER DATABASE command—
just use a comma to separate the groups.

If the redo log files you create already exist, use the REUSE option and
don’t specify the size. The new redo log size will be the same as that of
the existing file.

Adding a new redo log group is straightforward using EM Database Express. You can
view the current redo log groups and add another redo log group using the Create Group
button, on the Redo Log Groups screen (see Chapter 8).

Adding New Members

If you forgot to multiplex the redo log files when creating the database (multiplexing redo
log files is the default when you use DBCA) or if you need to add more redo log members,
you can do so by using the ALTER DATABASE command. When adding new members, you do
not specify the file size, because all group members will have the same size.

If you know the group number, use the following statement to add a member to group 2:

ALTER DATABASE ADD LOGFILE MEMBER
'/ora04/oradata/MYDB01/redo0203.log' TO GROUP 2;

You can also add group members by specifying the names of other members in the
group, instead of specifying the group number. Specify all the existing group members
with this syntax:

ALTER DATABASE ADD LOGFILE MEMBER
 '/ora04/oradata/MYDB01/redo0203.log' TO
('/ora02/oradata/MYDB01/redo0201.log',
 '/ora03/oradata/MYDB01/redo0202.log');

Renaming Log Members

If you want to move the log file member from one disk to another or just want it to have a
more meaningful name, you can rename it. Before renaming the online redo log member, the

838	 Chapter 15  ■  Using Backup and Recovery

new (target) online redo file should exist. The SQL commands in Oracle change only the inter-
nal pointer in the control file to a new log file; they do not change or rename the operating-
system file. You must use an operating-system command to rename or move the file. Follow
these steps to rename a log member:

	 1.	 Shut down the database.

	 2.	 Copy/rename the redo log file member to the new location by using an operating-
system command.

	 3.	 Start up the instance, and mount the database (STARTUP MOUNT).

	 4.	 Rename the log file member in the control file. Use ALTER DATABASE RENAME FILE
'old_redo_file_name' TO 'new_redo_file_name';.

	 5.	 Open the database (ALTER DATABASE OPEN).

	 6.	 Back up the control file.

Another way to achieve the same result is to add a new member to the group and then
drop the old member from the group, as discussed in the “Adding New Members” section
earlier in this chapter and the “Dropping Redo Log Groups” section, which is next.

Dropping Redo Log Groups

You can drop a redo log group and its members by using the ALTER DATABASE command.
Remember that you should have at least two redo log groups for the database to function
normally. The group that is to be dropped should not be the active group or the current
group—that is, you can drop only an inactive log-file group. If the log file to be dropped
is not inactive, use the ALTER SYSTEM SWITCH LOGFILE command.

To drop log-file group 3, use the following SQL statement:

ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, the operating system files
are deleted if you use Oracle Managed Files, otherwise you must delete the files manually.
The control files of the associated database are updated to drop the members of the group
from the database structure. After dropping an online redo log group, make sure the drop
is completed successfully, and then use the appropriate operating-system command to delete
the dropped online redo log files.

Dropping Redo Log Members

In much the same way that you drop a redo log group, you can drop only the members of an
inactive redo log group. Also, if there are only two groups, the log member to be dropped
should not be the last member of a group. Each redo log group can have a different number
of members, though this is not advised. For example, say you have three log groups, each
with two members. If you drop a log member from group 2 and a failure occurs to the sole
member of group 2, the instance will hang, crash, and potentially cause the loss of committed
transactions when attempts are made to write to the missing redo log group, as we discussed
earlier in this chapter. Even if you drop a member for maintenance reasons, ensure that all
redo log groups have the same number of members.

	 Understanding and Configuring Recovery Components	 839

To drop a redo log member, use the DROP LOGFILE MEMBER clause of the ALTER DATABASE
command:

ALTER DATABASE DROP LOGFILE MEMBER
'/ora04/oradata/MYDB01/redo0203.log';

The operating-system file is not removed from the disk; only the control file is updated.
Use an operating-system command to delete the redo log file member from disk.

If a database is running in ARCHIVELOG mode, redo log members cannot be
deleted unless the redo log group has been archived.

Clearing Online Redo Log Files

Under certain circumstances, a redo log group member (or all members of a log group)
can become corrupted. To solve this problem, you can drop and add the log-file group or
group member again. It is much easier, however, to use the ALTER DATABASE CLEAR LOGFILE
command. The following example clears the contents of redo log group 3 in the database:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

Another distinct advantage of this command is that you can clear a log group even if
the database has only two log groups and only one member in each group. Additionally, by
using the UNARCHIVED keyword, you can clear a log-group member even if it has not been
archived. In this case, it is advisable to do a full database backup at the earliest convenience
because the unarchived redo log file is no longer usable for database recovery.

You can clear the redo logs by choosing Clear Logfile from the Actions drop-down box
in EM Cloud Control. The other options available in the drop-down box are as follows:

■■ Create Like

■■ Force Checkpoint

■■ Generate DDL

■■ Sizing Advice

■■ Switch Logfile

Understanding Archived Redo Log (ARCHIVELOG) Files
If you use only online redo log files, your database is protected against instance failure
but not media failure. Although saving the redo log files before they are overwritten
takes additional disk space and management, the increased recoverability of the data-
base outweighs the additional overhead and maintenance costs.

In the following sections, we will present an overview of how archived redo log files work,
how to set the location for saving the archived redo log files, and how to enable archiving in
the database.

840	 Chapter 15  ■  Using Backup and Recovery

Archived Redo Log File Architecture
An archived redo log file is a copy of a redo log file before it is overwritten by new redo
information. Because the online redo log files are reused in a circular fashion, you have no
way of bringing a backup of a data file up to the latest committed transaction unless you
configure the database in ARCHIVELOG mode.

The process of copying is called archiving. The ARCn background processes do this
archiving. By archiving the redo log files, you can use them later to recover a database,
update a standby database, or use the LogMiner utility to audit the database activities.

When an online redo log file is full and LGWR starts writing to the next redo log file,
ARCn copies the completed redo log file to the archive destination. It is possible to specify
more than one archive destination. The LGWR process waits for the ARCn process to
complete the copy operation before overwriting any online redo log file. As with LGWR,
the failure of one of the ARCn backup processes will cause instance failure, but no com-
mitted transactions will be lost because the “Commit Complete” message is not returned
to the user or calling program until LGWR successfully records the transaction in the
online redo log-file group.

When the archiving process is copying the redo log files to another destination, the data-
base is said to be in ARCHIVELOG mode. If archiving is not enabled, the database is said to be
in NOARCHIVELOG mode. In production systems, you cannot afford to lose data and should,
therefore, run the database in ARCHIVELOG mode so that in the event of a failure, you can
recover the database to the time of failure or to a point in time. You can achieve this ability
to recover by restoring the database backup and applying the database changes by using the
archived log files.

The LOG_MODE column in V$DATABASE shows if the database is in
ARCHIVELOG mode. As best practice, all production databases must
run in ARCHIVELOG mode for recoverability.

Setting the Archive Destination
You specify the archive destination in the initialization-parameter file. To change the archive
destination parameters during normal database operation, you use the ALTER SYSTEM com-
mand. The following sections cover some of the parameters associated with archive log desti-
nations and the archiving process. You can find a complete list of initialization parameters in
the Oracle documentation “Oracle Database 12c Reference” at http://tahiti.oracle.com.

LOG_ARCHIVE_DEST_n

Using this parameter, you can specify, at most, 31 archiving destinations. These locations
can be on the local machine or on a remote machine where the standby database is located.
Archive destinations 1 to 10 are available for local or remote locations, and archive destina-
tions 11 to 31 are available for remote locations only. The syntax for specifying this param-
eter in the initialization file is as follows:

LOG_ARCHIVE_DEST_n = "null_string" |

http://tahiti.oracle.com

	 Understanding and Configuring Recovery Components	 841

((SERVICE = tnsnames_name |
 LOCATION = 'directory_name')
 [MANDATORY | OPTIONAL]
 [REOPEN [= integer]])

The following example specifies a location for the archive log files on the local machine at
/archive/MYDB01. The MANDATORY clause specifies that writing to this location must succeed.

LOG_ARCHIVE_DEST_1 = 'LOCATION=/archive/MYDB01 MANDATORY'

Here is another example, which applies the archive logs to a standby database on a
remote computer:

LOG_ARCHIVE_DEST_2 = 'SERVICE=STDBY01 OPTIONAL REOPEN 60';

In this example, STDBY01 is the Oracle Net connect string used to connect to the remote
database. Because writing is optional, the database activity continues even if ARCn could
not write the archive log file. It tries the writing operation again because the REOPEN clause
is specified. The REOPEN clause specifies when the next attempt to write to this location
should be made if the first attempt does not succeed. The default value is 300 seconds.

The V$ARCHIVE_DEST dictionary view shows all archive destinations con-
figured in the database.

You can also use EM Cloud Control to configure the backup and recovery settings by
choosing the Availability menu shown in Figure 15.1.

F igur e 15 .1     The Availability menu of EM Cloud Control

The Recovery Settings screen under the Availability menu has three sections. Figure 15.2
shows the Media Recovery section, which is basically configuring the ARCHIVELOG mode and
the destinations. For the database shown in the example, only one archive location is set up.

842	 Chapter 15  ■  Using Backup and Recovery

F igur e 15 . 2     The Recovery settings — Media Recovery screen

The archive location specified is the Fast Recovery Area using the string USE_DB_RECOVERY_
FILE_DEST. If none of the log_archive_dest_n parameters are set, the archive location defaults
to USE_DB_RECOVERY_FILE_DEST. The SQL statement to set a specific archive location to use
Fast Recovery Area for ARCHIVELOG files is

SQL> ALTER SYSTEM SET log_archive_dest_1 = "LOCATION=USE_DB_RECOVERY_FILE_DEST";

The Fast Recovery Area is discussed in the section “Understanding the
Fast Recovery Area,” later in this chapter.

LOG_ARCHIVE_MIN_SUCCEED_DEST

This parameter specifies the minimum number of destinations the ARCn process should
successfully write to continue overwriting the online redo log files. The default value of
this parameter is 1. This parameter cannot exceed the total number of enabled destina-
tions. If this parameter value is less than the number of MANDATORY destinations, the
parameter is ignored.

LOG_ARCHIVE_FORMAT

This parameter specifies the format in which to write the filename of the archived redo log
files. To ensure that the log files are not overwritten, you use predefined substitution vari-
ables to construct the name of each archived redo log file. You can provide a text string and
any of the predefined substitution variables. The variables are as follows:

■■ %s: This is the log sequence number.

■■ %t: This is the thread number.

■■ %r: This is the reset log’s ID, which ensures uniqueness even after using advanced
recovery techniques that reset the log sequence numbers.

■■ %d: This is the database ID.

	 Understanding and Configuring Recovery Components	 843

The format you provide must include at least %s, %t, and %r. If you use the same
archived redo log location for multiple databases, you must also use %d. In Figure 15.1,
shown previously, the log archive filename format is defined as %t_%s_%r.dbf.

Data dictionary view V$ARCHIVE_PROCESSES shows the status of each ARCn
process. The parameter log_archive_max_processes determines the
maximum number of ARCn processes created.

Setting ARCHIVELOG
Specifying the LOG_ARCHIVE* parameters does not automatically initialize the pro-
cess of writing the archive log files. To enable archiving of the redo log files, place the
database in ARCHIVELOG mode. You can specify the ARCHIVELOG clause while creating
the database. However, you might prefer to create the database first and then enable
ARCHIVELOG mode. To enable ARCHIVELOG mode, follow these steps:

	 1.	 Shut down the database.

	 2.	 Set up the appropriate initialization parameters.

	 3.	 Start up and mount the database; you can change ARCHIVELOG mode only when the
database is in the MOUNT state.

	 4.	 Enable ARCHIVELOG mode by using the command ALTER DATABASE ARCHIVELOG.

	 5.	 Open the database by using ALTER DATABASE OPEN.

	 6.	 Back up the database.

To disable ARCHIVELOG mode, follow these steps:

	 1.	 Shut down the database.

	 2.	 Start up and mount the database.

	 3.	 Disable ARCHIVELOG mode by using the command ALTER DATABASE NOARCHIVELOG.

	 4.	 Open the database by using ALTER DATABASE OPEN.

The dynamic performance view V$DATABASE tells you whether or not you are in
ARCHIVELOG mode, as you can see in this query:

SQL> SELECT dbid, name, created, log_mode FROM v$database;

 DBID NAME CREATED LOG_MODE
---------- --------- --------- ------------
 6257179 OCADB1 24-DEC-13 ARCHIVELOG

Using EM Cloud Control, you can enable and disable ARCHIVELOG mode by checking
the ARCHIVELOG Mode check box (shown in Figure 15.2). Any changes require a database
restart, and EM Cloud Control will do the database restart after you confirm the restart.
You must be logged into EM Cloud Control with SYSDBA privileges to be able to enable or
disable ARCHIVELOG mode.

844	 Chapter 15  ■  Using Backup and Recovery

Resolving Archive-Logging Space Issues

After you configure the database for ARCHIVELOG mode, your job is only half complete.
You need to continually make sure there is enough room for the archived log files. Other-
wise, the database will hang. At least once in your DBA career, you will get a phone call
from someone saying that the database is “hung.” You won’t discover that the archiving
process can’t find disk space for a newly filled log file until you check the alert log.

There should be enough space available for online archived redo log files to recover and
roll forward from the last full backup of each data file that is also online; the remaining
archived logs and any previous data file backups can be moved to another disk or to tape.

Remembering your zero-transaction-loss strategy (which should be every DBA’s strat-
egy), make sure you do not misplace or delete an archived log file before it is backed
up to tape; otherwise, you will not be able to perform a complete recovery from a
media failure.

If you use RMAN and the Fast Recovery Area for all your backup files, you can further auto-
mate this process by directing RMAN to maintain enough backups to satisfy a recovery-
window policy (number of days) or a redundancy policy (multiple copies of each backup).
Once an archived log or other backup file is no longer needed for the policy, the files will be
deleted automatically from the Fast Recovery Area.

Understanding the Fast Recovery Area
As the price of disk space drops, the difference in its price compared to the price of tape is
offset by the advantages of using a disk as the primary backup medium. Even a slow disk can
be accessed randomly faster than a tape drive. This rapid access means that any database-
recovery operation takes only minutes instead of hours.

Using disk space as the primary medium for all database-recovery operations is the key
component of the Oracle database’s Fast Recovery Area. The Fast Recovery Area is a single,
unified storage area for all recovery-related files and recovery activities in an Oracle database.

The Fast Recovery Area can be a single directory, an entire file system, or an Automatic
Storage Management (ASM) disk group. To further optimize the use of disk space for recovery
operations, a Fast Recovery Area can be shared by more than one database.

In the following sections, we will cover all the major aspects of a Fast Recovery
Area: what can and should be kept in the Fast Recovery Area and how to set up a Fast
Recovery using initialization parameters and SQL commands. Also, as with other
aspects of Oracle Database 12c, we will show how you can manage most parts of the
Fast Recovery Area using EM Cloud Control, and we’ll introduce some of the more
advanced management techniques.

	 Understanding and Configuring Recovery Components	 845

Fast Recovery Area Occupants
All of the files needed to recover a database from a media failure or a logical error are
contained in the Fast Recovery Area. The Fast Recovery Area can contain the following:

Control Files    A copy of the control file is created in the Fast Recovery Area when the data-
base is created. This copy of the control file can be used as one of the mirrored copies of the
control file to ensure that at least one copy of the control file is available after a media failure.

Archived Log Files    When the Fast Recovery Area is configured, archive log location is
automatically set to the Fast Recovery Area location. The corresponding ARCn processes
create archived log files in the Fast Recovery Area or any other defined LOG_ARCHIVE_
DEST_n locations.

Flashback Logs    If Flashback Database is enabled, its flashback logs are stored in the Fast
Recovery Area.

Control File and Spfile Autobackups    The Fast Recovery Area holds the control file and
spfile autobackups generated by RMAN if RMAN is configured for control file autobackup.
When RMAN backs up data file 1, which is part of the SYSTEM tablespace, the control file is
automatically included in the RMAN backup.

Data File Copies    For RMAN BACKUP AS COPY image files, the Fast Recovery Area is the
default destination for the data file copies.

RMAN Backup Sets    By default, RMAN uses the Fast Recovery Area for both backup sets
and image copies. In addition, RMAN puts restored archived log files from tape into the
Fast Recovery Area in preparation for a recovery operation.

The data dictionary view V$RECOVERY_AREA_USAGE gives information on space used by
each type of files in the Fast Recovery Area.

SQL> SELECT file_type, percent_space_used psu,
 percent_space_reclaimable psr, number_of_files nf
 FROM v$recovery_area_usage;

FILE_TYPE PSU PSR NF
----------------------- ---------- ---------- ----------
CONTROL FILE 0 0 0
REDO LOG 0 0 0
ARCHIVED LOG 0 0 1
BACKUP PIECE 16.57 0 4
IMAGE COPY 0 0 0
FLASHBACK LOG 3.42 0 7
FOREIGN ARCHIVED LOG 0 0 0
AUXILIARY DATAFILE COPY 0 0 0

846	 Chapter 15  ■  Using Backup and Recovery

Configure Fast Recovery Area Using SQL Commands
You must define two initialization parameters to set up the Fast Recovery Area: DB_
RECOVERY_FILE_DEST_SIZE and DB_RECOVERY_FILE_DEST. Because both of these are
dynamic parameters, the instance doesn’t need to be shut down and restarted for the
Fast Recovery Area to be usable.

DB_RECOVERY_FILE_DEST_SIZE, which must be defined before DB_RECOVERY_FILE_DEST,
defines the size of the Fast Recovery Area. To maximize the benefits of the Fast Recovery
Area, it should be large enough to hold a copy of all data files, incremental backups, online
redo logs, archived redo logs not yet backed up to tape, control files, and control file auto-
backups. At a bare minimum, you need enough space to hold the archived log files not yet
copied to tape.

Here is an example of configuring DB_RECOVERY_FILE_DEST_SIZE:

SQL> ALTER SYSTEM SET
 db_recovery_file_dest_size = 80g SCOPE=both;

The size of the Fast Recovery Area will be 80GB, and because this example uses the
SCOPE=BOTH parameter in the ALTER SYSTEM command, the initialization parameter takes
effect immediately and stays in effect even after a database restart.

The parameter DB_RECOVERY_FILE_DEST specifies the physical location where all Fast
Recovery files are stored. The ASM disk group or file system must have at least as much space
as the amount specified with DB_RECOVERY_FILE_DEST_SIZE, and it can have significantly
more. DB_RECOVERY_FILE_DEST_SIZE, however, can be increased on the fly if more space is
needed and the file system where the Fast Recovery Area resides has the space available.

The following example uses the directory /OraFlash for the Fast Recovery Area, like so:

SQL> ALTER SYSTEM SET
 db_recovery_file_dest = '/OraFlash' SCOPE=both;

Clearing the value of DB_RECOVERY_FILE_DEST disables the Fast Recovery Area; the
parameter DB_RECOVERY_FILE_DEST_SIZE cannot be cleared until the DB_RECOVERY_FILE_
DEST parameter has been cleared.

Even after files in the Fast Recovery Area are obsolete (based on retention
time), they are not deleted until space is needed for new files.

Configure Fast Recovery Area Using EM Cloud Control
Using the Recovery Settings screen, you can create and maintain the Fast Recovery Area
with EM Cloud Control. Figure 15.3 shows the Fast Recovery section.

In the Fast Recovery section, the Fast Recovery Area has been configured for a database
in the file system /u01/app/oracle/flash_recovery_area, with a maximum size of 10GB.
Just under 2GB of space is currently used in the Fast Recovery Area. Flashback logging is
also enabled for this database.

	 Understanding and Configuring Recovery Components	 847

F igur e 15 . 3     The Fast Recovery section of the Recovery Settings screen

You can enable flashback logging by selecting the Enable Flashback Database box.
Oracle’s flashback features complement the media-recovery options in the database.
Using the FLASHBACK DATABASE command in RMAN, you can revert the data file con-
tents to a state at a prior time. This operation is much faster than recovering from a full
database backup and applying the archive logs to recover the database to a point in time.
The flashback logs contain the past versions of the data blocks.

You can enable Flashback Database using SQL*Plus. The steps are as follows:

	 1.	 Make sure the database is in ARCHIVELOG mode and the Fast Recovery Area is config-
ured using the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE parameters.

	 2.	 Optional: Specify the length of desired flashback window using the DB_FLASHBACK_
RETENTION_TARGET parameter. The default is 1,440 minutes.

	 3.	 Enable the Flashback Database feature using the ALTER DATABASE FLASHBACK ON
statement.

The background process RVWR writes flashback data to Flashback Data-
base logs in the Fast Recovery Area.

Managing the Fast Recovery Area
Because the space in the Fast Recovery Area is limited by the initialization parameter
DB_RECOVERY_FILE_DEST_SIZE, the Oracle database keeps track of which files are no longer
needed on disk so that they can be deleted when there is not enough free space for new files.
Each time a file is deleted from the Fast Recovery Area, a message is written to the alert log.

A message is also written to the alert log in other circumstances. If no files can be
deleted and the recovery area’s used space is at 85 percent, a warning message is issued.
When the space used is at 97 percent, a critical warning is issued. These warnings are
recorded in the alert log file, can be viewed in the data dictionary view DBA_OUTSTANDING_
ALERTS, and are available on the main screen of Enterprise Manager.

848	 Chapter 15  ■  Using Backup and Recovery

When you receive these alerts, you have a number of options. If your retention policy can
be adjusted to keep fewer copies of data files or reduce the number of days in the recovery
window, this can help alleviate the space problems in the Fast Recovery Area. Assuming your
retention policy is sound, you should instead add more disk space or back up some of the files
in the Fast Recovery Area to another destination, such as another disk or a tape device.

If the Fast Recovery Area is full, Oracle Database 12c will write ORA-19809 and ORA-19804
errors to the alert log file. The Fast Recovery Area is automatically cleared based on the reten-
tion specified. To manually clear the Fast Recovery Area, you must perform BACKUP RECOVERY
AREA to back up the Fast Recovery Area files and to delete the files. The options to reduce the
Fast Recovery Area size are

	 1.	 Make a backup of the Fast Recovery Area using RMAN.

	 2.	 Change the RMAN retention policy.

	 3.	 Adopt a more aggressive RMAN archived-log deletion policy.

	 4.	 Delete files from the Fast Recovery Area using RMAN.

If none of the above action clears enough space in the Fast Recovery Area, you should
increase the DB_RECOVERY_FILE_DEST_SIZE.

The archive log location is implicitly set to point to the Fast Recovery Area
if no archive log locations have been set and the database is in ARCHIVELOG
mode with a Fast Recovery Area defined.

Performing Backups
Your backup strategy depends on the activity of your database, the level of availability
required by your service-level agreements (SLAs), and how much downtime you can tolerate
during a recovery effort.

In this section, we’ll first review some terminology and then we’ll show you a way to
back up the control file to a text file that you can edit and use in case all the control files are
lost. We will then discuss how to back up the database using OS utilities. Finally, we will
introduce Recovery Manager and show you how to make some of the backups described in
the terminology review.

Understanding Backup Terminology
You can make a whole backup, which backs up the entire database, or you can back up only
part of the database, which is called a partial backup. Whole backups and partial backups
are known as Oracle backup strategies. The backup type can be divided into two general
categories: full backups and incremental backups. Depending on whether you make your
database backups when the database is open or closed, backups can be further categorized
into the backup modes known as consistent backup and inconsistent backup.

	 Performing Backups	 849

Your backups can be managed using operating-system and SQL commands or entirely by
RMAN. Many backup types are available using only RMAN, such as incremental backups;
unless you have some specific requirements, we highly recommended that you use RMAN to
implement your backup strategy.

The following definitions are for whole database backups, partial database backups, full
backups, incremental backups, consistent backups, and inconsistent backups:

Whole Database    A whole database backup includes all data files, at least one control
file, archived log files, and a server parameter file. Online redo log files are never backed
up; restoring backed-up redo log files and replacing the current redo log files will result
in loss of data during media recovery. Only one of the control files needs to be backed up;
all copies of the control file are identical.

Partial Database    A partial database backup includes zero or more tablespaces, which in
turn includes zero or more data files; a control file is optional in a partial database backup.

Full    A full backup includes all blocks of every data file backed up in a whole or partial
database backup.

Incremental    An incremental backup makes a copy of all data blocks that have changed since
a previous backup. Although Oracle Database 12c supports five levels of incremental backups
from 0 to 4, 0 and 1 are the most commonly used. An incremental backup at level 0 is consid-
ered a baseline backup; it is the equivalent of a full backup and contains all data blocks in the
data file(s) that are backed up. Although incremental backups can take less time, the potential
downside is that you must first restore the baseline backup and then apply incremental back-
ups performed since the baseline backup.

Consistent    A consistent backup, also known as an offline backup, is performed while
the database is not open. These backups are consistent because the SCN in the control file
matches the SCN in every data file’s header. Although recovering using a consistent backup
requires no additional recovery operation after a failure, you reduce your database’s avail-
ability during a consistent backup, as well as risk the loss of committed transactions per-
formed since the consistent backup.

Inconsistent    Although the term inconsistent backup may sound like something you
might avoid in a database, it is a way to maintain the availability of the database while
performing backups. An inconsistent backup, also known as an online backup, is per-
formed while the database is open and available to users. The backup is inconsistent
because the SCN in the control file is most likely out of sync with the SCN in the header
of the data files. Inconsistent backups require recovery when they are used for recovering
from a media failure, but they keep availability high because the database is open while
the backup is performed.

Backups can be performed using two methods: user-managed backup or Oracle’s backup
and recovery tool called Recovery Manager. RMAN backups are easier to create, and the
recovery operations are pretty much automated. We discuss RMAN backups in the section
“Using RMAN to Perform Backups.”

In the next sections, you will learn to back up the control file, back up the database, and
use Recovery Manager.

850	 Chapter 15  ■  Using Backup and Recovery

Backing Up the Control File
In addition to multiplexing the control file, you can guard against the loss of all control files
by backing up the control file. You can back up the control file using three methods:

■■ An editable text file; this backup is called a backup to trace.

■■ A binary backup of the control file.

■■ An RMAN backup of the control file.

Performing a Text Backup of Control File
The text backup is created using the ALTER DATABASE BACKUP CONTROLFILE TO TRACE
statement, and the file is created in the trace directory under <ADR_HOME>/trace. The trace
file format is sid_ora_pid.trc, where sid is the ORACLE_SID and pid is the process ID of
the user creating the trace backup. This special backup of the control file is not a trace file
per se; in other words, it is not a dump file or an error report for a failed user or system
process. It is a proactive rather than reactive report of the contents of the control file, and
the report happens to end up in a directory with other trace files.

Back up the control file to trace after any change to the structure of the database, such as
adding or dropping a tablespace or creating a new redo log-file group. Using the command
line to create a backup of the control file is almost as easy as clicking the Backup to Trace
button in EM Database Express. (See Chapter 8. A similar option is available in EM Cloud
Control as well in the Administration menu ➢ Storage ➢ Control Files.)

SQL> alter database backup controlfile to trace;
Database altered.

If you want to name the control file backup rather than using an Oracle-generated trace
filename, you can do this:

SQL> alter database backup controlfile to trace as '/tmp/mydbcontrol.txt';
Database altered.

The control file create statements are created in the file /tmp/mydbcontrol.txt. To save
space, output of control file backup as text file is not shown. After you generate the backup
file, remember to review the content of the trace file and understand each section.

Performing a Binary Backup of Control File
Another way to back up your control file is to make a binary copy of it using the ALTER
DATABASE command, as in the following example:

SQL> alter database backup controlfile to
 '/ora_backup/11GR11/ctlfile20040911.bkp';
Database altered.

You can then copy the binary backup of the control file to a backup device.

	 Performing Backups	 851

Using RMAN to Back Up a Control File
Using RMAN, you can back up the control file using the BACKUP CURRENT CONTROLFILE
statement, as shown here. This backup is also a binary backup.

RMAN> BACKUP CURRENT CONTROLFILE;

Starting backup at 31-DEC-13
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=35 device type=DISK
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
including current control file in backup set
channel ORA_DISK_1: starting piece 1 at 31-DEC-13
channel ORA_DISK_1: finished piece 1 at 31-DEC-13
piece handle=/u01/app/oracle/fast_recovery_area/OCADB1/backupset/2013_12_31/o1_
mf_ncnnf_TAG20131231T224419_9d7gb4nb_.bkp tag=TAG20131231T224419 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:03
Finished backup at 31-DEC-13

RMAN>

To perform backup and recovery tasks with RMAN, you must connect
to the database as a user with the SYSDBA or SYSBACKUP privilege. The
SYSBACKUP privilege is new in Oracle Database 12c and encompasses all
the privileges required to back up and recover the database. SYSBACKUP
privileges are a subset of the privileges included in the SYSDBA adminis-
trative privilege.

Backing Up the Database
An Oracle Database 12c database can be backed up using different modes, depending on
the ARCHIVELOG setting of the database. If the database is in ARCHIVELOG mode, you can
perform an online database backup (also known as an inconsistent or hot backup) or an
offline database backup (also known as a consistent or cold backup). If the database is in
NOARCHIVELOG mode, you can perform only an offline backup.

You can use OS utilities to perform the database backup or use RMAN. Using RMAN
is the preferred and easier method of backup. In the following sections, you will learn how
to back up the database using OS utilities (user-managed backups). RMAN backups are
discussed in the subsequent section.

852	 Chapter 15  ■  Using Backup and Recovery

Performing User-Managed Cold Backups
Cold backups are performed after shutting down the database. Shut down the database
cleanly using the SHUTDOWN IMMEDIATE or SHUTDOWN TRANSACTIONAL statement, and copy
all control files and data files to another location or to your tape management system
using OS commands. You can also copy the redo logs, but this is not necessary if the
database shutdown is clean. You also need to back up the parameter file (init file or
spfile) and password file.

You can identify the control files in the database using the dynamic performance view
V$CONTROLFILE. The data files that need to be backed up can be identified by using the
view V$DATAFILE.

Performing User-Managed Hot Backups
To perform a hot backup, the database must be in ARCHIVELOG mode. Before starting to
copy the data files belonging to a tablespace, you must place the tablespace in backup mode
using the BEGIN BACKUP clause. For example, if you want to back up the USERS tablespace,
perform the following:

SQL> ALTER TABLESPACE users BEGIN BACKUP;

When a tablespace is placed in backup mode, data-block changes are written to the redo
log files. After you take the tablespace out of backup mode, the database advances the data
file checkpoint SCN to the current database checkpoint SCN.

When a tablespace is in backup mode, use OS utilities to copy the data files belonging to
the tablespace to another location or to the tape management system. To take the tablespace
out of backup mode, use the END BACKUP clause as in the following example:

SQL> ALTER TABLESPACE users END BACKUP;

If your database is small or if you plan to place all the tablespaces in backup mode for
the hot backup, instead of placing each tablespace in backup mode, you can use the ALTER
DATABASE statement to put the whole database in backup mode, as in the following example:

SQL> ALTER DATABASE BEGIN BACKUP;

You cannot perform incremental backups using user-managed backups. You
must use RMAN for incremental backups.

Using RMAN to Perform Backups
RMAN is the primary component of the Oracle database used to perform backup and
recovery operations. You can use RMAN to back up all types: whole or partial databases,
full or incremental, and consistent or inconsistent. RMAN is closely integrated with EM
Cloud Control.

	 Performing Backups	 853

RMAN has a command-line interface for advanced configuration and backup operations;
the most common backup functions are available within EM Cloud Control. It includes a
scripting language to make it easy to automate backups, and it can back up the most critical
types of files in your database except for online redo log files (which you should not back
up anyway), password file, and text-based init.ora file. Data files, control files, archived
log files, and spfiles can be backed up using RMAN. In other words, RMAN is a “one-stop
shopping” solution for all your backup and recovery needs.

Because of the relatively static nature of password files and text-based
init.ora files, they can be included in the regular operating-system
backups, or you can back them up manually whenever they are changed.

In the following sections, we will explain the difference between image copies and backup
sets and how RMAN handles each of these backup types. After explaining some of the
RMAN configuration settings, we will show you some examples of how RMAN performs
full and incremental backups, using both the command line and the graphical user interface.

Configuring RMAN Backup Settings
Configuring RMAN backup settings is straightforward using EM Cloud Control. On
the Availability menu, click Backup Settings to open the Device tab screen, as shown in
Figure 15.4.

F igur e 15 . 4     The Backup Settings: Device screen

854	 Chapter 15  ■  Using Backup and Recovery

There is a separate section in this screen for your disk device, tape device, and Oracle
Secure Backup. Under the Disk Settings section, you can control the following parameters:

Parallelism    To take advantage of multiple CPUs or disk controllers, increase the value
of this parameter to reduce the overall backup time by performing different portions of
the backup in parallel.

Disk Backup Location    If you are not backing up to the Fast Recovery Area, change this
value to the location where you want the backups stored.

Disk Backup Type    You can choose Image Copy, Backup Set, or Compressed Backup Set.

Under the Tape settings, you can specify whether you want the backups to be written
directly to the tape or media management tool. You also have the option to configure
the Oracle Secure Backup (OSB) tool on this screen. OSB is a separately licensed product
from Oracle to manage the backups and tape libraries. Using OSB, you can back up any
type of OS files anywhere on the network.

Click the Backup Set tab, and specify the maximum size for a backup-set piece (a single
backup file), as shown in Figure 15.5. In this case, set the maximum backup-set piece size
to 4GB.

F igur e 15 .5     The Backup Settings: Backup Set screen

The default compression algorithm used for compressed backups is BASIC. If the
database is configured with Advanced Compression Option, additional compression
options are available.

You use the last tab on the Backup Settings screen, the Policy tab, to set a number
of other default backup settings, such as automatically backing up the control file with
each backup, skipping read-only and offline data files, and using a block-change track-
ing file. A block-change tracking file keeps track of changed blocks in each tablespace so

	 Performing Backups	 855

that incremental backups need not read every block in every data file to determine which
blocks need to be backed up during an incremental backup. Figure 15.6 shows an example
of the Policy tab with a block-change tracking file specified.

F igur e 15 .6     The Backup Settings: Policy screen 1

Always enable the automatic backup of control files and spfiles. This is an
Oracle-recommended best practice.

The Policy tab also specifies the retention policy for backups and the deletion policy for
archive logs. See Figure 15.7.

F igur e 15 .7     The Backup Settings: Policy screen 2

856	 Chapter 15  ■  Using Backup and Recovery

Infrequently used parameters, such as the control file autobackup filename format and
the snapshot control file destination filename, are not available from the graphical user
interface; you must use the RMAN command-line interface to change these values.

You can invoke the RMAN command line by using the executable rman. RMAN can
optionally use a catalog database where the backup information is kept. RMAN always
uses the database control file to record backup and recovery operations. The drawback to
depending on the control file for backup information is that it can only hold values for the
days specified by the CONTROL_FILE_RECORD_KEEP_TIME value.

The following RMAN command-line session uses the RMAN SHOW ALL command to
display the RMAN backup settings:

$ rman target / nocatalog

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Dec 31 23:35:28 2013
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: OCADB1 (DBID=6257179)
using target database control file instead of recovery catalog

RMAN> show all;

RMAN configuration parameters for database with db_unique_name OCADB1 are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # default
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED BACKUPSET PARALLELISM 4;
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/backups/database/%d_%U'
MAXPIECESIZE 4 G;
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE '12.1.0.0.0' OPTIMIZE FOR
LOAD TRUE;
CONFIGURE RMAN OUTPUT TO KEEP FOR 7 DAYS; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP 1 TIMES TO 'SBT_TAPE';
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u02/app/oracle/product/12.1.0/dbhome_1/
dbs/snapcf_ocadb1.f'; # default

RMAN>

	 Performing Backups	 857

You can enable block-change tracking (BCT) in the database by using the
SQL statement ALTER DATABASE ENABLE BLOCK CHANGE TRACKING. Block
change tracking helps to identify the block changes since the last backup
so you do not have to scan the whole data file for incremental backups.
The V$BLOCK_CHANGE_TRACKING view indicates if BCT is enabled and dis-
plays the change tracking filename.

Understanding Image Copies and Backup Sets
Image copies are duplicates of data files or archived redo log files, which means that every
block of every file is backed up; you can use RMAN or operating-system commands to make
image copies. In contrast, backup sets are copies of one or more data files or archived redo log
files that are stored in a proprietary format readable only by RMAN; backup sets consist of
one or more physical files and do not include never-used blocks in the data files being backed
up. Backup sets can save even more space by using a compression algorithm designed specifi-
cally for the type of data found in an Oracle data file.

Another difference between image copies and backup sets is that image copies can be
copied only to a disk location; backup sets can be written to disk or directly to a tape or
other secondary storage device.

Creating Full and Incremental Backups
The Oracle-recommended backup strategy uses RMAN to make a one-time, whole-database,
baseline incremental level 0 online backup and then a daily level 1 incremental backup. You
can easily fine-tune this strategy for your own needs by making, for example, a level 2 incre-
mental backup at noon during the weekdays if heavy Data Manipulation Language (DML)
activity is occurring in the database.

Using RMAN, you can accomplish this backup strategy with just a couple of the
RMAN commands that follow. First, here is the code for a baseline level 0 backup at
the RMAN command prompt:

RMAN> backup incremental level 0
 as compressed backupset database;

This backs up the entire database using compression to save disk space in addition to the
space savings already gained by using backup sets instead of image copies.

Starting with a baseline level 0 incremental backup, you can make level 1 incremental
backups during the rest of the week, as in the following example:

RMAN> backup incremental level 1
 as compressed backupset database;

The options are the same as in the previous example, except that only the blocks that
have changed since the last backup are copied to the backup set.

Another variation is to make an incrementally updated backup. An incrementally updated
backup uses an incremental backup and updates the changed blocks in an existing image copy

858	 Chapter 15  ■  Using Backup and Recovery

as if the entire image copy were backed up. In a recovery scenario, you can restore the image
copy of the data file(s) without using an incremental backup; the incremental backup is already
applied, saving a significant amount of time during a recovery operation. The following
RMAN script shows how an incrementally updated backup works at the command line:

run
{
 recover copy of database with tag 'inc_upd_img';
 backup incremental level 1 for
 recover of copy with tag 'inc_upd_img' database;
}

This short and cryptic script demonstrates the advantages of using EM Cloud Control
to perform incrementally updated backups (or you can use EM to generate the scripts and
schedule using another job scheduler). A backup tag is a text string that identifies a backup,
either uniquely or as part of a group of backups. All RMAN backups, including incremen-
tal backups, are labeled with a tag. In the code shown earlier, 'inc_upd_img' is the backup
tag. If no explicit backup tag is specified, RMAN will assign a system-generated name as
the backup tag. The Schedule Backup screen of EM Cloud Control is shown in Figure 15.8.

F igur e 15 . 8     The Schedule Backup main screen

	 Performing Backups	 859

You have the option to schedule a backup based on the Oracle-suggested backup policy
or using custom settings. If you want to enable an Oracle-suggested policy for backups,
click the Schedule Oracle-Suggested Backup button. To customize the backups according
to your company policy, click the Schedule a Customized Backup button.

An Oracle-suggested backup policy does the following:

■■ It creates a level 0 image backup (all blocks in all data files) on day 1 of the backup.

■■ It creates an incremental level 1 image backup (changed blocks in data files only) from
day 2 onward.

■■ On day 3 and subsequent days, the incremental backup from day 1 is applied to the
previous backup to make the data files roll forward. On the beginning of day m, the
level 0 backup is updated with day m-1 incremental backup.

■■ If a recovery is required on day 2, the full backup plus archive logs generated on day 2
are used.

■■ If a recovery is required on day m, the incrementally updated backup as of day m-1 is
used, plus any archive logs for day m.

Using EM Cloud Control to schedule the suggested backup is easy, and it generates the
following script with the description: “A full database copy will be performed during the
first backup. Subsequently, an incremental backup to disk will be performed every day. The
backups on disk will be retained so that you can always perform a full database recovery or
a point-in-time recovery to any time within the past day.”

Daily Script:
run {
allocate channel oem_disk_backup device type disk;
recover copy of database with tag 'ORA$OEM_LEVEL_0';
backup incremental level 1 copies=1 for recover of copy with tag 'ORA$OEM_
LEVEL_0' database;
}

The Schedule Customized Backup screen has the options to choose the whole database,
tablespace, data file, archive log, and recover area files shown in Figure 15.8. Figure 15.9
shows screen 1 of 4 used in scheduling a customized backup. The first screen is used to
specify the backup options.

On this screen, you can specify the backup type (full backup or incremental), backup mode
(online or offline), and whether to back up archive logs and to delete archive logs after backup.
Click the Next button to advance to the next screen, where you specify the backup settings.
Specify whether you want to back up to disk or tape (see Figure 15.10). If you click the View
Default Settings button, you will be taken to the screen shown in Figure 15.4.

You have the option to override the default settings, specific for this backup using the
Override Default Settings button. If you do not want to change the default settings but
do not want to use the default location for backups, you can click the Override Default
Settings button. The Schedule screen gives you the option to perform the backup one time
immediately, one time at a later time, or on a repeating basis. If you choose Repeating, you

860	 Chapter 15  ■  Using Backup and Recovery

will be provided with the options to specify the backup repeating schedules, as shown in
Figure 15.11. Automated backups are configured using the repeating schedule option.

F igur e 15 . 9     The Schedule Customized Backup: Options screen

F igur e 15 .10     The Schedule Customized Backup: Settings screen

On the Review screen, you will be provided a summary of all the options you chose
in the previous screens and the RMAN script that will be used to back up the database,
as shown in Figure 15.12. You will also have the option to edit the RMAN script before
scheduling the job.

	 Performing Backups	 861

After reviewing the backup settings, click the Submit Job button to schedule the backup.
The backup script generated by the screens is shown here:

backup incremental level 1 device type disk tag '%TAG' database;
backup device type disk tag '%TAG' archivelog all not backed up delete all
input;
allocate channel for maintenance type disk;
delete noprompt obsolete device type disk;
release channel;

In the next section, you will learn about managing RMAN backups.

In addition to the RMAN-specific commands, most SQL statements and the
SQL*Plus DESCRIBE command are supported in RMAN. You can also use
the STARTUP and SHUTDOWN commands.

F igur e 15 .11     The Schedule Customized Backup: Schedule screen

Managing Backups
Managing your database backups using EM Cloud Control is straightforward. In the fol-
lowing sections, you will get an overview of the RMAN backup- and catalog-maintenance
commands, and you will learn how to monitor the Fast Recovery Area and automate backups
using the Scheduler. Along with the OEM screens, we will also provide the RMAN commands
so that you will know how to perform these actions from RMAN command prompt as well.

862	 Chapter 15  ■  Using Backup and Recovery

F igur e 15 .12     The Schedule Customized Backup: Review screen

Maintaining Current Backups
A number of backup-management functions are available on the Manage Current Backups
screen in EM Cloud Control (see Figure 15.13). To get there, from the screen shown in
Figure 15.1, choose Manage Current Backups.

F igur e 15 .13     The Manage Current Backups screen

	 Performing Backups	 863

This screen shows you the current backups based on the search criteria entered. The four
buttons at the top perform the following functions:

Catalog Additional Files    This button adds any image-copy backups made outside RMAN
to the RMAN catalog. You can specify a file or a directory. The command used to catalog
files is CATALOG START WITH 'file or directory'.

Crosscheck All    This button double-checks the backup files listed in the catalog (or control
file) against the actual files on disk (or tape) to make sure they are all available. The commands
used are CROSSCHECK BACKUPSET; CROSSCHECK COPY.

Delete All Obsolete    This button deletes all backup files not needed to satisfy the existing
retention policy. The command used is DELETE NOPROMPT OBSOLETE.

Delete All Expired    This button deletes the catalog entry for any backups not found when
a crosscheck was performed. The commands used are DELETE NOPROMPT EXPIRED BACKUP;
DELETE NOPROMPT EXPIRED COPY.

After selecting a backup under the Results section, you can perform additional actions
in this screen. The four options perform the following functions:

Crosscheck    Use this to crosscheck a backup set. The command used is CROSSCHECK
BACKUPSET n;

Change to Unavailable    Use this to make the backup set unavailable. The command used
is CHANGE BACKUPSET n UNAVAILABLE.

Delete    Use this to delete a backup set. The command used is DELETE NOPROMPT BACKUPSET n,

Validate    Use this to validate a backup set. The command used is VALIDATE BACKUPSET n,

Viewing Backup Reports
In EM Cloud Control under the Availability menu, as shown earlier in Figure 15.1, click the
Backup Reports menu to show the View Backup Report screen. Click the name of the backup
in the Backup Name column to display a detailed status report of the backup, including what
is being backed up (data files, control files, spfiles), the size of the backup, the backup start
and end times, and the backup pieces.

You can use the LIST command from RMAN command line to see the reports. The
following example shows an example of LIST BACKUP output.

RMAN> list backup;

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
1 Incr 0 1.57G DISK 00:03:31 31-DEC-13

864	 Chapter 15  ■  Using Backup and Recovery

 BP Key: 1 Status: AVAILABLE Compressed: NO Tag: BACKUP_
OCADB1_0000_123113092057
 Piece Name: /u01/app/oracle/fast_recovery_area/OCADB1/
backupset/2013_12_31/o1_mf_nnnd0_BACKUP_OCADB1_0000_1_9d79g1b6_.bkp
 List of Datafiles in backup set 1
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 0 Incr 2445763 31-DEC-13 /u01/app/oracle/oradata/ocadb1/system01.dbf
 2 0 Incr 2445763 31-DEC-13 /u01/app/oracle/oradata/ocadb1/example01.dbf
 3 0 Incr 2445763 31-DEC-13 /u01/app/oracle/oradata/ocadb1/sysaux01.dbf
 4 0 Incr 2445763 31-DEC-13 /u01/app/oracle/oradata/ocadb1/undotbs01.dbf
 6 0 Incr 2445763 31-DEC-13 /u01/app/oracle/oradata/ocadb1/users01.dbf

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
2 Incr 0 9.64M DISK 00:00:01 31-DEC-13
 BP Key: 2 Status: AVAILABLE Compressed: NO Tag: BACKUP_
OCADB1_0000_123113092057
 Piece Name: /u01/app/oracle/fast_recovery_area/OCADB1/
backupset/2013_12_31/o1_mf_ncsn0_BACKUP_OCADB1_0000_1_9d79nt31_.bkp
 SPFILE Included: Modification time: 31-DEC-13
 SPFILE db_unique_name: OCADB1
 Control File Included: Ckp SCN: 2446054 Ckp time: 31-DEC-13

So far you have learned how backups work and how to perform backups. In the next
sections, you will see how the backups can be used for recovery purposes and what other
measures you can take to prevent failures in the database.

Understanding Types of
Database Failures
Database-related failures fall into six general categories. Understanding which category a
failure belongs in will help you more quickly understand the nature of the recovery effort
you need to use to reverse the effects of the failure and maintain a high level of availability
and performance in your database. The six general categories of failures are as follows:

Statement    A single database operation fails, such as a Data Manipulation Language (DML)
statement—INSERT, UPDATE, and so on.

User Process    A single database connection fails.

Network    A network component between the client and the database server fails, and the
session is disconnected from the database.

	 Understanding Types of Database Failures	 865

User Error    An error message is not generated, but the operation’s result, such as dropping
a table, is not what the user intended.

Instance    The database instance crashes unexpectedly.

Media    One or more of the database files is lost, deleted, or corrupted.

In the next six sections, we’ll provide details on these failure types and suggest some
possible solutions for each one. For one particular type of failure, media failure, we’ll
provide more detailed solutions for recovery later in this chapter.

Statement Failures
Statement failures occur when a single database operation fails, such as a single INSERT
statement or the creation of a table. Table 15.1 shows the most common problems that
occur when a statement fails, along with their solutions.

Tabl e 15 .1    Common Problems and Solutions for Statement Failures

Problem Solution

Attempts to access tables without the
appropriate privileges

Provide the appropriate privileges, or create views
on the tables and grant privileges on the view.

Running out of space Add space to the tablespace, increase the user’s
quota on the tablespace, or enable resumable-
space allocation.

Entering invalid data If constraints and triggers are not in place to
enforce data integrity, entering bad data may suc-
ceed and cause application issues. DBAs need to
work with users to validate and correct data.

Logic errors in applications Work with developers to correct program errors
or provide additional logic in the application to
recover gracefully from unavoidable errors.

Although granting user privileges or additional quotas within a tablespace solves many
of these problems, also consider whether there are any gaps in the user education process
that might lead to some of these problems in the first place.

User-Process Failures
The abnormal termination of a user session is categorized as a user-process failure. After a
user-process failure, any uncommitted transaction must be cleaned up. The PMON (process
monitor) background process periodically checks all user processes to ensure that the session
is still connected. If the PMON finds a disconnected session, it rolls back the uncommitted

866	 Chapter 15  ■  Using Backup and Recovery

transaction and releases all locks held by the disconnected process. The causes of user-process
failures typically fall into one of these categories:

■■ A user closes their SQL*Plus window without logging out.

■■ The workstation reboots suddenly before the application can be closed.

■■ The application program causes an exception and closes before the application can be
terminated normally.

A small percentage of user-process failures are generally no cause for concern unless it
becomes chronic. A failure may be a sign that user education is lacking—for example, train-
ing users to terminate the application gracefully before shutting down their workstation.
A DBA intervention is not needed for user-process failures, but administrators must watch
for trends, and if something happens too often, they need to investigate because there may
be application problems or network issues that cause an excessive number of user-process
failures. More information may be available in the alert log file showing whether the user
process is hitting a bug and whether there are any trace files written.

Network Failures
Depending on the locations of your workstation and your server, getting from your work-
station to the server over the network might involve a number of hops; for example, you
might traverse several local switches and WAN routers to get to the database. From a net-
work perspective, this configuration provides a number of points where failure can occur.
These types of failures are called network failures.

In addition to hardware failures between the server and client, a listener process on the
Oracle server can fail, or the network card on the server itself can fail. To guard against
these kinds of failures, you can provide redundant network paths from your clients to the
server, as well as additional listener connections on the Oracle server and redundant net-
work cards on the server.

User-Error Failures
Even if all your redundant hardware is at peak performance and your users have been
trained to disconnect from their Oracle sessions properly, users can still inadvertently delete
or modify data in tables or drop an object in the database. This is known as a user-error
failure. Although these operations succeed from a statement point of view, they might not
be logically correct: the DROP TABLE command worked fine, but you really didn’t want to
drop that table!

If data was inadvertently deleted from a table and not yet committed, a ROLLBACK statement
will undo the damage. If a COMMIT has already been performed, you have a number of options
at your disposal, such as using data in the undo tablespace for a Flashback Query or using
data in the archived and online redo logs with the LogMiner utility, available as a command-
line interface or a graphical user interface.

You can recover a dropped table using Oracle’s recycle-bin functionality. A dropped table
is stored in a special structure in the tablespace and is available for retrieval as long as the

	 Understanding Types of Database Failures	 867

space occupied by the table in the tablespace is not needed for new objects. Even if the table is
no longer in the tablespace’s recycle bin, depending on the criticality of the dropped table, you
can use either tablespace point-in-time recovery (TSPITR) or Flashback Database recovery
to recover the table, taking into consideration the potential data loss for other objects stored
in the same tablespace for TSPITR or in the database if you use Flashback Database recovery.

TSPITR and Flashback Database recovery are beyond the scope of this book
but are covered in more detail in OCP: Oracle Database 12c Administrator
Certified Professional Study Guide (Sybex, 2014).

If the inadvertent changes are limited to a small number of tables that have few or no
interdependencies with other database objects, Flashback Table functionality is most likely
the right tool to bring back the table to a certain point in time.

Later in this chapter, in the section “Performing Recovery Operations,” we’ll show you
how to recover dropped tables from the recycle bin using the Flashback Drop functionality,
retrieve deleted rows from a table using the Flashback Query functionality, use the Flashback
Table functionality to bring a table back to a specific point in time along with its dependent
objects, and use LogMiner to query online and archived redo logs for the previous state of
modified rows.

The Oracle Database 12c database provides flashback technology, which is
aimed to recover from user errors.

Instance Failures
An instance failure occurs when the instance shuts down without synchronizing all the
database files to the same system change number (SCN), requiring a recovery operation the
next time the instance is started. Many of the reasons for an instance failure are out of your
direct control; in these situations, you can minimize the impact of these failures by tuning
instance recovery. You will learn how to tune instance recovery later in this chapter, in the
section “Tuning Instance Recovery.”

Here are a few causes of instance failure:

■■ A power outage

■■ A server-hardware failure

■■ Failure of an Oracle background process

■■ Emergency shutdown procedures (intentional power outage or SHUTDOWN ABORT)

In all these scenarios, the solution is easy: run the STARTUP command, and let Oracle auto-
matically perform instance recovery using the online redo logs and undo data in the undo
tablespace. If the cause of the instance failure is related to an Oracle background-process fail-
ure, you can use the alert log and process-specific trace files to debug the problem. EM Cloud

868	 Chapter 15  ■  Using Backup and Recovery

Control makes it easy to review the contents of the alert log and any other alerts generated
right before the point of failure.

Media Failures
Another type of failure that is somewhat out of your control is media failure. A media
failure is any type of failure that results in the loss of one or more database files: data
files, control files, or redo log files. Although the loss of other database-related files
such as an init.ora file or a server-parameter file (spfile) is of great concern, Oracle
Corporation does not consider it a media failure. The database file can be lost or cor-
rupted for a number of reasons:

■■ Failure of a disk drive

■■ Failure of a disk controller

■■ Inadvertent deletion or corruption of a database file

Following the best practices defined earlier—in other words, adequately mirroring control
files and redo log files and ensuring that full backups and their subsequent archived redo log
files are available—will keep you prepared for any type of media failure.

In the next section, we will show you how to recover from the loss of control files, data
files, and redo log files.

Performing Recovery Operations
Once the inevitable database failure occurs, you can perform a relatively quick and painless
recovery operation if you have followed the backup guidelines presented earlier in the chapter
and clearly understand the types of failures that could happen in the system.

Before we show you how to perform recovery, however, it is important for you to
understand how an Oracle instance starts up and what kinds of failures can occur at
each startup phase. Understanding the startup phases is important, because some types
of recovery operations must occur in a particular phase. Once a database is started, the
instance will fail under a number of conditions that we will describe in detail.

Next, we will describe how instance recovery works and how to tune instance recovery,
and then show you ways to easily recover from several types of user errors. Finally, we will
show you how to recover from media failures due to the loss of both critical and non-system-
critical data files.

Understanding Instance Startup
Starting up a database involves several phases, from being shut down to being open and
available to users. If certain prerequisites are not present, the database startup halts,
and you must take some kind of remedial action to permit the startup to proceed. In the

	 Performing Recovery Operations	 869

following list are the four basic database states along with their prerequisites after you type
the STARTUP command at the SQL*Plus prompt:

SHUTDOWN    No background processes are active. A STARTUP command is used when the
database is in this state; the STARTUP command fails if you are in any other state, unless
you are using STARTUP FORCE to restart an instance.

NOMOUNT    Also known as the STARTED state, the instance must be able to access the
initialization-parameter file, either as a text-based init.ora file or as an spfile.

MOUNT    In this state, the instance checks that all control files listed in the initialization-
parameter file are present and identical. Even if one of the multiplexed control files is unavail-
able or corrupted, the instance does not enter the MOUNT state and stays in the NOMOUNT state.

OPEN    Most of the time spent in the instance startup occurs during this phase. All redo log
groups must have at least one member available, and all data files that are marked as online
must be available.

You are notified in a number of ways that a redo log group member is missing or a data
file is missing. If a data file is missing or corrupted, you will get a message while you are
running the STARTUP command, as in this example:

SQL> startup
ORACLE instance started.
Total System Global Area 197132288 bytes
Fixed Size 778076 bytes
Variable Size 162537636 bytes
Database Buffers 33554432 bytes
Redo Buffers 262144 bytes
Database mounted.
ORA-01157: cannot identify/lock data file 4 - see DBWR trace file
ORA-01110: data file 4: '/u05/oradata/ord/users01.dbf'

The message in SQL*Plus shows only the first data file that needs attention. You will
have to use the dynamic performance view V$RECOVER_FILE to list all the files that need
attention. Here is a query against the view V$RECOVER_FILE and a second query joining
V$RECOVER_FILE and V$DATAFILE given the previous STARTUP command:

SQL> select file#, error from v$recover_file;
 FILE# ERROR
---------- ---
 4 FILE NOT FOUND
 11 FILE NOT FOUND
SQL> select file#, name from
 v$datafile join v$recover_file using (file#);
 FILE# NAME
---------- --
 4 /u05/oradata/ord/users01.dbf

870	 Chapter 15  ■  Using Backup and Recovery

 11 /u08/oradata/ord/idx02.dbf

If a data file is offline or taken offline, the instance can still start as long as the data file
does not belong to the SYSTEM or UNDO tablespace. Once the instance is started, you can
proceed to recover the missing or corrupted data file and subsequently bring it online. If all
files are available but out of sync, automatic instance recovery is performed as long as the
online redo log files can bring all data files to the same SCN. Otherwise, media recovery is
required using archived redo log files.

If a redo log group member is missing, a message is generated in the alert log, but the
database will still open.

Keeping an Instance from Failing
Media failures are not always critical, depending on which type of data file is lost. If any
of the multiplexed copies of the control file are lost, an entire redo log group is lost, or any
data file from the SYSTEM or UNDO tablespace is lost, the instance will fail. The instance also
could crash due to an internal error.

In some cases, the instance becomes unavailable to users but will not shut down; in this
case, you can use SHUTDOWN ABORT to force the instance to shut down without resynchronizing
the data files with the control file. The next time the instance is started, instance recovery will
be performed. If you plan on starting up the instance right after using SHUTDOWN ABORT, you
can instead use STARTUP FORCE as shorthand for a SHUTDOWN ABORT and a STARTUP.

Later in this chapter, we will show you how to recover from the loss of a
control file, a redo log file member, or one or more data files.

Recovering from Instance Failure
As we discussed earlier, in the section “Instance Failures,” an instance failure is any kind of
failure that prevents the synchronization of the database’s data files and control files before
the instance is shut down.

Oracle automatically recovers from instance failure during instance recovery. Instance
recovery is initiated by simply starting up the database with the STARTUP command.
Instance recovery is also known as crash recovery.

During a STARTUP operation, Oracle first attempts to read the initialization file, and then
it mounts the control file and attempts to open the data files referenced in the control files.
If the data files are not synchronized, instance recovery is initiated.

Instance recovery occurs in phases:

Phase 1    Find data files that are out of sync with the control file.

Phase 2    Use the online redo log files to restore the data files to the state before instance
failure in a roll-forward operation. After the roll-forward, data files have committed and
uncommitted data.

	 Performing Recovery Operations	 871

Phase 3    Open the database. Once the roll-forward operation completes, the database is
open to users.

Phase 4    Oracle then uses the undo segments to roll back any uncommitted transac-
tions. The rollback operation uses data in the undo tablespace; without a consistent undo
tablespace, the rollback operation cannot succeed. After the rollback phase, the data files
contain only committed data.

Instance recovery is required when you perform database startup after an
instance crash or after stopping the database using SHUTDOWN ABORT.

Tuning Instance Recovery
Before a user receives a “Commit complete” message, the new or changed data must be
successfully written to a redo log file. At some point in the future, the same information
must be used to update the data files; this operation usually lags behind the redo log file
write because sequential writes to the redo log file are by nature faster than random writes
to one or more data files on disk.

As we discussed earlier, checkpoints keep track of what still needs to be written from
the redo log files to the data files. Any transactions not yet written to the data files are at
an SCN after the last checkpoint.

The amount of time required for instance recovery depends on how long it takes to bring
the data files up-to-date from the last checkpoint position to the latest SCN in the control
file. To prevent performance problems, the distance between the checkpoint position and the
end of the redo log group cannot be more than 90 percent of the size of the redo log group.

You can tune instance recovery by setting an MTTR target, in seconds, using the initial-
ization parameter FAST_START_MTTR_TARGET. The default value for this parameter is zero;
the maximum is 3,600 seconds (1 hour).

A setting of zero disables the target, which reduces the likelihood of redo logs waiting
for writes to the data files. However, if FAST_START_MTTR_TARGET is set to a low nonzero
value, writes to the redo logs most likely have to wait for writes to the data files. Although
this reduces the amount of time it takes to recover the instance in the case of an instance
failure, it affects performance and response time. Setting this value too high can result in
an unacceptable amount of time needed to recover the instance after an instance failure.

Other parameters control instance recovery time:

LOG_CHECKPOINT_TIMEOUT    This is the maximum number of seconds that any new or
modified block in the buffer cache waits until it is written to disk.

LOG_CHECKPOINT_INTERVAL    Specifies number of redo log file blocks that can exist between
an incremental checkpoint and the last block written to the redo log. If the value exceeds
the actual redo log-file size, checkpoints occur only when switching logs.

872	 Chapter 15  ■  Using Backup and Recovery

FAST_START_IO_TARGET    This is similar to FAST_START_MTTR_TARGET, except that the
recovery operation is specified as the number of I/Os instead of the number of seconds
to finish instance recovery.

Setting any of these parameters overrides FAST_START_MTTR_TARGET. As part of the
enhanced manageability features, setting FAST_START_MTTR_TARGET is the easiest and most
straightforward way to define your database’s recovery time given the time-based constraints
included in most typical SLAs.

The EM Cloud Control interface makes it easy to adjust FAST_START_MTTR_TARGET.
On the Availability screen of EM Cloud Control, choose Recovery Settings. Figure 15.14
shows the Instance Recovery setting, which you can find in the top section of the Recovery
Settings screen.

F igur e 15 .14     Adjusting MTTR for instance recovery

Enter the desired value using seconds or minutes. When you click the Apply button,
the new value for FAST_START_MTTR_TARGET goes into effect immediately and stays in effect
when the instance is restarted. The screen also shows the MTTR recommendations. The
same information is available in the view V$MTTR_TARGET_ADVICE. For each possible value
of FAST_START_MTTR_TARGET, the view displays details about how many cache writes would
be performed under the workload tested for that value of FAST_START_MTTR_TARGET.

The V$INSTANCE_RECOVERY view displays instance-recovery-required blocks,
estimated time, and various instance-recovery-related data. Use the column
OPTIMAL_LOGFILE_SIZE to determine the best size of online redo logs.

Using the SQL*Plus command line, you can adjust the MTTR target by using the ALTER
SYSTEM command, as in this example:

SQL> alter system set fast_start_mttr_target=60 scope=both;
System altered.

	 Performing Recovery Operations	 873

Using SCOPE=BOTH, the new value of the parameter takes effect immediately and stays in
effect the next time the instance is restarted.

You must remove the FAST_START_IO_TARGET, LOG_CHECKPOINT_INTERVAL,
and LOG_CHECKPOINT_TIMEOUT initialization parameters when using FAST_
START_MTTR_TARGET. Setting these parameters conflicts with the recovery
time specified by FAST_START_MTTR_TARGET.

Recovering from User Errors
Earlier in this chapter, in the section “User-Error Failures,” you learned a number of
scenarios in which a user’s data was inadvertently changed or deleted or a table was
dropped. In the following sections, you’ll learn quite a few helpful tasks, such as how
to do the following:

■■ Use Flashback Query to retrieve selected rows from a previous state of a table.

■■ Recover a table using Flashback Drop and a tablespace’s recycle bin.

■■ Bring an entire table and its dependent objects (such as indexes) back to a specific point
in time using the Flashback Table functionality.

■■ Perform a table-level recovery from RMAN backup.

■■ Roll back a specific transaction and its dependent transactions using Flashback Trans-
action technology.

■■ Query previous transactions in the online and archived redo logs using the Log-
Miner utility.

Flashback operations are not part of the Oracle Database 12c OCA exam
topics, but they are included here to complete the recovery discussion.
Explore the EM Cloud Control menu options under the Availability option
to learn more.

Using Flashback Query
One of the features introduced in Oracle9i was called Flashback Query. It allows a user to
“go back in time” and view the contents of a table as it existed at some point in the recent
past. A Flashback Query looks a lot like a standard SQL SELECT statement, with the addi-
tion of the AS OF TIMESTAMP clause.

Before users can take advantage of the Flashback Query feature, the DBA must perform
two tasks:

■■ Make sure there is an undo tablespace in the database that is large enough to retain
changes made by all users for a specified period of time. This is the same tablespace
that is used to support COMMIT and ROLLBACK functionality (discussed in Chapter 11,
“Managing Data Concurrency and Undo”).

874	 Chapter 15  ■  Using Backup and Recovery

■■ Use the initialization parameter UNDO_RETENTION to specify how long the undo infor-
mation will be retained for use by flashback queries. This parameter is specified in
seconds; therefore, if you specify UNDO_RETENTION=172800 (default is 900), the undo
information for flashback queries can be available for up to two days.

The key to the Flashback Query functionality is using the AS OF TIMESTAMP clause in the
SELECT statement; you can specify the timestamp as any valid expression that evaluates to a
date or timestamp value. In the following example, you want to query the EMPLOYEES table
as it existed 15 minutes ago:

SQL> SELECT employee_id, last_name, email
 FROM hr.employees
 AS OF TIMESTAMP (systimestamp - interval '15' minute)
 WHERE employee_id = 101;

EMPLOYEE_ID LAST_NAME EMAIL
----------- --------------------- -------------------
 101 Kochhar NKOCHHAR

You can just as easily specify an absolute time of day to retrieve the contents of the row
at that time, as in this example:

SQL> SELECT employee_id, last_name, email
 FROM hr.employees
 AS OF TIMESTAMP
 (to_timestamp ('01-Jan-14 16:18:57.845993',
 'DD-Mon-RR HH24:MI:SS.FF'))
 WHERE employee_id = 101;

EMPLOYEE_ID LAST_NAME EMAIL
----------- --------------------- -------------------
 101 Kochhar NTKOCHHAR

If your Flashback Query requires undo data that is no longer available in the undo
tablespace, you will receive an error message:

SQL> SELECT employee_id, last_name, email
 FROM hr.employees
 AS OF TIMESTAMP (systimestamp - interval '10' month)
 WHERE employee_id = 101;

select employee_id, last_name, email
 *
ERROR at line 1:
ORA-08180: no snapshot found based on specified time

	 Performing Recovery Operations	 875

Using Flashback Query to Retrieve Missing Rows

Recently, an application administrator inadvertently deleted a bunch of rows from a
database table and committed the transaction. He learned about the deletion, which was
caused by the wrong WHERE clause, only when users started calling him about missing
data and the various errors they were getting.

Panicked, the application administrator called his manager and told her what had hap-
pened. They planned an outage for the affected application and a couple of other applica-
tions hosted in the same database. As usual, the DBA was the last person to know about
issues, and by the time the problem came to the DBA, it was a crisis.

The application administrator told the DBA team that there was a recovery situation and
that he had arranged for all the outages and notifications. One of the DBAs asked the appli-
cation administrator for the time of the data deletion and the table name. With that informa-
tion, the DBA performed a query similar to the following to display the deleted records:

SELECT * FROM vms.dvbt606a
AS OF TIMESTAMP to_timestamp ('12-Sep-12 12:20', 'DD-Mon-RR HH24:MI');

Luckily, only a few transactions were occurring in the database, because users were get-
ting errors and the changed rows were still available in the undo. If a lot of transactions
had been processing, Oracle could have overwritten the committed transaction’s rollback
space (depending on the UNDO_RENTENTION setting).

After performing the query, the DBA got the WHERE clause from the administrator to filter
out the rows the administrator had accidently deleted and inserted those rows into the
original table using the following SQL statement:

INSERT INTO vms.dvbt606a
SELECT * FROM vms.dvbt606a
AS OF TIMESTAMP to_timestamp ('12-Sep-12 12:20', 'DD-Mon-RR HH24:MI')
WHERE TRANS_DATE BETWEEN TO_DATE('01-MAY-12','DD-MON-YY')
 AND TO_DATE('31-MAY-12','DD-MON-YY');

They did not have to take any applications offline, and the whole recovery operation took
less than 15 minutes after the DBA was informed of the problem. They could have used
the FLASHBACK TABLE feature instead, which would have made the recovery even quicker
(and there would be no need to know the WHERE clause used for deletion), but nobody
thought of it at the time.

876	 Chapter 15  ■  Using Backup and Recovery

Using Flashback Drop and the Recycle Bin
Another user-recovery flashback feature, Flashback Drop, lets you restore a dropped
table without using tablespace point-in-time recovery. Although tablespace point-in-time
recovery could effectively restore a table and its contents to a point in time before it was
dropped, it is potentially time-consuming and has the side effect of losing work from other
transactions that occurred within the same tablespace after the table was dropped.

In the following sections, we will talk about the new logical structure available in each
tablespace—the recycle bin—and how you can query the recycle bin and retrieve dropped
objects from it. We will also describe some minor limitations involved in using the recycle bin.

Recycle-Bin Concepts

The recycle bin is a logical structure within each tablespace that holds dropped tables and
objects related to the tables, such as indexes. The space associated with the dropped table is
not immediately available but shows up in the data dictionary view DBA_FREE_SPACE. When
space pressure occurs in the tablespace, objects in the recycle bin are deleted in a first-in,
first-out (FIFO) fashion, maximizing the amount of time that the most recently dropped
object remains in the recycle bin.

The dropped object still belongs to the owner and still counts against the quota for the
owner in the tablespace; in fact, the table itself is still directly accessible from the recycle
bin, as you will see in subsequent examples.

Retrieving Dropped Tables from the Recycle Bin

You can retrieve a dropped table from the recycle bin at the SQL command line by using
the FLASHBACK TABLE...TO BEFORE DROP command. In the following example, the user
retrieves the table ORDER_ITEMS from the recycle bin after discovering that the table was
inadvertently dropped:

SQL> select order_id, line_item_id, product_id
 2 from order_items
 3 where rownum < 5;
from order_items
 *
ERROR at line 2:
ORA-00942: table or view does not exist

SQL> flashback table order_items to before drop;

Flashback complete.

SQL> select order_id, line_item_id, product_id
 2 from order_items
 3 where rownum < 5;

	 Performing Recovery Operations	 877

 ORDER_ID LINE_ITEM_ID PRODUCT_ID
---------- ------------ ----------
 2355 1 2289
 2356 1 2264
 2357 1 2211
 2358 1 1781

If the table ORDER_ITEMS was re-created after it was dropped, the RENAME TO clause in
the FLASHBACK TABLE command would be added to give the restored table a new name, as
in the following example:

SQL> drop table order_items;

Table dropped.

SQL> flashback table order_items to before drop
 2 rename to order_items_old_version;

Flashback complete.

SQL> select order_id, line_item_id, product_id
 2 from order_items_old_version
 3 where rownum < 5;

 ORDER_ID LINE_ITEM_ID PRODUCT_ID
---------- ------------ ----------
 2355 1 2289
 2356 1 2264
 2357 1 2211
 2358 1 1781

If the table to be retrieved from the recycle bin was dropped more than once and you
want to retrieve an incarnation of the table before the most recent one, you can use the
name of the table in the recycle bin; you can query the view RECYCLEBIN or use the SHOW
RECYCLEBIN command.

Recycle-Bin Considerations and Limitations

A few limitations are associated with the recycle bin:

■■ Only non-SYSTEM locally managed tablespaces can have a recycle bin. However, depen-
dent objects in a dictionary-managed tablespace are protected if the dropped object is
in a locally managed tablespace.

878	 Chapter 15  ■  Using Backup and Recovery

■■ A table’s dependent objects are saved in the recycle bin when the table is dropped,
except for bitmap join indexes, referential integrity constraints (foreign key con-
straints), and materialized view logs.

■■ Indexes are protected only if the table is dropped first; explicitly dropping an index
does not place the index into the recycle bin.

Using Flashback Table
Flashback Table allows you to recover one or more tables to a specific point in time with-
out having to use more time-consuming recovery operations such as tablespace point-in-
time recovery or Flashback Database that can also affect the availability of the rest of the
database. Flashback Table works in place by rolling back only the changes made to the
table or tables and their dependent objects, such as indexes. Flashback Table is different
from Flashback Drop; Flashback Table undoes recent transactions to an existing table,
whereas Flashback Drop recovers a dropped table. Flashback Table uses data in the undo
tablespace, whereas Flashback Drop uses the recycle bin.

The FLASHBACK TABLE command brings one or more tables back to a point in time before
any number of logical corruptions have occurred on the tables. To be able to flash back
a table, you must enable row movement for the table. Because DML operations are used
to bring the table back to its former state, the row IDs in the table change. As a result,
Flashback Table is not a viable option for applications that depend on the table’s row IDs to
remain constant.

In the following example, someone in the HR department has accidentally deleted
all the employees in department 60, the IT department, along with the row for IT in the
DEPARTMENTS table. Because this happened less than 15 minutes ago, you are sure there is
enough undo information to support a Flashback Table operation.

Before running the FLASHBACK TABLE command, you confirm that the row in
DEPARTMENTS for the IT department is still missing using this query:

SQL> SELECT * FROM hr.departments
 WHERE department_name = 'IT';

no rows selected

Next, you flash back the table to 15 minutes ago, specifying both tables in the same
command, as follows:

SQL> FLASHBACK TABLE hr.employees, hr.departments
 TO TIMESTAMP systimestamp - interval '15' minute;

Flashback complete.

Finally, you check to see whether the IT department is truly back in the table:

SQL> SELECT * FROM hr.departments
 WHERE department_name = 'IT';

	 Performing Recovery Operations	 879

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID
------------- ------------------ ---------- -----------
 60 IT 103 1400

If you flash back either too far or not far enough, you can simply rerun the FLASHBACK
TABLE command with a different timestamp or SCN, as long as the undo data is still
available.

Although the rest of the database is unaffected by a Flashback Table operation, the
FLASHBACK TABLE command acquires exclusive DML locks on the tables involved in the flash-
back. This is usually not an availability issue, because the users who would normally use the
table are waiting for the flashback operation to complete anyway!

Integrity constraints are not violated when one or more tables are flashed back; this is
why you typically group tables related by integrity constraints or parent-child relationships
in the FLASHBACK TABLE command. When a flashback operation is in progress, the triggers on
the table are disabled. If you want the triggers to fire during the flashback operation, add the
ENABLE TRIGGERS clause to the FLASHBACK TABLE statement, as in the following example.

SQL> FLASHBACK TABLE hr.employees
 TO TIMESTAMP TO_TIMESTAMP('02NOV12 22:00'. 'DDMONYY HH24:MI')
 ENABLE TRIGGERS;

To be able to perform a Flashback Table operation, the table must have
ROW MOVEMENT enabled. Enable row movement using ALTER TABLE <name>
ENABLE ROW MOVEMENT.

Using EM Cloud Control to Perform Table Recovery
You can perform recovery operations using EM Cloud Control. On the Availability menu,
choose Perform Recovery under Backup/Recovery. On the Perform Recovery screen, choose
Tables as the Recovery Scope, as shown in Figure 15.15.

F igur e 15 .15     The Perform Recovery screen

880	 Chapter 15  ■  Using Backup and Recovery

Choosing Tables as the Recovery Scope gives you two options:

■■ Flashback Existing Tables

■■ Flashback Dropped Tables

Choose Flashback Existing Tables to roll back the table to a previous state. Choose
Flashback Dropped Tables to retrieve a table from the recycle bin.

Using Flashback Transaction
You can use the Flashback Transaction technology to undo a transaction and its dependent
transactions. The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure is used to accomplish
this task.

You must meet the following prerequisites to perform a Flashback Transaction on an
Oracle Database 12c database:

■■ The database must be in ARCHIVELOG mode.

■■ Supplemental logging must be enabled in the database using ALTER DATABASE ADD
SUPPLEMENTAL LOG DATA.

■■ A supplemental log data primary key should be created using the statement ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS.

■■ The user performing the Flashback Transaction must have the SELECT ANY
TRANSACTION privilege.

■■ The user should have the EXECUTE privilege on DBMS_FLASHBACK.

■■ The user should also have appropriate DML privileges on the tables (such as
INSERT/UPDATE/DELETE).

Using EM Cloud Control, you can perform the Flashback Transaction. Choose
Transactions from the Backup and Recovery menu under Availability.

Using LogMiner
Oracle LogMiner is another tool you can use to view past activity in the database. By using
a set of PL/SQL procedures and functions, the LogMiner tool can help find changed records
in redo log files. LogMiner extracts all DDL and DML activity from the redo log files for
viewing via the dynamic performance view V$LOGMNR_CONTENTS. In addition to extracting
the DDL and DML statements used to change the database, the V$LOGMNR_CONTENTS view
also contains the DML statements needed to reverse the change made to the database. This
is a good tool for not only pinpointing when changes were made to a table, but also for auto-
matically generating the SQL statements needed to reverse those changes.

LogMiner works differently from Oracle’s Flashback Query feature. The Flashback
Query feature allows a user to see the contents of a table at a specified time in the past, while
LogMiner can search a time period for all changes against the table. A Flashback Query uses
the undo information stored in the undo tablespace; LogMiner uses redo logs, both online
and archived. Both tools can be useful for tracking down how and when changes to database
objects took place.

	 Performing Recovery Operations	 881

LogMiner does not actually undo the change; it only provides the state-
ments that you can use to undo the change. You can extract and run any or
all DML commands you find in the redo logs, keeping in mind any integrity
constraints in place for the tables you are modifying.

Recovering from the Loss of a Control File
Losing one of the multiplexed control files immediately aborts the instance. Assuming you
haven’t lost every control file, recovering from this type of failure is fairly straightforward.

Here are the steps to recover from the loss of a control file:

	 1.	 If the instance is not shut down, use SHUTDOWN ABORT to force a complete shutdown.

	 2.	 Copy one of the good copies of the control file to the location of the corrupted or
missing control file. If the corrupted or missing control file resided on a failed disk,
copy it to another suitable location instead, and update the initialization-parameter
file to update the control file reference. Alternatively, you can temporarily remove the
reference from the initialization parameter file until you find a suitable location. How-
ever, it is highly desirable to have at least two, if not more, copies of the control file
available in case of another media failure.

	 3.	 Start the instance with STARTUP.

In the following example, you use a server-parameter file (spfile) for initialization
parameters, and you decide to temporarily do without a third multiplexed control file
until the disk containing the lost control file is repaired. You’ll change the initialization
parameter CONTROL_FILES using the ALTER SYSTEM … SCOPE=SPFILE command when the
instance is started in NOMOUNT mode. You cannot start in MOUNT mode because that mode
checks for the existence of all copies of the control file, and as far as the spfile is con-
cerned, you are still missing a control file.

The first step is to start the database in NOMOUNT mode, as you can see in this example:

SQL> startup nomount

ORACLE instance started.

Total System Global Area 188743680 bytes
Fixed Size 778036 bytes
Variable Size 162537676 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
SQL>

882	 Chapter 15  ■  Using Backup and Recovery

Looking at the dynamic performance view V$SPPARAMETER, you can see that you still have
three copies of the control file referenced, but the disk containing the third copy has failed:

SQL> select name, value from v$spparameter
 where name = 'control_files';

NAME VALUE
--------------- --
control_files /u02/oradata/ord/control01.ctl
control_files /u06/oradata/ord/control02.ctl
control_files /u07/oradata/ord/control03.ctl

In the next step, you change the value of CONTROL_FILES in the spfile and restart the
instance, as you can see here:

SQL> alter system set control_files =
 '/u02/oradata/ord/control01.ctl',
 '/u06/oradata/ord/control02.ctl'
 scope = spfile;

System altered.

SQL> shutdown immediate
ORA-01507: database not mounted
ORACLE instance shut down.

SQL> startup
ORACLE instance started.

Total System Global Area 188743680 bytes
Fixed Size 778036 bytes
Variable Size 162537676 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.
SQL>

Once the instance is restarted successfully, you confirm that the control file is no longer
being referenced, as you can see in this query:

SQL> select name, value from v$spparameter
 where name = 'control_files';

	 Performing Recovery Operations	 883

NAME VALUE
--------------- --------------------------------------
control_files /u02/oradata/ord/control01.ctl
control_files /u06/oradata/ord/control02.ctl

You still have two multiplexed copies of the control file; therefore, you are covered in
case of a media failure of the disk containing one of the remaining control files.

Using the Data Recovery Advisor
The Data Recovery Advisor (DRA) is a tool first introduced in the Oracle 11g database
that automatically diagnoses database failures and determines the appropriate recovery
options. In addition to recommending the recovery options available, it can perform the
recovery after the DBA confirms the operation. DRA can proactively check for failures,
before the database process detects corruption and signals an error.

DRA has user interfaces through the GUI of EM Cloud Control and through the
command-line utility RMAN. You can invoke the Data Recovery Advisor from EM
Cloud Control using any of the following methods:

■■ Using the Perform Recovery screen shown earlier in Figure 15.15. If any failures are
detected, the Advise and Recover button will be enabled, as shown in Figure 15.16.
It will also display a summary of failures with the failure description.

■■ Using the Support Workbench. Support Workbench is invoked from the Diagnostics
menu under Oracle Database. The Checker Findings tab in Support Workbench shows
the failures in the database, as shown in Figure 15.17. By clicking the Launch Recovery
Advisor button, you can invoke DRA.

■■ Using the Advisor Central page by clicking the Data Recovery Advisor link under
Advisors.

F igur e 15 .16     Invoking DRA from the Perform Recovery screen

The Health Monitor (HM) tool in the Oracle Database 12c database proactively monitors
the health of the database. It assesses data failures and reports to the Data Recovery Advisor.
DRA consolidates the findings of HM into failures and assigns a priority based on the failure.

884	 Chapter 15  ■  Using Backup and Recovery

F igur e 15 .17     Invoking DRA from the Support Workbench screen

Failure checks in the database can be reactive or proactive. When an error occurs in the
database, reactive checks are automatically executed. The following are examples of data
failures where the DRA can analyze and suggest repair options:

■■ Missing data files

■■ Data files with incorrect OS permissions

■■ Offline tablespaces

■■ Corrupted data files (physical corruption)

■■ Corrupt index entry or dictionary entry (logical corruption)

■■ I/O failures

■■ Number of open files exceeded

In the following sections, you will look at the various scenarios of media-failure errors
and see how DRA can help analyze and fix errors.

Recovering from the Loss of a Redo Log File
A database instance stays up as long as at least one member of a redo log group is available.
The alert log records the loss of a redo log group member; as with most database status
information, EM Cloud Control allows you to easily review the contents of the alert log.

The dynamic performance view V$LOGFILE provides the status of each member of each
redo log file of each redo log group; the STATUS column is defined as follows:

INVALID    The file is corrupted or missing.

STALE    This redo log file member is new and has never been used.

	 Performing Recovery Operations	 885

DELETED    The file is no longer being used.

<blank>    The redo log file is in use and is not corrupted.

When you are aware of a missing or deleted redo log group member, follow these three
steps to ensure that you maintain a maximum level of redundancy. Losing the remaining
member(s) of the redo log group will cause the instance to fail.

	 1.	 Verify which redo log group member is missing.

	 2.	 Archive the redo log group’s contents; if you clear this redo log group before archiving
it, you must back up the full database to ensure maximum recoverability of the data-
base in case of the loss of a data file. Use the command ALTER SYSTEM ARCHIVE LOG
GROUP groupnum; to force the archive operation. (groupnum refers to the redo log group
that you want to archive.)

	 3.	 Clear the log group to re-create the missing redo log file members using the command
ALTER DATABASE CLEAR LOGFILE GROUP groupnum;. Alternatively, you can replace the
missing member by copying one of the good group members to the location of the miss-
ing member; using ALTER DATABASE CLEAR LOGFILE GROUP has the advantage of being
platform-independent.

In this example, you lose a redo log-file group member and check the status of the redo
log-file groups using V$LOGFILE:

SQL> SELECT group#, member FROM v$logfile;

 GROUP# MEMBER
---------- --
 1 /u01/app/oracle/oradata/ocadb1/redo01.log
 1 /u01/app/oracle/oradata/ocadb1/redo01b.log
 2 /u01/app/oracle/oradata/ocadb1/redo02b.log
 2 /u01/app/oracle/oradata/ocadb1/redo02.log
 3 /u01/app/oracle/oradata/ocadb1/redo03b.log
 3 /u01/app/oracle/oradata/ocadb1/redo03.log

SQL> ! rm /u01/app/oracle/oradata/ocadb1/redo02.log

The alert log quickly shows the issue of a missing redo log member:

Wed Jan 01 21:27:46 2014
Errors in file /u01/app/oracle/diag/rdbms/ocadb1/ocadb1/trace/ocadb1_arc1_23552.
trc:
ORA-00313: open failed for members of log group 2 of thread 1
ORA-00312: online log 2 thread 1: '/u01/app/oracle/oradata/ocadb1/redo02.log'
ORA-27037: unable to obtain file status

886	 Chapter 15  ■  Using Backup and Recovery

Linux-x86_64 Error: 2: No such file or directory
Additional information: 3

It appears that group number 2 has a missing member, so you want to archive group
number 2 using the ALTER SYSTEM ARCHIVE command, if it requires archiving:

SQL> alter system archive log group 2;

Finally, you can re-create the missing redo log-file group member using the ALTER
DATABASE command mentioned in step 3:

SQL> alter database clear logfile group 2;

Database altered.

By reviewing the contents of the alert log, you see that the issue is fixed:

ORA-00316: log 2 of thread 1, type 0 in header is not log file
ORA-00312: online log 2 thread 1: '/u01/app/oracle/oradata/ocadb1/redo02b.log'
Checker run found 3 new persistent data failures
Completed: alter database clear logfile group 2
Wed Jan 01 21:59:31 2014
Thread 1 advanced to log sequence 204 (LGWR switch)
 Current log# 2 seq# 204 mem# 0: /u01/app/oracle/oradata/ocadb1/redo02b.log
 Current log# 2 seq# 204 mem# 1: /u01/app/oracle/oradata/ocadb1/redo02.log

The Database Recovery Advisor knows about the failure. When you invoke DRA, you
can see more details about these failures. You can increase or decrease the priority of a fail-
ure by using the Set Priority High and Set Priority Low buttons. If you have taken care of
the issue or if you do not want to resolve a noncritical failure, you can use the Close button
to close the failure incident.

To fix a missing redo log group member, you can use the actions such as
Switch Log File and Clear Log File on the Redo Log Groups screen.

Recovering from the Loss of a Non-System-Critical
Data File
If you lose a non-system-critical data file (in other words, not the SYSTEM or UNDO tablespace),
your options are similar to those for losing a system-critical data file, except that most of your
recovery effort in ARCHIVELOG mode can occur while the database is open to users who can use
tablespaces other than the one being recovered.

	 Performing Recovery Operations	 887

Loss in NOARCHIVELOG Mode
The loss of a non-system-critical data file in NOARCHIVELOG mode requires the complete resto-
ration of the database, including the control files and all data files, not just the missing data
files. As a result, you must reenter any changes made to the database since the last backup.

Loss in ARCHIVELOG Mode
The loss of a non-system-critical data file in ARCHIVELOG mode affects only objects that
are in the missing file, and recovery can proceed while the rest of the database is online.
Because you are in ARCHIVELOG mode, no committed transactions in the lost data file will
have to be reentered.

Recovering from the loss of a non-system-critical data file is not quite as complicated as
the recovery from a system-critical data file, which we will cover in the next section; the
database is continuously available to all users, except for the data files being recovered.

We have mimicked a failure by removing a file belonging to the USER_DATA tablespace.
Try to create a table in this tablespace and see the following error:

SQL> create table x2 tablespace user_data as select * from dba_tables;
create table x2 tablespace user_data as select * from dba_tables
 *
ERROR at line 1:
ORA-01110: data file 5:
'/u01/app/oracle/oradata/OCADB1/datafile/o1_mf_user_dat_9d9zcx06_.dbf'
ORA-01116: error in opening database file 5
ORA-27041: unable to open file
Linux-x86_64 Error: 2: No such file or directory
Additional information: 3

In the EM Cloud Control interface, invoke the Data Recovery Advisor. Choose the
failure you want to fix, and click the Advice button. Figure 15.18 shows the Manual
Actions screen.

F igur e 15 .18     The Manual Actions screen of DRA

Click the Continue with Advise button to see the recovery advice. DRA generates an
RMAN script to execute, as shown in Figure 15.19. You can run this script manually using
the RMAN command line with no modification.

888	 Chapter 15  ■  Using Backup and Recovery

F igur e 15 .19     The Recovery Advice screen of DRA

Click Continue to review and submit a job to start the restore and recovery.
You can also recover from the failure without using DRA. On the Perform Recovery

screen, choose Datafiles as the Recovery Scope. You will be presented with four options to
recover, as shown in Figure 15.20:

■■ Recover to Current Time: Restore the data file from backup, and recover the data file
using archive log and redo log files.

■■ Restore Datafiles: No recovery is performed.

■■ Recover from Previously Restored Datafile: Continue recovery after the data file restore.

■■ Block Recovery: Recover the corrupted blocks in a data file.

F igur e 15 . 20     User-directed recovery of a data file

You have the option to restore the data file to its original location or to another loca-
tion. You also have the option to edit the RMAN script generated. When you click Submit,
the RMAN script is executed, and the data file is recovered. Because the database is in
ARCHIVELOG mode, you will not lose any committed transactions in the USER_DATA tablespace.

You can run the RMAN statement LIST FAILURE at the RMAN command prompt, and you
will see output similar to the following:

$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Jan 1 22:19:48 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

	 Performing Recovery Operations	 889

connected to target database: OCADB1 (DBID=6257179)

RMAN> list failure;

using target database control file instead of recovery catalog
Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
8 HIGH OPEN 01-JAN-14 One or more non-system datafiles are
 missing

RMAN>

The ADVISE FAILURE command lists the failures. You can list all failures, or you can
specify options such as CRITICAL, HIGH, and so on. Here is some output from the ADVISE
FAILURE statement:

RMAN> advise failure all;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
8 HIGH OPEN 01-JAN-14 One or more non-system datafiles are
 missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=35 device type=DISK
allocated channel: ORA_DISK_2
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

890	 Chapter 15  ■  Using Backup and Recovery

Optional Manual Actions
=======================
1. If file /u01/app/oracle/oradata/OCADB1/datafile/o1_mf_user_dat_9d9zcx06_.dbf
was unintentionally renamed or moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 5
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /u01/app/oracle/diag/rdbms/ocadb1/ocadb1/hm/reco_488075229.hm

RMAN>

To fix the failures using DRA, you can use the command REPAIR FAILURE, as shown
next. It asks for your confirmation before performing the restore and recovery. If you do
not want the confirmation, include the NOPROMPT clause, which will automatically repair all
HIGH and CRITICAL priority failures. The REPAIR FAILURE command can be executed only
after performing the ADVISE FAILURE.

RMAN> repair failure;

Strategy: The repair includes complete media recovery with no data loss
Repair script: /u01/app/oracle/diag/rdbms/ocadb1/ocadb1/hm/reco_488075229.hm

contents of repair script:
 # restore and recover datafile
 sql 'alter database datafile 5 offline';
 restore (datafile 5);
 recover datafile 5;
 sql 'alter database datafile 5 online';

Do you really want to execute the above repair (enter YES or NO)? YES
executing repair script

sql statement: alter database datafile 5 offline

Starting restore at 01-JAN-14
using channel ORA_DISK_1

	 Performing Recovery Operations	 891

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00005 to /u01/app/oracle/oradata/OCADB1/
datafile/o1_mf_user_dat_9d9zcx06_.dbf
channel ORA_DISK_1: reading from backup piece /backups/database/
OCADB1_8not0nod_1_1
channel ORA_DISK_1: piece handle=/backups/database/OCADB1_8not0nod_1_1
tag=BACKUP_OCADB1_0000_010114095002
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
Finished restore at 01-JAN-14

Starting recover at 01-JAN-14
using channel ORA_DISK_1
channel ORA_DISK_1: starting incremental datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
destination for restore of datafile 00005: /u01/app/oracle/oradata/OCADB1/
datafile/o1_mf_user_dat_9db1g2rp_.dbf
channel ORA_DISK_1: reading from backup piece /backups/database/
OCADB1_8tot0nqk_1_1
channel ORA_DISK_1: piece handle=/backups/database/OCADB1_8tot0nqk_1_1
tag=BACKUP_OCADB1_0000_010114095112
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:01

starting media recovery
media recovery complete, elapsed time: 00:00:00

Finished recover at 01-JAN-14

sql statement: alter database datafile 5 online
repair failure complete

RMAN>

When you run REPAIR FAILURE, the Data Recovery Advisor closes the failure after suc-
cessfully repairing the failure. You can increase or decrease the priority of a failure by using
the CHANGE FAILURE command in RMAN. You can also close a failure using this command.

RMAN> CHANGE FAILURE 2 PRIORITY LOW;
RMAN> CHANGE FAILURE 5 CLOSE;

892	 Chapter 15  ■  Using Backup and Recovery

Data Recovery Advisor Views

The Data Recovery Advisor added four new views to the Oracle Database 12c data diction-
ary. These views start with V$IR_.

■■ V$IR_FAILURE: List of all the failures in the database (the same result you see with
the LIST FAILURE command)

■■ V$IR_MANUAL_CHECKLIST: List of the manual-actions section of ADVISE FAILURE

■■ V$IR_REPAIR: Repair recommendations as provided by the ADVISE FAILURE command

■■ V$IR_FAILURE_SET: Link between V$IR_REPAIR and V$IR_FAILURE

Recovering from the Loss of a System-Critical Data File
When you lose a system-critical data file (in other words, a file from the SYSTEM or UNDO
tablespace), the kinds of recovery available depend on whether you are operating in
ARCHIVELOG mode or NOARCHIVELOG mode. Oracle strongly recommends operating
in ARCHIVELOG mode for any production database that is not read-only.

Loss in NOARCHIVELOG Mode
The loss of a system-critical data file in NOARCHIVELOG mode requires a complete restoration
of the database, including the control files and all data files, not just the missing data files.
As a result, you must reenter any changes made to the database since the last backup, which
must have been a cold backup.

Loss in ARCHIVELOG Mode
The loss of a system-critical data file in ARCHIVELOG mode cannot proceed while the data-
base is open; recovery must be performed while the database is in the MOUNT state. Because
the database is operating in ARCHIVELOG mode, you will not have to reenter any committed
transactions in the database.

When a system-critical data file is lost, such as the data file for the SYSTEM tablespace,
the instance will abort. In the rare circumstance that this does not happen, shut down the
database, and start it in MOUNT mode, as in this example:

SQL> shutdown abort
ORACLE instance shut down.
SQL> startup mount
ORACLE instance started.

Total System Global Area 197132288 bytes
Fixed Size 778076 bytes
Variable Size 162537636 bytes

	 Performing Recovery Operations	 893

Database Buffers 33554432 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL>

Once the database is mounted, you can restore and recover the missing data file. After
the recovery is completed, open the database.

To use the Data Recovery Advisor for the recovery, invoke Perform Recovery from the
Availability screen of EM Cloud Control. Select Datafiles as the recovery scope, choose
Restore to Current Time, and add the files that need recovery. Submit the job to complete
the recovery operation. After the recovery operation is completed, open the database using
ALTER DATABASE OPEN.

Users are not required to reenter any data because the recovery is up to the time of the
last commit in the database.

The difference between recovering from the loss of a system-critical data
file and non-system-critical data file is the state of the database. To recover
a system-critical data file, the database must be in MOUNT state, not OPEN.

Table Recovery Using RMAN
RMAN in Oracle Database 12c can recover a table using the available backups. In versions
prior to Oracle Database 12c, recovering a table from an RMAN backup involved several
steps such as:

■■ Provision resources to stand up an instance to restore and recover the database backup.

■■ Once the database is recovered, export the table.

■■ Import the table to the target database.

■■ Drop the temporary database created for recovery purposes.

In Oracle Database 12c RMAN does all the work for you when you give the command
RECOVER TABLE. The following steps are performed by RMAN.

■■ Determines the backup pieces required for recovery based on the time specified in the
RECOVER command.

■■ Creates a temporary database with just the required tablespaces and recovers the
database.

■■ Creates a data pump export from the temporary database for the tables listed in the
RECOVER command.

■■ Imports the table to the target database. The table can be imported in another name or
to another schema.

894	 Chapter 15  ■  Using Backup and Recovery

To learn more about the table recovery feature of RMAN, read Chapter 22
“Recovering Tables and Table Partitions from RMAN Backups” in the Oracle
documentation “Oracle Database Backup and Recovery User's Guide 12c
Release 1 (12.1) Part E17630-14,” found at http://docs.oracle.com.

Summary
In this chapter, you studied the database structures that are key elements to ensuring a
smooth recovery in the event of a database failure: control files, online redo log files, and
archived redo log files. You learned to back up the various pieces of the database, and you
learned how to schedule and manage backups using EM Cloud Control.

The control files contain the metadata about every other structure in the database. The
online redo log files provide performance benefits to ongoing transactions and ensure that no
committed transactions are lost after an instance failure; being able to change the number
of redo log groups and the number of members in each group enhances both the availability
and performance of the database. Archived redo log files make copies of online redo log files
to one or more destinations before they are overwritten by new transactions. The common
thread through all three of these structures is multiplexing: creating redundant copies of data-
base components or redundant archival locations to minimize the impact of a media failure.

You learned about the Fast Recovery Area and how it can be used as the central location
for backups of all database files, control files, initialization-parameter files, and archived
redo log files in the database. You can manage the Fast Recovery Area via the EM Cloud
Control interface or by using a SQL command-line interface to set or change database ini-
tialization parameters that control its location and size.

Before making database backups, you must understand backup strategies, types, and
modes. The ARCHIVELOG mode provides many benefits and few downsides, especially in
a production environment; the NOARCHIVELOG mode, in many ways, restricts the types of
backups you can make.

Recovery Manager, or RMAN, provides a number of benefits over manual backup
methods using a combination of SQL and operating-system commands. You can access
most RMAN functionality via EM Cloud Control or with a command-line version for
advanced backup and recovery techniques. One of RMAN’s many benefits is the ability to
create compressed incremental backup sets, which not only skips unused blocks in database
data files but also compresses the blocks before writing to the backup set, saving I/O band-
width and disk space.

In addition to knowing how an instance fails, you need to know what is required to keep
a database up and running: all control files, at least one member of each redo log group,
and all data files for the SYSTEM and UNDO tablespaces. For instance failures, you want to
know how long the database will take to recover. You can use the initialization parameter
FAST_START_MTTR_TARGET to specify the target recovery time, making it easier to meet
service-level agreements.

http://docs.oracle.com

	 Exam Essentials	 895

Also in this chapter, we presented scenarios of media failures and how to recover from
such failures using the Data Recovery Advisor. If the database is in ARCHIVELOG mode, you
can recover the database from these failures without losing any committed transactions. If
the database is in NOARCHIVELOG mode, you can recover only to the last good, cold backup.
RMAN includes several commands to support the Data Recovery Advisor.

Exam Essentials

Identify the purpose of the redo log files.    Describe the redo log file architecture.
Provide details about how to create new redo log-file groups and add new members
to redo log-file groups. Be able to drop redo log group members. Know how to clear
online redo log-file groups when a log file member becomes corrupted.

Be able to multiplex a control file.    List the steps required to create additional copies of the
control file, for both an init.ora file and an spfile.

Describe the basic differences between operating a database in ARCHIVELOG mode and in
NOARCHIVELOG mode.    Identify the initialization parameters and commands that control the
archive process. Briefly describe how archive log information is recorded in the control file.

Identify and discuss backup terminology.    Enumerate the backup strategies, the backup
types, and the backup modes. Give examples of how you can combine the strategies, types,
and modes in different scenarios.

List the benefits of using RMAN to create backups.    Show how to configure RMAN
backup settings via the EM Cloud Control interface. Differentiate image copies from backup
sets. Provide examples of an incremental backup strategy.

Explain the benefits of the Fast Recovery Area.    Show how you can access the characteristics
and status of the Fast Recovery Area using EM Cloud Control, as well as via dynamic per-
formance views. Describe the database components that can be stored in the Fast Recovery
Area. Enumerate the initialization parameters that control the location and size of the Fast
Recovery Area.

Identify the initialization parameters used to tune instance recovery.    Be able to define the
possible values for FAST_START_MTTR_TARGET, FAST_START_IO_TARGET, and LOG_CHECKPOINT_
TIMEOUT. Show the relationship between these parameters and in which situations each is
most appropriately used.

List the phases of instance startup.    Show how the database instance moves from SHUTDOWN
to NOMOUNT to MOUNT to OPEN, and describe the conditions required in each step before the
instance can proceed to the next phase.

List the features supported by Oracle to help users fix their own errors.    Describe each type
of user-error recovery solution: Flashback Query, Flashback Table, Flashback Transaction,
and Flashback Drop.

896	 Chapter 15  ■  Using Backup and Recovery

Understand how many control files and redo log members are required for the database to
function.    When you use multiplexed control files and redo log files, Oracle Database 12c
requires all control files to be available and at least one member of the redo log group to be
available for the database to function.

Understand the failures that can be identified and repaired by the Data Recovery Advisor.   
The Data Recovery Advisor can detect and repair all types of media failures and logical
corruption. It cannot detect user errors or network issues.

Familiarize yourself with the commands you can use to identify and perform recovery
using RMAN.    RMAN commands such as LIST FAILURE, ADVISE FAILURE, REPAIR
FAILURE, and CHANGE FAILURE are used to support the Data Recovery Advisor actions.

	 Review Questions	 897

Review Questions

	 1.	 Among the failure events, which is the most serious and may cause data loss?

	 A.	 The loss of an entire redo log-file group but no loss in any other group

	 B.	 The loss of one member of each redo log-file group

	 C.	 The failure of the ARCn background process

	 D.	 The failure of the LGWR background process

	 2.	 When the database is in ARCHIVELOG mode, database recovery is possible up to which
event or time?

	 A.	 The last redo log file switch

	 B.	 The last checkpoint position

	 C.	 The last commit

	 D.	 The last incremental backup using RMAN

	 3.	 Which is a true statement regarding image copies and backup sets.

	 A.	 An image copy stores one data file per image copy, and a backup set can store
many data files in a single file.

	 B.	 An image copy stores one data file per image copy, and a backup set consists of
one file per data file backed up.

	 C.	 Both image copies and backup sets use a single file to store all objects to be
backed up.

	 D.	 A backup set stores each data file in its own backup file, but an image copy places
all data files into a single output file.

	 4.	 Which of the following is not a step in configuring your database to archive redo
log files?

	 A.	 Place the database in ARCHIVELOG mode.

	 B.	 Multiplex the online redo log files.

	 C.	 Specify a destination for archived redo log files.

	 D.	 Specify a naming convention for your archived redo log files.

898	 Chapter 15  ■  Using Backup and Recovery

	 5.	 Why are online backups known as inconsistent backups?

	 A.	 Because not all control files are synchronized to the same SCN until the database
is shut down

	 B.	 Because both committed and uncommitted transactions are included in a backup
when the database is online

	 C.	 Because a database failure while an online backup is in progress can leave the
database in an inconsistent state

	 D.	 Because online backups make copies of data files while they are not consistent
with the control file

	 6.	 Which of the following initialization parameters specifies the location where the
control file trace backup is sent?

	 A.	 DIAGNOSTIC_DEST

	 B.	 BACKGROUND_DUMP_DEST

	 C.	 LOG_ARCHIVE_DEST

	 D.	 CORE_DUMP_DEST

	 7.	 Which of the following pieces of information is not available in the control file?

	 A.	 Instance name

	 B.	 Database name

	 C.	 Tablespace names

	 D.	 Log sequence number

	 8.	 Which statement adds a member /logs/redo22.log to redo log-file group 2?

	 A.	 ALTER DATABASE ADD LOGFILE '/logs/redo22.log' TO GROUP 2;

	 B.	 ALTER DATABASE ADD LOGFILE MEMBER '/logs/redo22.log' TO GROUP 2;

	 C.	 ALTER DATABASE ADD MEMBER '/logs/redo22.log' TO GROUP 2;

	 D.	 ALTER DATABASE ADD LOGFILE '/logs/redo22.log';

	 9.	 To place the database into ARCHIVELOG mode, in which state must you start the
database?

	 A.	 MOUNT

	 B.	 NOMOUNT

	 C.	 OPEN

	 D.	 SHUTDOWN

	 E.	 Any of the above

	 Review Questions	 899

	10.	 Which of the following substitution-variable formats are always required for specifying
the names of the archived redo log files? Choose all that apply.

	 A.	 %d

	 B.	 %s

	 C.	 %r

	 D.	 %t

	11.	 Which of the following initialization parameters controls the mean time to recover the
database, in seconds, after an instance failure?

	 A.	 FAST_START_IO_TARGET

	 B.	 LOG_CHECKPOINT_TIMEOUT

	 C.	 FAST_START_MTTR_TARGET

	 D.	 MTTR_TARGET_ADVICE

	 E.	 FAST_START_TARGET_MTTR

	12.	 Identify the statement that is not true regarding the loss of a control file.

	 A.	 A damaged control file can be repaired by using one of the remaining undamaged
control files, assuming there are at least two copies of the control file.

	 B.	 The missing or damaged control file can be replaced while the instance is still active.

	 C.	 You can temporarily run the instance with one fewer control file, as long as you
remove one of the references to the missing control file in the spfile or init.ora file.

	 D.	 An instance typically fails when one of the multiplexed control files is lost or
damaged.

	13.	 Which failures can be detected by the Data Recovery Advisor, which then provides
repair recommendations? Choose all that apply.

	 A.	 Instance failure

	 B.	 Accidental deletion of a data file

	 C.	 Disk containing one redo log member is offline

	 D.	 User accidentally dropped a table

	14.	 The instance can still be started even if some data files are missing; this rule does not
apply to which tablespaces? (Choose all that apply.)

	 A.	 USERS

	 B.	 SYSTEM

	 C.	 TEMP

	 D.	 SYSAUX

	 E.	 UNDO

900	 Chapter 15  ■  Using Backup and Recovery

	15.	 Select the statement that is not true regarding media failure. A media failure occurs when:

	 A.	 The network card on the server fails.

	 B.	 The DBA accidentally deletes one of the data files for the SYSTEM tablespace.

	 C.	 There is a head crash on all physical drives in the RAID controller box.

	 D.	 A corrupted track on a CD containing a read-only tablespace causes a query to fail.

	16.	 Choose the correct statement about the Data Recovery Advisor.

	 A.	 The Data Recovery Advisor is a standalone tool.

	 B.	 The Data Recovery Advisor does not support RAC databases.

	 C.	 The CHANGE FAILURE command can be used in a SQL*Plus session.

	 D.	 The REPAIR FAILURE command works only after LIST FAILURE.

	17.	 Place the following events or actions leading up to and during instance recovery in the
correct order.

	 1.	 The database is opened and available.

	 2.	 Oracle uses undo segments in the undo tablespace to roll back uncommitted trans-
actions.

	 3.	 The DBA issues the STARTUP command at the SQL*Plus prompt.

	 4.	 Oracle applies the information in the online redo log files to the data files.

	 A.	 4, 3, 2, 1

	 B.	 3, 4, 1, 2

	 C.	 2, 1, 3, 4

	 D.	 2, 1, 4, 3

	 E.	 3, 2, 4, 1

	 F.	 3, 4, 2, 1

	18.	 You’ve noticed that when an instance crashes, it takes a long time to start up the data-
base. Which advisor can be used to tune this situation?

	 A.	 The Undo Advisor

	 B.	 The SQL Tuning Advisor

	 C.	 The Database Tuning Advisor

	 D.	 The MTTR Advisor

	 E.	 The Instance Tuning Advisor

	 Review Questions	 901

	19.	 In ARCHIVELOG mode, the loss of a data file for any tablespace other than the SYSTEM or
UNDO tablespace affects which objects in the database?

	 A.	 The loss affects only objects whose extents reside in the lost data file.

	 B.	 The loss affects only the objects in the affected tablespace, and work can continue
in other tablespaces.

	 C.	 The loss will not abort the instance but will prevent other transactions in any
tablespace other than SYSTEM or UNDO until the affected tablespace is recovered.

	 D.	 The loss affects only those users whose default tablespace contains the lost or
damaged data file.

	20.	 Which of the following conditions prevents the instance from progressing through the
NOMOUNT, MOUNT, and OPEN states?

	 A.	 One of the redo log-file groups is missing a member.

	 B.	 The instance was previously shut down uncleanly with SHUTDOWN ABORT.

	 C.	 Either the spfile or init.ora file is missing.

	 D.	 One of the five multiplexed control files is damaged.

	 E.	 The USERS tablespace is offline, with one of its data files deleted.

Chapter

16
Controlling Resources
and Jobs

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Managing Resources Using Database Resource Manager

■■ Configure the Database Resource Manager.

■■ Access and create resource plans.

■■ Monitor the Resource Manager.

✓✓ Automating Tasks by Using Oracle Scheduler

■■ Use Oracle Scheduler to simplify management tasks.

■■ Use job chains to perform a series of related tasks.

■■ Use Scheduler jobs on remote systems.

■■ Use advanced Scheduler on remote systems.

Hardware resources can be shared and divided up in Oracle
Database 12c using various components including resource
consumer groups, resource plans, and resource plan directives.

Tasks are automated within Oracle Database 12c using the Oracle Scheduler, which is
like the Windows Task Scheduler or cron jobs in Linux or Unix. The Scheduler will execute
tasks automatically within the general scope of the functionality of an Oracle database.

This chapter focuses on configuring, accessing, using, and monitoring resources inside
the Oracle Resource Manager components; basic scheduling; and some specialized sched-
uling. You will also learn about specialized scheduling functionality, which includes job
chaining, working with remote systems, and setting priorities.

Resource Management with
the Resource Manager
The Oracle Database 12c Resource Manager allows the workload on a database to be man-
aged from within the database as opposed to outside the database from the operating system.
The process of managing the resources in this way is called workload management—for
example, where a database servicing a website needs small but fast operations to run during
the day, but will need to process much larger transactions after hours when batch processing
and reporting.

Resource management inside an Oracle database can be more effective than using the
operating system, which tends to allocate processing on a generic basis; the Oracle Resource
Manager is more precise with respect to Oracle Database 12c.

Functions of the Resource Manager
The Oracle Database 12c Resource Manager can manage the sharing of hardware resources
from a database requirements perspective, where sessions (processes) within Oracle would
benefit by being managed differently depending on the type and function of the session. The
Resource Manager performs the following types of functions within Oracle:

■■ Gives specific sessions a required CPU allocation regardless of the load, to make sure
that critical processing completes.

■■ Can allocate specific percentages of CPU time to different users and applications. For
example, backups must complete within available time windows.

	 Resource Management with the Resource Manager	 905

■■ Limits parallel processing, which is important because parallel processing can
spread across and occupy all the processing power on a multiple-node Oracle RAC
database, which can completely dominate a system and lock out other essential
competing processing.

■■ Assigns processing priorities.

■■ Sets maximum limits of active sessions for groups of users.

■■ Records resource sharing statistics in V$RSRC_ and GV$RSRC_* (Oracle RAC) views.

■■ Runaway Sessions Management monitors limits on CPU use, I/O, buffer operations,
and execution time. Runaway sessions can also be automatically terminated or passed
to another resource consumer group, which allows processing to complete but with
much less resource consumption.

■■ Controls execution of operations that, according to the optimizer, will exceed limitations.

■■ Limits session idle times, especially blocking sessions. For example, someone leaving
an uncommitted transaction in an open window and going out for lunch.

■■ Resource plans that apply to different requirements can be changed manually or within
the Oracle Scheduler, and with the database online.

Understanding Resource Manager Components
The Resource Manager consists of a number of components, each of which performs a
specific function:

■■ Resource consumer groups put users together based on CPU requirements.

■■ Resource plans allocate resources to resource consumer groups. Subplans are assigned
to plans to give subset allocation capabilities within a plan.

■■ Resource plan directives connect consumer groups and plans.

■■ Resource allocation methods apply varying CPU percentage allocations to consumer
groups and their associated plans.

The functions of the various components of the Resource Manager are as shown in
Figure 16.1.

The Resource Manager and its various components can be administered from Oracle
Database 12c using two built-in PL/SQL packages called DBMS_RESOURCE_MANAGER and
DBMS_RESOURCE_MANAGER_PRIVS. They also can be managed using OEM Cloud Control.
Figure 16.2 shows the introduction screen when the Resource Manager menu is invoked.

Consumer Groups
Consumer groups or resource consumer groups are used to group user sessions together
so that the different groups can be assigned different processing requirements. Therefore,
daytime processing on a website-based Online Transaction Processing (OLTP) database
could have a group that allows high CPU use, which cuts off most processing activity to

906	 Chapter 16  ■  Controlling Resources and Jobs

a reporting or data warehousing group. At night, OLTP CPU resource requirements are
lower, and that allows reporting and heavy I/O activity to dominate CPU cycles. This
change can be performed automatically in an Oracle Scheduler process or in its simplest
way, manually using an ALTER SYSTEM command on the resource_manager_plan Oracle
Database parameter.

F igur e 16 .1     Resource Manager components and their functions

User 1
User 2

User 3

User n

Allocation of
Resources

Resource
Allocation

Policy

Resource
Allocation

Policy

CPU
Only

CPU and
Parallelism

Only one Resource Plan can be
active in the database at once.

Subplan 1

Subplan 2
Subplan n

Resource
Plan

Resource
Allocation
Methods

Resource
Plan

Directives
Resource
Consumer

Group

There are other more detailed methods of switching resource consumer
groups, such as switching groups for specific sessions, which will be covered
later in this chapter.

	 Resource Management with the Resource Manager	 907

F igur e 16 . 2     OEM – The Getting Started with Resource Manager screen

When a session connects to a database, it connects as part of the currently set resource con-
sumer group, and thus the amount of resources it can use is determined by that current
consumer group; this is in addition to the consumer groups that can be created by DBAs.

Figure 16.3 shows the Consumer Groups screen from OEM Cloud Control. Here you
can edit or delete existing consumer groups, and add new consumer groups.

F igur e 16 . 3     OEM – The Consumer Groups screen

Resource Plans, Subplans, and Plan Directives
A resource plan includes possible subplans, plan directives, and consumer groups that are
referenced by plan directives. Resource plan directives contain resource allocations such as
CPU percentages and parallelism limitations. The directives are assigned to plans, which are
in turn grouped into groups of users (resource consumer groups), all as shown in Figure 16.1.

908	 Chapter 16  ■  Controlling Resources and Jobs

The result is a parent-to-child relationship between plan and subplan (subplans apply vary-
ing directives within a plan), as well as a parent-to-child relationship between a plan and its
defined plan directives. It is, therefore, implied that a plan can have more than one directive,
but only one directive can be allocated at once.

So, an active resource plan will have each of its plan directives allocate resources for
different consumer groups, as shown in Figure 16.4.

F igur e 16 . 4     Plans, plan directives, and consumer groups

Plan Directive

Plan Directive

Plan Directive

Consumer Group

Consumer Group

Consumer GroupPlan

It is important to note that a group can use more resources than it is allocated as long as
it does not take away resources from another group with higher priority.

Figure 16.5 shows the relationships between plans, subplans, and consumer groups (the
objects that consume the allocated resources). Note that a plan can contain both consumer
groups and other subplans, where the subplans further divide resources.

In Figure 16.6, the process is taken a little further, where specific percentages (such
as CPU utilization) are assigned to plans, subplans, and consumer groups. As progress is
made down through the levels from left to right, each percentage divides up the percentage
passed from the parent. Also, note that with something like CPU use, leftover resources
are passed down the stack as they are required, but also that areas above the current level
can use high resource values when the child resource does not need all resources allocated.

Resource Allocation Methods (Resource Types)
Resource allocation methods include the types of resources that can be allocated to con-
sumer groups and plans, as well as the methods by which those resources are allocated. The
various types of resources that can be allocated and altered are as follows:

CPU    CPU resources can be divided up into directives using the management (MGMT_Pn) and
utilization (UTILIZATION_LIMIT) attributes. Resources can be allocated from 1 to 8 levels with
level 8 being the lowest. By implication, the lowest level only takes resources within its limit
when levels above do not need the resources. Also, resources can be passed from higher levels
in the stack when the lower levels can utilize them.

	 Resource Management with the Resource Manager	 909

F igur e 16 .5     Plans, subplans, and consumer groups

Consumer Group

Subplan

Consumer Group

Consumer Group

Subplan

Consumer GroupPlan

Consumer Group

F igur e 16 .6     Simple resource allocation with plans and subplans

10%

40%

40%

70%

30%

Consumer Group

Subplan

Consumer Group

70%

30%
Consumer Group

Subplan

Consumer GroupPlan

Consumer Group

910	 Chapter 16  ■  Controlling Resources and Jobs

CPU resources get passed down the levels; but if a group or plan and a level have a specific
utilization limit, that particular allocation will not go above the CPU utilization limit even
when spare CPU resource capacity is available. The management attributes set the CPU values
needed for a specific group or plan at a specific level, and the utilization limit will limit the
maximum resources used regardless of how much is being used at higher priority levels.

Exadata I/O    This setting allows resource allocation for Exadata I/O only. I/O can be a
very high consumer of CPU resources.

Parallel Execution Servers    Parallel execution is available in Oracle Database 12c and has
been for years; however, one of the critical issues with parallel processing is uncontrolled use,
usually as a result of misunderstanding how and when it can be used beneficially. In general,
when Oracle interprets and executes a parallel operation, such as a query reading lots of data,
the database starts separate specialized parallel processes to execute the operation. If too
many processes are started at once, an operator can effectively swamp an entire multiple-node
Oracle RAC database. For example, creating an uncontrolled parallel index on an empty
table can drastically slow down all other sessions in a database, regardless of concurrency.
Therefore, parallel processing sometimes has to be controlled at the database level. That can
be done in a number of ways, one of which is to use the Resource Control Manager, which
limits how much parallel processing is done by any particular session at any particular time.

The Degree of Parallelism Limit (PARALLEL_DEGREE_LIMIT_n) controls the maximum degree
of parallel processing within a consumer group. In other words, if a query wants to execute
on 32 parallel threads and the limit is 16, then that query will be able to work with only 16,
not 32, degrees of parallelism.

The Parallel Server Limit (PARALLEL_SERVER_LIMIT) exerts a limitation on the parallel
processing capacity of individual consumer groups.

Parallel Queue Timeout is applied when a database lacks the resources to execute a parallel
statement, and it will be made to wait. The PARALLEL_QUEUE_TIMEOUT directive allows a pro-
cessing request to wait until the timeout expires.

Runaway Queries    Sometimes a session can use up too many resources, including things
like CPU, I/O, processing times, rollback, temporary sort space, and so on. Runaway queries
can be detected and switched to other consumer groups with lower allocations, execution
times can be limited, or SQL code can be cancelled and sessions can be terminated.

Active Session Pool with Queuing    This option can control the number of concurrent
sessions that are active at a time within a resource consumer group.

Undo Pool    This option controls the amount of undo space that can be allocated for a
transaction, limiting the amount and size of uncommitted transactions that can be main-
tained within a consumer group. Sometimes very large transactions can push a database
to run out of undo space on disk and abort a transaction after a very long run, potentially
wasting a lot of time.

Idle Time Limit    Idle sessions can be killed off as active sessions, and even blocking sessions
can be controlled.

	 Resource Management with the Resource Manager	 911

Configuring the Database Resource Manager
So far you have read about what can be done with the Database Resource Manager; the next
step is to find out how to work with it.

Administration Privileges
Configuring the Resource Manager requires the ADMINISTER_RESOURCE_MANAGER privilege
(granted through the DBA role), which gives execute privileges on all DBMS_RESOURCE_
MANAGER procedures.

DBMS_RESOURCE_MANAGER is a built-in Oracle Database package.

The DBMS_RESOURCE_MANAGER_PRIVS procedure is used to grant privileges to and from
the DBMS_RESOURCE_MANAGER package; those procedures are listed in Table 16.1.

Tabl e 16 .1    DBMS_RESOURCE_MANAGER_PRIVS Procedures

Procedure Description

GRANT_SWITCH_CONSUMER_GROUP Grant resource consumer group switch

GRANT_SYSTEM_PRIVILEGE Grant a system privilege

REVOKE_SWITCH_CONSUMER_GROUP Revoke resource consumer group switch

REVOKE_SYSTEM_PRIVILEGE System privilege revoke

When a user in a database called BOOKS is being examined, the following system privileges
are available:

SQL> select * from dba_sys_privs where grantee='BOOKS';

GRANTEE PRIVILEGE ADM COM
---------- -- --- ---
BOOKS QUERY REWRITE NO NO
BOOKS UNLIMITED TABLESPACE NO NO

If you grant the resource manager privilege to the BOOKS user, the result is shown in the
form of the system privilege called ADMINISTER_RESOURCE_MANAGER:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE

912	 Chapter 16  ■  Controlling Resources and Jobs

(GRANTEE_NAME=>'BOOKS',ADMIN_OPTION=>FALSE);
END;
/

PL/SQL procedure successfully completed.

SQL> select * from dba_sys_privs where grantee='BOOKS';

GRANTEE PRIVILEGE ADM COM
---------- -- --- ---
BOOKS QUERY REWRITE NO NO
BOOKS ADMINISTER RESOURCE MANAGER NO NO
BOOKS UNLIMITED TABLESPACE NO NO

The same privilege can then be revoked:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE
(REVOKEE_NAME=>'BOOKS');
END;
/

PL/SQL procedure successfully completed.

SQL> select * from dba_sys_privs where grantee='BOOKS';

GRANTEE PRIVILEGE ADM COM
---------- -- --- ---
BOOKS QUERY REWRITE NO NO
BOOKS UNLIMITED TABLESPACE NO NO

SQL> grant ADMINISTER RESOURCE MANAGER to books;

Grant succeeded.

SQL> select * from dba_sys_privs where grantee='BOOKS';

GRANTEE PRIVILEGE ADM COM
---------- -- --- ---
BOOKS QUERY REWRITE NO NO
BOOKS ADMINISTER RESOURCE MANAGER NO NO
BOOKS UNLIMITED TABLESPACE NO NO

	 Resource Management with the Resource Manager	 913

SQL> revoke ADMINISTER RESOURCE MANAGER from books;

Revoke succeeded.

SQL> select * from dba_sys_privs where grantee='BOOKS';

GRANTEE PRIVILEGE ADM COM
---------- -- --- ---
BOOKS QUERY REWRITE NO NO
BOOKS UNLIMITED TABLESPACE NO NO

According to the Oracle Database 12c manuals, the ADMINISTER RESOURCE
MANAGER system privilege can be granted to roles, such as the DBA role—
which is false. Additionally, the manuals clearly state that the ADMINIS-
TER RESOURCE MANAGER system privilege is supported only when granted
or revoked using the DBMS_RESOURCE_MANAGER_PRIVS procedure—which is
also false. We have successfully granted and revoked the privilege using the
GRANT and REVOKE commands, as shown in the following code. (However,
this ability could change in a future Oracle patchset.)

Initial Resource Consumer Group
Two groups that are part of the default setup in Oracle cannot be removed or changed.
They are

■■ The SYS_GROUP, which is the default setting for all SYS and SYSTEM use sessions. This
group is essential for database maintenance.

■■ OTHER_GROUPS, which will be allocated to all sessions that have not been specifically
allocated to a consumer group.

Mapping Rules and Priorities
Mapping rules are created between sessions and consumer groups, and priorities can be
allocated to various mapping rules. A session gets an initial consumer group. A session can
be switched to a different consumer group on the fly, depending on the circumstances. Also,
different mapping rules can have different priorities; whereas a user connecting using a par-
ticular consumer group can be overridden and have its consumer group switched. This is
because another attribute changes the user’s session to a higher priority.

Oracle has a built-in procedure that is used to manage consumer group mappings using
name-value pairs, as in:

BEGIN
DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING(

914	 Chapter 16  ■  Controlling Resources and Jobs

attribute=>'attrib'
,value=>'avalue'
,consumer_group=>'ETL_GROUP');
END;
/

The attributes can be a list of items including attributes that change behavior based
on connected users, the service names users are connected to, and even the modules with
which they are connecting to a database. Priorities are set for mapping groups using the
following Oracle built-in procedure:

DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING_PRI(
 explicit IN NUMBER,
 oracle_user IN NUMBER,
 service_name IN NUMBER,
 client_os_user IN NUMBER,
 client_program IN NUMBER,
 client_machine IN NUMBER,
 module_name IN NUMBER,
 module_name_action IN NUMBER,
 service_module IN NUMBER,
 service_module_action IN NUMBER,
 client_id IN NUMBER DEFAULT 11);

Each attribute is described in Table 16.2.

Tabl e 16 . 2    Setting Consumer Mapping Privileges

Attribute Description

Explicit Explicit

oracle_user Oracle user names

service_name A service name

client_os_user Username in the client operating system

client_program Program running on the client

client_machine Client machine

	 Resource Management with the Resource Manager	 915

Attribute Description

module_name Application module

module_name_action Application module and action

service_module Service name plus application module

service/module_action Service name, application module, and application mapping

client_id The Client ID

Switching Consumer Groups
When a user or piece of software executes a process that overloads the CPU, quite often the
session might have to be manually killed. One way to resolve this type of situation is to use
the DBMS_RESOURCE_MANAGER procedures to switch a user’s session to a different consumer
group that perhaps limits CPU use to much less than 100 percent capacity. You can do this
using either of the following two procedures:

■■ SWITCH_CONSUMER_GROUP_FOR_SESS uses a SID and SERIAL# combination as an
ALTER SYSTEM KILL SESSION command, in order to move a session to a different
consumer group.

■■ SWITCH_CONSUMER_GROUP_FOR_USER does the same thing, except that it switches all
sessions for a specific user.

The SWITCH_CURRENT_CONSUMER_GROUP procedure inside the DBMS_SESSION package
allows consumer groups to be switched.

Valued-based automatic consumer group switching is available when certain conditions
are met, in order to automatically switch a session to a lower allocation consumer group
where actions can be taken. Those actions can include dynamic consumer group switching,
session termination, aborting a SQL statement, or even just logging information. A switch
group and actions can be defined as part of a plan directive.

The privilege to grant and revoke switching of consumer groups can be authorized using
the DBMS_RESOURCE_MANAGER package. The following commands grant and then revoke the
switch privilege to and from a schema called CONCERTS:

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP(
grantee_name=>'CONCERTS'
,consumer_group=>'BATCH_GROUP'
,grant_option=>TRUE);
	 DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP(

916	 Chapter 16  ■  Controlling Resources and Jobs

revokee_name=>'CONCERTS'
,consumer_group=>'BATCH_GROUP');
END;
/

Accessing and Creating Resource Plans
So far this chapter has covered the components of the Database Resource Manager, as well
as the configuration of the Database Resource Manager. This section will go through the
process of analyzing and using the stored procedures that are used to work with resource
management in Oracle Database 12c.

Simple Resource Plans
There is a simple way to create a resource management plan and a more complex way. The
simple method uses the following procedure:

DBMS_RESOURCE.CREATE_SIMPLE_PLAN();

The CREATE_SIMPLE_PLAN procedure only allows the CPU resource allocation method,
using the default EMPHASIS CPU allocation policy, and each consumer group uses the
default ROUND_ROBIN as a scheduling policy. A “round-robin queue” is a Unix term used to
describe a process that allocates an equal amount of processing time to a number of con-
currently running processes, where each process takes turns consuming a set amount of
processing each time the round-robin process occurs. In a more complex model, the round-
robin switching process can still allocate a chunk of time to each process one at a time, but
the priorities of some processes can be higher than others; therefore, higher-priority pro-
cesses simply get more processing time each time they are executed.

The CREATE_SIMPLE_PLAN procedure allows one procedure to create a simple setup very
rapidly, defining one to eight consumer groups, each with a round-robin-like percentage of
allocated CPU, as shown in Table 16.3.

Tabl e 16 . 3    The CREATE_SIMPLE_PLAN Procedure

Parameter Description

consumer_group1 Consumer group name

consumer_group2 Consumer group name

consumer_group3 Consumer group name

	 Resource Management with the Resource Manager	 917

Parameter Description

consumer_group4 Consumer group name

consumer_group5 Consumer group name

consumer_group6 Consumer group name

consumer_group7 Consumer group name

consumer_group8 OTHER_GROUPS includes all unmapped sessions

group1_percent Resource % allocated to group

group2_percent Resource % allocated to group

group3_percent Resource % allocated to group

group4_percent Resource % allocated to group

group5_percent Resource % allocated to group

group6_percent Resource % allocated to group

group7_percent Resource % allocated to group

group8_percent Resource % allocated to group

simple_plan Resource plan name

A simple execution of the CREATE_SIMPLE_PLAN procedure would look something like this:

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN(
SIMPLE_PLAN=>'MYSIMPLEPLAN',CONSUMER_GROUP1=>'GROUP1'
,GROUP1_PERCENT=>50,CONSUMER_GROUP2=>'GROUP2'
,GROUP2_PERCENT=>30,CONSUMER_GROUP3=>'GROUP3'
,GROUP3_PERCENT=>20);
END;
/

Or, you could run the previous code nicely formatted and much more easily read by
embedding it into a PL/SQL BEGIN END block:

BEGIN
	 DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN

918	 Chapter 16  ■  Controlling Resources and Jobs

	 (
		 SIMPLE_PLAN=>'MYSIMPLEPLAN'
		 , CONSUMER_GROUP1=>'GROUP1',GROUP1_PERCENT=>50
		 , CONSUMER_GROUP2=>'GROUP2',GROUP2_PERCENT=>30
		 , CONSUMER_GROUP3=>'GROUP3',GROUP3_PERCENT=>20
);
END;
/

As you see, it is possible to rapidly and easily create a simple plan, building a very sim-
plistic resource plan using multiple groups where each group has a specific percentage of
CPU allocated to it. Plans can also be much more complex, as you already know from pre-
vious information in this chapter. In order to create the more complex plans, you should
follow these steps:

	 1.	 Create the pending area.

	 2.	 Create the consumer groups.

	 3.	 Create the session-to-consumer group mappings.

	 4.	 Create a complex resource plan.

	 5.	 Add the plan directives.

	 6.	 Validate and submit the pending area.

The next few sections will explain this set of steps.

Working with the Pending Area
A database cannot have a resource plan running that is incorrectly configured—the con-
sequences could cause huge imbalances in a database system. To avoid any such problems,
a pending area is used. The pending area is a staging area where resource plans are built
before they are submitted to the database. It is essentially a process of verification where a
new plan is prepared and verified before it replaces the existing resource management plan.
The pending area is created as follows:

SQL> exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

The pending area is exclusive in that only one session can use the pending area at any
one time, which means that it must be cleared before another session can create the pending
area again. Only one can be used at a time because only one resource plan is used at a time.

After consumer groups, plans and anything else that has been created in the pending
area will be submitted to the database—but first you must validate the pending area using
the VALIDATE_PENDING_AREA procedure. Then you must submit the SUBMIT_PENDING_AREA
procedure. Additionally, the pending area can be simply cleared out to start fresh using
the CLEAR_PENDING_AREA procedure. The pending area validation procedure checks all the
obvious semantic details on consumer resource management, which cannot otherwise be

	 Resource Management with the Resource Manager	 919

checked by individual DBMS_RESOURCE_MANAGER procedural details at the syntax level. The
validation procedure checks for the following:

■■ That there are no loops

■■ That the plans, groups, and directives used actually exist

■■ That a plan’s directives point to plans or groups

■■ That percentage sums aggregate to 100 percent

■■ That subplans are removed before top-level plans

■■ That the limit of 28 for groups and plan children is not exceeded

■■ That plans and groups do not have duplicate names

■■ That the OTHER_GROUPS group has an active plan

■■ That various other very detailed parameter checks are performed

Creating Resource Consumer Groups
A resource consumer group is created using the CREATE _CONSUMER_GROUP procedure, which
has parameters as shown in Table 16.4.

Tabl e 16 . 4    The CREATE_CONSUMER_GROUP Procedure

Parameter Description

consumer_group Consumer group

mgmt_mth Named CPU allocation method

Category Category for Exadata I/O purposes only

Here are a number of examples that clear and create the pending area, grant switch
privileges, validate and submit the pending area, and finally set the initial consumer group
called OLTP.

Some new Oracle schema/usernames along with specific privileges are needed first:

SQL> create user books identified by books;
SQL> create user concerts identified by concerts;
SQL> grant connect,resource to books,concerts;

BEGIN
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE
(GRANTEE_NAME=>'CONCERTS',ADMIN_OPTION=>FALSE);
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE

920	 Chapter 16  ■  Controlling Resources and Jobs

(GRANTEE_NAME=>'BOOKS',ADMIN_OPTION=>FALSE);
END;
/

Next is a single consumer group:

BEGIN
dbms_resource_manager.clear_pending_area();
dbms_resource_manager.create_pending_area();
dbms_resource_manager.create_consumer_group
(consumer_group=>'OLTP_GROUP');
dbms_resource_manager.validate_pending_area();
dbms_resource_manager.submit_pending_area();
END;
/

This code grants the switching privileges:

BEGIN
dbms_resource_manager.clear_pending_area();
dbms_resource_manager.create_pending_area();
dbms_resource_manager_privs.grant_switch_consumer_group
('CONCERTS', 'OLTP_GROUP', false);
dbms_resource_manager_privs.grant_switch_consumer_group
('BOOKS', 'OLTP_GROUP', false);
dbms_resource_manager.set_initial_consumer_group
('CONCERTS', 'OLTP_GROUP');
dbms_resource_manager.set_initial_consumer_group
('BOOKS', 'OLTP_GROUP');
dbms_resource_manager.validate_pending_area();
dbms_resource_manager.submit_pending_area();
END;
/

Session-to-consumer group mappings can be created using the SET_CONSUMER_GROUP_
MAPPING procedure and the SET_CONSUMER_GROUP_MAPPING_PRI procedure. The objective of

	 Resource Management with the Resource Manager	 921

session mappings is to assign sessions to specific groups, as well as to assign varying priority
levels to sessions that have various attributes, as described in Table 16.2.

Creating Complex Resource Plans
As opposed to the CREATE_SIMPLE_PLAN procedure, a complex resource plan is created
using the CREATE_PLAN procedure utilizing parameters as shown in Table 16.5.

Tabl e 16 .5    The CREATE_PLAN Procedure

Parameter Description

active_sess_pool_mth ACTIVE_SESS_POOL_ABSOLUTE is the only available
method, limiting the number of active sessions to 1.

parallel_degree_limit_mth PARALLEL_DEGREE_LIMIT_ABSOLUTE limits the degree of
parallelism.

queueing_mth FIFO_TIMEOUT for queuing resources, controlling the
order of queued inactive sessions.

mgmt_mth General resource allocation amounts to a group or
subplan.

1) EMPHASIS: distributes I/O to groups in multilevel plans.

2) RATIO: distributes I/O in single-level plans.

sub_plan Not for use as a top plan if TRUE (subplans only).

Plans cannot be created yet because they have to be created at the same time as the
plan directives. So, next we will look at resource plan directives followed by some exam-
ples of plans.

You can also use OEM Cloud Control to create resource plans. The Resource Plans
screen is shown in Figure 16.7. This screen lists the resource plans that are available in the
database.

By clicking the Create button, you can create a new resource plan. The initial screen for
creating a new resource plan is shown in Figure 16.8

Implementing Resource Plan Directives
Plan directives are created using the CREATE_PLAN_DIRECTIVE procedure, including some of
the less obscure parameters as shown in Table 16.6.

922	 Chapter 16  ■  Controlling Resources and Jobs

F igur e 16 .7     OEM – The Resource Plans screen

F igur e 16 . 8     OEM – The Create Resource Plan screen

Tabl e 16 .6    The CREATE_PLAN_DIRECTIVE Procedure

Attribute Description

group_or_subplan Group or subplan name

active_sess_pool_p1 Maximum active sessions

	 Resource Management with the Resource Manager	 923

Attribute Description

parallel_degree_limit_p1 Limit on degree of parallelism

switch_group Group to switch to

switch_time CPU switch time

undo_pool Undo limitation

max_idle_time Idle time

max_idle_blocker_time Block session idle time

mgmt_p1-8 General resource allocation amounts to a group or
subplan

1) EMPHASIS: distributes I/O to groups in multi-level plans

2) RATIO: distributes I/O in single-level plans

parallel_queue_timeout Query in group parallel statement queue before being
timed out

parallel_server_limit Parallel server limit that overrides utilization limit

All of the details are placed into the Resource Manager during the stage when plan direc-
tives are created. You can see the real meat and learn how resource management works by
examining the following code. Begin with the pending area; follow with the OLTP plan and
then the plan directives.

BEGIN
dbms_resource_manager.clear_pending_area();
dbms_resource_manager.create_pending_area();
dbms_resource_manager.create_plan(plan=>'OLTP_PLAN');
dbms_resource_manager.create_plan_directive(
plan => 'OLTP_PLAN'
,group_or_subplan => 'OLTP_GROUP',cpu_p1 => 80
, cpu_p2 => 40, cpu_p3 => 20, cpu_p4 => 10,cpu_p5 => 0
, cpu_p6 => 0, cpu_p7 => 0, cpu_p8 => 0
,parallel_degree_limit_p1 => 0);
dbms_resource_manager.create_plan_directive(
plan => 'OLTP_PLAN'

924	 Chapter 16  ■  Controlling Resources and Jobs

,group_or_subplan => 'SYS_GROUP',cpu_p1 => 10
, cpu_p2 => 25, cpu_p3 => 35, cpu_p4 => 40,cpu_p5 => 0
, cpu_p6 => 0, cpu_p7 => 0, cpu_p8 => 0
,parallel_degree_limit_p1 => 0);
dbms_resource_manager.create_plan_directive(
plan => 'OLTP_PLAN'
,group_or_subplan => 'BATCH_GROUP',cpu_p1 => 0
, cpu_p2 => 10, cpu_p3 => 10, cpu_p4 => 10,cpu_p5 => 0
, cpu_p6 => 0, cpu_p7 => 0, cpu_p8 => 0
,parallel_degree_limit_p1 => 0);
dbms_resource_manager.create_plan_directive(
plan => 'OLTP_PLAN'
,group_or_subplan => 'OTHER_GROUPS',cpu_p1 => 5
, cpu_p2 => 0, cpu_p3 => 0, cpu_p4 => 0,cpu_p5 => 0
, cpu_p6 => 0, cpu_p7 => 0, cpu_p8 => 0
,parallel_degree_limit_p1 => 0);
dbms_resource_manager.validate_pending_area();
dbms_resource_manager.submit_pending_area();
END;
/

Updating and Deleting Resources
Consumer groups, plans, and plan directives can be updated and deleted with the proce-
dures described in this section. It makes sense to describe these various steps in the order in
which they should be deleted: child objects first. Updates can be performed in any sequence
as long as any dependencies are handled.

Updating and Deleting Plan Directives
You can update the plan directives using the following procedure. (Note that only the PLAN
and GROUP_OR_SUBPLAN parameters must be specified in addition to one or more changes.)

DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE
(
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_active_sess_pool_p1 IN NUMBER DEFAULT NULL,
 new_queueing_p1 IN NUMBER DEFAULT NULL,
 new_parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 new_switch_group IN VARCHAR2 DEFAULT NULL,
 new_switch_time IN NUMBER DEFAULT NULL,

	 Resource Management with the Resource Manager	 925

 new_switch_estimate IN BOOLEAN DEFAULT FALSE,
 new_max_est_exec_time IN NUMBER DEFAULT NULL,
 new_undo_pool IN NUMBER DEFAULT NULL,
 new_max_idle_time IN NUMBER DEFAULT NULL,
 new_max_idle_blocker_time IN NUMBER DEFAULT NULL,
 new_mgmt_p1 IN NUMBER DEFAULT NULL,
 new_mgmt_p2 IN NUMBER DEFAULT NULL,
 new_mgmt_p3 IN NUMBER DEFAULT NULL,
 new_mgmt_p4 IN NUMBER DEFAULT NULL,
 new_mgmt_p5 IN NUMBER DEFAULT NULL,
 new_mgmt_p6 IN NUMBER DEFAULT NULL,
 new_mgmt_p7 IN NUMBER DEFAULT NULL,
 new_mgmt_p8 IN NUMBER DEFAULT NULL,
 new_switch_io_megabytes IN NUMBER DEFAULT NULL,
 new_switch_io_reqs IN NUMBER DEFAULT NULL,
 new_switch_for_call IN BOOLEAN DEFAULT NULL,
 new_max_utilization_limit IN NUMBER DEFAULT NULL,
 new_parallel_target_percentage IN NUMBER DEFAULT NULL,
 new parallel_queue_timeout IN NUMBER DEFAULT NULL,
 new_parallel_server_limit IN NUMBER DEFAULT NULL,
 new_utilization_limit IN NUMBER DEFAULT NULL,
 new_switch_io_logical IN NUMBER DEFAULT NULL,
 new_switch_elapsed_time IN NUMBER DEFAULT NULL,
 new_shares IN NUMBER DEFAULT NULL,
 new_parallel_stmt_critical IN VARCHAR2 DEFAULT NULL
);

Executing a procedure such as UPDATE_PLAN_DIRECTIVE with only NAME
and GROUP_OR_SUBPLAN specified would change nothing.

Delete a plan directive as follows:

DBMS_RESOURCE_MANAGER.DELETE_PLAN_DIRECTIVE
(
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2
);

When deleting a plan directive, all you need are the names of the plan and the group
or subplan.

926	 Chapter 16  ■  Controlling Resources and Jobs

Updating and Deleting Resource Plans
Updating and deleting a plan is the next stage, which uses the UPDATE_PLAN procedure:

DBMS_RESOURCE_MANAGER.UPDATE_PLAN
(
 plan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_active_sess_pool_mth IN VARCHAR2 DEFAULT NULL,
 new_parallel_degree_limit_mth IN VARCHAR2 DEFAULT NULL,
 new_queueing_mth IN VARCHAR2 DEFAULT NULL,
 new_mgmt_mth IN VARCHAR2 DEFAULT NULL,
 new_sub_plan IN BOOLEAN DEFAULT FALSE
);

And the DELETE_PLAN procedure:

DBMS_RESOURCE_MANAGER.DELETE_PLAN(plan IN VARCHAR2);

A special case of the DELETE_PLAN procedure is the DELETE_PLAN_CASCADE procedure,
which will remove the plan and all its descendants, including plan, plan directives, subplans,
and consumer groups:

DBMS_RESOURCE_MANAGER.DELETE_PLAN_CASCADE(plan IN VARCHAR2);

Deletion of the active plan is not permitted.

Updating and Deleting Consumer Groups
Update a consumer group with the following procedure, where parameters that are not
specified are not changed because all but the CONSUMER_GROUP name parameter are defaulted
to null (DEFAULT NULL):

DBMS_RESOURCE_MANAGER.UPDATE_CONSUMER_GROUP
(
 consumer_group IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL,
 new_mgmt_mth IN VARCHAR2 DEFAULT NULL,
 new_category IN VARCHAR2 DEFAULT NULL
);

	 Resource Management with the Resource Manager	 927

Deleting a consumer group only requires the name of the consumer group to be removed:

DBMS_RESOURCE_MANAGER.DELETE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2);

It is important to note that a consumer group cannot be deleted if it is referenced by any
child objects, such as a plan directive; orphaned plan directives would be the result. Delete
the plan and the consumer group as shown here:

SQL> select plan,status from DBA_RSRC_PLANS order by plan;
SQL> select consumer_group,status
	 from DBA_RSRC_CONSUMER_GROUPS
	 order by consumer_group;
BEGIN
	 dbms_resource_manager.clear_pending_area();
	 dbms_resource_manager.create_pending_area();
	 dbms_resource_manager.delete_plan(plan=>'OLTP_PLAN');
	 dbms_resource_manager.delete_consumer_group
		 (consumer_group=>'OLTP_GROUP');
	 dbms_resource_manager.validate_pending_area();
	 dbms_resource_manager.submit_pending_area();
END;
/

Monitoring the Resource Manager
Monitoring the Resource Manager involves using specific database metadata (DBA_) and
performance (V$_) views in order to determine how the Resource Manager is configured in
an Oracle Database 12c. The easiest way to find the exact names for these types of views is
to use the following query:

select table_name from dictionary
where table_name like 'DBA_RSRC%' order by 1;

These are the views that are most interesting:

DBA_RSRC_CONSUMER_GROUPS
DBA_RSRC_PLANS
DBA_RSRC_PLAN_DIRECTIVES

And these views are less interesting:

DBA_RSRC_CONSUMER_GROUP_PRIVS
DBA_RSRC_GROUP_MAPPINGS

928	 Chapter 16  ■  Controlling Resources and Jobs

DBA_RSRC_MANAGER_SYSTEM_PRIVS
DBA_RSRC_MAPPING_PRIORITY

 V$ views are also available in Oracle Database 12c, but they are generally
used for monitoring performance as opposed to the DBA_ views, which
are used for monitoring metadata.

The following queries can be used to work with simple additions and deletions of consumer
groups, plans, and directives as shown in the previous two sections:

SQL> select plan,status from DBA_RSRC_PLANS order by plan;

PLAN STATUS
------------------------------ -------------------------
APPQOS_PLAN
DEFAULT_MAINTENANCE_PLAN
DEFAULT_PLAN
DSS_PLAN
ETL_CRITICAL_PLAN
INTERNAL_PLAN
INTERNAL_QUIESCE
MIXED_WORKLOAD_PLAN
ORA$AUTOTASK_PLAN
ORA$QOS_PLAN
ORA$ROOT_PLAN

SQL> select distinct plan from DBA_RSRC_PLAN_DIRECTIVES order by plan;

PLAN

APPQOS_PLAN
DEFAULT_MAINTENANCE_PLAN
DEFAULT_PLAN
DSS_PLAN
ETL_CRITICAL_PLAN
INTERNAL_PLAN
INTERNAL_QUIESCE
MIXED_WORKLOAD_PLAN
ORA$AUTOTASK_PLAN
ORA$QOS_PLAN
ORA$ROOT_PLAN

	 Resource Management with the Resource Manager	 929

SQL> select consumer_group,status from DBA_RSRC_CONSUMER_GROUPS order by
consumer_group;

CONSUMER_GROUP STATUS
------------------------------ -----------------------
BATCH_GROUP
DEFAULT_CONSUMER_GROUP
DSS_CRITICAL_GROUP
DSS_GROUP
ETL_GROUP
INTERACTIVE_GROUP
LOW_GROUP
ORA$APPQOS_0
ORA$APPQOS_1
ORA$APPQOS_2
ORA$APPQOS_3
ORA$APPQOS_4
ORA$APPQOS_5
ORA$APPQOS_6
ORA$APPQOS_7
ORA$AUTOTASK
OTHER_GROUPS
SYS_GROUP

You can also use OEM Cloud Control to monitor resource plans. Figure 16.9 shows the
Resource Manager Statistics screen.

F igur e 16 . 9     OEM – The Resource Manager Statistics screen

930	 Chapter 16  ■  Controlling Resources and Jobs

Task Automation with Oracle Scheduler
The Oracle Scheduler allows scheduled tasks (jobs) to be executed inside Oracle Database 12c,
independent of the platform on which the database is running. The DBMS_SCHEDULER package
contains all the procedures required to implement automated scheduling and the execution of
tasks within a database.

Scheduled objects can be comprised of PL/SQL blocks (named or unnamed) or Java
procedures inside Oracle. Objects can even run on remote databases; they can also be
compiled executables that exist outside of the database.

Scheduling can occur as a result of time settings executing a job at a specific time,
executing once, or repeating. Jobs can also be triggered by the Scheduler based on an event
that has occurred inside the database, or even based on a dependency based on something
like the completion of a previous task.

The Scheduler can also be used to execute jobs based on priorities, even grouping sets
of jobs into groups called job classes. Individual jobs or classes of jobs are given prioritized
access to resources, whereas critical jobs are allowed to use more hardware resources.

Oracle Database 12c can also monitor the Oracle Scheduler and jobs using various
sources of information including DBA_ metadata views and V$ performance views.

Using the DBMS_JOBS package and its associated procedures, processes,
and views is an outdated method of managing scheduled processing inside
Oracle databases. DBMS_JOBS is retained for backward compatibility.

Scheduler Architecture
The Oracle Job Scheduler contains a number of distinct parts and functions, including the
job table, the coordinator process, the way in which jobs are executed, and the process that
occurs after jobs have completed execution. Figure 16.10 shows the structure of the Oracle
Database 12c Scheduler in general. The Job Coordinator determines when and where con-
nections can trigger and execute jobs between multiple slave processes.

The job table contains all the scheduled jobs, visually available from the DBA_SCHEDULER_
JOBS view. The Job Coordinator is a process that starts, stops, and manages the job slave
processes, which execute the jobs. The following example shows two scheduled jobs (ora_
cjq0_TESTSI and ora_cjq1_TESTSI), running on a database called TESTSI, where that data-
base is running on a server called 64bit1:

oracle@64bit1.localdomain:[/home/oracle]
$ ps -ef | grep ora_cj | grep -v grep
oracle 6165 1 0 04:22 ? 00:00:00 ora_cjq0_TESTSI
oracle 6172 1 0 04:22 ? 00:00:00 ora_cjq1_TESTSI

mailto:oracle@64bit1.localdomain:[/home/oracle]

	 Task Automation with Oracle Scheduler	 931

F igur e 16 .10     The Oracle Database 12c Scheduler architecture

Coordinator Process

Job Slave Process 1

Client and Internet
Connections to the Database

Job Table
DBA (SCHEDULER_JOBS)

Job Slave Process 2
Job Slave Process 3

Job Slave Process n

When jobs finish processing, the results are logged into the DBA_SCHEDULER_JOBS meta-
data view, which indicates the completion status of the jobs and other information, such as
if and when the job should be run again.

Granting Scheduler Privileges
Schedule administration tasks require the SCHEDULER_ADMIN role, by default part of the
DBA role as granted to the SYS and SYSTEM users. The SCHEDULER_ADMIN privilege can be
granted as follows:

GRANT SCHEDULER_ADMIN TO <user>;

The system privileges granted to the SCHEDULER_ADMIN role are listed here:

SQL> select grantee,privilege from dba_sys_privs where grantee='SCHEDULER_ADMIN';

GRANTEE PRIVILEGE
-------------------- --
SCHEDULER_ADMIN CREATE CREDENTIAL
SCHEDULER_ADMIN CREATE ANY JOB
SCHEDULER_ADMIN CREATE ANY CREDENTIAL
SCHEDULER_ADMIN EXECUTE ANY CLASS
SCHEDULER_ADMIN EXECUTE ANY PROGRAM
SCHEDULER_ADMIN CREATE EXTERNAL JOB

932	 Chapter 16  ■  Controlling Resources and Jobs

SCHEDULER_ADMIN MANAGE SCHEDULER
SCHEDULER_ADMIN CREATE JOB

The following code lists the possible system privileges with names that contain the
words JOB or SCHED. It indicates MANAGE SCHEDULER as an addition to the previously dis-
cussed system privileges, which are part of the SCHEDULER_ADMIN role:

SQL> select distinct privilege from dba_sys_privs where privilege like '%JOB%'
or privilege like '%SCHED%' order by 1;

PRIVILEGE
--
CREATE ANY JOB
CREATE EXTERNAL JOB
CREATE JOB
MANAGE SCHEDULER

The MANAGE SCHEDULER system privilege allows for maintenance of Scheduler objects
including Scheduler windows, job classes, window groups, and Scheduler attributes, in
addition to executing Scheduler log purging.

Specialized privileges used for scheduled job chains include those that work with
specialized rules and contexts, including CREATE RULE, CREATE RULE SET, and CREATE
EVALUATION CONTEXT.

Understanding Job States
The state of a job can be one of the following, which are based on the most recent execution
(or failure) of that job—or its state during its current execution:

■■ Disabled Job is present but not scheduled to run.

■■ Retry Scheduled Failed or aborted but set to retry.

■■ Scheduled Scheduled to run at a specified time.

■■ Running Job is currently executing.

■■ Completed Job completed running successfully and is not set to run again; otherwise,
it would be listed as SCHEDULED to run again.

■■ Broken Broken job that failed on last run and will not be executed until repaired because
the maximum number of failures has been reached. Typically, a broken job is a job with
some kind of an interpretive or compilation error, or perhaps even a dependency issue.

■■ Failed A failed job where all retries have consistently failed, regardless of the maximum
number of retries.

■■ Remote Job is running remotely.

■■ Succeeded Job successfully ran.

■■ Chain_Stalled A chain-stalled process as a result of a dependency issue.

	 Task Automation with Oracle Scheduler	 933

The following query shows the states of various jobs in a very simple, newly installed
Oracle Database 12c database:

select owner, job_name, state from dba_scheduler_jobs;

OWNER JOB_NAME STATE
---------------- ----------------------------------- --------------
SYS XMLDB_NFS_CLEANUP_JOB DISABLED
SYS FILE_WATCHER DISABLED
SYS PMO_DEFERRED_GIDX_MAINT_JOB SCHEDULED
SYS CLEANUP_NON_EXIST_OBJ SCHEDULED
SYS CLEANUP_ONLINE_IND_BUILD SCHEDULED
SYS CLEANUP_TAB_IOT_PMO SCHEDULED
SYS CLEANUP_TRANSIENT_TYPE SCHEDULED
SYS CLEANUP_TRANSIENT_PKG SCHEDULED
SYS CLEANUP_ONLINE_PMO SCHEDULED
SYS PURGE_LOG SCHEDULED
SYS ORA$AUTOTASK_CLEAN SCHEDULED
SYS HM_CREATE_OFFLINE_DICTIONARY DISABLED
SYS DRA_REEVALUATE_OPEN_FAILURES SCHEDULED
SYS BSLN_MAINTAIN_STATS_JOB SCHEDULED
SYS FGR$AUTOPURGE_JOB DISABLED
SYS RSE$CLEAN_RECOVERABLE_SCRIPT SCHEDULED
SYS SM$CLEAN_AUTO_SPLIT_MERGE SCHEDULED
SYS LOAD_OPATCH_INVENTORY DISABLED
SYSTEM TEST2 DISABLED
SYSTEM MYJOB DISABLED
SYSTEM TEST DISABLED
ORACLE_OCM MGMT_CONFIG_JOB SCHEDULED
ORACLE_OCM MGMT_STATS_CONFIG_JOB SCHEDULED

Understanding Scheduler Objects
The Oracle Database 12c Scheduler’s constituent parts can be broken into more easily man-
ageable objects, which presents a self-contained modular approach to working with schedules.
The most important Scheduler component is the job, which is scheduled by the Scheduler;
most of the other objects are used in support of jobs. Scheduler objects are as follows:

Jobs    A job is the sequence of steps executed by the Scheduler when a job is executed. Internal
jobs run code inside a database, and an external job runs a job external to the database, such
as an executable or a script. There are even jobs that are remote or externally remote. Jobs
have applied actions as attributes, such as the name of the object to execute. To execute a
job, the user must have the EXECUTE privilege granted to the schema user on the contents (the

934	 Chapter 16  ■  Controlling Resources and Jobs

procedure) executed by the job. The schedule for a job defines when a job is run and how
often, and what to do in the event of job failure. The destination of a job defines where a job is
executed (locally or remotely).

Schedules    The schedule object defines when (time-based) or how (event-based) a job
is executed.

Job Classes    Jobs are grouped into classes according to things they have in common,
such as an attribute, resource allocation, prioritization within a class, or even divisions
by application or functionality.

Groups    A list of Scheduler objects that can be passed to the Scheduler for execution of
a group of related objects: (1) a database destination runs a group of jobs inside multiple
remote databases, (2) an external destination group runs a group of external jobs on remote
database servers, (3) works with a group windows objects.

Windows     A window creates a sliding time-window interval in which actions and events
can occur. In the case of the Oracle Scheduler, those actions and events can be things like a
job starting or a change in allocation of resources.

Destinations     A destination is a running job location, which is either an external (remote
host name and IP address) or database destination (remote instance that runs a database
job). If multiple destinations are required to run the same job, a destination group can be
used (see Groups).

Chains    Chains link jobs together in interdependent links of related jobs, where jobs are
triggered by other jobs depending on the results. The simplest chain is a sequential chain
of two or more jobs, ranging through to more complex jobs chains containing hierarchical
structures of inter-linked jobs. Each link in a chain of jobs can point to a chain, a nested
chain (hierarchy), a piece of code (internal or external executable), an event, or a file
watcher object.

File Watchers    These wait for a file to arrive on a server, which then triggers the Scheduler
to execute a job on that file.

Credentials    Username and password pairs (where passwords are said by Oracle to be
“obfuscated,” which presumably means encrypted) are stored as credentials. Credential
objects are used to execute remote and external jobs, and to access file watcher triggering
files when those files arrive.

Programs    This is an executable set of instructions including PL/SQL blocks, scripts, or an
executable outside of Oracle, and can even include parameters. A job can point to or include
a program, but a program is still invoked using a job inside a Scheduler.

Using Oracle Scheduler
The DBMS_SCHEDULER package contains procedures used to work with the Oracle Scheduler
inside Oracle Database 12c.

	 Task Automation with Oracle Scheduler	 935

Working with Schedules
The CREATE_SCHEDULE procedure allows the creation of a schedule, where that schedule object
determines how a process of some form is executed on a repetitive basis as shown here:

begin
 DBMS_SCHEDULER.CREATE_SCHEDULE
 (
 schedule_name=>'MYSCHEDULE'
 , start_date=>SYSDATE
 , repeat_interval=>'FREQ=HOURLY;BYMINUTE=45'
 , end_date=>SYSDATE+1
);
END;
/

The repeat_interval parameter of CREATE_SCHEDULE determines the
frequency of the schedule and uses a rich calendaring syntax to enable
you to define complex repeating schedules.

To drop that same schedule later, simply execute the DROP_SCHEDULE procedure:

exec dbms_scheduler.drop_schedule(schedule_name=>'MYSCHEDULE');

The DBMS_SCHEDULER package procedures generally require the CREATE
JOB or the CREATE ANY JOB privilege.

The DBMS_SCHEDULER.GET_SCHEDULER_ATTRIBUTE and SET_SCHEDULER_ATTRIBUTE pro-
cedures are used to change general attributes for the Oracle Database 12c Scheduler, with
attribute-value pairs like this in the SET procedure:

BEGIN
DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE
(attribute=>'LOG_HISTORY', value=>'5');
END;
/

The GET_SCHEDULER_ATTRIBUTE procedure shows values:

SET SERVEROUTPUT ON;
DECLARE
	 locVALUE INTEGER;
BEGIN

936	 Chapter 16  ■  Controlling Resources and Jobs

DBMS_SCHEDULER.GET_SCHEDULER_ATTRIBUTE('LOG_HISTORY',locVALUE);
DBMS_OUTPUT.PUT_LINE('LOG_HISTORY='||locVALUE);
END;

/

Or similarly:

CREATE OR REPLACE FUNCTION TEST(parATTRIBUTE IN VARCHAR2)
RETURN VARCHAR2 IS
locVALUE INTEGER;
BEGIN
DBMS_SCHEDULER.GET_SCHEDULER_ATTRIBUTE(parATTRIBUTE,locVALUE);
RETURN locVALUE;
END;
/
SET SERVEROUTPUT ON;
exec DBMS_OUTPUT.PUT_LINE(TEST('current_open_window'));
exec DBMS_OUTPUT.PUT_LINE(TEST('email_sender'));
exec DBMS_OUTPUT.PUT_LINE(TEST('email_server'));
exec DBMS_OUTPUT.PUT_LINE(TEST('event_expiry_time'));
exec DBMS_OUTPUT.PUT_LINE(TEST('log_history'));
exec DBMS_OUTPUT.PUT_LINE(TEST('max_job_slave_processes'));
SET SERVEROUTPUT OFF;

Table 16.7 shows the various attributes that can be set and viewed with SET and GET_
SCHEDULER_ATTRIBUTE procedures. The explanations are mostly self-explanatory.

Tabl e 16 .7    The SET and GET_SCHEDULER_ATTRIBUTE Options

Attribute Description

current_open_window Name of the window currently open

default_timezone Repeat interval’s default timezone

email_sender email address of the sender for job notifications

email_server SMTP server address that the Scheduler uses to send
email notifications

event_expiry_time Time in seconds before an event expires

log_history Retention in days

	 Task Automation with Oracle Scheduler	 937

Working with Jobs
The DBMS_SCHEDULER.CREATE_JOB procedure is used to create a job, which can be executed
directly or executed automatically on a scheduled basis inside the Oracle Scheduler. A simple
job includes the following parameters:

CREATE OR REPLACE PROCEDURE THISIS IS
BEGIN
DBMS_OUTPUT.PUT_LINE('APROCEDURE');
END;
/
SET SERVEROUTPUT ON;
BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name=>'test'
,job_type=>'STORED_PROCEDURE'
,job_action=>'THISIS'
);
END;
/

The parameters for the CREATE_JOB procedure are shown in Table 16.8.

Tabl e 16 . 8    The CREATE_JOB Procedure

Attribute Description

job_name A unique job name.

job_type PL/SQL_BLOCK, STORE_PROCEDURE, EXECUTABLE, CHAIN,
EXTERNAL_SCRIPT, SQL_SCRIPT, BACKUP_SCRIPT (RMAN script).

job_action The piece of code or the name of the object that is executed.
Store procedure IN or OUT parameters are not allowed.

number_of_arguments Number of job arguments.

program_name Name of external executable.

start_date First time of job execution.

repeat_interval The time between each job repetition.

schedule_name The name of the schedule, window, or window group associ-
ated with this job.

938	 Chapter 16  ■  Controlling Resources and Jobs

Attribute Description

job_class The class associated with this job.

end_date After the end date is passed, there are no more executions.

comments This attribute specifies a comment about the job. By default,
this attribute is NULL.

job_style REGULAR or LIGHTWEIGHT (helps performance, but for short
running jobs only).

credential_name The default credential to use with the job.

destination_name The database destination or external destination for the job,
used only for remote database jobs and remote external jobs.

enabled Job is enabled and can be executed. All jobs are created initially
as disabled.

auto_drop Drops the job after next execution.

The job_queue_processes parameter restricts the number of concurrently running job
processes in an Oracle Database 12c database and is set to 1,000 by default.

Setting the database parameter JOB_QUEUE_PROCESSES = 0 will disable the
Oracle Database 12c Scheduler.

The SET_JOB_ARGUMENT_VALUE and SET_JOB_ANYDATA_VALUE procedures can be used for
certain types of jobs in order to alter arguments of things executed by jobs—for example,
changing the default value of a parameter executed by a procedure, which is executed
within a job.

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE(
job_name=>'this is a job name'
,argument_position=>1
,argument_value=>'testing'
);

The RUN_JOB procedure is used to immediately run a job that has already been created,
regardless of any schedule:

SQL> exec DBMS_SCHEDULER.RUN_JOB(job_name=>'test');

Tabl e 16 . 8    The CREATE_JOB Procedure  (continued)

	 Task Automation with Oracle Scheduler	 939

A second parameter, called USE_CURRENT_SESSION, implies that a job can be run as the
owner of the job object, as opposed to the currently connected Oracle user, the latter being
the default (TRUE).

The STOP_JOB procedure simply stops a currently running job:

SQL> exec DBMS_SCHEDULER.STOP_JOB(job_name=>'test');

Other parameters for the STOP_JOB procedure attempt to interrupt or retain the integrity
of data. The FORCE parameter (defaulted to FALSE) uses a graceful method by not brutally ter-
minating the job slave process. The FORCE option set to TRUE will terminate the job slave pro-
cess (needs the MANAGE_SCHEDULER privilege). The COMMIT_SEMANTICS parameter allows a job
to ABSORB_ERRORS or terminate when and if a STOP_ON_FIRST_ERROR occurs. In the example
below, the job completed quickly before the STOP_JOB was executed. When the job is not in
running status when stopped, you get the following error:

Error starting at line 2 in command:
exec DBMS_SCHEDULER.STOP_JOB(job_name=>'test')
Error report:
ORA-27366: job "SYSTEM"."TEST" is not running
ORA-06512: at "SYS.DBMS_ISCHED", line 216
ORA-06512: at "SYS.DBMS_SCHEDULER", line 674
ORA-06512: at line 1
27366. 00000 - "job \"%s.%s\" is not running"
*Cause: An attempt was made to stop a job that was not running.
*Action: Verify the status of the job. If the job is running but this message is
still being returned, contact Oracle support.

The DROP_JOB procedure removes a job from the database:

SQL> exec DBMS_SCHEDULER.DROP_JOB(job_name=>'test');

Additional parameters for the DROP_JOB procedure are FORCE, DEFER, and COMMIT_
SEMANTICS. When FORCE is TRUE, a STOP_JOB procedure will be executed to try to remove any
executions cleanly. The DEFER parameter allows all currently running jobs to run to comple-
tion. The COMMIT_SEMANTICS parameter, in addition to the DROP_JOBS procedure, will allow
the TRANSACTIONAL option, which will terminate on the first error and also rollback.

Figure 16.11 shows the Scheduler Jobs screen from OEM Cloud Control. Here you can
view the scheduled jobs, modify jobs, run the job, or duplicate the job.

Job Classes
Job classes are created inside the SYS schema because they apply to all jobs for all users,
classifying jobs into classes:

exec DBMS_SCHEDULER.CREATE_JOB_CLASS(job_class_name=>'sillyjobs');

The CREATE_JOB_CLASS procedure has the parameters shown in Table 16.9.

940	 Chapter 16  ■  Controlling Resources and Jobs

F igur e 16 .11     OEM – The Scheduler Jobs screen

Tabl e 16 . 9    The CREATE_JOB_CLASS Procedure

Attribute Description

job_class_name Name of the job class.

resource_consumer_group A job class has an associated consumer group, allowing
for controlled resource allocation, defaulting to the default
consumer group if not set.

Service A database service allows for specific access to a specific
instance in a multiple instance Real Applications Cluster
(RAC) database.

logging_level Logging is switched off, when jobs run, or used for failed
runs only.

Both the CREATE_JOB_CLASS and DROP_JOB_CLASS procedures require the MANAGE
SCHEDULER privilege.

exec DBMS_SCHEDULER.DROP_JOB_CLASS(job_class_name=>'sillyjobs');

The DROP_JOB_CLASS has a force option, where jobs belonging to the class will not be
dropped but set to disabled.

Groups
Groups can be created as groups of windows, destinations, or external destinations. The
CREATE_GROUP command looks like this:

begin
DBMS_SCHEDULER.CREATE_GROUP(

	 Task Automation with Oracle Scheduler	 941

group_name=>'things'
,GROUP_TYPE=>'DB_DEST'
,MEMBER=>'LOCAL'
);
end;
/

GROUP_TYPE is DB_DEST, EXTERNAL_DEST, or WINDOW. MEMBER is a comma-delimited list of
group members, which can also be maintained after the fact using the ADD_GROUP_MEMBER
procedure as a name and comma-delimited list-value pair, where the command-delimited list
can consist of one or more items. Also, the REMOVE_GROUP_MEMBER procedure allows removal.

The DROP_GROUP procedure obviously drops a group, and setting the FORCE=TRUE drops
the group even when jobs are referencing it; otherwise, the group will not be dropped.

Special Statistics Gather

As you have seen in Chapter 14, “Maintaining the Database and Managing Performance,”
the AutoTask infrastructure runs the automatic optimizer statistics collection job daily. In
one of my clients, there is a very critical table, where keeping the statics current is crucial
for completing a business functionality within seconds. This table is loaded twice a day
with data from an external source, and data is tailored for US business in one load and for
India business in another load. So the following code was used to schedule and run the
gather table statistics job twice a day. Note the job is created without an existing program
or schedule.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'xxobe.stats_on_wo_table',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN
 DBMS_STATS.GATHER_TABLE_STATS(''xxobe'',''xxfmb01_wo_trans'');
 END;',
 start_date => TRUNC(SYSDATE)+31/24,
 repeat_interval => 'FREQ=DAILY; BYHOUR=7,19',
 enabled => TRUE,
 comments => 'Gather statistics on wo_trans');
END;
/

Start date is specified as next day 7AM, and the job is scheduled to run at 7AM and
7PM daily.

942	 Chapter 16  ■  Controlling Resources and Jobs

Monitoring
The easiest way to work with character-based monitoring in Oracle Database 12c is to look
for specific metadata and performance views in the DICTIONARY table. The following query
will show all scheduler related dictionary views that you can use to find more information
about jobs, programs, groups, windows, and schedules.

SELECT table_name FROM DICTIONARY
where TABLE_NAME like 'DBA_SCHED%' or table_name like 'V$SCHED%'
order by table_name;

The DBA_ views are metadata views that describe data about data (metadata), or the
data that describes the logical structure of a database such as the tables, fields in the tables,
indexes, and so on. The V$ views give information for monitoring the performance of a
database in general, as opposed to the structure of the objects stored inside that database.

DBA_SCHEDULER_JOBS gives a list of jobs in a database, including recent executions, next
executions, successes, failures, the contents of the jobs, what is executed, as well as all sorts
of contextual details. Most of the names for the monitoring views are obvious, such as
JOB_ARGS, JOB_CLASSES, JOB_DESTS, and so on.

Using OEM Cloud Control to create and manage Jobs is much easier for the DBA.
Figure 16.12 shows the Create Job screen of OEM. You can get to this screen by clicking
the Create Job Class button shown in Figure 16.12.

F igur e 16 .12     OEM – The Create Job screen

The Name and Schema fields under the job must be filled in for the job to be created; all
other fields are optional. You determine the frequency at which to run the job in the next
screen, under the Schedule tab. Figure 16.13 shows the Schedule tab.

You can define other options, such as Maximum Run Time, Maximum Failure, and so on
before you save the job definition. Figure 16.14 shows the Options tab of the Create Job screen.

	 Task Automation with Oracle Scheduler	 943

F igur e 16 .13     OEM – The Create Job - Schedule screen

F igur e 16 .14     OEM – The Create Job - Options screen

Relating Tasks with Job Chains
A job chain is a sequence of jobs that are dependent upon each other, as in jobs executed
based on the results of previous jobs executed in the sequence. A number of logical steps
are included in creating a job chain:

	 1.	 Create the chain object.

	 2.	 Set the chain steps.

944	 Chapter 16  ■  Controlling Resources and Jobs

	 3.	 Add rules to the chain and steps in the chain.

	 4.	 Set the chain as enabled.

	 5.	 Create a chain job.

In the process of building, operating, and managing job chains, there are a number of
procedural functions that are used, including those shown in Table 16.10.

Tabl e 16 .10    Job Chains and the DBMS_SCHEDULER Package

Procedure Function

CREATE_CHAIN Create a chain.

ALTER_CHAIN Alter a chain.

DROP_CHAIN Drop a chain.

SET_ATTRIBUTE Make changes to an existing job chain when the chain is
not running.

ALTER_RUNNING_CHAIN Change an existing job chain while it is running.

RUN_CHAIN Execute a chained set of job steps.

DEFINE_CHAIN_RULE Add or change a rule in an existing chain.

DROP_CHAIN_RULE Drop a rule in a chain.

ENABLE or DISABLE Enable or disable a DBMS_SCHEDULER object, including job
chain objects.

DROP_CHAIN_STEP Remove a step from a job chain.

The first step is to create a chain:

exec DBMS_SCHEDULER.CREATE_CHAIN(chain_name => 'chain1');

And then set some chain steps:

BEGIN
DBMS_SCHEDULER.DEFINE_CHAIN_STEP(chain_name => 'chain1'
, step_name => 'step1'
, program_name => 'program1');
DBMS_SCHEDULER.DEFINE_CHAIN_STEP(chain_name => 'chain1'
, step_name => 'step2'
, program_name => 'program2');

	 Task Automation with Oracle Scheduler	 945

END;
/

And now adding a rule where SKIP is set to TRUE and will prevent the step from being
executed, also assuming the step has already been executed:

exec DBMS_SCHEDULER.ALTER_CHAIN('chain1','step2','SKIP',TRUE);

A chain can be enabled or disabled using the following:

exec DBMS_SCHEDULER.ENABLE(name=>'chain1');
exec DBMS_SCHEDULER.DISABLE(name=>'chain1');

Examine and monitor existing chains in a database using the DBA_SCHEDULER_RUNNING_
CHAINS view as follows:

SQL> desc dba_scheduler_running_chains
Name Null Type
------------------- -------- ----------------------------
OWNER NOT NULL VARCHAR2(128)
JOB_NAME NOT NULL VARCHAR2(128)
JOB_SUBNAME VARCHAR2(128)
CHAIN_OWNER NOT NULL VARCHAR2(128)
CHAIN_NAME NOT NULL VARCHAR2(128)
STEP_NAME NOT NULL VARCHAR2(128)
STATE VARCHAR2(15)
ERROR_CODE NUMBER
COMPLETED VARCHAR2(5)
START_DATE TIMESTAMP(6) WITH TIME ZONE
END_DATE TIMESTAMP(6) WITH TIME ZONE
DURATION INTERVAL DAY(9) TO SECOND(6)
SKIP VARCHAR2(5)
PAUSE VARCHAR2(5)
PAUSE_BEFORE VARCHAR2(5)
RESTART_ON_RECOVERY VARCHAR2(5)
RESTART_ON_FAILURE VARCHAR2(5)
STEP_JOB_SUBNAME VARCHAR2(128)
STEP_JOB_LOG_ID NUMBER

Lastly, you can create a job for a chain as follows:

BEGIN
DBMS_SCHEDULER.CREATE_JOB (
job_name => 'chainjob1'
,job_type => 'CHAIN'

946	 Chapter 16  ■  Controlling Resources and Jobs

,job_action => 'chain1'
,repeat_interval => 'freq=daily;byhour=12;byminute=0;bysecond=0'
,enabled => TRUE
);
END;

/

If you omit the REPEAT_INTERVAL parameter, the job will not be scheduled;
therefore, the job will run immediately.

Run a chain using the RUN_CHAIN procedure:

BEGIN
DBMS_SCHEDULER.RUN_CHAIN(
chain_name=>'chain1'
,job_name=>'someofit'
,start_steps=>'step1, step2');
END;
/

Finally, drop a chain using the DROP_CHAIN procedure:
exec DBMS_SCHEDULER.DROP_CHAIN(chain_name=>'chain1',force=>TRUE);

For a chain job to execute, at least one step in the chain must be enabled.
Conversely, one step in a chain must have the END action set to TRUE; other-
wise, the chain can stall.

A chain job can be stopped using the STOP_JOB procedure and dropped using the
DROP_JOB procedure, as follows:

exec dbms_scheduler.stop_job(job_name=>'CHAINJOB1');
exec dbms_scheduler.drop_job(job_name=>'CHAINJOB1');

You can also drop an entire chain using the DROP_CHAIN procedure:

exec dbms_scheduler.drop_chain(chain_name=>'SYSTEM.CHAINJOB1');

Finally, chains can be monitored using the DBA%CHAIN metadata:

select table_name from dictionary
where table_name like 'DBA%CHAIN%' or table_name like 'V$%CHAIN%';

	 Task Automation with Oracle Scheduler	 947

TABLE_NAME

DBA_SCHEDULER_CHAINS
DBA_SCHEDULER_CHAIN_RULES
DBA_SCHEDULER_CHAIN_STEPS
DBA_SCHEDULER_RUNNING_CHAINS
V$WAIT_CHAINS

Scheduling Jobs on Remote Systems
A job can be scheduled to execute on a remote system by specifying one or more destinations
where the job will run. A single destination can be specified using a single job attribute, or
by using a destination group that contains one or more destinations. Each destination can be
either external (a remote host name and IP address) or a database destination (remote data-
base instance); the destination allows a job to be executed on that remote database.

If a destination group has a group member called LOCAL, the job is executed
locally as well as remotely.

A destination can be created using the CREATE_DATABASE_DESTINATION procedure:

BEGIN
DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION(
destination_name => 'my_other_database'
agent => 'agent_on_another_server'
tns_name => 'database_tns_name'
);
END;
/

You can examine existing destinations using the metadata views:

DBA_SCHEDULER_DESTS

DBA_SCHEDULER_EXTERNAL_DESTS

DBA_SCHEDULER_DB_DESTS

DBA_SCHEDULER_JOB_DESTS

Connecting to a remote machine or a remote database requires credentials, which can be
set up using the CREATE_CREDENTIAL procedure (the DATABASE_ROLE parameter is optional):

BEGIN
DBMS_SCHEDULER.CREATE_CREDENTIAL(

948	 Chapter 16  ■  Controlling Resources and Jobs

credential_name => 'myID'
username => 'mylogin'
password => 'my_encrypted_password'
database_role => SYSDBA
);
END;

/

You can examine credentials using the metadata views:

DBA_SCHEDULER_CREDENTIALS

DBA_CREDENTIALS

Creating a group of items, such as a group of multiple destination objects, requires the
use of the CREATE_GROUP procedure, as discussed previously in this chapter, where a group
can be created as a DB_DEST (database destination), EXTERNAL_DEST (a remote machine iden-
tified by hostname and IP address), or as a WINDOW (Scheduler window object collection).

Creating a remote job with a single destination and credential requires one of each:

BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name => 'test'
,job_type => 'STORED_PROCEDURE'
,job_action => 'THISIS'
,credential_name => 'myID'
,destination_name => 'my_other_database'
);
END;
/

Groups of items such as credentials and destinations can be found in the three metadata
views for Scheduler groups (DBA_SCHEDULER_GROUPS, ALL_SCHEDULER_GROUPS, and USER_
SCHEDULER_GROUPS) if needed.

Prioritizing Jobs with Oracle Scheduler
By applying varying priorities to jobs, you indicate that some jobs are more important than
others, should run before others, or should have more hardware resources allocated to them
than other jobs. You can prioritize jobs in Oracle Database 12c using job classes or windows
(or windows groups), as well as by having the Resource Manager applied to specific jobs
(covered earlier in this chapter).

Window and window groups are beyond the scope of this book.

	 Task Automation with Oracle Scheduler	 949

A job can then use the Database Resource Manager to allocate resources to a job in a
database resource consumer group. Additionally, job classes can be used to set priorities
where jobs are assigned those prioritized job classes.

When using priorities in job classes, your first task is to create a job class using the
CREATE_JOB_CLASS procedure. You begin by looking up resource consumer groups:

select table_name from dictionary
where table_name like 'DBA%CONSUMER%';
TABLE_NAME

DBA_HIST_RSRC_CONSUMER_GROUP
DBA_RSRC_CONSUMER_GROUPS
DBA_RSRC_CONSUMER_GROUP_PRIVS
DBA_STREAMS_MESSAGE_CONSUMERS

Next, examine the various consumer groups:

BATCH_GROUP
ORA$AUTOTASK
INTERACTIVE_GROUP
OTHER_GROUPS
DEFAULT_CONSUMER_GROUP
SYS_GROUP
LOW_GROUP
ETL_GROUP
DSS_GROUP
DSS_CRITICAL_GROUP
ORA$APPQOS_0
ORA$APPQOS_1
ORA$APPQOS_2
ORA$APPQOS_3
ORA$APPQOS_4
ORA$APPQOS_5
ORA$APPQOS_6
ORA$APPQOS_7

Then create a job class, assigning the prioritization of the consumer group to the job
class, ultimately assigning jobs to the job class:

BEGIN
DBMS_SCHEDULER.CREATE_JOB_CLASS(
job_class_name => 'jobclass1', resource_consumer_group => 'ETL_GROUP'
);

950	 Chapter 16  ■  Controlling Resources and Jobs

END;
/

You could also use the SET_ATTRIBUTE procedure to assign a job priority to jobs within a
job class, between priorities of 1 and 5:

BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name=>'test'
,job_type=>'STORED_PROCEDURE'
,job_action=>'THISIS'
);
END;

/

Next, assign the specific priority:

BEGIN
DBMS_SCHEDULER.SET_ATTRIBUTE (
name => 'test',
attribute => 'job_priority',
value => 1
);
END;
/

You can examine the job class priorities later in the DBA_SCHEDULER_JOBS metadata view:

select owner,job_name,program_name,job_priority
from dba_scheduler_jobs order by 4;

OWNER JOB_NAME PROGRAM_NAME PRIORITY
------- ----------------------- ----------------- ---------
SYSTEM TEST 1
SYS XMLDB_NFS_CLEANUP_JOB 3
SYSTEM TEST2 3
SYSTEM MYJOB MYPROG 3
....

	 Exam Essentials	 951

Summary
This chapter introduced resource management and scheduling in Oracle Database 12c.
Resource management was broken into the basic metadata components of consumer groups,
plans, and allocation methods, followed by configuration, creating and maintaining resource
objects, and finally monitoring. Scheduling was divided into the general architecture of the
Oracle Scheduler, followed by some work using the Scheduler and its various constituent
components.

You completed this chapter by examining some specific scenarios that covered job
chains, remote systems, and prioritization. You learned what resources and scheduling are,
and all about how to create, manage, use, and maintain them.

Exam Essentials

Know the Resource Manager components.    Oracle divides resource management into parts
including consumer groups, plans, plan directives, and methods of allocating resources.
Understand what each part (object) is, what every part does, and how they link together.

Know about resource management configuration.    Learn about the Resource Manager–
specific privileges, mapping rules, and mapping priorities. Know how to switch consumer
groups.

Know about creating, updating, and deleting resource consumer objects.    Understand that
resource consumer objects have interdependencies and that the sequence of creation, updat-
ing, and deletion is sometimes very important, depending on the Resource Manager object
being used.

Know how to define and create schedules.    Understand that Oracle Scheduler has some
basic components that include jobs, job classes, and groups, which all interlink and interre-
late. Learn, however, that the most basic and commonly used component is just the job.

Know the basic metadata views.    Understand that resource management and scheduling
metadata views.

952	 Chapter 16  ■  Controlling Resources and Jobs

Review Questions

	 1.	 Which of these is performed by the Resource Manager?

	 A.	 Percentages of CPU time are split up.

	 B.	 Percentages of memory are split up.

	 C.	 Percentages of swap space in *nix and virtual memory in Windows are split up.

	 D.	 Disk space is split up.

	 2.	 Which of these can be controlled by Resource Manager?

	 A.	 Active session limits per user groups

	 B.	 Assigning priorities

	 C.	 Controlling runaway or out-of-control sessions

	 D.	 Session idle time limits

	 E.	 All of the above

	 3.	 Which of the following is the most significant and most effective allocation method
controlled by the Resource Manager?

	 A.	 Allocate CPU use between competing sessions

	 B.	 Allocate CPU use between competing sessions based on priorities

	 C.	 Limiting parallel processing

	 D.	 Session idle time limits

	 4.	 How can runaway sessions be curtailed and prevented from overwhelming a system?
(Choose two.)

	 A.	 Automatically aborting a session when archive log space is filled

	 B.	 Automatically aborting a session when rollback reaches an upper limit

	 C.	 Automatically aborting a transaction inside a session when the transaction is
too large

	 D.	 Automatically changing the CPU use of a session to a consumer group with a
lower priority

	 5.	 Which of these is a Resource Manager object?

	 A.	 Plan direction

	 B.	 Resource consumer plan

	 C.	 Resource allocation method

	 D.	 Subplan directive

	 Review Questions	 953

	 6.	 Which of these packages are used to administer the Resource Manager? (Choose two.)

	 A.	DBMS_RESOURCE_MANAGER

	 B.	DBMS_RESOURCE_MANAGEMENT

	 C.	DBMS_RESOURCE_MANAGE

	 D.	DBMS_RESOURCE_MANAGER_PRIVS

	 E.	 DBMS_RESOURCE_MANAGEMENT_PRIVS

	 7.	 A consumer group object can be assigned to which of the following? (Choose two.)

	 A.	 A plan

	 B.	 A subplan

	 C.	 A consumer group

	 D.	 None of the above

	 8.	 If a plan contains two subplans and one consumer group is below the subplan level,
and each of the subplans is allocated 45 percent of CPU cycles each, what is the most
that can be allocated to the consumer group, assuming that the subplans and plan are
fully occupied?

	 A.	11 percent

	 B.	 45 percent

	 C.	 5 percent

	 D.	 0 percent

	 E.	 None of the above

	 9.	 Which of these can help prevent parallel processing limits from being exceeded, and
help to prevent a database from being swamped by parallel executing queries?

	 A.	 Degree of parallelism

	 B.	 Parallel server processes

	 C.	 Parallel queue timeouts

	 D.	 All of the above

	 E.	 None of the above

	10.	 How many levels of utilization are there for CPU allocation in the Resource Manager?

	 A.	 0

	 B.	 1

	 C.	 15

	 D.	 8

	 E.	 None of the above

954	 Chapter 16  ■  Controlling Resources and Jobs

	11.	 Which database parameter has an impact on running the Scheduler jobs?

	 A.	 PARALLEL_MAX_SERVERS

	 B.	 JOB_QUEUE_PROCESSES

	 C.	 AQ_TM_PROCESSES

	 D.	 JOB_SCHEDULE_PROCESSES

	12.	 Which of these are valid Resource Manager–specific privileges?

	 A.	 GRANT_SYSTEM_PRIVS

	 B.	 GRANT_SYSTEM_PRIVILEGES

	 C.	 GRANT_SYS_PRIVS

	 D.	 None of the above

	13.	 Which of these are initial default resource consumer groups? (Choose two.)

	 A.	 SYSTEM_GROUP

	 B.	 OTHER_GROUP

	 C.	 OTHER_SYSTEM_GROUP

	 D.	 SYS_GROUP

	 E.	OTHER_GROUPS

	14.	 With what types of resources does the CREATE_SIMPLE_PLAN procedure work?

	 A.	 *nix cron jobs

	 B.	 Oracle Scheduler job classes

	 C.	 CPU resource allocations only

	 D.	 Creates multiple plans

	 E.	 None of the above

	15.	 How many consumer groups, CPU percentages, and simple plans can the
CREATE_SIMPLE_PLAN procedure create?

	 A.	 4, 4, and 1

	 B.	 8, 8, and 8

	 C.	 1, 1, and 8

	 D.	 8, 8, and 1

	 E.	 None of the above

	 Review Questions	 955

	16.	 Why does the pending area exist? (Choose the best answer.)

	 A.	 Because there is only one plan active at one time.

	 B.	 Because there is only one plan active at one time, and changing the pending area
changes the running plan.

	 C.	 Because there is only one plan active at one time, and changing the pending area
does not change the actively running plan.

	 D.	 Because there is only one plan active at one time, and changing the pending area
does not change the actively running plan until the pending area has been validated.

	 E.	 None of the above.

	17.	 How can you tell if a job is disabled in the Oracle Scheduler?

	 A.	 Use the DBA_SCHEDULER view.

	 B.	 Use the DBA_SCHEDULER_JOBS view.

	 C.	 Use the DBA_JOBS view.

	 D.	 All of the above.

	 E.	 None of the above.

	18.	 If a Scheduler job completes and it will run again in the future, what is its STATE setting?

	 A.	 COMPLETE

	 B.	 RUNNABLE

	 C.	 EDIBLE

	 D.	 SCHEDULED

	19.	 If you create a job using the CREATE_JOB procedure, how many times can it be executed?

	 A.	 Once

	 B.	 As many times as it is scheduled

	 C.	 Never

	 D.	 Twice

	 E.	 None of the above

	20.	 Which query can be used to find the names of Oracle Scheduler metadata views?

	 A.	 SELECT table_name FROM dictionary WHERE table_name LIKE 'DBA%SCHED%';

	 B.	 SELECT table_name FROM dictionary WHERE table_name LIKE 'DBA%PLAN%';

	 C.	 SELECT table_name FROM dictionary WHERE table_name LIKE 'DBA%JOB%';

	 D.	 SELECT table_name FROM dictionary WHERE table_name LIKE 'DBA%RSRC%';

Chapter

17
Upgrading to Oracle
Database 12c

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Upgrading Oracle Database Software

■■ Describe upgrade methods.

■■ Describe data migration methods.

■■ Describe the upgrade process.

✓✓ Preparing to Upgrade to Oracle Database 12c

■■ Describe upgrade requirements when certain features or

options are used in Oracle Database.

■■ Use the Pre-Upgrade Information tool before performing

an upgrade.

■■ Prepare the new Oracle home prior to performing

an upgrade.

✓✓ Upgrading to Oracle Database 12c

■■ Upgrade the database to Oracle Database 12c by using the

Database Upgrade Assistant (DBUA).

■■ Perform a manual upgrade to Oracle Database 12c by using

scripts and tools.

✓✓ Performing Post-Upgrade Tasks

■■ Migrate to unified auditing.

■■ Perform post-upgrade tasks.

DBAs upgrade a database from one release to a higher release
so that they can utilize new features and have a supported
database version. Having a supported version of a database is

important so that they can get bug fixes and security patches. Oracle typically announces the
“de-support” date for a database version several months ahead of the date so that DBAs can
plan and test the database upgrade. When you’re ready to transform your pre-12c database to
Oracle Database 12c, follow the database upgrade process. Before upgrading the production
database, make sure you upgrade all nonproduction databases and that you thoroughly test
all the application features.

Oracle Database 12c has several upgrade options. Depending on the version of the database
and the required end state of the database, you can choose the best upgrade option. If you are
looking for consolidation as part of your Oracle Database 12c migration strategy, you can use
data-migration tools to move data from a pre-12c database to Oracle Database 12c.

Upgrading an Oracle database to Oracle Database 12c typically involves these tasks:

■■ Identify the supported upgrade options for the older database.

■■ Decide on the method to be used to upgrade the older database.

■■ Verify if the older database is ready for direct upgrade.

■■ Upgrade the older database.

In this chapter, you will learn the pre-upgrade tasks, the various methods to upgrade the
database or to migrate data to a 12c database, and the post-upgrade tasks.

This chapter covers the upgrade topics specified by the OCA exam objec-
tives. We highly recommend that you read and understand “Oracle Data-
base Upgrade Guide 12c Release 1 (12.1) part E17642-14” or the latest release
of the document found online at http://docs.oracle.com.

Determining the Database
Upgrade Method
As a DBA, you will need to consider several factors before deciding on the best method
for moving an application that uses an older version of Oracle to Oracle Database 12c.
Although the terms database upgrade and database migration are often used synonymously,

http://docs.oracle.com

	 Determining the Database Upgrade Method 	 959

they present two different methods for moving to Oracle Database 12c. Database upgrade
is the process of upgrading the Oracle database data dictionary and components to Oracle
Database 12c. In the upgrade process, the actual data in the database is untouched—the
application tables and tablespaces remain “as is.” In database migration, the data from one
database is moved or migrated to an already-created Oracle Database 12c database. The fol-
lowing options are available for the DBA to move to Oracle Database 12c from a prior release
of Oracle database.

■■ Perform a direct upgrade using Database Upgrade Utility (DBUA). DBUA is a GUI
tool to upgrade an existing database to Oracle Database 12c. Using DBUA is the pre-
ferred and easiest method.

■■ Perform a direct upgrade by running scripts. (This is a manual upgrade.)

■■ Export/import utilities to copy data to a new Oracle Database 12c database.

■■ Copy data to a new Oracle Database 12c database using SQL tools.

■■ Use the transportable tablespace feature to move application tablespaces or an entire
database to Oracle Database 12c.

Using Direct Upgrade
A direct upgrade gives you the option to upgrade the database to Oracle Database 12c
without moving the database to another server or platform. This upgrade method is also
known as an in-place upgrade. To be able to perform the direct upgrade, the Oracle data-
base must be one of the following versions.

■■ Oracle Database 11g Release 2 – 11.2.0.2 or higher

■■ Oracle Database 11g Release 1 – 11.1.0.7

■■ Oracle Database 10g Release 2 – 10.2.0.5

If the source database is not at the proper patch level of the release, or if you are on a
lower release, you will have to adopt the indirect upgrade method to upgrade to Oracle
Database 12c. First, upgrade the database to a release supported by direct upgrade, and
then upgrade to Oracle Database 12c. Alternatively, you can choose to perform a migration
upgrade—that is, migrate the data to an Oracle Database 12c database. Figure 17.1 shows
the direct upgrade path. As an indirect upgrade example, if the database version is 8.1.7.4,
you must first upgrade to 10.2.0.5 before you can start the Oracle Database 12.1 upgrade.

A direct upgrade can be accomplished using two methods:

■■ Using Database Upgrade Assistant (DBUA)

■■ Performing a manual upgrade using scripts

DBUA is a GUI tool that performs the pre-upgrade checks, the upgrade, and the
post-upgrade tasks for you after obtaining a few inputs from you. However, in the man-
ual upgrade method, you have to perform each step manually and make sure you execute
the scripts in the right order and monitor for errors.

960	 Chapter 17  ■  Upgrading to Oracle Database 12c

F igur e 17.1     The upgrade path to Oracle Database 12c

Find DB
version

V$VERSION

No

No

No

Yes

Yes

Yes

<
10.2.0.5

Upgrade
to 11.1.0.7

<
11.1.0.7

Upgrade to
10.2.0.5

Upgrade
to 11.2.0.2
or higher

<
11.2.0.2

Direct
Upgrade to

12.1

Oracle Release Numbers

Oracle Release numbers have five positions separated by dots, for example, 12.1.0.1.0.
The first position indicates the major release number, the second position is the main-
tenance release number, the third position is applicable only for the application server
release number, the fourth is the major patch release number, and the last position is
the platform-specific release number. When you apply a Patch Set Update (PSU), the last
position changes. To apply the major patch release (for example, 12.1.0.1.0 to 12.1.0.2.0),
you will have to install Oracle software in a separate Oracle home directory.

The direct upgrade method at a high level includes the following steps.

■■ Run the Pre-Upgrade Information tool and review the results. Fix any issues or errors
reported by the tool.

■■ In case the upgrade does not go well or encounters an error, to get back to where we
started, backup the database before starting the upgrade.

■■ Install Oracle Database 12c software (you learned about this software install in
Chapter 9, “Creating and Operating Oracle Database 12c”).

■■ Start up the instance from the Oracle Database 12c home.

	 Determining the Database Upgrade Method 	 961

■■ Upgrade the database.

■■ Run the Post-Upgrade Status tool and review the status of the components.

■■ Recompile any invalid objects.

■■ Test the application.

When you use DBUA to perform the upgrade, the Pre-Upgrade Information tool script
is run, and the results are shown for your review. DBUA upgrades the database and also
runs the Post-Upgrade Status tool. We will show you the output from the Pre-Upgrade
Information and Post-Upgrade Status tools later in the chapter.

Let’s review the other options that are available if you are unable to or do not want to
perform a direct upgrade.

Migrating to Oracle Database 12c
There may be situations where you cannot perform a direct upgrade of the database. Although
a direct upgrade using DBUA is the easiest and safest upgrade method, you may have to use
the migration method when:

■■ The database is not on one of the releases supported by a direct upgrade, and you do
not want (or do not have the outage window) to perform a two-phased upgrade.

■■ You want to change the server hardware and/or operating system during the upgrade.

■■ You want to minimize the downtime required for the upgrade.

Migrating a database to Oracle Database 12c at a high level includes these steps.

■■ Install Oracle Database 12c software (you learned about doing a software install in
Chapter 9).

■■ Create a new or use an existing Oracle Database 12c database.

■■ Copy database objects using the various migration methods available.

■■ Configure the application to use the new database.

■■ Test the application.

One great advantage of using an indirect upgrade of an Oracle database
is that it provides the ability to easily roll back to an older database. The
source database is kept intact, and the rollback process entails just starting
up the old database and listener.

Oracle Database 12c supports the following migration methods.

■■ Using Data Pump Export and Import if the database is 10g or higher. For legacy data-
bases, the traditional export/import method is supported. This method is suitable for
databases that are not supported by the direct upgrade method, as well as for when you
are planning a platform or server migration during the upgrade.

962	 Chapter 17  ■  Upgrading to Oracle Database 12c

■■ Create table and copy data using the CREATE TABLE AS SELECT method through a data-
base link. There are several restrictions when using this method, and it is not practical
in many situations. For example, this method will not work if the table has a column of
datatype LONG.

To reduce the downtime window, the following migration methods can be considered:

■■ Use the transportable tablespace feature to move the self-contained application
tablespaces. This method can be used if you are considering a platform migration
as well.

■■ Use Oracle Data Guard SQL Apply on a logical standby database to perform a rolling
upgrade to Oracle Database 12c.

■■ Use Oracle Golden Gate to perform an online database upgrade to Oracle Database 12c.

■■ If the database is 11.2.0.3 or higher, use the transport database feature of Oracle Data
Pump. If the target platform’s endianness is different, the data file needs to be con-
verted using RMAN.

Oracle Data Pump utilities and legacy exp/imp tools are discussed in
Chapter 18, “Using Grid Infrastructure and Data Movement Tools.”

The direct upgrade (DBUA or manual) and migration using Data Pump utilities are the
most common methods used for database migration. Table 17.1 shows the pros and cons of
each method.

Tabl e 17.1    Comparison of Upgrade Methods

Method Advantages Disadvantages

Direct Upgrade
Using DBUA

Guides you through the process.

All tasks are automated.

Supports RAC upgrade.

Runs prerequisite script and fixes errors.

Upgrades status report.

Data file migration to different location or
ASM possible.

Less control over the
upgrade process.

Must be on a specific
release level.

No hardware or operating
system platform migration.

Manual Upgrade More control over upgrade tasks. Error prone.

More work for the DBA.

Manual error checks
required.

Must be on a specific
release level.

No hardware or operating
system platform migration.

	 Preparing for a Database Upgrade	 963

Method Advantages Disadvantages

Export/Import Can be on any database release.

Defragments data.

Provides control over which tables are
copied or not copied.

Source database is intact and serves as
backup or archive.

Server hardware or platform migration
possible.

May take a long time
depending on database
size.

Import errors need to be
fixed.

Full Transport-
able Export/
Import

Exports all objects and data necessary to
create a complete copy of database.

Only metadata from objects residing in
transportable tablespaces exported.

Objects in nontransportable tablespaces
(SYSTEM, SYSAUX) have both metadata and
data exported.

Server hardware or platform migration
possible.

Works only on databases
higher than 11.2.0.3.

Once you have decided to perform a direct upgrade of the database to Oracle Database 12c,
you need to begin making preparations.

An Oracle database upgrade using Data Pump utilities is discussed in
Chapter 18. This option entails nothing more than copying data from a
lower version of Oracle database to Oracle Database 12c. Full Transport-
able Export/Import is also discussed in Chapter 18.

Preparing for a Database Upgrade
Updating a database from one version to another is a major activity that requires thorough
testing of the application for functionality and performance. Preparation, testing, and prac-
tice help reduce errors and avoid unforeseen circumstances specific to your environment that
might prevent the production upgrade from successfully completing. During the preparation
stage, you also need to plan contingency measures in case the upgrade is not successful for
some reason. To help the DBA prepare for the upgrade and avoid errors, Oracle provides
a set of tools to prepare the database and software environment so they are ready for the
upgrade. The primary tool is the Pre-Upgrade Information script, which has a series of
checks and also provides a script to fix the errors.

964	 Chapter 17  ■  Upgrading to Oracle Database 12c

Running the Pre-Upgrade Information Tool
The Pre-Upgrade Information tool is shipped with Oracle Database 12c software,
which includes two scripts under the $ORACLE_HOME/rdbms/admin directory. You may
copy these two scripts to any directory or run them from the rdbms/admin directory
under the Oracle Database 12c home itself on the database that you want to upgrade to
12c. If the Oracle Database 12c software is not installed on the server where the current
database is running, you can simply copy preupgrd.sql and utluppkg.sql scripts.

Invoke the preupgrd.sql connected as SYSDBA on the database you want to upgrade. This
script loads utluppkg.sql (which defines the dbms_preup package) and then makes calls to
the pre-upgrade package functions to determine the status of the to-be-upgraded database.
You may pass two optional parameters to the script. The first parameter is TERMINAL or FILE,
to indicate where the output goes. The second parameter is TEXT or XML, to indicate the type
of output file. XML is used by DBUA. When you run the preupgrd.sql script without any
parameters, the output goes to FILE in TEXT format.

If $ORACLE_BASE is defined, the generated scripts and log files are saved in $ORACLE_BASE/
cfgtoollogs/db_unique_name/preupgrade directory. If $ORACLE_BASE is not defined, then
the generated scripts and log files are created in $ORACLE_HOME/cfgtoollogs/db_unique_
name/preupgrade. We recommend that you create the $ORACLE_BASE/cfgtoollogs/db_
unique_name directory, if it does not exist, and define ORACLE_BASE before running the script.

Oracle uses DBMS_REGISTRY package to determine the components to be upgraded. In
versions Oracle Database 10g and higher, the database and all the components have been
integrated into the registry. DBA_REGISTRY displays information about all components in
the database that are loaded into the component registry. The component registry tracks
components that can be separately loaded into the Oracle database. If scripts are used to
upgrade/downgrade the dictionary elements for the component, then those scripts also
record status and version information.

The following is an example of running the preupgrd.sql script on an 11.2.0.4 database.

SQL> @preupgrd
Loading Pre-Upgrade Package...
Executing Pre-Upgrade Checks...
Pre-Upgrade Checks Complete.
Results of the checks are located at:
 /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/preupgrade.log

Pre-Upgrade Fixup Script (run in source database environment):
 /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/preupgrade_fixups.sql

Post-Upgrade Fixup Script (run shortly after upgrade):
 /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/postupgrade_fixups.sql
 Fixup scripts must be reviewed prior to being executed.
 ====>> USER ACTION REQUIRED <<====
 The following are *** ERROR LEVEL CONDITIONS *** that must be addressed

	 Preparing for a Database Upgrade	 965

 prior to attempting your upgrade.
 Failure to do so will result in a failed upgrade.
 1) Check Tag: AUDSYS_USER_PRESENT
 Check Summary: Verify if a user or role with the name AUDSYS exists
 Fixup Summary:
 "The AUDSYS user or role must be dropped prior to upgrading."
 +++ Source Database Manual Action Required +++
 2) Check Tag: AUDIT_VIEWER
 Check Summary: Verify if a user or role with the name AUDIT_VIEWER exists
 Fixup Summary:
 "The AUDIT_VIEWER role or user must be dropped prior to upgrading."
 +++ Source Database Manual Action Required +++
 3) Check Tag: PURGE_RECYCLEBIN
 Check Summary: Check that recycle bin is empty prior to upgrade
 Fixup Summary:
 "The recycle bin will be purged."
 You MUST resolve the above errors prior to upgrade

The output shows the location of the log file and pre- and post-fix-up scripts. To help
you understand what checks are performed and the issues identified by the tool, we’ll show
you the log file:

$ cat /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/preupgrade.log
Oracle Database Pre-Upgrade Information Tool 01-11-2014 12:47:41
Script Version: 12.1.0.1.0 Build: 006
**
 Database Name: OCAD11
 Version: 11.2.0.4.0
 Compatible: 11.2.0.4.0
 Blocksize: 8192
 Platform: Linux x86 64-bit
 Timezone file: V14
**
 [Renamed Parameters]
 [No Renamed Parameters in use]
**
 [Obsolete/Deprecated Parameters]
--> log_archive_start 10.1 DESUPPORTED
--> max_enabled_roles 10.1 DESUPPORTED

 [Changes required in Oracle Database init.ora or spfile]

966	 Chapter 17  ■  Upgrading to Oracle Database 12c

**
 [Component List]
**
--> Oracle Catalog Views [upgrade] VALID
--> Oracle Packages and Types [upgrade] VALID
--> JServer JAVA Virtual Machine [upgrade] VALID
--> Oracle XDK for Java [upgrade] VALID
--> Oracle Workspace Manager [upgrade] VALID
--> OLAP Analytic Workspace [upgrade] VALID
--> Oracle Enterprise Manager Repository [upgrade] VALID
--> Oracle Text [upgrade] VALID
--> Oracle XML Database [upgrade] VALID
--> Oracle Java Packages [upgrade] VALID
--> Oracle Multimedia [upgrade] VALID
--> Oracle Spatial [upgrade] VALID
--> Expression Filter [upgrade] VALID
--> Rule Manager [upgrade] VALID
--> Oracle Application Express [upgrade] VALID
--> Oracle OLAP API [upgrade] VALID
**
 [Tablespaces]
ERROR: --> SYSTEM tablespace is not large enough for the upgrade.
 currently allocated size: 760 MB
 minimum required size: 1262 MB
 increase current size by: 502 MB
 tablespace is NOT AUTOEXTEND ENABLED.
ERROR: --> SYSAUX tablespace is not large enough for the upgrade.
 currently allocated size: 570 MB
 minimum required size: 1476 MB
 increase current size by: 906 MB
 tablespace is NOT AUTOEXTEND ENABLED.
--> UNDOTBS1 tablespace is adequate for the upgrade.
 minimum required size: 400 MB
--> TEMP tablespace is adequate for the upgrade.
 minimum required size: 60 MB
--> EXAMPLE tablespace is adequate for the upgrade.
 minimum required size: 310 MB
 [make adjustments in the current environment]
**
 [Pre-Upgrade Checks]
**

	 Preparing for a Database Upgrade	 967

WARNING: --> Process Count may be too low
 Database has a maximum process count of 150 which is lower than the
 default value of 300 for this release.
 You should update your processes value prior to the upgrade
 to a value of at least 300.
 For example:
 ALTER SYSTEM SET PROCESSES=300 SCOPE=SPFILE
 or update your init.ora file.

ERROR: --> A user or role with the name "AUDSYS" found in the database.

 This is an internal account used by Oracle Database Auditing.
 You must drop this user or role prior to upgrading.

ERROR: --> A user or role with the name "AUDIT_VIEWER" found in the database.

 This is an Oracle defined role.
 You must drop this role or user prior to upgrading.

WARNING: --> Enterprise Manager Database Control repository found in the
database

 In Oracle Database 12c, Database Control is removed during
 the upgrade. To save time during the Upgrade, this action
 can be done prior to upgrading using the following steps after
 copying rdbms/admin/emremove.sql from the new Oracle home
 - Stop EM Database Control:
 $> emctl stop dbconsole

 - Connect to the Database using the SYS account AS SYSDBA:

 SET ECHO ON;
 SET SERVEROUTPUT ON;
 @emremove.sql
 Without the set echo and serveroutput commands you will not
 be able to follow the progress of the script.

WARNING: --> Existing DBMS_LDAP dependent objects

 Database contains schemas with objects dependent on DBMS_LDAP package.
 Refer to the Upgrade Guide for instructions to configure Network ACLs.
 USER APEX_030200 has dependent objects.

mailto:@emremove.sql

968	 Chapter 17  ■  Upgrading to Oracle Database 12c

WARNING: --> Database contains INVALID objects prior to upgrade

 The list of invalid SYS/SYSTEM objects was written to
 registry$sys_inv_objs.
 The list of non-SYS/SYSTEM objects was written to
 registry$nonsys_inv_objs unless there were over 5000.
 Use utluiobj.sql after the upgrade to identify any new invalid
 objects due to the upgrade.

INFORMATION: --> OLAP Catalog(AMD) exists in database

 Starting with Oracle Database 12c, OLAP is desupported.
 If you are not using the OLAP Catalog component and want
 to remove it, then execute the
 ORACLE_HOME/oraolap/admin/catnoamd.sql script before or
 after the upgrade.

INFORMATION: --> Older Timezone in use

 Database is using a timezone file older than version 18.
 After the upgrade, it is recommended that DBMS_DST package
 be used to upgrade the 11.2.0.4.0 database timezone version
 to the latest version which comes with the new release.
 Please refer to My Oracle Support note number 977512.1 for details.

ERROR: --> RECYCLE_BIN not empty.
 Your recycle bin contains 3 object(s).
 It is REQUIRED that the recycle bin is empty prior to upgrading.
 Immediately before performing the upgrade, execute the following
 command:
 EXECUTE dbms_preup.purge_recyclebin_fixup;
**
 [Pre-Upgrade Recommendations]
**

 ********* Dictionary Statistics *********

Please gather dictionary statistics 24 hours prior to
upgrading the database.

	 Preparing for a Database Upgrade	 969

To gather dictionary statistics execute the following command
while connected as SYSDBA:
 EXECUTE dbms_stats.gather_dictionary_stats;

^^^ MANUAL ACTION SUGGESTED ^^^

**
 [Post-Upgrade Recommendations]
**

 ******** Fixed Object Statistics ********

Please create stats on fixed objects two weeks
after the upgrade using the command:
 EXECUTE DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

^^^ MANUAL ACTION SUGGESTED ^^^

**
 ************ Summary ************

 5 ERRORS exist that must be addressed prior to performing your upgrade.
 4 WARNINGS that Oracle suggests are addressed to improve database performance.
 2 INFORMATIONAL messages that should be reviewed prior to your upgrade.

 After your database is upgraded and open in normal mode you must run
 rdbms/admin/catuppst.sql which executes several required tasks and completes
 the upgrade process.

 You should follow that with the execution of rdbms/admin/utlrp.sql, and a
 comparison of invalid objects before and after the upgrade using
 rdbms/admin/utluiobj.sql

 If needed you may want to upgrade your timezone data using the process
 described in My Oracle Support note 977512.1

970	 Chapter 17  ■  Upgrading to Oracle Database 12c

To fix the issues identified before the upgrade, you can run the preupgrade_fixups.sql
script. This script uses the dbms_preup.run_fixup_and_report routine to fix the issues.
Here is a sample of the script, with only a few lines shown.

$ cat /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/preupgrade_fixups.sql
REM Pre-Upgrade Script Generated on: 2014-01-11 12:47:39
REM Generated by Version: 12.1.0.1 Build: 006
SET ECHO OFF SERVEROUTPUT ON FORMAT WRAPPED TAB OFF LINESIZE 750;
BEGIN
 dbms_output.put_line ('Pre-Upgrade Fixup Script Generated on 2014-01-11
12:47:39 Version: 12.1.0.1 Build: 006');
 dbms_output.put_line ('Beginning Pre-Upgrade Fixups...');
END;
/
BEGIN
dbms_preup.clear_run_flag(TRUE);
END;
/
BEGIN
-- ***************** Fixup Details ***********************************
-- Name: DEFAULT_PROCESS_COUNT
-- Description: Verify min process count is not too low
-- Severity: Warning
-- Action: ^^^ MANUAL ACTION REQUIRED ^^^
-- Fix Summary:
-- Review and increase if needed, your PROCESSES value.

dbms_preup.run_fixup_and_report('DEFAULT_PROCESS_COUNT');
END;
/

When you run the preupgrade_fixups.sql script, it fixes some of the trivial issues, but
it does not fix the issues that could damage the database. For example, dropping Enterprise
Manager Database Control, resizing tablespaces, dropping users and roles, gathering statis-
tics, and so on must be fixed manually by the DBA. It will let you know to manually fix those
issues before the upgrade. Here is the summary section shown after the script is run.

 ************* Fixup Summary ************

 1 fixup routine was successful.
 4 fixup routines returned INFORMATIONAL text that should be reviewed.

	 Preparing for a Database Upgrade	 971

 2 ERROR LEVEL checks returned INFORMATION that must be acted on prior to
upgrade.

 **
 ====>> USER ACTION REQUIRED <<====
 **

 1) Check Tag: AUDSYS_USER_PRESENT failed.
 Check Summary: Verify if a user or role with the name AUDSYS exists
 Fixup Summary:
 "The AUDSYS user or role must be dropped prior to upgrading."
 ^^^ MANUAL ACTION REQUIRED ^^^

 2) Check Tag: AUDIT_VIEWER failed.
 Check Summary: Verify if a user or role with the name AUDIT_VIEWER exists
 Fixup Summary:
 "The AUDIT_VIEWER role or user must be dropped prior to upgrading."
 ^^^ MANUAL ACTION REQUIRED ^^^

 **
 You MUST resolve the above errors prior to upgrade
 **

The DBA must fix the errors identified in the script before proceeding with the upgrade.
After running the preupgrade_fixups.sql, run the preupgrd.sql script again to verify
that the database is ready. Manually fix all errors and informational notices in the script
so that the upgrade goes smoother.

The tool also identifies certain best practices to complete after the upgrade. The
postupgrade_fixups.sql script can be run after the upgrade. The first few lines of
the script are shown here:

$ cat /u01/app/oracle/cfgtoollogs/ocad11/preupgrade/postupgrade_fixups.sql
REM Post Upgrade Script Generated on: 2014-01-11 12:47:39
REM Generated by Version: 12.1.0.1 Build: 006
SET ECHO OFF SERVEROUTPUT ON FORMAT WRAPPED TAB OFF LINESIZE 750;
BEGIN
 dbms_output.put_line ('Post Upgrade Fixup Script Generated on 2014-01-11
12:47:39 Version: 12.1.0.1 Build: 006');
 dbms_output.put_line ('Beginning Post-Upgrade Fixups...');
END;
/
BEGIN

972	 Chapter 17  ■  Upgrading to Oracle Database 12c

dbms_preup.clear_run_flag(FALSE);
END;
/
BEGIN
-- ***************** Fixup Details ***********************************
-- Name: INVALID_OBJECTS_EXIST
-- Description: Check for invalid objects
-- Severity: Warning
-- Action: ^^^ MANUAL ACTION REQUIRED ^^^
-- Fix Summary:
-- Invalid objects are displayed and must be reviewed.

dbms_preup.run_fixup_and_report('INVALID_OBJECTS_EXIST');
END;
/
BEGIN
-- ***************** Fixup Details ***********************************
-- Name: OLD_TIME_ZONES_EXIST
-- Description: Check for use of older timezone data file
-- Severity: Informational
-- Action: ^^^ MANUAL ACTION REQUIRED ^^^
-- Fix Summary:
-- Update the timezone using the DBMS_DST package after upgrade is complete.

dbms_preup.run_fixup_and_report('OLD_TIME_ZONES_EXIST');
END;
/

Running the Pre-Upgrade Information tool prior to the manual database
upgrade is mandatory; otherwise, the upgrade will terminate with errors.
When you upgrade the database using DBUA, it runs this script for you
automatically. We recommend that you still run the script and fix the
errors before starting DBUA.

Additional Checks
The Pre-Upgrade Information tool checks for the following components and gives you
guidance and fix-up scripts. The tool checks to determine:

■■ If the predefined users and roles required for Oracle Database 12c exist prior to
upgrade. These roles and users must be dropped, because they are associated with
the new features of the database. They are SYSDG, SYSBACKUP, SYSKM, AUDSYS, AUDIT_

	 Preparing for a Database Upgrade	 973

VIEWER, AUDIT_ADMIN, CAPTURE_ADMIN, ORACLE_OCM. In addition, the tool checks for a
few internal users such as APPQOSSYS.

■■ If OLAP Catalog (AMD) exists in the database. Starting with Oracle Database 12c,
OLAP is desupported. The tool advises you to drop the catalog prior to the upgrade.

■■ If AWR data has inactive DBIDs.

■■ If the COMPATIBLE parameter is at 11.0.0 or higher.

■■ If the JOB_QUEUE_PROCESSES value is set too low.

■■ If the PROCESSES parameter is sufficiently high.

■■ If LOG_ARCHIVE_FORMAT has the required format.

■■ If there is a need to remove hidden parameters, depreciated parameters, and under-
score events.

■■ If the timezone version needs to be updated or is newer. Oracle Dabase 12c 12.1.0.1
comes with version 18.

■■ If ORDSYS (Oracle Multimedia Domain Index) or UltraSearch is still used.

■■ If DMSYS schema still exists.

■■ If DBMS_LDAP dependent objects or manual network ACL configuration is required.
Also, identifies schemas with network ACL.

■■ If Database Vault is enabled. It may recommend disabling, because it is a requirement
to disable before the upgrade and enable after the upgrade if needed.

■■ If Enterprise Manager Database Control is present in the database.

■■ If it needs to drop sys.enabled$indexes, if it exists.

■■ If there are any unresolved distributed transactions.

■■ If information exists stating that the Expression Filter (EXF) and Database Rules Man-
ager (RUL) features are desupported and will be removed during the upgrade process,
if EXF or RUL are present in the database.

■■ If any files are in backup mode or in media-recovery-needed state.

■■ If SYS and SYSTEM users have SYSTEM as their default tablespace.

■■ If SYSTEM and SYSAUX tablespaces have enough free space for the upgrade.

■■ If there are INVALID objects in the database. The list of invalid SYS/SYSTEM objects are
written to registry$sys_inv_objs. The list of non-SYS/SYSTEM objects are written to
registry$nonsys_inv_objs. Use the utluiobj.sql script after the upgrade to identify
any new invalid objects due to the upgrade.

■■ If the components in DBA_REGISTRY are valid.

■■ If the recycle bin needs to be purged.

■■ If any changes need to be made to the LOG_ARCHIVE_DEST_1 or LOG_ARCHIVE_DEST_10
parameters to satisfy the Oracle Database 12c archive destination rules.

■■ If the standby database is in sync with the primary.

974	 Chapter 17  ■  Upgrading to Oracle Database 12c

■■ If all table data in the database has been updated to the latest type definitions.

■■ If recommendations are needed to run dictionary and fixed objects statistics.

In addition, as a best practice, you will need to perform the following:

■■ Drop or fix all invalid objects.

■■ Make sure sufficient space exists in the ASM disk group or file system where SYSTEM
and SYSAUX files reside. It is better to have the data files belonging to these tablespaces
in AUTOEXTEND mode.

■■ Check that the SGA value is at least the minimum required for Oracle Database 12c.

■■ Preserve the database performance statistics so that you can compare performance
of queries and application before and after upgrade. The AWR data is automatically
purged after certain days. Creates baselines so that the data is not purged. Also, you
may export the AWR data.

■■ Preserve the operating system performance statistics.

■■ Make sure there is a good backup of the ORACLE_HOME and database.

■■ Determine the client versions of the users, application, and ODBC connecting to the
database, and then upgrade the client versions.

■■ Disable cron jobs and jobs scheduled outside the database until the upgrade is completed.

If the database being upgraded has additional products or features installed, more
preparation might be needed.

■■ If the database has Database Vault installed, disable it before the upgrade.

■■ If you have configured Oracle Label Security (OLS) with Database Vault, then you must
run the OLS preprocess script, olspreupgrade.sql, to process the aud$ table contents.
The OLS upgrade moves the aud$ table from the SYSTEM schema to the SYS schema.

The AWR compare-period reports are very helpful for comparing the
performance of the database before and after the upgrade. Remember
to capture periodic baselines before your upgrade to compare after the
upgrade. For example, you may want to baseline month-end and quarter-
end processing periods.

Preparing the Oracle Home
Before you upgrade a database to Oracle Database 12c, Oracle software must be installed
in a different Oracle home on the same server. Make sure you verify the certification and
minimum operating requirements before installing the software. Oracle Database 12c soft-
ware installation was discussed in detail in Chapter 9. Once the software is installed, install
the latest Patch Set Update (PSU). The PSU can be downloaded from My Oracle Support.
Follow the readme document to apply the PSU.

	 Preparing for a Database Upgrade	 975

If you use DBUA for the upgrade, the following activities are performed for you. For a
manual upgrade, you need to perform the following activities.

■■ Copy and edit the parameter file. Perform CREATE pfile FROM spfile statement, and
copy the text initialization parameter file from $ORACLE_HOME/dbs to the new Oracle
Database 12c home directory under the dbs directory. Edit the parameter file to remove
undocumented parameters and deprecated parameters. Make sure the SGA and other
parameter values are appropriate.

■■ Copy the password file from the old $ORACLE_HOME/dbs directory to the Oracle
Database 12c home.

■■ Copy the tsnames.ora, sqlnet.ora files from the old $ORACLE_HOME/network/admin
directory to the Oracle Database 12c home. This is an important step, if the upgraded
database uses database links that are resolved using the tnsnames.ora file.

Reducing Upgrade Downtime
Various options are available to reduce the upgrade downtime required. They are as follows:

■■ Run the upgrade in parallel, making use of all available CPU resources.

■■ Run the gather dictionary statistics before the upgrade.

■■ The upgrade process drops the EM Database Control. You can run $ORACLE_HOME/
rdbms/admin/emremove.sql from the Oracle Database 12c software install home to
remove the EM before the upgrade.

■■ Back up (export or create another table) and truncate the SYS.AUD$ table.

■■ Keep the COMPATIBLE parameter at the current level until the database is tested after the
upgrade (if upgrading from 10.2.0.5, the COMPATIBLE parameter must be changed to
11.0.0 or higher). If it is changed to 12.1, the database cannot be downgraded back
to the old release. You will have to restore from the backup to go back to the old release.

■■ Make sure your redo logs are sufficiently sized and that you have at least four redo
log groups.

■■ Run the upgrade using ARCHIVELOG mode, and use Flashback Database features to fall
back if the upgrade does not go well.

Once all the pre-upgrade tasks are completed, you will be ready for the database upgrade.

Running the upgrade in ARCHIVELOG mode with Flashback Database enabled
will have some performance impact on the upgrade. However, the flexibility
this option gives, especially for a large database, outweighs the minor per-
formance impact and storage required. If an error is encountered during the
upgrade, the database can be rolled back to an earlier state quickly by using
the flashback logs and guaranteed restore point.

976	 Chapter 17  ■  Upgrading to Oracle Database 12c

Upgrading the Database
Upgrading an Oracle database to a new release is a major activity. We cannot stress enough
the importance of planning and testing before upgrading the production database. Oracle’s
Database Upgrade Assistant (DBUA) is an easy-to-use, robust tool to upgrade an earlier
Oracle database version to 12c. If you want to have more control over the upgrade process,
you can perform a manual upgrade as well. In this section, you will learn about upgrading
the database using DBUA and using the manual upgrade scripts.

Using Database Upgrade Assistant
DBUA is a graphical tool to upgrade a database in version 10.2.0.5, 11.1.0.7, 11.2.0.2,
or higher to Oracle Database 12c. DBUA has a simple interface, with status reporting on
the screen as well as to log files. DBUA is invoked by $ORACLE_HOME/bin/dbua on Unix.
On Windows, choose Database Upgrade Assistant from the Configuration and Migration
Tools tab under the Oracle Database 12c menu items.

On Unix systems, set the environment to Oracle Database 12c home. Make sure envi-
ronment variables ORACLE_HOME, PATH, and LD_LIBRARY_PATH all point to Oracle Database
12c Oracle home. To help in setting up the environment, you may add a dummy entry in
the /etc/oratab file with the new Oracle home path, as shown below with SID name
temp, and use oraenv to set the environment.

$ cat /etc/oratab
This file is used by ORACLE utilities. It is created by root.sh
and updated by either Database Configuration Assistant while creating
a database or ASM Configuration Assistant while creating ASM instance.
A colon, ':', is used as the field terminator. A new line terminates
the entry. Lines beginning with a pound sign, '#', are comments.
Entries are of the form:
$ORACLE_SID:$ORACLE_HOME:<N|Y>:
The first and second fields are the system identifier and home
directory of the database respectively. The third field indicates
to the dbstart utility that the database should, "Y", or should not,
"N", be brought up at system boot time.
Multiple entries with the same $ORACLE_SID are not allowed.
ocad11:/u01/app/oracle/db_home1/11.2.0:N
temp:/u01/app/oracle/db_home2/12.1.0:N

Set the environment using oraenv, and verify the variables.

$. oraenv
ORACLE_SID = [oracle] ? temp
The Oracle base has been set to /u01/app/oracle

	 Upgrading the Database	 977

$ echo $ORACLE_HOME
/u01/app/oracle/db_home2/12.1.0

$ echo $LD_LIBRARY_PATH
/u01/app/oracle/db_home2/12.1.0/lib

$ which dbua
/u01/app/oracle/db_home2/12.1.0/bin/dbua

When you launch the DBUA application, the initial screen displayed is the Select
Operation screen, as shown in Figure 17.2. DBUA gives you the option to upgrade the
database or to move a database from one Oracle home to another home of the same
release. Choose the Upgrade Oracle database option, and click Next.

F igur e 17. 2     DBUA – The Select Operation screen

You will be presented with the Select Database screen, which allows you to select the
database for the upgrade (Figure 17.3). Oracle lists the databases on the server based on the
contents in /etc/oratab file. Choose the appropriate database for the upgrade. The screen
shows the Source Database Oracle home directory and to which Oracle home the software
is being upgraded.

978	 Chapter 17  ■  Upgrading to Oracle Database 12c

F igur e 17. 3     DBUA – The Select Database screen

The oratab file is a control file maintained by the database configuration
tools (DBCA or DBUA). The file is located under /etc/ on Linux and most
Unix systems. On Solaris, the location is /var/opt/oracle. The file lists
the databases installed on the server.

The screen also indicates whether the database is up. If the database is down, DBUA will
bring up the database to run the prerequisite checks. If you have run the preupgrd.sql script
and taken care of the issues, there will be only a few to address here. DBUA runs the Pre-
Upgrade Information tool and shows you the results. The Prerequisite Check result screen is
shown in Figure 17.4.

Click on the blue arrow beside Pre-Upgrade Utility Checks to view the checks that are
failed. The Show drop-down menu has the options: All, Warnings and Failures, and Failures.
The Action column shows what actions the DBUA can take: Fix Now, Fix Pre-Upgrade,
Ignore, or Revalidate. Fix Now will fix the error when you click the Apply Action button, and
Fix Pre-Upgrade will fix the error as part of the pre-upgrade tasks.

For certain errors, DBUA cannot perform the fix. It can only perform the revalidation.
The fix has to be applied outside of DBUA. For example, in the Prerequisite Checks screen
shown in Figure 17.4, the AUDSYS user and AUDIT_VIEWER role cannot be dropped using
DBUA; they must be dropped by DBA, and the DBUA must revalidate the check by using the
Check Again button. You may ignore errors and warning, but do so only if you understand
the implications.

The next screen is the Upgrade Options screen (Figure 17.5). Here you can choose the
number of CPUs to be used for the upgrade by specifying the parallelism. This option reduces
the time needed to perform the upgrade based on the number of CPUs available to handle the
running of scripts and processes. If you do not want a parallel upgrade, choose 1. You also
have options to Recompile Invalid Objects, Upgrade Timezone Data, Gather Statistics Before
The Upgrade, and to Set User Tablespaces To Read Only. When the user tablespaces are set
to read only, only nonuser tablespaces (system, sysaux, and undo) will need to be restored in
case of any failure.

	 Upgrading the Database	 979

F igur e 17. 4     DBUA – The Prerequisite Checks screen

The Custom SQL Scripts tab is used for specifying custom SQL scripts that can be run
before and after the upgrade.

You have the option to either configure the upgraded database with EM Database
Express or to register with OEM Cloud Control, as shown in Figure 17.6. Oracle Enterprise
Manager Database Express is a web-based database management application that is built
into Oracle Database 12c. It replaces the DB Control component that was available in
releases 10g and 11g.

DBUA also gives the option to migrate the storage of the database and Fast Recovery
Area to another file system or to Automatic Storage Management (ASM). ASM is discussed
in Chapter 18. Figure 17.7 shows the Move Database Files screen.

After Move Database Files options have been selected, click the Next button and the
Network Configuration screen will be displayed as shown in Figure 17.8. The Listener
Selection area of the Network Configuration screen shows a table with: Name, Port, Oracle
Home, Status, and Migrate columns. To the left of the listener name is a box for selecting
the listener. Select one or more listeners from the source Oracle home to be migrated to the
new upgraded Oracle home. DBUA adds the selected listener to the listener.ora file of the
target Oracle home and starts it. It also removes the entry of the upgraded database from
the old listener.ora file. If you do not want to migrate the listener, create a new listener in
the target Oracle home by specifying the listener name and port.

980	 Chapter 17  ■  Upgrading to Oracle Database 12c

F igur e 17.5     DBUA – The Upgrade Options screen

F igur e 17.6     DBUA – The Management Options screen

The Recovery Options screen, shown in Figure 17.9, gives you options to backup the
database.

You can choose from the following options:

■■ Create a New Offline RMAN Backup: Enter the full path for a location for the backup
in the Backup Location field. DBUA performs a backup before the upgrade.

■■ Use Existing RMAN Backup: DBUA displays the timestamp for the latest RMAN
backup that exists.

	 Upgrading the Database	 981

F igur e 17.7     DBUA – The Move Database Files screen

F igur e 17. 8     DBUA – The Network Configuration Screen

■■ Create a New Guaranteed Restore Point: If a Flash Recovery Area is currently config-
ured, the current settings will be retained. DBUA also displays a screen to allow you to
override these values if needed. DBUA automatically creates a restore point that you can
revert back to in case of upgrade failure.

982	 Chapter 17  ■  Upgrading to Oracle Database 12c

■■ Use Existing Guaranteed Restore Point: If a restore point was previously created, then
select the existing restore point from the drop-down list.

■■ I Have My Own Backup and Restore Strategy: Use this option only if a customized
backup procedure was used to back up the database. You should use customized restore
procedures to restore the customized backup.

F igur e 17. 9     DBUA – The Recovery Options screen

When you click Next on this screen, DBUA will check to see if the SYSTEM and SYSAUX
data files are in auto-extend mode and if enough free space is available. DBUA at this
time also checks to see if there is enough room to keep the archivelogs and flashback logs
generated during the upgrade, and it warns you if there is not enough space.

Figure 17.10 shows the upgrade summary. It shows the source and target Oracle home
directories, the checks ignored by DBA, which components of the database are upgraded,
the initialization parameter changes, the versions of timezone upgrade, Enterprise Manager
option, Recovery option, and Listener registration. Review this information carefully.

The DBUA log files and scripts are written to $ORACLE_BASE/cfgtoollogs/
dbua/db_unique_name/upgradeN directory. Review the logs and scripts
generated by DBUA during the upgrade to understand the upgrade process
more fully. If you have chosen to back up the database using RMAN, you
can also find a database restore script using RMAN.

The Progress screen shows the database upgrade status in detail (Figure 17.11). The
progress is divided into three phases:

■■ Pre Upgrade Steps

■■ Database Upgrade Steps

■■ Post Upgrade Steps

	 Upgrading the Database	 983

F igur e 17.10     DBUA – The Summary screen

Each phase can be expanded to see the details. The timing for each step to take place
is provided. The DBA can use the times to identify time-consuming steps during the test
upgrade cycle.

The Progress screen also provides options to view the activity log and the alert log. The
activity log shows the current action being performed; it shows the output of the trace.log
file generated by DBUA. The alert log shows the alert log content. Monitoring the alert log
for errors and messages is a best practice.

Monitoring the activity log shows the current phase of the upgrade, and whether the
phase is run in parallel or serial. Oracle uses this information to restart an upgrade process.
For example:

[Phase 23] type is 2 with 11 Files
catmetgrant1.sql catldap.sql prvtocm.sql prvtrepl.sql
catpstr.sql prvthpci.plb catilm.sql catemxv.sql
catnaclv.sql dbmsnacl.sql dbmswlm.sql
… … …
Parallel Phase #:33 Files: 122 Time: 20s
Serial Phase #:34 Files: 1 Time: 0s
Restart Phase #:35 Files: 1 Time: 0s
Serial Phase #:36 Files: 4 Time: 81s
Restart Phase #:37 Files: 1 Time: 0s
Parallel Phase #:38 Files: 13 Time: 78s
Restart Phase #:39 Files: 1 Time: 0s
Parallel Phase #:40 Files: 10 Time: 9s
Restart Phase #:41 Files: 1 Time: 0s

984	 Chapter 17  ■  Upgrading to Oracle Database 12c

F igur e 17.11     DBUA – The Progress screen

After the upgrade is completed, the Stop button on the Progress screen (Figure 17.11)
becomes an Upgrade Results button. Click on the Upgrade Results button to view the
results, as shown in Figure 17.12. You will get the option to Restore Database, which
reverts the database back to its pre-upgraded state.

F igur e 17.12     DBUA – The Update Results screen

	 Upgrading the Database	 985

Review the information carefully so that you will understand the changes made by DBUA
during the upgrade. The log files created by DBUA will be displayed so you can review them.
The location of spfile created by DBUA will also be indicated.

Fixing a Stalled Database Upgrade

During one of the database upgrade activities, the DBA noticed that the Progress screen
had not moved from one step to the next for a while. Clicking on the activity log did not
reveal any errors or warnings. However, the Alert Log button displayed the following
message, which kept repeating:

Errors in file /u01/app/oracle/diag/rdbms/p11d/p11d/trace/p11d_arc0_13863.trc:
ORA-19815: WARNING: db_recovery_file_dest_size of 4385144832 bytes is 99.55% used,
and has 19628032 remaining bytes available.
Errors in file /u01/app/oracle/diag/rdbms/p11d/p11d/trace/p11d_arc1_13865.trc:
ORA-19815: WARNING: db_recovery_file_dest_size of 4385144832 bytes is 99.55% used,
and has 19628032 remaining bytes available.
Sun Jan 12 18:36:41 2014
**
Sun Jan 12 18:36:41 2014
**
You have following choices to free up space from recovery area:

1. Consider changing RMAN RETENTION POLICY. If you are using Data Guard,1.
Consider changing RMAN RETENTION POLICY. If you are using Data Guard,then consider
changing RMAN ARCHIVELOG DELETION POLICY. then consider changing RMAN ARCHIVELOG
DELETION POLICY.

2. Back up files to tertiary device such as tape using RMAN2. Back up files to
tertiary device such as tape using RMAN BACKUP RECOVERY AREA command.

3. Add disk space and increase db_recovery_file_dest_size parameter to3. Add disk
space and increase db_recovery_file_dest_size parameter to reflect the new space.
reflect the new space.

4. Delete unnecessary files using RMAN DELETE command. If an operating4. Delete
unnecessary files using RMAN DELETE command. If an operating system command was
used to delete files, then use RMAN CROSSCHECK and system command was used to
delete files, then use RMAN CROSSCHECK and

 DELETE EXPIRED commands. DELETE EXPIRED commands.

986	 Chapter 17  ■  Upgrading to Oracle Database 12c

The DBA had ignored the warning of low space given by the DBUA. To fix the issue, the
DBA logged into the database using another session and increased the Fast Recovery
Area because enough space was available on the file system.

$. oraenv
ORACLE_SID = [c12ndb1] ? temp
The Oracle base remains unchanged with value /u01/app/oracle
$
$ export ORACLE_SID=p11d
$ sqlplus '/ as sysdba'

SQL> alter system set db_recovery_file_dest_size=20g;

System altered.

SQL>

During an upgrade, make sure to monitor space usage, Fast Recovery Area usage, and
the alert log to avoid any problems. To avoid such issues and to improve upgrade perfor-
mance, the database may be in NOARCHIVELOG mode, but you loose the ability to utilize
the flashback features to restore the database if the upgrade fails. So, it is a trade-off you
need to weigh.

Invoking DBUA in Silent Mode
DBUA can be invoked in silent mode with the -silent command-line option. In silent
mode, no user input is obtained. You can provide input in command line mode using
various options available. Invoking dbua with the -help option will display all the avail-
able command-line options.

$ dbua -help
dbua [-silent] [<command> [options]]*
Refer to the Oracle Database Upgrade Guide for details.
Following are the possible commands:

 [-sid <Specify System Identifier>]
 [-oracleHome <Specify Source Database Oracle Home >]
 [-oracleBase <Specify Database Oracle Base >]
 [-diagnosticDest <Specify Database Diagnostic Destination >]

	 Upgrading the Database	 987

 [-auditFileDest <Specify Database Audit File Destination >]
 [-sysDBAUserName <user name with SYSDBA privileges>]
 [-sysDBAPassword <password for sysDBAUserName user name>]
 [-autoextendFiles <Autoextend database files during upgrade. Datafiles will
be reverted back to their original autoextend settings after upgrade.>]
 [-newGlobalDbName <Specify New Global Database Name>]
 … … …
 [-createGRP <To create a guaranteed restore point when database is in
archive log and flashback mode>]
 [-useGRP <To restore the database using specified guaranteed restore point>]
 [-useExistingBackup <To restore database using existing RMAN backup>]
 [-listeners <To register the database with existing listeners, specify
listeners by comma separated listenerName:Oracle Home. Listeners from lower
release home are migrated to newer release home. Specifying -listeners
lsnrName1,lsnrName2, DBUA searches specified listeners from GI home (if
configured), target home and source home.>]
 [-createListener <To create a listener in newer release Oracle home specify
listenrName:lsnrPort>]
 [-h | -help {Shows this usage help.}]

For example, the following command selects "orcl" database for upgrade:
 dbua -sid orcl

For example, the following command upgrades "orcl" database in silent mode:
 dbua -silent -sid orcl

Performing a Manual Upgrade
What happens during a manual upgrade is similar to what happens during a DBUA upgrade.
However, during a manual upgrade, the DBA is responsible for reviewing the prerequisites
before making the upgrade, for running the upgrade scripts, and for performing any post-
upgrade tasks. The manual upgrade method can be used for database versions 10.2.0.5,
11.1.0.7, 11.2.0.2, and higher—the same as with a DBUA direct upgrade.

Similar to the DBUA upgrade, the manual upgrade also can be divided into three phases:
pre-upgrade, upgrade, and post-upgrade.

Performing the Pre-Upgrade Tasks
The DBUA performs several checks and fixes for you before starting the upgrade. During
the manual upgrade, the DBA is responsible for making sure the database and environment
are ready for the upgrade. Although the manual upgrade allows more control for the DBA,

988	 Chapter 17  ■  Upgrading to Oracle Database 12c

the process is error prone and involves more work. The tasks to be taken care of before the
upgrade can occur are as follows.

■■ Copy the Pre-Upgrade Information script preupgrd.sql and utluppkg.sql from
the Oracle Database 12c $ORACLE_HOME/rdbms/admin directory to the $ORACLE_HOME/
rdbms/admin directory of the source Oracle home. Run the Pre-Upgrade Information
tool, and fix all errors and warnings.

SQL> @$ORACLE_HOME/rdbms/admin/preupgrd.sql

■■ Complete all the steps and checks mentioned in the “Preparing for Database Upgrade”
section. Make sure to prepare the Oracle home and create the parameter file and the
password file.

■■ If you are using a cluster database (RAC), set the CLUSTER_DATABASE=FALSE parameter
during the upgrade, and set it back to true after the upgrade.

■■ Run the Gather Dictionary Statistics job.

SQL> EXEC DBMS_STATS.GATHER_DICTIONARY_STATS;

■■ Back up the source database. If desired, enable Fast Recovery Area and configure the
restore point to use the Flashback Database.

■■ Purge the database recycle bin.

SQL> PURGE DBA_RECYCLEBIN

■■ Confirm that SYS and SYSTEM users have SYSTEM as the default tablespace.

SQL> ALTER user SYS default tablespace SYSTEM;
SQL> ALTER user SYSTEM default tablespace SYSTEM;

■■ Remove the Enterprise Manager Database Control repository. Copy the emremove.sql
script from the Oracle Database 12c $ORACLE_HOME/rdbms/admin to the source $ORALCE_
HOME/rdbms/admin and then execute on the source database prior to the upgrade.

$ emctl stop dbcontrol
SQL> @?/rdbms/admin/emremove.sql

■■ Confirm that AUD$ table is owned by SYS and is in the SYSTEM tablespace. If there are
too many rows in the AUD$ table, back up and truncate the AUD$ table, otherwise the
upgrade process could run longer.

■■ If OLS(Lable Security) and/or DV(Database Vault) were already in the database
prior to the upgrade, copy the olspreupgrde.sql script from the Oracle Database 12c
$ORACLE_HOME/rdbms/admin to the source $ORALCE_HOME/rdbms/admin and then execute
on the source database prior to the upgrade.

SQL> @ ?/rdbms/admin/olspreupgrade.sql

	 Upgrading the Database	 989

Executing the Manual Upgrade Tasks
Once the pre-upgrade tasks and backup of the database are completed, you will be ready to
upgrade the database. The upgrade tasks to be executed are as follows:

■■ Shut down the listener and database. Do not perform SHUTDOWN ABORT for any reason;
it must be a graceful shutdown, where no instance recovery is needed during startup.

■■ Create a new listener or use an existing Oracle Database 12c listener. The listener must
be running at the highest version of databases running on the server.

■■ If you are on Windows, stop the old version service and start a new service under Oracle
Database 12c home.

C:\> NET STOP OracleServiceSIDNAME
C:\> ORADIM -DELETE -SID SIDNAME
C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -STARTMODE AUTO -PFILE %ORACLE_
HOME%\DATABASE\INITSIDNAME.ORA

■■ Confirm that the environment variables point to Oracle Database 12c home.

$ export ORACLE_HOME=<location of Oracle 12.1>
$ export PATH=$ORACLE_HOME/bin:$PATH
$ orabase
/u01/app/oracle
$ export ORACLE_BASE=/u01/app/oracle

■■ Edit the oratab file to add the instance name with Oracle Database 12c home, and
comment out the instance with the prior version home.

$ cat /etc/oratab
#ocad11:/u01/app/oracle/db_home1/11.2.0:N
ocad11:/u01/app/oracle/db_home2/12.1.0:N

■■ From Oracle Database 12c home, start up the database using STARTUP UPGRADE.

$ cd $ORACLE_HOME/rdbms/admin
$ sqlplus "/ as sysdba"
SQL> startup UPGRADE

■■ Upgrade the database using catctl.pl script. In the earlier versions, the upgrade script
catupgrd.sql was run directly from SQL Plus, which ran single threaded. The default
parallelism for catctl.pl is 4. The upgrade script is provided as a parameter to the
Perl script.

$ cd $ORACLE_HOME/rdbms/admin
$ $ORACLE_HOME/perl/bin/perl catctl.pl catupgrd.sql

990	 Chapter 17  ■  Upgrading to Oracle Database 12c

The STARTUP UPGRADE Option

To upgrade the database to Oracle Database 12c, you must start the instance with the
STARTUP UPGRADE option (introduced in Oracle9i Release 2). If you try to start the database
in any other mode, you will get an error. This mode automatically handles certain system
parameter values for the upgrade. It restricts logons to AS SYSDBA sessions, disables sys-
tem triggers, and performs additional operations that prepare the environment for the
upgrade. Also, this option suppresses the ORA-00942 error for the DROP TABLE statements
in the upgrade script. When reviewing for errors, you will see only genuine errors in the log
file. For a successful upgrade, there should be no ORA- or PLS- errors in the log file.

The Parallel Upgrade Script – catctl.pl

To upgrade the database to Oracle Database 12c, use the catctl.pl script, which runs in
default parallelism of 4. To specify parallelism, use the -n option. Set to 0, the -n option
runs the upgrade in serial mode. The maximum parallelism is 8. The -l option specifies
the location of spool and log files. The default location is the current directory. The -p
option lets you restart the upgrade from a specific phase. The log file shows which phases
are completed and currently being executed.

The following example invokes the upgrade with six parallel threads and writes the log
and output files to $ORACLE_BASE/admin/$ORACLE_SID/upgrade directory.

cd $ORACLE_HOME/rdbms/admin
$ORACLE_HOME/perl/bin/perl catctl.pl -n 6 -l $ORACLE_BASE/admin/$ORACLE_SID/
upgrade catupgrd.sql

If you want to run the catupgrd.sql directly from SQL*Plus, you may do so, but you have
to use the parameter PARALLEL=NO, as in the following example:

SQL> @catupgrd.sql PARALLEL=NO

If you run catupgrd.sql by itself, then catuppst.sql does not run as part of the upgrade
process. The catuppst.sql script must be run after catupgrd.sql completes.

■■ The upgraded database is shut down after running catctl.pl. Start up the instance. This
database startup, following the database shutdown performed as part of the catctl.pl
script, flushes all caches, clears buffers, and performs other housekeeping activities to
ensure the integrity and consistency of the upgraded database.

SQL> STARTUP;

mailto:@catupgrd.sql

	 Upgrading the Database	 991

■■ Run the Post-Upgrade Status tool to show a summary and status of the upgrade. If there
are any errors or any component is INVALID, then troubleshoot to fix the error.

SQL> connect / as sysdba
SQL> @utlu121s.sql

■■ The Post-Upgrade script catuppst.sql (CATalog UPgrade PoST-upgrade actions)
is run as part of the upgrade script. If the upgrade process had any errors, this script
might not run. Look for the words Started:catuppst.sql in the upgrade log file. If
you do not find the string, run the script manually. This script will migrate the baseline
data on a pre-12c database to the 12c database.

$ cd $ORACLE_HOME/rdbms/admin
SQL> connect / as sysdba
SQL> @catuppst.sql

■■ Recompile any invalid objects. You may specify parallelism for the script as a parameter.

SQL> @utlrp 6

■■ Run the utluiobj.sql (UTility Upgrade Invalid OBJects tool) script to identify
new invalid objects after the upgrade. This script will work only if you have run the
preupgrd.sql script before the upgrade. It outputs the difference between the invalid
objects that exist after the upgrade and invalid objects that existed prior to the
upgrade. The invalid objects that existed prior to upgrade are available in the view
registry$nonsys_inv_objs.

$ cd $ORACLE_HOME/rdbms/admin
SQL> connect / as sysdba
SQL> @?/rdbms/admin/utluiobj.sql

The post-upgrade tasks are the same irrespective of the database upgrade method used:
manual or using DBUA. They are discussed in the next section.

Completing the Post-Upgrade Tasks
Now that you’ve finished the upgrade, the majority of the work is done. Now that you have
a newly upgraded Oracle Database 12c database, let’s make sure the database is healthy
and complete any post-upgrade tasks. To begin, make a database backup.

If you used DBUA to do the upgrade, most of the post-upgrade tasks are taken care of if
you chose the appropriate options in the Upgrade options screen (see Figure 17.5 earlier).

Run the Post-Upgrade Status tool again to generate the status of the upgrade and to
confirm that there are no issues.

SQL> connect / as sysdba
SQL> @?/rdbms/admin/utlu121s.sql

mailto:@utlu121s.sql
mailto:@catuppst.sql

992	 Chapter 17  ■  Upgrading to Oracle Database 12c

Oracle Database 12.1 Post-Upgrade Status Tool 01-13-2014 13:46:25

Component Current Version Elapsed Time
Name Status Number HH:MM:SS

Oracle Server
 VALID 12.1.0.1.0 00:25:11
JServer JAVA Virtual Machine
 VALID 12.1.0.1.0 00:04:13
Oracle Workspace Manager
 VALID 12.1.0.1.0 00:01:18
OLAP Analytic Workspace
 VALID 12.1.0.1.0 00:00:41
Oracle OLAP API
 VALID 12.1.0.1.0 00:00:19
Oracle XDK
 VALID 12.1.0.1.0 00:00:52
Oracle Text
 VALID 12.1.0.1.0 00:01:01
Oracle XML Database
 VALID 12.1.0.1.0 00:04:22
Oracle Database Java Packages
 VALID 12.1.0.1.0 00:00:12
Oracle Multimedia
 VALID 12.1.0.1.0 00:02:31
Spatial
 VALID 12.1.0.1.0 00:07:26
Oracle Application Express
 VALID 4.2.0.00.27 00:44:51
Final Actions
 00:02:47
Total Upgrade Time: 01:36:10

PL/SQL procedure successfully completed.

SQL>

It is a good idea to run utlrp.sql and utluiobj.sql again and fix any newly invali-
dated objects.

SQL> @?/rdbms/admin/utlrp.sql

	 Upgrading the Database	 993

SQL> @?/rdbms/admin/utluiobj.sql
.
Oracle Database 12.1 Post-Upgrade Invalid Objects Tool 01-13-2014 13:48:44
.
This tool lists post-upgrade invalid objects that were not invalid
prior to upgrade (it ignores pre-existing pre-upgrade invalid objects).
.
Owner Object Name Object Type
PL/SQL procedure successfully completed.
SQL>

Review the environment setup files where you define the following variables, and verify
that they are updated to point to the newly upgraded Oracle Database 12c home.

$ echo $ORACLE_BASE
$ echo $ORACLE_HOME
$ echo $PATH
$ echo $LD_LIBRARY_PATH
$ echo $SH_LIB_PATH

If you are not using spfile, maybe this is the time to start using spfile instead of pfile.
You can create spfile from pfile using the following statement, and restart the database.

SQL> CREATE spfile FROM pfile;

If you performed a manual upgrade, all the Oracle-supplied user accounts have the default
password and are unlocked. DBUA locks the Oracle-supplied user accounts as part of the
post-upgrade by default. Lock the Oracle-created accounts and expire their passwords except
for SYS and SYSTEM. The following SQL code can be used to identify the newly created users
and their account status.

SQL> SELECT username, account_status, created
 FROM dba_users
 ORDER BY created;
SQL> ALTER USER sysdg PASSWORD EXPIRE ACCOUNT LOCK;

If your timezone version is lower and the Pre-Upgrade Information tool advised you to
upgrade the timezone, then you may upgrade timezone using the DBMS_DST package.

Once all the testing is completed and you are satisfied with the newly upgraded database,
change the COMPATIBLE parameter to 12.1.0 (or the current release) to utilize the new features
of the database. Once you make this change, the downgrade option will no longer be available.
Restart the database for the change to take effect. To revert the COMPATIBLE value after
restarting the database, you must restore the database from a backup before upgrade.

SQL> ALTER SYSTEM SET compatible = '12.1.0' SCOPE=spfile;

994	 Chapter 17  ■  Upgrading to Oracle Database 12c

To be able to perform the RMAN backup using a catalog repository, you will have to
upgrade the catalog to Oracle Database 12c as well.

You learned about Unified Auditing of Oracle Database 12c in Chapter 13, “Implementing
Security and Auditing.” Unified Auditing is not enabled by default after the upgrade. In the
following section, we will show you what needs to be done to enable Unified Auditing after
the upgrade.

Even if you use DBUA to upgrade the database, it won’t change the
COMPATIBLE parameter from its original value (the exception is when you
upgrade a 10.2.0.5 database, because the minimum COMPATIBLE must
be 11.0.0 to upgrade the database to 12.1). After the upgrade is completed
and the database is validated, make sure to change the COMPATIBLE
parameter to 12.1.0 to utilize all features of Oracle Database 12c.

Migrating to Unified Auditing
In Unified Auditing, all of the audit trail information is combined into UNIFIED_AUDIT_
TRAIL data dictionary view. See Chapter 13 to learn about the unified audit trail. After the
database upgrade, the Unified Auditing option is not enabled; you have to manually enable
the option by relinking the Oracle executable.

You have the option to remain on traditional pre-Oracle Database 12c auditing or
to migrate to Oracle Database 12c Unified Auditing or to use both in mixed-mode. The
mixed-mode Unified Auditing facility becomes available if you enable at least one of the
Unified Auditing predefined audit policies. In mixed-mode, the traditional audit records are
written to the AUD$ and other audit tables for those audits still enabled using the traditional
audit statements. You can create and enable new audit policies and use the predefined audit
policies. These records will be written to the unified audit trail.

The Unified Auditing option and all predefined audit policies are disabled after a data-
base upgrade. You can review the status using the queries you learned in Chapter 13.

SQL> SELECT VALUE FROM V$OPTION
 WHERE PARAMETER = 'Unified Auditing';

SQL> SELECT user_name, policy_name, enabled_opt, success, failure
 FROM audit_unified_enabled_policies;

There are three predefined audit policies: ORA_SECURECONFIG, ORA_ACCOUNT_MGMT, and
ORA_DATABASE_PARAMETER. You can enable these audit policies and create new policies.

To migrate to pure Unified Auditing and disable traditional audit trails for new audit
records, you enable the Unified Auditing option by recompiling the Oracle executable.
Shut down the database and the listener, and relink Oracle using the following syntax:

cd $ORACLE_HOME /rdbms/lib
make -f ins_rdbms.mk uniaud_on ioracle ORACLE_HOME=$ORACLE_HOME

	 Upgrading the Database	 995

For Windows, rename the %ORACLE_HOME%/bin/orauniaud12.dll.dbl file to %ORACLE_
HOME%/bin/orauniaud12.dll.

After migrating to pure Unified Auditing, the traditional audit records will still be
available in the old audit tables; they are not migrated to the new format. No new audit
records write to the earlier audit trails. You may archive or purge those audit records. The
audit configuration from the earlier release has no effect in the unified audit system. Only
unified audit policies generate audit records inside the unified audit trail.

Configuring a Database for an Extended Datatype

Oracle Database 12c supports up to 32KB for VARCHAR2, NVARCHAR2, and RAW
datatypes; however, to store over 4,000 bytes you must set the MAX_STRING_SIZE to
EXTENDED. This change can be performed only when you start the database in UPGRADE
mode. Once changed to EXTENDED, it cannot be changed back to STANDARD. The steps are

■■ Shut down the database.

■■ Start the database in UPGRADE mode.

■■ Change MAX_STRING_SIZE using ALTER SYSTEM SET MAX_STRING_SIZE = EXTENDED.

■■ Run the $ORACLE_HOME/rdbms/admin/utl32k.sql script as SYSDBA.

■■ Shut down and start the database for normal operation.

Downgrading to an Earlier Release
Sometimes it may be necessary to downgrade a database to its previous release because
of issues with applications in the new database. Although the safe method to go back is to
restore from the backup taken prior to upgrade, Oracle provides an option to downgrade
the database to its earlier release. You cannot downgrade back to release 10.2.0.5 because
the minimum compatibility setting for Oracle Database 12c is 11.0. The earliest release that
you can downgrade back to is Oracle Database release 11.1.0.7. If the COMPATIBLE param-
eter of your Oracle Database 12c database is 12.1.0, you will not be able to downgrade.

During the upgrade, EM Database Control was removed. You will have to reinstall it
(or if you have backup, reconfigure EM Database Control).

 To downgrade the database, follow these steps:

	 1.	 From the Oracle Database 12c Oracle home, shut down the database, and then start up
using the DOWNGRADE option.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP DOWNGRADE;

996	 Chapter 17  ■  Upgrading to Oracle Database 12c

	 2.	 Run the downgrade script. The catdwgrd.sql script downgrades all Oracle Database
12c components in the database to the supported major release or patch release from
which you originally upgraded.

$ cd $ORACLE_HOME/rdbms/admin
SQL> connect / as sysdba
SQL> @catdwgrd.sql

	 3.	 Shut down the instance.

SQL> SHUTDOWN IMMEDIATE;

	 4.	 Set the environment of the 11g database.

$ echo $ORACLE_HOME
$ echo $PATH
$ echo $LD_LIBRARY_PATH

	 5.	 Start up the database in UPGRADE mode.

SQL> STARTUP UPGRADE;

	 6.	 Reload the catalog using script catrelod.sql. The catrelod.sql script reloads the
appropriate version for each of the database components in the downgraded database.

$ cd $ORACLE_HOME/rdbms/admin
SQL> connect / as sysdba
SQL> @catrelod.sql

	 7.	 Manually reload Apex using script apxrelod.sql.

SQL> @apxrelod.sql

	 8.	 Shut down the database and start up in NORMAL mode.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

	 9.	 Recompile any invalid objects.

SQL> @?/rdbms/admin/utlrp.sql

mailto:@catdwgrd.sql
mailto:@catrelod.sql
mailto:@apxrelod.sql

	 Exam Essentials	 997

Summary
Performing an Oracle Database 12c upgrade is a major task that requires proper planning,
testing, and practice. In this chapter, you learned the pre-upgrade, upgrade, and post-upgrade
tasks associated with a database upgrade. Oracle supports the direct upgrade of the data-
base to Oracle Database 12c if the current database version is 10.2.0.5, 11.1.0.7, 11.2.0.2,
or higher. If you are on any other version, you will first need to get to these versions using an
intermediate upgrade step before upgrading to Oracle Database 12c.

A lot of planning, preparation, and fixing may need to go into the pre-upgrade phase.
The more careful you are in this phase and the better you complete all the tasks identified
by the Pre-Upgrade Information tool (preupgrd.sql), the better and more error-free your
upgrade will be. Running the preupgrd.sql script is a must for a manual upgrade of the
database.

Upgrading a database to Oracle Database 12c is simplified by the use of a DBUA. DBUA
does the pre-install tasks, backs up the database, adjusts parameters, upgrades the data-
base, and does the post-upgrade status. It also can perform a few post-upgrade tasks such as
upgrade a timezone and recompile invalid objects. Upgrade status and log files are provided
by DBUA.

Upgrading the database using the manual method is accomplished by running the all-new
Perl script catctl.pl. This script performs the upgrade in parallel, making use of the CPU
resources available. In manual upgrade mode, the DBA has to take care of the pre-upgrade
and post-upgrade tasks to complete the upgrade project successfully.

The Post-Upgrade Status tool (utlu121s.sql) shows the status of the components after
upgrade. Another very useful post-upgrade tool is the utluiobj.sql. This tool lists the newly
invalidated objects after the upgrade. After the upgrade, you may have to update the time-
zone version and migrate the database to Unified Auditing. Once you change the COMPATIBLE
parameter of the database to 12.1.0, you won’t be able to downgrade the database.

Exam Essentials

Learn which versions of Oracle can be upgraded directly to Oracle Database 12c and learn
the upgrade path for other versions.    Oracle supports direct upgrade of the database to
Oracle Database 12c from 10.2.0.5, 11.1.0.7, 11.2.0.2, or higher versions. For other data-
base versions, you need to first upgrade to one of these releases before upgrading to Oracle
Database 12c. You can also use data migration tools, such as Data Pump, to migrate data
to an Oracle Database 12c database.

Understand the output files produced by the Pre-Upgrade Information tool.    The Pre-
Upgrade Information tool is comprised of two scripts: preugrd.sql and utluppkg.sql. It
produces three output files. preupgrade.log is the log file with detailed checks and status;
preupgrade_fixups.sql is the script to fix trivial issues; postupgrade_fixups.sql script
fixes issues after the upgrade.

998	 Chapter 17  ■  Upgrading to Oracle Database 12c

Understand the advantages of using Database Upgrade Assistant to upgrade a database
rather than a manual upgrade.    Using DBUA automates the upgrade process. DBUA can
back up the database, perform the pre-upgrade checks and fix issues, upgrade the database,
and perform post-upgrade tasks. It also writes detailed log files.

Know the scripts involved in a manual upgrade of a database.    The Perl script catctl.pl
is used to upgrade the database. This script runs in parallel with the catupgrd.sql upgrade
script. A catalog upgrade is performed by catuppst.sql script. The Post-Upgrade Status
tool is invoked by running the script utlu121s.sql.

Understand the importance of the COMPATIBLE parameter in an upgrade.    The COMPATIBLE
parameter must be set to 11.0.0 or higher for the upgrade. Once you change the value to
12.1.0 on the upgraded database, you cannot downgrade the database.

Learn how to migrate a newly upgraded database to Unified Auditing.    Unified Auditing and
predefined audit policies are disabled after the upgrade. You can continue to use traditional
auditing, migrate to Unified Auditing, or run in mixed-mode.

	 Review Questions	 999

Review Questions

	 1.	 When you are upgrading a database to Oracle Database 12c, which of the following
options are true?

	 A.	 Any version of an Oracle 10g or Oracle 11g database can be upgraded to Oracle
Database 12c using DBUA.

	 B.	 Only the versions 10.2.0.5, 11.1.0.7, 11.2.0.2, 11.2.0.3, and 11.2.0.4 can be
upgraded to 12.1.0.

	 C.	 Once upgraded to Oracle Database 12c, the upgraded database can only be
downgraded to Oracle 11g.

	 D.	 When a 10.2.0.5 database is upgraded to Oracle Database 12c, it cannot be
downgraded.

	 2.	 Which is the best option for upgrading an Oracle 10g R2 database that is in its
terminal release to Oracle Database 12c?

	 A.	 Use Data Pump utilities to export and import.

	 B.	 Perform a direct upgrade using DBUA.

	 C.	 Upgrade to 11g 11.1.0.7 or 11.2.0.2 using DBUA, and then upgrade the database
to 12.1.0 using Oracle Database 12c DBUA.

	 D.	 Run catctl.pl script on the Oracle 10g instance, and then start the instance in
Oracle Database 12c.

	 3.	 When you’re using DBUA to upgrade a database from Oracle 10g, which of the following
activities are not performed by DBUA? (Choose two.)

	 A. 	Perform the pre-upgrade steps.

	 B.	 Change listener.ora to configure the new Oracle home directory information.

	 C.	 Disable archiving during the upgrade.

	 D.	 Back up the database after the upgrade.

	 E.	 Recompile any invalid objects.

	 F.	 Lock the new user accounts that were created.

	 G.	 Adjust the initialization parameter values.

	 H.	 Remove the deprecated initialization parameters.

1000	 Chapter 17  ■  Upgrading to Oracle Database 12c

	 4.	 When you’re performing a manual upgrade to Oracle Database 12c, in what order are
the following steps performed?

	 1.	 Run catctl.pl.

	 2.	 Run preupgrd.sql.

	 3.	 Run utlu121s.sql.

	 4.	 Start the database using the STARTUP UPGRADE option.

	 5.	 Start the database using the STARTUP NORMAL option.

	 A.	 2, 5, 1, 4, 2

	 B.	 2, 4, 1, 5, 3

	 C.	 4, 2, 1, 5, 3

	 D.	 5, 2, 4, 1, 3

	 5.	 Which of the following statements regarding the Pre-Upgrade utility preupgrd.sql are
correct? (Choose two.)

	 A.	 It checks for space availability, user conflicts, role conflicts, initialization
parameters, etc., and prepares fix-up scripts to take care of all issues.

	 B.	 The Pre-Upgrade Information utility does not make any changes to the database,
but merely reports results.

	 C.	 preupgrd.sql is a standalone script and can be copied to another location to exe-
cute on the database to be upgraded.

	 D.	 It recommends the amount of free space required in the SYSTEM and SYSAUX
tablespaces.

	 6.	 Which two options are not true with the STARTUP UPGRADE mode instance startup?

	 A. 	It initiates the upgrade process automatically after the instance is started.

	 B.	 It suppresses spurious and unnecessary error messages, especially the ORA-00942.

	 C.	 It handles certain system startup parameters that could interfere with the upgrade.

	 D.	 This option is more of a documentation purpose when the database is started for
upgrade. Its functionality is no different than the default STARTUP option.

	 7.	 When you click the Restore Database button on the Upgrade Results page, which
options must be true to perform a complete restore?

	 A.	 The database is upgraded from 11.2 release to Oracle Database 12c.

	 B.	 The database must be backed up using DBUA.

	 C.	 The COMPATIBLE parameter value must be 11.2.0.

	 D.	 The database must be backed up prior to the upgrade.

	 Review Questions	 1001

	 8.	 Which of the following database options must be upgraded individually when you’re
upgrading the database using the manual method?

	 A. 	JServer Java Virtual Machine

	 B.	 Oracle Real Application Clusters

	 C.	 Oracle XML Database

	 D.	 All of the above

	 E.	 None of the above

	 9.	 Which mechanism is used by Oracle to identify the components that need to be upgraded
while upgrading a database?

	 A.	 V$OPTION

	 B.	 V$LICENSE

	 C.	 DBMS_REGISTRY

	 D.	 DBMS_OPTIONS

	10.	 Before manually upgrading an 11.1.0.7 database, what should be the appropriate value
of the COMPATIBLE parameter? The current value is the default and is not specified in
the parameter file.

	 A.	 11.1.0.7

	 B.	 10.2.0.5

	 C.	 12.1.0

	 D.	 Do not specify the COMPATIBLE parameter in the parameter file.

	11.	 Which option provides the opportunity to defragment the database during the upgrade?

	 A.	 Manual upgrade

	 B.	 DBUA upgrade

	 C.	 Data Pump Export/Import

	 D.	 Transport Database

	12.	 Complete the sentence. To run the Pre-Upgrade Information tool, the database must be
started _____.

	 A. 	From Oracle Database 12c home

	 B.	 From the original database home

	 C.	 With the STARTUP UPGRADE option

	 D.	 With the STARTUP PREUPGRADE option

1002	 Chapter 17  ■  Upgrading to Oracle Database 12c

	13.	 In your Oracle Database 11g environment, the ORACLE_SID is set to my11g, the ORACLE_
BASE directory is set to /u01/app/oracle, and the ORACLE_HOME directory is set to /u01/
app/oracle/db/11.2.0. When you run the Pre-Upgrade Information tool on this environ-
ment from the /home/dba/preup directory, to which location are the log file and fix-up
scripts written?

	 A.	 /u01/app/oracle/cfgtoollogs/my11g/preupgrade

	 B.	 /u01/app/oracle/db/11.2.0/cfgtoollogs/my11g/preupgrade

	 C.	 /home/dba/preup/cfgtoollogs/my11g/preupgrade

	 D.	 /home/dba/preup

	14.	 During an upgrade using DBUA, which task cannot be performed by DBUA?

	 A.	 Configure listener.ora in the 12c Oracle home, if no listener.ora file exists.

	 B.	 Register the database with an existing listener in the 12c Oracle home.

	 C.	 Copy the tnsnames.ora file from an old Oracle home to the 12c Oracle home.

	 D.	 Migrate the listener running in the old Oracle home to the 12c Oracle home.

	15.	 Which statement about DBUA upgrade is true?

	 A.	 You must shut down and start the source database using the UPGRADE option before
invoking DBUA for upgrade.

	 B.	 The new home of the database must be added to oratab file.

	 C.	 DBUA displays the progress of the upgrade, but you have no way of knowing
which step or phase is being executed.

	 D.	 Space requirements are identified by DBUA in the Fast Recovery Area; the SYSTEM
and SYSAUX tablespaces must be fixed manually outside DBUA.

	16.	 Which option is not available for upgrading a database from 11.2.0.2 to 12.1.0?

	 A.	 Full Database Export/Import using Data Pump.

	 B.	 Full Transportable Export/Import.

	 C.	 Manual upgrade using catctl.pl.

	 D.	 DBUA upgrade.

	 E.	 All of the above are available options.

	17.	 Name the scripts used by the Pre-Upgrade Information and Post-Upgrade Status tools?

	 A.	 preupgrd.sql, postupgrd.sql

	 B.	 utlu121i.sql, utlu121s.sql

	 C.	 utlu121i.sql, postupgrd.sql

	 D.	 preupgrd.sql, utlu121s.sql

	 Review Questions	 1003

	18.	 Which statement regarding Unified Auditing is true regarding a database after upgrade?

	 A.	 The predefined Unified Auditing policies are disabled by default after a manual
upgrade.

	 B.	 Pre-12c audit configuration is disabled by default after the upgrade, and audit
records are no longer written to the AUD$ table.

	 C.	 One of the predefined Unified Auditing policies is enabled by default after a
DBUA upgrade.

	 D.	 Traditional pre-12c audit and 12c Unified Auditing policies cannot co-exist in the
same database.

	19.	 To improve upgrade performance and reduce the upgrade time, what tasks should be
completed before starting the upgrade? (Choose two.)

	 A.	 Run dbms_stats.gather_dictionary_stats.

	 B.	 Run $ORACLE_HOME/rdbms/admin/emremove.sql.

	 C.	 Run dbms_stats.gather_database_stats.

	 D.	 Purge DBA_RECYCLEBIN.

	20.	 You have a database in Oracle 8.1.7 .4 version. The database size is less than 5GB,
including all tablespaces (user data, system, temp, and rollback). Which method
would you choose to upgrade to Oracle Database 12c? (Choose the best answer.)

	 A.	 A two-phased upgrade. Upgrade to 10.2.0.5 first, and then upgrade to 12.1.0.

	 B.	 Use traditional export/import using exp/imp tools.

	 C.	 Use the transportable tablespace feature to copy the user_data tablespace to an
Oracle Database 12c database.

	 D.	 Use DBUA to upgrade the 8.1.7.4 database directly to 12.1.0.

Chapter

18
Using Grid
Infrastructure and
Data Movement Tools

Oracle Database 12c: OCA exam
objectives covered in this chapter:

✓✓ Moving Data

■■ Describe ways to move data.

■■ Use SQL*Loader to load data from a non-Oracle database.

■■ Use external tables to move data via platform-

independent files.

■■ Use Data Pump Export and Import to move data between

Oracle databases.

✓✓ Migrating Data by Using Oracle Data Pump

■■ Migrate data by using Oracle Data Pump.

✓✓ Installing Oracle Grid Infrastructure for a Standalone Server

■■ Configure storage for Oracle Automatic Storage

Management (ASM).

■■ Install Oracle Grid Infrastructure for a standalone server.

✓✓ Using Oracle Restart

■■ Use Oracle Restart to manage components.

As a DBA, you are often required to move data between data-
bases, extract data, or load data received from external sources.
Oracle Database 12c provides tools to move data. You can use

these tools to back up data from a table or a schema before making changes for a quick recov-
ery. Oracle Data Pump is a high-performance data movement tool that you can use to unload
and load data between Oracle databases, and you can use the SQL*Loader tool to load data
received from external sources such as flat files. External tables are another neat mechanism
you can use to read or load flat-file data using the Oracle database.

In this chapter, you will also learn about Oracle’s Grid Infrastructure for non-RAC
installations as well as Oracle Restart. Learning about these features will complete your
review based on the Oracle OCA objectives at the time of this writing. Be sure to complete
the material available online after you complete this chapter.

Tools for Moving Data
Even though data movement tools are frequently used in data warehouse environments,
OLTP databases also need to load data from external sources or send data to other applica-
tions. Oracle provides three major tools to migrate and load data to an Oracle database:

Data Pump    You can use Data Pump to copy data from one schema to another, between
two databases, or within a single database. You can also use it to extract a logical copy
of the entire database, a list of schemas, a list of tables, or a list of tablespaces to portable
operating-system files. Data Pump can also transfer or extract the metadata (DDL state-
ments) for a database, schema, or table. Data Pump is also commonly used to upgrade a
database from its current version to 12c, especially when an operating system platform
migration is planned along with the upgrade.

To support data transfer from legacy databases (versions older than 10g), Oracle Database 12c
still supports the exp and imp tools. These tools are not enhanced to support new object types
or new data types. They are maintained simply to help transfer data from an older-version
database to Oracle Database 12c.

SQL*Loader    SQL*Loader loads data from flat files into the tables of an Oracle database. It
has a powerful data-parsing engine that can read data in many formats. This tool is widely
used to load data moved from other applications and external sources, as the source data is
not in any proprietary format.

External Tables    External tables are tables with data that does not reside in the database.
The external tables feature complements SQL*Loader to load data into the database with

	 Tools for Moving Data 	 1007

complex data manipulation. External tables also can be used to load and unload data from
the database using the Data Pump engine.

Figure 18.1 shows the three tools and how they interact with the data when loading and
migrating data.

F igur e 18 .1     Oracle data movement tools

Non-Oracle
Databases

Client
PC

Flat
file

Oracle
DB

Copy file

Copy file

Copy file

sqlload Data Pump
Unload

Data Pump
External
Table

Server 1

Server 3

SQL*Loader
External
Tableimp

expdp

exp

SQL*Loader

Write file to
DB server

Oracle
DB

Server 2

impdp

Transfer
text file

Oracle
DB

<10g

FTP
Site

In the example, Data Pump is used to export data using expdp, transfer the binary dump
file to the destination server, and import the file using impdp. Data Pump is available in Oracle
databases from version 10g. Flat files generated from non-Oracle databases and other sources
are transferred to the database server or on the client machine to load into the database using
SQL*Loader. If data is to be transferred to the database from another Oracle database under
version 10g, you will need to use the legacy exp/imp tools. An external table is used to read a
flat file in the database using a SELECT statement, and the external table feature can be used to
transfer data using the Data Pump engine between databases.

1008	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

In the following sections, you will learn about each of these tools in detail. Let’s start
with Data Pump.

For Data Pump (expdp, impdp) and external tables, the data files need
to be accessible on the server where the database is running; whereas
SQL*Loader and exp/imp tools operate on files from the client machine.
A client machine is another server or workstation different from the
database server, or it could be the database server itself (client and
server are the same machine).

Migrating Data Using Data Pump
The Data Pump facility is a high-speed mechanism for transferring data or metadata
from one database to another or from operating-system files. Data Pump employs direct
path unloading and direct path loading technologies. Unlike the older export and import
programs (exp and imp), which operated on the client side of a database session, the Data
Pump facility runs on the server. Therefore, you must use a database directory to specify
dump-file and log-file locations.

You can call Data Pump from the command-line programs expdp and impdp or through
the DBMS_DATAPUMP PL/SQL package, or you can invoke it from OEM Cloud Control or by
using SQL Developer.

Data Pump Export extracts data and metadata from your database, and Data Pump
Import loads this extracted data into the same database or into a different database, option-
ally transforming metadata along the way. These transformations let you, for example, copy
tables from one schema to another or remap a tablespace from one database to another.

Some of the key features of Data Pump include:

■■ A fine-grained object selection using the INCLUDE and EXCLUDE options.

■■ An option to specify a lower-compatibility version so only supported object types
are exported.

■■ The ability to perform export and import using parallel processes.

■■ The ability to detach and attach to a job from the client session, allowing the DBA to
close the export/import session and yet have the ability to administer the jobs.

■■ An option to change target table names, tablespace names, and schema names.

■■ The ability to export views as tables and to export subset or transformed data.

■■ The option to compress metadata or data or both during export.

■■ The option to disable archive logging during import.

■■ The ability to export tablespace metadata to support the transportable tablespace feature
of the database.

	 Migrating Data Using Data Pump	 1009

■■ Full transportable exports and imports to move an entire database using transportable
tablespace technology.

■■ An option to append data to an existing table or to truncate and load data to an
existing table.

■■ The automatic use of direct path export whenever possible.

■■ The ability to copy data from one database to another using a network.

■■ The ability to specify a sample percentage to unload only a subset of data.

■■ The ability to monitor job progress; job status can be queried from the database or
using EM.

■■ An option to restart or terminate failed export and import jobs.

■■ The ability to audit Data Pump jobs with Unified Auditing.

■■ The option to perform an import in nologging mode to skip redo log generation.

Data Pump Architecture
In Oracle Data Pump, the database does all the work. This is a major deviation from the
architecture of export/import utilities, which previously ran as clients and did the majority
of the work. The dump files for export/import were stored at the client, whereas the Data
Pump files are stored at the server. Figure 18.2 shows the Data Pump architecture.

F igur e 18 . 2     The Data Pump architecture

Export Dump
Client: expdp

Import Dump
Client: impdp

Other Clients:
Enterprise
Manager,
SQL*Plus

Metadata API:
DBMS_METADATA

Database

DBMS_DATAPUMP: Data and Metadata Movement Engine

Direct Path API
External Table

ORACLE_DATAPUMP
API

1010	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Data Pump Components
Data Pump consists of the following components:

Data Pump API    DBMS_DATAPUMP is the PL/SQL API for Data Pump, which is the engine. Data
Pump jobs are created and monitored using this API.

Metadata API    The DBMS_METADATA API provides the database object definition to the Data
Pump processes.

Client Tools    The Data Pump client tools expdp and impdp use the procedures provided by
the DBMS_DATAPUMP package. These tools make calls to the Data Pump API to initiate and
monitor Data Pump operations.

Data Movement APIs    Data Pump uses the Direct Path API (DPAPI) to move data. Certain
circumstances do not allow the use of DPAPI; in those cases, the Oracle external table with
the ORACLE_DATADUMP access driver API is used.

Data Pump Processes
Oracle Data Pump jobs, once started, are performed by various processes on the database
server. The following processes are involved in the Data Pump operation:

Client Process    This process is initiated by the client utility—expdp, impdp, or other clients—
to make calls to the Data Pump API. Because Data Pump is completely integrated into the
database, once the Data Pump job is initiated, this process is not necessary for the progress
of the job.

Shadow Process    When a client logs into the Oracle database, a foreground process is created
(a standard feature of Oracle). This shadow process services the client data dump API requests.
This process creates the master table and creates Advanced Queries (AQ) queues used for com-
munication. Once the client process ends, the shadow process goes away, too.

Master Control Process (MCP)    The master control process controls the execution of the
Data Pump job; there is one MCP per job. MCP divides the Data Pump job into various
metadata and data-load or data-unload jobs and hands them over to the worker processes.
The MCP has a process name of the format <ORACLE_SID>_DMnn_<PROCESS_ID>. It maintains
the job state, job description, restart information, and file information in the master table.

Worker Process    The MCP creates the worker processes based on the value of the PARALLEL
parameter. The workers perform the tasks requested by the MCP, mainly loading or unloading
data and metadata. The worker processes have the format <ORACLE_SID>_DWnn_<PROCESS_ID>.
The worker processes maintain the current status in the master table that can be used to
restart a failed job.

Parallel Query (PQ) Processes    The worker processes can initiate parallel-query processes
if an external table is used as the data-access method for loading or unloading. These are
standard parallel-query slaves of the parallel-execution architecture.

Let’s consider the example of an export Data Pump operation and see all the activities
and processes involved. Say user A invokes the expdp client, which initiates the shadow

	 Migrating Data Using Data Pump	 1011

process. The client calls the DBMS_DATAPUMP.OPEN procedure to establish the kind of export
to be performed. The OPEN call starts the MCP process and creates two AQ queues.

The first queue is the status queue, used to send the status of the job, which includes log-
ging information and errors. Clients interested in the status of the job can query this queue.
This is strictly a unidirectional queue—the MCP posts the information to the queue, and
the clients consume the information. The second queue is the command-and-control queue,
which is used to control the worker processes established by the MCP and to perform API
commands and file requests. This is a bidirectional queue where the MCP listens and writes.
The commands are sent to this queue by the DBMS_DATAPUMP methods or by using the param-
eters of the expdp client.

Once all the components (parameters and filters) of the job are defined, the client (expdp)
invokes DBMS_DATAPUMP.START_JOB. Based on the number of parallel processes requested,
the MCP starts the worker processes. The MCP directs one of the worker processes to do the
metadata extraction using the DBMS_METADATA API.

During the operation, a master table is maintained in the schema of the user who initi-
ated the Data Pump Export. The master table has the same name as the name of the Data
Pump job. This table maintains one row per object with status information. In the event of
a failure, Data Pump uses the information in this table to restart the job. The master table
is the heart of every Data Pump operation; it maintains all the information about the job.
Data Pump uses the master table to restart a failed or suspended job. The master table is
dropped (by default) when the Data Pump job finishes successfully.

The master table is written to the dump-file set as the last step of the export dump opera-
tion and is removed from the user’s schema. For an import dump operation, the master table
is loaded from the dump-file set to the user’s schema as the first step and is used to sequence
the objects being imported.

While the export job is underway, the original client who invoked the export job can
detach from the job without aborting the job. This is especially useful when performing
long-running data export jobs. Users can attach the job at any time using the DBMS_DATAPUMP
methods and query the status or change the parallelism of the job.

Because the master table is created in the Data Pump user’s schema as
a table, if there is an existing table in the schema with the Data Pump job
name, the job fails. The user must have the appropriate privileges to create
the table and have the appropriate tablespace quotas.

Data Access Methods
Data Pump chooses the most appropriate data-access method. Two methods are supported:
direct path access and external table access. Direct path export has been supported since
Oracle 7.3. External tables were introduced in Oracle9i, and support for writing to external
tables has been available since Oracle 10g. Data Pump provides an external tables access
driver (ORACLE_DATAPUMP) that can be used to read and write files. The format of the file
is the same as the direct path methods; hence, it’s possible to load data that is unloaded

1012	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

in another method. Data Pump uses the Direct Load API whenever possible. An external-
tables method will be used for the following exceptions:

■■ Tables with fine-grained access control are enabled in insert and select operations.

■■ A domain index exists for a LOB column.

■■ A global index on a multipartition table exists during a single-partition load.

■■ A clustered table or table has an active trigger during import.

■■ A table contains BFILE columns.

■■ A referential integrity constraint is present during import.

■■ A table contains a VARRAY column with an embedded opaque type.

■■ Very large tables and partitions are loading and unloading, where the PARALLEL SQL
clause can be used to an advantage.

■■ Tables that are partitioned differently at load time and unload time are loading.

Using Data Pump Clients
Oracle Database 12c comes with the expdp utility to invoke Data Pump for export and comes
with impdp for import. The Data Pump Export utility (expdp) unloads data and metadata to
a set of OS files called dump files. The Data Pump Import utility (impdp) loads data and meta-
data stored in an export dump file to a target database. expdp and impdp accept parameters
that are then passed to the DBMS_DATAPUMP program. The command-line executable name for
Data Pump Export is expdp and for Data Pump Import is impdp on Windows as well as Unix
platforms. For a user to invoke expdp/impdp, they need to set up a directory where the dump
files will be stored, and they must have appropriate privileges to perform Data Pump Export/
Import. In the next section, we will discuss how to set up the export dump location.

Setting Up the Dump Location
Because Data Pump is server-based, directory objects must be created in the database where
the Data Pump files will be stored. Directory objects are named directory locations on the
database server, representing the physical location on the server’s file system. Directories are
used with several database features, including BFILEs, external tables, utl_file, SQL*Loader,
and Data Pump.

The directory object contains the location of a specific operating-system directory. By
using a named directory object, you do not have to hard-code the directory path in programs,
and you get file-management flexibility.

Under Unix, you create directories with the CREATE DIRECTORY statement, like this:

CREATE DIRECTORY dump_dir AS '/oracle/data_pump/dumps';
CREATE DIRECTORY log_dir AS '/oracle/data_pump/logs';

Under Windows, you create directories like this:

CREATE DIRECTORY dpump_dir AS 'G:\datadumps';

	 Migrating Data Using Data Pump	 1013

Directories are not schema objects, like tables or synonyms, because they are not owned
by a schema. Instead, directories are like profiles or roles, in that they are owned by the data-
base. To control access to a directory, you need to grant the READ or WRITE object privilege on
that directory, like this:

GRANT read,write ON DIRECTORY dump_dir TO HR;

To create directories, you must have the CREATE ANY DIRECTORY system privilege. By
default, only the users SYSTEM and SYS have this privilege. Be careful in granting this system
privilege to users, because the database employs the operating-system credentials of the
database-instance owner.

Directory objects are owned by the SYS user only; therefore, the directory
names must be unique across the database.

The user executing Data Pump must have been granted permissions on the directory. READ
permission is required to import, and WRITE permission is required to export and to create log
files or SQL files.

Note that the oracle OS user (who owns the software installation and database files)
must have read and write OS privileges on the directory. The user that connects to the data-
base as SCOTT need not have the privileges on the OS directory for Data Pump to succeed.

A default directory can be created for Data Pump operations in the database. Privileged
users (with the EXP_FULL_DATABASE or IMP_FULL_DATABASE privilege) need not specify
a directory object name when performing the Data Pump operation. The name of the
default directory must be DATA_PUMP_DIR. Also, the privileged users need not have explicit
READ or WRITE permission on DATA_PUMP_DIR.

Using EM Cloud Control, you can create and edit directory objects. On the EM Cloud
Control screen, choose Directory Objects from the Database Objects menu under Schema.
Figure 18.3 shows the Directory Objects screen that appears.

Click the Edit button to change the physical directory. You can also use the Delete but-
ton to delete an existing directory and the Create button to create a new directory. The
View button shows details about the directory, including the privileges.

Data Pump can write three types of files to the OS directory defined in the database.
Remember that absolute paths are not supported; Data Pump can write only to a directory
defined by a directory database object. The file types are as follows:

Dump Files    These contain data and metadata information.

Log Files    These record the standard output to a file and contain job progress and status
information.

SQL Files    Data Pump Import can extract the metadata information from a dump file,
which can be used to create database objects without using the Data Pump Import utility.

1014	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

F igur e 18 . 3     The Directory Objects screen of EM

You can specify the location of the files to the Data Pump clients using three methods
(given in the order of precedence):

■■ Prefix the filename with the directory name separated by a colon, for example,
DUMPFILE=dumplocation:myfile.dmp.

■■ Use the DIRECTORY parameter on the OS environment.

■■ Define the DATA_DUMP_DIR directory in the database for privileged users.

The export and import performed using the expdp and impdp tools can have different
modes based on the requirement. The next section discusses this.

Specifying Export and Import Modes
Export and import using the Data Pump clients can be performed in five different modes to
unload or load different portions of the database. When performing the dump-file import,
specifying the mode is optional; when no mode is specified, the entire dump file is loaded
with the mode automatically set to the one used for export.

Table 18.1 describes the export and import modes.

	 Migrating Data Using Data Pump	 1015

Tabl e 18 .1    Data Pump Export and Import Modes

Mode Description Export Import

Database Performed by specifying
the FULL=Y parameter.

The export user
requires the EXP_FULL_
DATABASE role.

The import user
requires the IMP_FULL_
DATABASE role.

Tablespace Performed by specifying
the TABLESPACES
parameter.

Data and metadata
for only those objects
contained in the
specified tablespaces
are unloaded. The export
user requires the EXP_
FULL_DATABASE role.

All objects contained in
the specified tablespaces
are loaded. The import
user requires the IMP_
FULL_DATABASE privilege.
The source dump file can
be exported in database,
tablespace, schema, or
table mode.

Schema Performed by specifying
the SCHEMAS parameter.
This is the default mode.

Only objects belonging to
the specified schema are
unloaded. The EXP_FULL_
DATABASE role is required
to specify a list
of schemas.

All objects belonging
to the specified schema
are loaded. The source
can be a database or
schema-mode export.
The IMP_FULL_DATABASE
role is required to specify
a list of schema.

Table Performed by specifying
the TABLES parameter.

Only the specified table,
its partitions, and its
dependent objects are
unloaded. The export user
must have the SELECT
privilege on the tables.

Only the specified table,
its partitions, and its
dependent objects are
loaded. This requires
the IMP_FULL_DATABASE
role to specify tables
belonging to a different
user.

Transport
Tablespace

Performed by specifying
the TRANSPORT_
TABLESPACES parameter.

Only metadata for tables
and their dependent
objects within the
specified set of
tablespaces are unloaded.
Use this mode to transport
tablespaces from one
database to another.

Metadata from a
transport tablespace
export is loaded.

Transport
Database

Performed by specifying
TRANSPORTABLE=ALWAYS
and FULL=Y parameters.
VERSION parameter must
be 12.0 or higher.

Similar to transport
tablespace for objects
in non-SYSTEM/SYSAUX
tablespaces. In addition,
object data for other
objects are exported.

Metadata and data for
objects is loaded to build
a complete database.

1016	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

In a database-mode export, the entire database is exported to operating-system files, includ-
ing user accounts, public synonyms, roles, and profiles. In a schema-mode export, all data and
metadata for a list of schemas is exported. At the most granular level is the table-mode export,
which includes the data and metadata for a list of tables. A tablespace-mode export extracts
both data and metadata for all objects in a tablespace list as well as any object dependent on
those in the specified tablespace list. Therefore, if a table resides in your specified tablespace
list, all its indexes are included whether or not they also reside in the specified tablespace list.
In each of these modes, you can further specify that only data or only metadata be exported.
The default is to export both data and metadata.

With some objects, such as indexes, only the metadata is exported; the actual internal
structures contain physical addresses and are always rebuilt on import.

The files created by a Data Pump Export are called dump files, and one or more of
these files can be created during a single Data Pump Export job. Multiple files are created
if your Data Pump job has a parallel degree greater than 1 or if a single dump file exceeds
the filesize parameter. All the export dump files from a single Data Pump Export job
are called a dump-file set.

Using expdp
You use the expdp utility to perform Data Pump Exports. Any user can export objects or a
complete schema owned by the user without any additional privileges. Nonprivileged users
must have WRITE permission on the directory object and must specify the DIRECTORY param-
eter or specify the directory object name along with the dump filename.

Here is an example to perform an export by user SCOTT. Because Scott is not a privileged
user, he must specify the DIRECTORY object name.

$ expdp scott/tiger

Export: Release 12.1.0.1.0 - Production on Sat Jan 18 17:20:05 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options
ORA-39002: invalid operation
ORA-39070: Unable to open the log file.
ORA-39145: directory object parameter must be specified and non-null

Let’s create a directory for user SCOTT and grant read and write privileges on this
directory:

SQL> CREATE DIRECTORY dumplocation AS '/u02/dpump';
Directory created.

	 Migrating Data Using Data Pump	 1017

SQL> GRANT READ, WRITE on DIRECTORY dumplocation TO scott;
Grant succeeded.

Now, let’s try the export by specifying the directory:

$ expdp scott/tiger directory=dumplocation

Export: Release 12.1.0.1.0 - Production on Sat Jan 18 17:22:10 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options
Starting "SCOTT"."SYS_EXPORT_SCHEMA_01": scott/******** directory=dumplocation
Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 192 KB
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type SCHEMA_EXPORT/STATISTICS/MARKER
. . exported "SCOTT"."DEPT" 6 KB 4 rows
. . exported "SCOTT"."EMP" 8.75 KB 14 rows
. . exported "SCOTT"."SALGRADE" 5.929 KB 5 rows
. . exported "SCOTT"."BONUS" 0 KB 0 rows
Master table "SCOTT"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for SCOTT.SYS_EXPORT_SCHEMA_01 is: /u02/dpump/expdat.dmp
Job "SCOTT"."SYS_EXPORT_SCHEMA_01" successfully completed at Sat Jan 18 17:22:56
2014 elapsed 0 00:00:45
$

Because you did not specify any other parameters, expdp used default values for the
filenames (expdat.dmp and export.log), performed a schema-level export (login schema),
calculated dump file size estimation using the blocks method, used a default job name
(SYS_EXPORT_SCHEMA_01), and exported both data and metadata.

1018	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Data Pump Export Parameters

You can use various parameters while invoking expdp. You can obtain a list of parameters
by specifying the help option expdp help=y. The help description is self-explanatory, pro-
ducing part of the output in a formatted list to show you the most commonly used options
available in export dump client expdp. Default values are listed within square brackets. Be
sure to check out all the parameters by executing expdp help=y.

■■ ATTACH: Attach to an existing job. For example, ATTACH=job_name.

■■ COMPRESSION: Reduce the size of a dump file.Valid keyword values are: ALL, DATA_ONLY,
[METADATA_ONLY] and NONE.

■■ CONTENT: Specifies data to unload. Valid keyword values are: [ALL], DATA_ONLY and
METADATA_ONLY.

■■ DIRECTORY: Directory object to be used for dump and log files.

■■ DUMPFILE: Specify list of destination dump file names [expdat.dmp]. For example,
DUMPFILE=scott1.dmp, scott2.dmp, dmpdir:scott3.dmp.

■■ ESTIMATE: Calculate job estimates. Valid keyword values are: [BLOCKS] and STATISTICS.

■■ ESTIMATE_ONLY: Calculate job estimates without performing the export.

■■ EXCLUDE: Exclude specific object types. For example, EXCLUDE=SCHEMA:"='HR'".

■■ FILESIZE: Specify the size of each dump file in units of bytes.

■■ FLASHBACK_SCN: SCN used to reset session snapshot.

■■ FLASHBACK_TIME: Time used to find the closest corresponding SCN value.

■■ FULL: Export entire database [N].

■■ INCLUDE: Include specific object types. For example, INCLUDE=TABLE_DATA.

■■ JOB_NAME: Name of export job to create.

■■ LOGFILE: Specify log file name [export.log].

■■ NETWORK_LINK: Name of remote database link to the source system.

■■ NOLOGFILE: Do not write log file [N].

■■ PARALLEL: Change the number of active workers for current job.

■■ PARFILE: Specify parameter file name.

■■ QUERY: Predicate clause used to export a subset of a table. For example,
QUERY=employees:"WHERE department_id > 10".

■■ REMAP_DATA: Specify a data conversion function. For example, REMAP_DATA=EMP
.EMPNO:REMAPPKG.EMPNO.

■■ REUSE_DUMPFILES: Overwrite destination dump file if it exists [N].

■■ SAMPLE: Percentage of data to be exported.

■■ SCHEMAS: List of schemas to export [login schema].

■■ SERVICE_NAME: Name of an active Service and associated resource group to constrain
Oracle RAC resources.

	 Migrating Data Using Data Pump	 1019

■■ STATUS: Frequency (secs) job status is to be monitored where the default [0] will show
new status when available.

■■ TABLES: Identifies a list of tables to export. For example,
TABLES=HR.EMPLOYEES,SH.SALES:SALES_1995.

■■ TABLESPACES: Identifies a list of tablespaces to export.

■■ TRANSPORTABLE: Specify whether transportable method can be used. Valid keyword
values are: ALWAYS and [NEVER].

■■ TRANSPORT_TABLESPACES: List of tablespaces from which metadata will be unloaded.

■■ VERSION: Version of objects to export. Valid keyword values are: [COMPATIBLE], LATEST
or any valid database version.

■■ VIEWS_AS_TABLES: Identifies one or more views to be exported as tables. For example,
VIEWS_AS_TABLES=HR.EMP_DETAILS_VIEW.

The following commands are valid while in interactive mode. You can attach to the job
and perform these actions.

■■ ADD_FILE: Add dumpfile to dumpfile set.

■■ CONTINUE_CLIENT: Return to logging mode. Job will be restarted if idle.

■■ EXIT_CLIENT: Quit client session and leave job running.

■■ FILESIZE: Default filesize (bytes) for subsequent ADD_FILE commands.

■■ KILL_JOB: Detach and delete job.

■■ PARALLEL: Change the number of active workers for current job.

■■ START_JOB: Start or resume current job. Valid keyword values are: SKIP_CURRENT.

■■ STATUS: Frequency (secs) job status is to be monitored where the default [0] will show
new status when available.

■■ STOP_JOB: Orderly shutdown of job execution and exits the client. Valid keyword val-
ues are: IMMEDIATE.

FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive parameters.

The DUMPFILE parameter can specify more than one file. The filenames
can be comma-separated, or you can use the %U substitution variable. If
you specify %U in the DUMPFILE filename, the number of files initially cre-
ated is based on the value of the PARALLEL parameter. Preexisting files
that match the name of the files generated are not overwritten; an error
is flagged. To forcefully overwrite the files, use the REUSE_DUMPFILES=Y
parameter. The FILESIZE parameter determines the size of each file.
Table 18.2 shows some examples.

You can specify all the parameters in a file and specify the filename with
the PARFILE parameter. The only exception is the PARFILE parameter
inside the parameter file. Recursive PARFILE is not supported.

1020	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Tabl e 18 . 2    Data Pump DUMPFILE Examples

Parameter Examples File Characteristics

DUMPFILE=exp%U.dmp FILESIZE=200M Initially, the exp01.dmp file will be created; once
the file is 200MB, the next file will be created.

DUMPFILE=exp%U_%U.dmp PARALLEL=3 Initially, three files will be created: exp01_01.dmp,
exp02_02.dmp, and exp03_03.dmp. Notice that
every occurrence of the substitution variable
is incremented each time. Because there is no
FILESIZE, no more files will be created.

DUMPFILE=DMPDIR1:exp%U.dmp,
DMPDIR2:exp%U.dmp FILESIZE=100M

This method is especially useful if you do not have
enough space in one directory to perform the
complete export job. The dump files are stored in
directories defined by DMPDIR1 and DMPDIR2.

The SAMPLE parameter is useful for unloading a subset of data from the source table.
Specify the percentage of rows that need to be unloaded using this parameter. The SAMPLE
parameter is not valid for network exports.

In the next section, we will discuss the impdp utility, which does the import from a
dump file created using expdp.

The VERSION parameter of expdp is useful for exporting data from a data-
base with the dump file compatible to a specific version. This is especially
handy when the target database is at a lower version.

Using impdp
The Data Pump Import program impdp is the utility that can read and apply the dump file
created by the expdp utility. The directory permission and privileges for using impdp are
similar to those for expdp.

impdp has several modes of operation, including full, schema, table, tablespace, and trans-
portable tablespace. In the full mode, the entire contents of an export file set are loaded. Full
mode is also used for full transportable exports. In a schema-mode import, all content for a
list of schemas in the specified file set is loaded. The specified file set for a schema-mode import
can be from either a database or a schema-mode export. With a table-mode import, only the
specified table and dependent objects are loaded from the export file set. With a tablespace-
mode import, all objects in the export file set that were in the specified tablespace list are
loaded. In transportable tablespace mode, the metadata from another database is loaded using
a database link (specified with the NETWORK_LINK parameter) or by specifying a dump file that
contains the metadata. The actual data files, specified by the TRANSPORT_DATAFILES parameter,
must be made available from the source system for use in the target database, typically by
copying them over to the target system.

	 Migrating Data Using Data Pump	 1021

With all these modes, the source can be a live database instead of a set of export files.
Table 18.3 shows the supported mapping of export mode to import mode.

Tabl e 18 . 3    Export to Import Modes

Source Export Mode Import Mode

Database, Schema, Table,

Tablespace, Live database Full

Database, Schema, Live database Schema

Database, Schema, Table, Tablespace, Live database Table

Database, Schema, Table, Tablespace, Live database Tablespace

Transportable tablespace Transportable tablespace

The IMP_FULL_DATABASE role is required if the source is a live database or the export ses-
sion required the EXP_FULL_DATABASE role.

The parameter VIEWS_AS_TABLES is new in the Oracle Database 12c expdp
utility. This parameter lets you export the data in a view as if it were a
table. This parameter is also available in impdp to use in the network mode
of import.

Data Pump Import Parameters

You can use various parameters while invoking impdp. You can obtain a list of parameters
by specifying impdp help=y. The help description is self-explanatory, producing part of the
output in a formatted list to show you the most commonly used options available in import
dump client impdp. Default values are listed within square brackets.

■■ ATTACH : Attach to an existing job.

■■ CONTENT : Specifies data to load. Valid keywords are: [ALL], DATA_ONLY and
METADATA_ONLY.

■■ DIRECTORY : Directory object to be used for dump, log and SQL files.

■■ DUMPFILE : List of dump files to import from [expdat.dmp].

■■ ESTIMATE : Calculate job estimates.

■■ EXCLUDE : Exclude specific object types.

■■ FLASHBACK_SCN : SCN used to reset session snapshot.

■■ FLASHBACK_TIME : Time used to find the closest corresponding SCN value.

1022	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

■■ FULL : Import everything from source [Y].

■■ INCLUDE : Include specific object types.

■■ JOB_NAME : Name of import job to create.

■■ LOGFILE : Log file name [import.log].

■■ NETWORK_LINK : Name of remote database link to the source system.

■■ NOLOGFILE : Do not write log file [N].

■■ PARALLEL : Change the number of active workers for current job.

■■ PARFILE : Specify parameter file.

■■ QUERY : Predicate clause used to import a subset of a table.

■■ REMAP_DATAFILE : Redefine data file references in all DDL statements.

■■ REMAP_SCHEMA : Objects from one schema are loaded into another schema.

■■ REMAP_TABLE : Table names are remapped to another table.

■■ REMAP_TABLESPACE : Tablespace objects are remapped to another tablespace.

■■ REUSE_DATAFILES : Tablespace will be initialized if it already exists [N].

■■ SCHEMAS : List of schemas to import.

■■ SERVICE_NAME : Name of an active Service and associated resource group to constrain
Oracle RAC resources.

■■ SKIP_UNUSABLE_INDEXES : Skip indexes that were set to the Index Unusable state.

■■ SQLFILE : Write all the SQL DDL to a specified file.

■■ STATUS : Frequency (secs) job status is to be monitored where the default [0] will show
new status when available.

■■ TABLE_EXISTS_ACTION : Action to take if imported object already exists. Valid key-
words are: APPEND, REPLACE, [SKIP] and TRUNCATE.

■■ TABLES : Identifies a list of tables to import.

■■ TABLESPACES : Identifies a list of tablespaces to import.

■■ TRANSFORM : Metadata transform to apply to applicable objects. Valid keywords are:
DISABLE_ARCHIVE_LOGGING, LOB_STORAGE, OID, PCTSPACE, SEGMENT_ATTRIBUTES, STOR-
AGE, and TABLE_COMPRESSION_CLAUSE.

■■ TRANSPORTABLE : Options for choosing transportable data movement.

■■ VERSION : Version of objects to import.Only valid for NETWORK_LINK and SQLFILE.

■■ VIEWS_AS_TABLES : Identifies one or more views to be imported as tables.

The following commands are valid while in interactive mode. You can attach to the job
and perform these actions.

■■ CONTINUE_CLIENT : Return to logging mode. Job will be restarted if idle.

■■ EXIT_CLIENT : Quit client session and leave job running.

■■ KILL_JOB : Detach and delete job.

	 Migrating Data Using Data Pump	 1023

■■ PARALLEL : Change the number of active workers for current job.

■■ START_JOB : Start or resume current job. Valid keywords are: SKIP_CURRENT.

■■ STATUS : Frequency (secs) job status is to be monitored where the default [0] will show
new status when available.

■■ STOP_JOB : Orderly shutdown of job execution and exits the client.

You must include one parameter to specify the mode, either full, schemas, tables, or
tablespaces. You can include several other parameters on the command line or place them
in a file and use the parfile= parameter to instruct impdp where to find them. Here are
some examples of imports:

■■ Read the dump file FULL.DMP and extract all DDL, placing it in the file FULL.SQL. Do
not write a log file.

impdp system/password full=y dumpfile=dumplocation:FULL.DMP
 nologfile=y sqlfile= dumplocation:FULL.SQL

■■ Read the data accessed via the database link PROD, and import schema HR into schema
HR_TEST, importing only metadata, writing the log file to the database directory chap7,
and naming this log file HR_TEST.imp. Include the timestamp for each step in the log
file using the LOGTIME parameter.

impdp system/password network_link=prod schemas="HR"
 remap_schema="HR:HR_TEST" content=metadata_only
 logfile= dumplocation:HR_TEST.imp logtime=ALL

Read the dump file HR.DMP, and write all the DDL to the SQL file HR_proc_give.sql to
create any procedures with the name LIKE 'GIVE%'. Do not write a log file.

impdp system/password full=y dumpfile= dumplocation:HR.DMP
 nologfile=y sqlfile= dumplocation:HR_proc_give.SQL
 include=PROCEDURE:"LIKE 'GIVE%'"

The combinations of parameters you can use to copy data and metadata give you, the
DBA, flexibility in administering your databases.

When using the schema-level import with the SCHEMAS parameter, if the
schema does not exist in the target database, the import operation creates
it with the same attributes from the source. The schema created by the
import operation will need to have the password reset.

You can use the CONTENT, INCLUDE, and EXCLUDE parameters in the impdp utility to filter
the metadata objects. Their behavior is the same as in the expdp utility. We’ll discuss them
in detail in the “Data and Metadata Filters” section. In the next section, we will discuss
methods to use a different target for tablespaces, schemas, and data files.

1024	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Import Transformations

While performing the import, you can specify a different target name for data files,
tablespaces, or schemas. These transformations are possible because the object metadata
is stored in the dump file as XML. The REMAP_ parameters are used to specify this. When
any one of the three REMAP_ parameters is used, Data Pump transforms the metadata DDL
during import. The IMP_FULL_DATABASE role is required to use these parameters. You can
use these parameters multiple times if there is more than one transformation to be made,
but the same source cannot be repeated more than once. To specify a different target name
for each type of object, you can use the following parameters:

REMAP_DATAFILES    Using this parameter, you can specify a different name for the data
file. The filename referenced could be in a CREATE TABLESPACE, CREATE LIBRARY, or CREATE
DIRECTORY statement. REMAP_DATAFILES is especially useful when you’re performing a full
database import, when the tablespaces are being created by impdp and the source directories
do not exist in the target database server, or when the source and target platforms are differ-
ent (VMS, Windows, Unix). The syntax is as follows:

REMAP_DATAFILE=source_datafile:target_datafile

REMAP_SCHEMA    Using this parameter, you can load all the objects belonging to the source
schema to a target schema. Multiple source schemas can map to the same target schema.
If the target schema specified does not exist, the import operation creates the schema and
performs the load. The syntax is as follows:

REMAP_SCHEMA=source_schema:target_schema

REMAP_TABLE    Using this parameter, you can rename a table while performing the import.
Only the table is renamed; its dependent indexes, triggers, constraints, and columns are not
renamed. The syntax is as follows:

REMAP_TABLE=source_table:target_table

REMAP_TABLESPACE    Using this parameter, you can create the objects that belong to a
tablespace in the source to another in the target. The syntax is as follows:

REMAP_TABLESPACE=source_tablespace:target_tablespace

TRANSFORM    Using the TRANSFORM parameter, you can specify that the storage clause should
not be generated in the DDL for import. This is useful if the storage characteristics of the
source and target databases are different. TRANSFORM has the following syntax:

TRANSFORM=name:boolean_value[:object_type]

The name of the transform can be either SEGMENT_ATTRIBUTES or STORAGE. STORAGE
removes the STORAGE clause from the CREATE statement DDL, whereas SEGMENT_ATTRIBUTES
removes physical attributes, tablespaces, logging, and storage attributes. boolean_value can
be Y or N; the default is Y. The type of object is optional; the valid values are TABLE and INDEX.

	 Migrating Data Using Data Pump	 1025

For example, if you want to ignore the storage characteristics during the import and use
the defaults for the tablespace, you can do the following:

impdp dumpfile=scott.dmp transform=storage:N:table exclude=indexes

The next example will remove all the segment attributes; the import will use the user’s
default tablespace and its default storage characteristics:

impdp dumpfile=scott.dmp transform=segment_attributes:N

In the next section, we will discuss how data can be copied from one database to
another without using a dump file.

The FILESIZE parameter in expdp limits the size of a dump file. The param-
eter is often used when the DUMPFILE parameter includes the %U format,
to assign numbers from 01 to 99 to the filename—for example, expdp
dumpfile=myfile%U.dmp logfile=myfile.log filesize=2048m.

Disabling Logging During Import

Oracle Data Pump Import provides an option to disable logging for faster imports. Redo
log information is not generated with this option; therefore, there are no archive log files
to manage either. This option is very useful for large data loads or jobs that initially popu-
late a database. A small amount of logging will still happen when the objects are created
in the database. If the database is running in FORCE LOGGING mode, setting this parameter
has no effect.

Logging is disabled by using the TRANSFORM parameter. The syntax is

TRANSFORM=DISABLE_ARCHIVE_LOGGING:Y|N[:TABLE|INDEX]

You can choose to disable logging for tables, indexes, or both. If you specify Y:TABLE,
logging is disabled for table loads. If you specify Y:INDEX, logging is disabled only for index
creation. If you do not specify TABLE or INDEX along with Y, logging is disabled for both
tables and indexes. You may provide the TRANSFORM parameter multiple times. For example,
the code shown here disables logging for TABLE using two different methods.

$ impdp DIRECTORY=dump_dir DUMPFILE=ex1.dmp LOGFILE=ex1.log SCHEMAS=basket
TRANSFORM=DISABLE_ARCHIVE_LOGGING:Y TRANSFORM=DISABLE_ARCHIVE_LOGGING:N:INDEX

$ impdp DIRECTORY=dump_dir DUMPFILE=ex2.dmp LOGFILE=ex2.log SCHEMAS=ball
TRANSFORM=DISABLE_ARCHIVE_LOGGING:N:TABLE

1026	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

 When impdp is invoked, job status is written to the import
master table. These writes are logged even if you set
TRANSFORM=DISABLE_ARCHIVE_LOGGING:Y.

Network-Mode Import
NETWORK_LINK enables the network-mode import using a database link. The database link
must be created before the import is performed. The export is performed on the source data-
base based on the various parameters; the data and metadata are passed to the source
database using the database link and loaded. To get a consistent export from the source data-
base, you can use the FLASHBACK_SCN or FLASHBACK_TIME parameter.

Using FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, or TRANSPORT_TABLESPACES requires
that the NETWORK_LINK parameter is also specified. Here is an example of how to copy the
SCOTT schema in the source (remote) database to LARRY in the target (local) database. Scott’s
objects are stored in the USERS tablespace; in the target, you will create Larry’s objects in
the EXAMPLE tablespace. The database link name is NEW_DB.

$ impdp schemas=scott network_link=new_db remap_schema=scott:larry
 remap_tablespace=users:example

The network mode import is different from using SQL*Net to perform the
import: impdp username/password@database.

In the next example, data is read via the database link PROD, and it imports only the
data from HR.DEPARTMENTS into schema HR_TEST.DEPARTMENTS. Write a log file to file
DEPT_DATA.log.

impdp system/password network_link=prod schemas="HR"
 remap_schema="HR:HR_TEST" content=data_only

 include=TABLE:"= 'DEPARTMENTS'"
 logfile= dumplocation:HR_TEST.imp

Using Network Mode to Refresh Test Data from Production

Consider that you periodically refresh the Oracle test database with production data.
Because you have to preserve all the grants on the test schema, you can perform the
following steps using SQL*Plus and exp/imp tools to perform the data refresh:

	 1.	 Disable all the foreign keys.

	 2.	 Disable all the primary keys.

	 Migrating Data Using Data Pump	 1027

	 3.	 Drop the indexes so that the import goes faster.

	 4.	 Truncate the tables.

	 5.	 Export the data from the production database.

	 6.	 Import the data to the test database using parameters:

COMMIT=Y
BUFFERS=10485760
FROMUSER=SCHEMAPROD
TOUSER=SCHEMATEST
IGNORE=Y
GRANTS=N

You can achieve the same results in a single step using impdp with the following param-
eters (TEST_SCHEMA is the name of the database link, and it must exist):

SCHEMAS=SCHEMAPROD
NETWORK_LINK=TEST_SCHEMA
REMAP_SCHEMA=SCHEMAPROD:SCHEMATEST
TABLE_EXISTS_ACTION=REPLACE
EXCLUDE=OBJECT_GRANT

Data and Metadata Filters
The Data Pump provides fine-grained object selection to filter the metadata objects dur-
ing export and import. You can specify the EXCLUDE and INCLUDE parameters with expdp
and impdp clients to filter metadata objects. You can use the CONTENT parameter to specify
whether you need to export/import just data, just metadata, or both. You can use the QUERY
parameter to filter data rows.

The EXCLUDE and INCLUDE parameters are mutually exclusive. Also, when you specify
either parameter, you cannot specify CONTENT=DATA_ONLY. The QUERY, EXCLUDE, and INCLUDE
parameters have the following syntax:

QUERY=[schema.][table_name:]"query clause"
EXCLUDE=object_type[:"object names"]
INCLUDE=object_type[:"object names"]

Table 18.4 shows examples of data and metadata filter usage. The explanations in the
Accomplishes column refer to unloading; however, they are applicable to loading also.

1028	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Tabl e 18 . 4    Data Pump Metadata Filter Examples

Parameter Examples Accomplishes

schemas=traing content=metadata_only Unloads the metadata information for all
objects owned by the TRAING schema. No
data row will be unloaded.

content=data_only schemas=traing
query=traing.student:"where ee_dept
= 'IST'"

No metadata will be unloaded; only data rows
will be unloaded. All data rows will be unloaded
for all tables owned by TRAING, except the
STUDENT table, where only the rows that belong
to the IST department are unloaded.

content=data_only tables=traing.
student query="where ee_dept = 'IST'"

Only rows in the STUDENT table that belong to
the IST department are unloaded.

schemas=traing exclude=view,package,
procedure,function,grant,trigger
exclude=index:"like 'S%'"

Table rows will be unloaded. Metadata
definitions for view, trigger, procedure,
function, grants, packages, and indexes
that begin with S are not unloaded.

Content=data_only schemas=hr
include=table:"in ('EMPLOYEES',
'DEPARTMENTS')" query="where
DEPARTMENT_ID = 10"

Only rows belonging to department 10
are unloaded from the EMPLOYEES and
DEPARTMENTS tables.

You can obtain the parameter values for INCLUDE and EXCLUDE by querying the OBJECT_
PATH column from the following data dictionary views:

■■ DATABASE_EXPORT_OBJECTS for full-database export parameters

■■ SCHEMA_EXPORT_OBJECTS for schema-level export parameters

■■ TABLE_EXPORT_OBJECTS for table-level export parameters

The following query generates the values that can be used with the INCLUDE/EXCLUDE
parameters when performing a schema-level export that is related to packages:

SQL> select object_path, comments
 from schema_export_objects
 where object_path like '%PACKAGE%';

OBJECT_PATH COMMENTS
------------------ --
ALTER_PACKAGE_SPEC Recompile package specifications in the selected
 schemas
PACKAGE Packages (both specification and body) in
 selected schemas and their dependent grants and audits

	 Migrating Data Using Data Pump	 1029

PACKAGE_BODY Package bodies in the selected schemas
PACKAGE_SPEC Package specifications in the selected schemas
… … …
SQL>

Data Pump has the ability to monitor jobs and make adjustments to those jobs. The jobs
initiated by impdp and expdp can be monitored and modified by using the same clients. In
the next section, we will discuss managing jobs using expdp and impdp.

Managing Data Pump Jobs
Data Pump clients expdp and impdp provide an interactive command interface. Because
each export and import operation has a job name, you can attach to that job from any
computer and monitor or adjust the job. Table 18.5 lists the parameters that can be used
interactively.

Tabl e 18 .5    Data Pump Interactive Parameters

Parameter Purpose

ADD_FILE Adds another file or a file set to the DUMPFILE set.

CONTINUE_CLIENT Changes mode from interactive client to logging mode.

EXIT_CLIENT Leaves the client session and discontinues logging but leaves the
current job running.

KILL_JOB Detaches all currently attached client sessions and terminates the job.

PARALLEL Increases or decreases the number of threads.

START_JOB Starts (restarts) a job that is not currently running. The SKIP_CURRENT
option can be used to skip the recent failed DDL statement that caused
the job to stop.

STOP_JOB Stops the current job; the job can be restarted later.

STATUS Displays detailed status of the job; the refresh interval can be speci-
fied in seconds. The detailed status is displayed to the output screen
but not written to the log file.

The data dictionary view DBA_DATAPUMP_JOBS shows the active job information along
with its current state, the number of threads, and the number of client sessions attached.
You can join this view with DBA_DATAPUMP_SESSIONS to get the SADDR column of the sessions
attached, and you can join the SADDR column with V$SESSION to get more information. The
V$SESSION_LONGOPS view also has an entry showing the progress of the job. Use the SID and
SERIAL# columns from V$SESSOIN to query V$SESSION_LONGOPS.

1030	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

The following example should help you understand the parameters more clearly. Say you
have an export dump job to be performed. You start the job with the following parameters
in a parameter file:

DIRECTORY=DUMPLOCATION
DUMPFILE=volest.dmp
LOGFILE=volest.exp.log
FULL=Y
JOB_NAME=VOLEST_EXP_TEST

A table named VOLEST_EXP_TEST is created in your schema. This is the master control
table. Querying the DBA_DATAPUMP_JOBS view will show the status of the jobs running:

SQL> SELECT job_name, state
 2 FROM dba_datapump_jobs;

JOB_NAME STATE
------------------------------ ----------------
VOLEST_EXP_TEST EXECUTING

SQL>

By pressing Ctrl+C, you can stop the logging screen, and you can enter interactive mode. If
you find that the job is halfway through and is consuming too many resources on the server,
you can suspend the job and restart it later when the server is less busy:

Export> stop_job
Are you sure you wish to stop this job ([y]/n): y
$

Let’s say you went home and logged back in to your company network. From home, you
see the status of the job; the job is in suspended mode. Now, you may use more processing
power available in the server to resume the job, so the first step is to attach to the job:

$ expdp bill/billthedba attach=VOLEST_EXP_TEST

Export: Release 12.1.0.1.0 - Production on Sat Jan 18 18:11:06 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

Job: VOLEST_EXP_TEST

	 Migrating Data Using Data Pump	 1031

 Owner: BILL
 Operation: EXPORT
 Creator Privs: TRUE
 GUID: F04A47517DC62C50E0430100007F9D57
 Start Time: Saturday, 18 January, 2014 18:11:07
 Mode: FULL
 Instance: ocadb1
 Max Parallelism: 1
 Timezone: +00:00
 Timezone version: 18
 Endianness: LITTLE
 NLS character set: AL32UTF8
 NLS NCHAR character set: AL16UTF16
 EXPORT Job Parameters:
 Parameter Name Parameter Value:
 CLIENT_COMMAND bill/******** full=y dumpfile=volest.dmp
LOGFILE=volest.exp.log JOB_NAME=VOLEST_EXP_TEST
 State: IDLING
 Bytes Processed: 0
 Current Parallelism: 1
 Job Error Count: 0
 Dump File: /u01/app/oracle/admin/ocadb1/dpdump/volest.dmp
 bytes written: 4,096

Worker 1 Status:
 Instance ID: 1
 Instance name: ocadb1
 Host name: emcc.example.com
 State: UNDEFINED

Export> parallel=4

Export> status=60

Job: VOLEST_EXP_TEST
 Operation: EXPORT
 Mode: FULL
 State: IDLING
 Bytes Processed: 0
 Current Parallelism: 4

1032	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

 Job Error Count: 0
 Dump File: /u01/app/oracle/admin/ocadb1/dpdump/volest.dmp
 bytes written: 4,096

Worker 1 Status:
 Instance ID: 1
 Instance name: ocadb1
 Host name: emcc.example.com
 State: UNDEFINED

Export> start_job

Export> continue_client

After attaching to the job, you increased the threads to 4 from 1 (parallel=4), set up to
display detailed status to the screen every minute (status=60), restarted the job (start_job),
and let the output display on the screen (continue_client).

Multiple clients (sessions) can attach to a job.

You can use Enterprise Manager Grid Control or Database Control to perform the
Data Pump Export and Import. You can also monitor the job using OEM. The next sec-
tion discusses using the Data Pump Wizard in OEM.

Using Fine-Grained Object Selection

The fine-grained object selection in Data Pump Export came as a real boon for DBAs. As
DBAs, we perform daily exports on the OLTP database excluding certain large (maybe we
should say “huge”) tables. This particular database includes tables that are DSS in nature
in addition to the OLTP tables.

We reorganized a tablespace to better group the tables and organized the tables into mul-
tiple tablespaces based on the expected size of the tables. The tablespaces have a nam-
ing convention of %LARGE, %MED, and %SMALL.

While performing the daily export dump using expdp, we simply use
EXCLUDE=TABLESPACE:"like '%LARGE'", which excludes all the objects created in the
%LARGE tablespaces.

	 Migrating Data Using Data Pump	 1033

Using the Data Pump Wizard
You can use EM Cloud Control as a menu-driven interface to Data Pump Export, Import,
and transportable tablespace jobs. This interface takes you through the steps of several
options and then shows you the PL/SQL code that it will execute. Therefore, you can also
use EM to learn more about using the PL/SQL interface. The Database Export/Import
menu under Schema has the data movement options, as shown in Figure 18.4.

F igur e 18 . 4     The data movement options in EM

Click the Export to Export Files menu to start a Data Pump Export job. Export and
import both support database, schema, table, and tablespace modes. On the first screen,
you choose the mode of export. The screen shown in Figure 18.5 appears when you choose
the export mode and the schemas to export. Here you have the option to estimate the disk
space required for the dump file as well as the number of threads (PARALLEL) required.

You can expand the Show Advanced Options link to specify a data-only export or a
metadata-only export, to include or exclude objects, to export a consistent view of data as
of a timestamp or SCN, and to filter rows using a query. On the next two screens, you can
specify the location of the dump file and job schedule. You have the option to run the job
immediately, to run the job at a later time, or to repeatedly run the job. The final screen
shows a review of the Data Pump Export, as shown in Figure 18.6. Click Submit Job to
launch the Data Pump Export.

Click the Show PL/SQL link to see the PL/SQL code behind the export job. You can run
this code using SQL*Plus. Here is an example:

declare
 h1 NUMBER;
begin
 h1 := dbms_datapump.open (operation => 'EXPORT', job_mode => 'SCHEMA', job_
name => 'EXPORT000062', version => 'COMPATIBLE');
 dbms_datapump.set_parallel(handle => h1, degree => 1);

1034	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

 dbms_datapump.add_file(handle => h1, filename => 'EXPDAT.LOG', directory =>
'DUMPLOCATION', filetype => 3);
 dbms_datapump.set_parameter(handle => h1, name => 'KEEP_MASTER', value =>
0);
 dbms_datapump.metadata_filter(handle => h1, name => 'SCHEMA_EXPR', value =>
'IN(''BI'',''HR'')');
 dbms_datapump.add_file(handle => h1, filename => 'EXPDAT%U.DMP', directory
=> 'DUMPLOCATION', filetype => 1);
 dbms_datapump.set_parameter(handle => h1, name => 'INCLUDE_METADATA', value
=> 1);
 dbms_datapump.set_parameter(handle => h1, name => 'DATA_ACCESS_METHOD',
value => 'AUTOMATIC');
 dbms_datapump.set_parameter(handle => h1, name => 'ESTIMATE', value =>
'BLOCKS');
 dbms_datapump.start_job(handle => h1, skip_current => 0, abort_step => 0);
 dbms_datapump.detach(handle => h1);
end;
/

F igur e 18 .5     Data Pump Export – The Options screen in EM

	 Migrating Data Using Data Pump	 1035

F igur e 18 .6     Data Pump Export – The Review screen in EM

Once the Data Pump job is submitted, you can view its progress by clicking the Monitor
Export and Import Jobs link on the Data Movement screen. In this screen, you have the option
to increase the parallelism of the job; use the Change Job State button to stop or suspend the
job. You also have the option to specify another location for the dump file.

Oracle Database 12c still supports the legacy export and import tools
named exp and imp. These tools are not enhanced to include the new data
types or new object types in the database. It is always better to use the
expdp and impdp tools, if your database is higher than the 10.1 version. If
you want to migrate data from a pre-10g database, you can use the exp and
imp tools to perform the data migration.

Importing with EM Database Control
Click Import from the Export Files menu to invoke the Data Pump Import Wizard.
Similar to Export, Import also has four modes: database, schema, table, and tablespace.
After you choose the type of import, the next screen lets you choose the dump file from
which to import. On the next screen, you have the option to remap the schema and
tablespace. On the Re-Mapping screen shown in Figure 18.7, HR schema objects are
imported to the JAMES schema, and the objects in the EXAMPLE tablespace are moved to
the USERS tablespace.

1036	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

F igur e 18 .7     Data Pump Import – The Re-Mapping screen

On the next screen, you can specify the number of parallel processes and the log-file des-
tination directory. Similar to the way you export, you can specify to run the job immediately
or at a later time. Save the job and schedule by clicking the Submit Job button on the Review
screen of the import job. Similar to the way you export, clicking the Show PL/SQL link shows
the PL/SQL code behind the import:

declare
 h1 NUMBER;
begin
 h1 := dbms_datapump.open (operation => 'IMPORT', job_mode => 'SCHEMA', job_
name => 'IMPORT000064', version => 'COMPATIBLE');
 dbms_datapump.set_parallel(handle => h1, degree => 1);
 dbms_datapump.add_file(handle => h1, filename => 'IMPORT.LOG', directory =>
'DATA_FILE_DIR', filetype => 3);
 dbms_datapump.set_parameter(handle => h1, name => 'KEEP_MASTER', value =>
0);
 dbms_datapump.add_file(handle => h1, filename => 'EXPDAT%U.DMP', directory
=> 'DUMPLOCATION', filetype => 1);
 dbms_datapump.metadata_remap(handle => h1, name => 'REMAP_SCHEMA', old_value
=> 'HR', value => 'SIMON');
 dbms_datapump.metadata_remap(handle => h1, name => 'REMAP_TABLESPACE', old_
value => 'EXAMPLE', value => 'USER_DATA');
 dbms_datapump.metadata_filter(handle => h1, name => 'SCHEMA_EXPR', value =>
'IN(''HR'')');

	 Migrating Data Using Data Pump	 1037

 dbms_datapump.set_parameter(handle => h1, name => 'DATA_ACCESS_METHOD',
value => 'AUTOMATIC');
 dbms_datapump.set_parameter(handle => h1, name => 'INCLUDE_METADATA', value
=> 1);
 dbms_datapump.set_parameter(handle => h1, name => 'SKIP_UNUSABLE_INDEXES',
value => 0);
 dbms_datapump.start_job(handle => h1, skip_current => 0, abort_step => 0);
 dbms_datapump.detach(handle => h1);
end;
/

If you are a DBA comfortable using the exp and imp tools, but have a hard
time switching to expdp and impdp, Oracle Data Pump supports the use of
legacy exp/imp parameters with expdp/impdp. The tools convert the legacy
input to proper Data Pump parameters before executing the export and
import. For example, if you specify GRANTS=N, Data Pump will convert this
input to EXCLUDE=GRANT. This mode of operation is known as Data Pump
legacy mode.

Upgrading an 11g R2 Database to 12c Using Full
Transportable Export
The full transportable export feature in Oracle Database 12c makes it faster and easier
to migrate an 11g database to 12c. This feature combines the benefits of a transportable
tablespace with the full export/import option. Transportable tablespaces are usually the
fastest method to move application data between databases. The data files belonging to
the tablespace are copied from the source database to the target database. Moving the data
file is much faster than exporting and importing individual tables. However, using trans-
portable tablespaces to migrate an entire database is very complex.

The full transportable export option is easy to use, and it migrates the application data
using the transportable tablespace feature and the rest of the data, such as metadata and
system data, using the traditional export/import method. Like a conventional Data Pump
Import, a full transportable import can be used to import a dump file or to import directly
from a source database into a destination database over a database link

In order to use the full transportable feature, the databases involved must have the
COMPATIBLE parameter set to 12.0.0 or higher. The full transportable option to migrate
an 11g database to 12c is possible only if the version of the source database is higher than
11.2.0.3. In addition, the VERSION parameter in the expdp must also specify 12. We’ll show
you how to migrate an 11g R2 database to Oracle Database 12c. Just follow these steps:

	 1.	 For a transportable tablespace to work, the tablespaces must be self-contained—that is
to say, there can be no dependencies between objects in the tablespace being transported

1038	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

and the objects in tablespaces that are not being transported. For a full database migra-
tion, this may not be an issue, if you do not store application data in SYSTEM or SYSAUX
tablespaces. Use the DBMS_TTS package to verify tablespaces. You must include all the
tablespaces in the source database except SYSTEM, SYSAUX, UNDO, and TEMP.

SQL> EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('ts1, ts2, ts3', TRUE);

	 2.	 Confirm that there are no self-containment violations by querying the TRANSPORT_SET_
VIOLATIONS view. If there are any violations, move the objects to remediate the violations.

	 3.	 Create a directory in the source database to point to the location where the export
dump file will be written.

SQL> CREATE DIRECTORY datapump_exp_dir AS '/u01/app/oracle/dpump';

	 4.	 Make sure the tablespaces that will be transported to 12c database are in read-only
mode. They must remain in read-only mode until the export is completed and the files
are copied to their destination.

SQL> ALTER TABLESPACE ts1 READ ONLY; SQL> ALTER TABLESPACE ts2 READ ONLY;
SQL> ALTER TABLESPACE ts3 READ ONLY;

	 5.	 Perform a full transportable export. The VERSION=12 parameter must be specified
because the source database is 11g. The export log file shows the data files that need
to be copied to the destination database.

$ expdp FULL=y TRANSPORTABLE=always VERSION=12 \
DIRECTORY=datapump_exp_dir DUMPFILE=p11fullexp.dmp \
METRICS=y LOGFLIE=p11fullexp.log

	 6.	 Using the File Copy tools, copy the dump file and data files listed in the export log file
to the destination database server.

If the endianess of the source and destination database are different, you
must use the RMAN CONVERT command to convert them to an appropriate
endian before you can copy the transportable tablespace database files to
their destination.

	 7.	 To perform the import, create a directory in the 12c database pointing to the location
of the dump file.

SQL> CREATE DIRECTORY datapump_imp_dir AS '/u01/app/oracle/dpump';

	 8.	 Perform a full import. Oracle Data Pump can determine whether a dump file was created
by a conventional or full transportable export. The import only requires you to specify
the dump-file name and the list of user tablespace data files to be transported using the

	 Loading Data with SQL*Loader	 1039

TRANSPORT_DATAFILES parameter. This parameter can use a comma-separated list of files,
or it can be specified multiple times for multiple data files. Using parameter files will be
helpful for the import. The following code shows imppar.txt as the parameter file with
all its parameter values.

$ cat imppar.txt
 directory=datapump_imp_dir
 dumpfile=p11fullexp.dmp
 logfile=p11fullimp.log
 metrics=y
 transport_datafiles='/u01/app/oracle/oradata/p12cd/ts1.dbf'
 transport_datafiles='/u01/app/oracle/oradata/p12cd/ts2.dbf'
 transport_datafiles='/u01/app/oracle/oradata/p12cd/ts3.dbf'
$ impdp parfile=imppar.txt

	 9.	 After the import completes, the tablespaces transported will be in read-only mode.
Make them read write.

SQL> ALTER TABLESPACE ts1 READ WRITE; SQL> ALTER TABLESPACE ts2 READ WRITE;
SQL> ALTER TABLESPACE ts3 READ WRITE;

Oracle Data Pump cannot be used to load data into a database from data
exported using the exp utility.

Loading Data with SQL*Loader
SQL*Loader is a program that reads data files in many possible formats, parses the data
(breaks it into meaningful pieces), and loads the data into database tables. Like Data Pump,
it has myriad options available, and a hefty book could be devoted to its use. The Oracle
Database Utilities manual devotes several hundred pages of reference material to SQL*Loader
alone. This section will not be so comprehensive, nor will we attempt to cram all possible
uses of SQL*Loader into a few short pages. Instead, we will cover the basics and teach you
what is necessary for the exam.

SQL*Loader uses the following file types:

Log    This is a mandatory file. If you do not specify a log file, SQL*Loader will try to create
one in the current directory with the name of your control file and a .log filename exten-
sion. If SQL*Loader cannot create the log file, execution is aborted. The log file contains a
summary of the SQL*Loader session, including any errors that were generated.

1040	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Control    This is a mandatory file. This file tells SQL*Loader where the other files are,
how to parse and load the data, and which tables to load the data into; this file can con-
tain the data as well.

Data    Data files are optional and, if included, hold the data that SQL*Loader reads and
loads into the database. The data can be located in the control file, so these files are optional.

Bad    This holds the “bad” data records—those that were not validated by either SQL*Loader
or the database. Bad files are created only if one or more records fail validation. Just as with
the log file, if you do not specify a bad file, the database will create one, with the name of your
control file and a .bad filename extension.

Discard    This holds data records that did not get loaded because they did not satisfy the
record-selection criteria in the control file. Discard files are created only if data records
were discarded because they did not satisfy the selection criteria.

SQL*Loader provides a robust toolkit to build data-loading programs for your Oracle
database. It can operate either on the database server or on a client machine.

The following section will show you how to employ SQL*Loader to load data into your
database tables.

Specifying SQL*Loader Command-Line Parameters
To invoke the SQL*Loader program, use the command sqlldr followed by one or more
command-line parameters. These parameters can be identified positionally on the command
line or with a keyword=value pair. You can mix positional and keyword notation provided
that all the keyword-notation parameters appear after all the positional parameters.

For example, to invoke SQL*Loader, telling it to use the connect string system/password
and the control file regions.ctl, you can execute any of the following command lines:

sqlldr system/password regions.ctl
sqlldr control=regions.ctl userid=system/password
sqlldr system/password control=regions.ctl

The command-line parameters include those shown here, by executing the sqlldr
command with no parameters:

$ sqlldr

SQL*Loader: Release 12.1.0.1.0 - Production on Sun Jan 19 00:36:27 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

Usage: SQLLDR keyword=value [,keyword=value,...]

Valid Keywords:
 userid -- ORACLE username/password

	 Loading Data with SQL*Loader	 1041

 control -- control file name
 log -- log file name
 bad -- bad file name
 data -- data file name
 discard -- discard file name
discardmax -- number of discards to allow (Default all)
 skip -- number of logical records to skip (Default 0)
 load -- number of logical records to load (Default all)
 errors -- number of errors to allow (Default 50)
 rows -- number of rows in conventional path bind array or between direct
path data saves
 (Default: Conventional path 64, Direct path all)
 bindsize -- size of conventional path bind array in bytes (Default 256000)
 silent -- suppress messages during run (header,feedback,errors,discards,
partitions)
 direct -- use direct path (Default FALSE)
 parfile -- parameter file: name of file that contains parameter
specifications
 parallel -- do parallel load (Default FALSE)
 file -- file to allocate extents from
skip_unusable_indexes -- disallow/allow unusable indexes or index partitions
(Default FALSE)
skip_index_maintenance -- do not maintain indexes, mark affected indexes as
unusable (Default FALSE)
commit_discontinued -- commit loaded rows when load is discontinued (Default
FALSE)
 readsize -- size of read buffer (Default 1048576)
external_table -- use external table for load; NOT_USED, GENERATE_ONLY, EXECUTE
columnarrayrows -- number of rows for direct path column array (Default 5000)
streamsize -- size of direct path stream buffer in bytes (Default 256000)
multithreading -- use multithreading in direct path
 resumable -- enable or disable resumable for current session (Default FALSE)
resumable_name -- text string to help identify resumable statement
resumable_timeout -- wait time (in seconds) for RESUMABLE (Default 7200)
date_cache -- size (in entries) of date conversion cache (Default 1000)
no_index_errors -- abort load on any index errors (Default FALSE)
 table -- Table for express mode load
date_format -- Date format for express mode load
timestamp_format -- Timestamp format for express mode load
terminated_by -- terminated by character for express mode load
enclosed_by -- enclosed by character for express mode load
optionally_enclosed_by -- optionally enclosed by character for express mode load

1042	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

characterset -- characterset for express mode load
degree_of_parallelism -- degree of parallelism for express mode load and
external table load
 trim -- trim type for express mode load and external table load
 csv -- csv format data files for express mode load
 nullif -- table level nullif clause for express mode load
field_names -- field names setting for first record of data files for express
mode load
dnfs_enable -- option for enabling or disabling Direct NFS (dNFS) for input data
files (Default FALSE)
dnfs_readbuffers -- the number of Direct NFS (dNFS) read buffers (Default 4)

PLEASE NOTE: Command-line parameters may be specified either by
position or by keywords. An example of the former case is 'sqlldr
scott/tiger foo'; an example of the latter is 'sqlldr control=foo
userid=scott/tiger'. One may specify parameters by position before
but not after parameters specified by keywords. For example,
'sqlldr scott/tiger control=foo logfile=log' is allowed, but
'sqlldr scott/tiger control=foo log' is not, even though the
position of the parameter 'log' is correct.
$

Many of the command-line parameters can also appear in the control file. When they
appear as both command-line parameters and in the control file, the command-line options
take precedence.

Specifying Control File Options
The control file contains commands to tell SQL*Loader where to find the data, how to
parse it, how to load it, what to do when errors occur, and what to do with records that
fail validation. A control file has two or three main sections. The first contains session-wide
information, such as log filename, bind size, and whether direct or conventional path load-
ing will be used. The second section contains one or more INTO TABLE blocks. These blocks
specify the target tables and columns. The third section, if present, is the actual data.
Comments can appear anywhere in the control files (except in the data lines) and should be
used liberally. The control file language can be somewhat cryptic, so generous use of com-
ments is encouraged. Comments in a control file start with a double dash and end with a
new line. The control file must begin with the line LOAD DATA or CONTINUE LOAD DATA and
also have an INTO TABLE clause, together with directions on how to parse the data and load
it into which columns.

The best way to learn how to construct a control file is to look at examples and then
use variations of them to build your control file. This section gives you several examples
but is certainly not a comprehensive sampling. Again, the intent is to present you with
enough information to get you going.

	 Loading Data with SQL*Loader	 1043

For a comprehensive reference, see the Oracle manual “Oracle Database
Utilities 12c Release 1.”

The first example is rather simple and straightforward. The control file contains both
control file commands and the data. The command line is as follows:

sqlldr hr/hr control=regions.ctl

The control file regions.ctl contains the following:

LOAD DATA
-- Control file begins with LOAD DATA
INFILE *
-- The * tells SQL*Loader the data is inline
INTO TABLE regions TRUNCATE
-- truncate the target table before loading
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
-- how to parse the data
 (region_id, region_name)
-- positional mapping of data file fields to table columns
-- lines following BEGINDATA are loaded
-- no comments are allowed after BEGINDATA
BEGINDATA
1,"Europe"
2,"Americas"
3,"Asia"
4,"Middle East and Africa"

The LOAD DATA command tells SQL*Loader that you are beginning a new data load.
If you are continuing a data load that was interrupted, specify CONTINUE LOAD DATA. The
command INFILE * tells SQL*Loader that the data will appear in the control file. The table
REGIONS is loaded. The keyword TRUNCATE tells SQL*Loader to truncate the table before
loading it. Instead of using TRUNCATE, you can specify INSERT (the default), which requires
the table to be empty at the start of the load. APPEND tells SQL*Loader to add the data to
any existing data in the table. REPLACE tells SQL*Loader to issue a DELETE to empty out the
table before loading. DELETE differs from a TRUNCATE; for DELETE, the DML triggers fire and
DELETE can be rolled back.

The lines in the control file that follow the BEGINDATA command contain the data to
parse and load. The parsing specification tells SQL*Loader that the data fields are comma-
delimited and that text data can be enclosed by double quotation marks. These double
quotation marks should not be loaded as part of the data. The list of columns enclosed in
parentheses consists of the table columns that will be loaded with the data fields.

1044	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

In the second example, the same data is loaded into the same table, but it is located in a
standalone file called regions.dat and is in the following pipe-delimited, fixed format:

1|Europe |
2|Americas |
3|Asia |
4|Middle East and Africa |
The command line is as follows:
sqlldr hr/hr control=regions.ctl
The content of the control file is as follows:
LOAD DATA
INFILE '/apps/seed_data/regions.dat'
BADFILE '/apps/seed_data/regions.bad'
DISCARDFILE '/apps/seed_data/regions.dsc'
OPTIONS (DIRECT=TRUE)
-- data file spec
INTO TABLE regions APPEND
-- add this data to the existing target table
(region_id POSITION(1) INTEGER EXTERNAL
,region_name POSITION(3:25) NULLIF region_name = BLANKS
) -- how to parse the data

The control file tells SQL*Loader where to find the data file (INFILE) as well as the bad
and discard files (BADFILE and DISCARDFILE). The OPTIONS line specifies direct path loading.
With fixed-format data, the column specification identifies the starting and ending positions.
A numeric datatype can be identified as INTEGER EXTERNAL. The directive NULLIF region_
name = BLANKS tells SQL*Loader to set the region_name column to NULL if the data field
contains only white space.

You shouldn’t have to know the minutiae of how to tell SQL*Loader precisely how to
parse data—the options are far too arcane to expect you to recite them off the top of your
head for an exam—but knowing the SQL*Loader capabilities of reading fixed-format and
variable-format data is essential. More important to your job is understanding direct path
loads and unusable indexes, which are discussed in the next section.

Oracle Database 12c introduced SQL*Loader Express Mode, where you can
perform the load operation without a control file. This is suitable if the data
file contains only scalar data and the columns are delimited. SQL*Loader
uses the table definition to determine the input data types.

	 Loading Data with SQL*Loader	 1045

Using Direct Path Loading
Direct path loading is a SQL*Loader option that allows you, under certain conditions, to
use the direct path interface to load data into a table. The direct path interface can be sig-
nificantly faster than conventional path loading. With conventional loading, SQL*Loader
loads data into a bind array and passes it to the database engine to process with an INSERT
statement. Full undo and redo mechanisms operate on conventional path loads. Direct path
loading is enabled by specifying the DIRECT=Y parameter.

With direct path loading, SQL*Loader reads data, passing it to the database via the
direct path API. The API formats it directly into Oracle data blocks in memory and then
flushes these blocks, en masse, directly to the data files using multiblock I/O, bypassing the
buffer cache, as well as redo and undo mechanisms. Direct path loads always write to a
table above the high-water mark; thus, they always increase the number of data blocks that
a table is actually using.

The important thing to remember about direct path loading is that it is fast but has
restrictions, including the following:

■■ Indexes are rebuilt at the end of a direct path load. If unique constraint violations are
found, the unique index is left in an unusable state. To correct the index, you must find
and remove the constraint violations and then rebuild the index.

Unusable indexes are a possible result of direct path loading. Make sure
you know what causes an unusable index and how to fix it.

■■ Direct path loading cannot occur if active transactions against the table are being loaded.

■■ Triggers do not fire during direct path loads.

■■ Direct path loading into clustered tables is not supported.

■■ During direct path loads, foreign key constraints are disabled at the beginning of the
load and then re-enabled after the load.

■■ Only primary key, unique, and NOT NULL constraints are enforced.

■■ Direct path loading prevents other users from making changes to the table while the
direct load operation is in progress.

OEM Cloud Control and SQL Developer tools can also be used to load data
with SQL*Loader. Figure 18.4 shows the menu item to invoke SQL*Loader
using OEM Cloud Control.

1046	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Populating External Tables
External tables were introduced in Oracle9i and were read-only from the Oracle database.
In Oracle 10g, external tables were made writable. In Oracle9i, ORACLE_LOADER was the only
access driver available for external tables; Oracle 10g introduced the ORACLE_DATAPUMP access
driver. The external tables that use the ORACLE_LOADER access driver are read-only—they
read ASCII flat files from the OS. Only the external tables created with the ORACLE_DATAPUMP
access driver can be written to. The resulting file is in proprietary format (Oracle native exter-
nal representation, DPAPI), which only Data Pump can read. The data can, therefore, be read
on any machine using ORACLE_DATAPUMP access driver and external tables, irrespective of the
endianess of the source system. You can use this file to load data to another Oracle database
as well.

You may wonder how this is beneficial. Why don’t you use the Oracle Data Pump clients
to generate the file? Well, although Oracle Data Pump can handle a certain level of filter-
ing, join operations with another table are not possible. Using the external table ORACLE_
DATAPUMP access driver, you can unload data that is derived from complex queries. This is
useful in loading data marts from data warehouse or similar applications. Data from exter-
nal tables can be used in SQL queries.

In the following sections, you will learn how to populate an external table using the
ORACLE_DATAPUMP and ORACLE_LOADER DPAPI.

Loading External Tables Using Data Pump
You use the ORACLE_DATAPUMP access driver to unload data from an Oracle database to a
flat file (DPAPI format) using the external table method. The external table must be created
using the CREATE TABLE…AS SELECT… (CTAS) method. You can specify the PARALLEL clause
when creating the table; the ORACLE_DATAPUMP access driver unloads data into multiple flat
files at the same time. One parallel execution server will write to only one file at a time.
Unloading data in the context of an external table means creating an external table using
the CTAS method.

During the unload (or populate) operation, the data goes from the subquery to the
SQL engine for the data to be processed, and it is extracted in the DPAPI format to write
to the flat file. The external table to unload data can be created only using the CTAS
method with the ORACLE_DATAPUMP access driver. The unload operation does not include
the metadata for the tables. You can use the VERSION clause when unloading the data to
make sure it loads correctly on the target database.

We’ll demonstrate how to unload data using the ORACLE_DATAPUMP access driver. In
this example, you will join the EMPLOYEES and DEPARTMENTS tables of the HR schema to
unload data. The following statement creates the table in the database and creates two
files, empl_comm1.dmp and empl_comm2.dmp, in the OS:

SQL> CREATE TABLE empl_commission
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP

	 Populating External Tables	 1047

 DEFAULT DIRECTORY work_dir
 LOCATION ('empl_comm1.dmp','empl_comm2.dmp'))
 PARALLEL 2
 AS
 SELECT employee_id,
 first_name || ' ' || last_name employee_name,
 department_name,
 TO_CHAR(hire_date,'DD-MM-YYYY') hire_date,
 salary * NVL(commission_pct, 0.5) commission
 FROM hr.employees JOIN hr.departments USING (department_id)
 ORDER BY first_name || ' ' || last_name
SQL> /

Table created.

SQL> SELECT department_name, sum(commission) total_comm
 FROM empl_commission
 GROUP BY department_name;

DEPARTMENT_NAME TOTAL_COMM
------------------------------ ----------
Accounting 10150
Finance 25800
Human Resources 3250
Marketing 9500
Purchasing 12450
Sales 72640
Shipping 78200
Administration 2200
Executive 29000
IT 14400
Public Relations 5000

ORGANIZATION EXTERNAL specifies that the resulting table is an external table. TYPE ORACLE_
DATAPUMP specifies that the Data Pump access driver should be used. DEFAULT DIRECTORY
specifies the location of the dump files. The LOCATION parameter specifies the filenames. Most
often when external tables are used, a very large amount of data is unloaded; hence, using
the PARALLEL clause will speed up the operation. If the parallel clause is used, the number of
files specified in the LOCATION clause must match the PARALLEL degree. If you did not specify
enough files to match the degree of parallelism, Oracle decreases the parallelism to match the
number of files provided.

1048	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Because the data is unloaded in a proprietary format, the files created using the ORACLE_
DATAPUMP access driver can be read only by Oracle database versions at or above 10g. You
can use this method to move data from one database to another.

You can copy the dump files to another Oracle database and load them using the Data
Pump utility, or you can create an external table on these dump files and load from it. Let’s
create an external table using these dump files and query it:

SQL> CREATE TABLE new_empl_commission (
 employee_id NUMBER (6),
 employee_name VARCHAR2 (40),
 department_name VARCHAR2 (30),
 hire_date VARCHAR2 (10),
 commission NUMBER)
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY work_dir
 ACCESS PARAMETERS (
 LOGFILE 'new_empl_commission.log')
 LOCATION ('empl_comm1.dmp', 'expl_comm2.dmp'));

Table created.

The data dictionary views DBA_EXTERNAL_TABLES and DBA_EXTERNAL_
LOCATIONS can be queried to view the characteristics, location, and file-
names of external tables.

Loading External Tables Using Loader
You use the ORACLE_LOADER access driver to load data to an Oracle database from a flat file
using the external table method. You can specify the PARALLEL clause when creating the table;
the ORACLE_LOADER access driver divides the large flat file into chunks that can be processed
separately. Loading data in the context of an external table means reading data from the
external table (flat file) and loading to a table in the database using the INSERT statement.

Let’s create an external table using the ORACLE_LOADER access driver; say the user already
has the privilege to read from and write to the directory WORK_DIR. The source data file is
employee.dat, which has fixed-column data (name, title, and salary). The following code
shows the contents of the employee.dat file, creates the external table using the ORACLE_
LOADER driver, and queries the external table. You can use the data from this external table
to load other tables using INSERT statements.

$ cat employee.dat
SMITH CLERK 800

	 Populating External Tables	 1049

SCOTT ANALYST 3000
ADAMS CLERK 1100
MILLER CLERK 1300
$

SQL> CREATE TABLE employees (
 ename VARCHAR2 (10),
 title VARCHAR2 (10),
 salary NUMBER (8))
 ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY WORK_DIR
 ACCESS PARAMETERS (RECORDS DELIMITED BY NEWLINE FIELDS (
 ename CHAR(10),
 title CHAR(10),
 salary CHAR(8)))
 LOCATION ('employee.dat'))
 PARALLEL
SQL> /

Table created.

SQL> SELECT * FROM employees;

ENAME TITLE SALARY
---------- ---------- ----------
SMITH CLERK 800
SCOTT ANALYST 3000
ADAMS CLERK 1100
MILLER CLERK 1300

SQL>

Only SELECT statements are allowed on external tables; no INSERT, UPDATE,
or DELETE operations are permitted on external tables.

You have learned to move data between databases using various tools. Next, let’s do
an overview of Grid Infrastructure and how Automatic Storage Management can help you
manage some of Oracle database storage challenges.

1050	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Introducing Grid Infrastructure
Let’s start with a little bit of history. The phrase “grid install” is usually associated with
installing the Oracle cluster software for a Real Application Cluster (RAC) installation.
Oracle Automatic Storage Management (ASM) was introduced in Oracle Database 10g. In
10g and 11g R1, the ASM could be installed and managed from Oracle database software
home. For RAC installations in 10g, you had to install Grid software, which took care of
the clustering and ASM management. In 10g and 11g R1, for non-RAC installations using
ASM, there was no separate software to install; you just created an ASM instance to man-
age the ASM storage for the databases on the server. From Oracle Database 11g Release 2
onward, Grid Infrastructure (GI) is applicable to RAC and standalone server installations.

The Grid Infrastructure for a standalone server provides system support for Oracle
systems, including database storage volume management, file system for applications, and
automatic restart of various components in the system. To differentiate the GI for RAC
from the GI for a standalone server, the GI for a standalone server is also known as Oracle
Restart. Oracle Restart supports single-instance databases on one server, while Oracle Grid
Infrastructure for a Cluster supports single-instance or Oracle RAC databases on a cluster.

Oracle ASM provides file system and volume manager capabilities built into the Oracle
database kernel, and it provides a simple storage management interface across all server
and storage platforms. ASM disks are managed and controlled by a special type of instance
known as the ASM instance. The ASM instance does not have any data files or database
associated with it; it has only the memory structures and processes. The ASM instance has
a password file and a parameter file, though. The ASM instance manages the metadata for
the disk groups. Database instances connect to ASM instance to create, delete, resize, open,
or close files. Database instances read and write directly to the data files on ASM. The GI
installation configures and starts the ASM instance. Figure 18.8 shows the relationship
between the database instance, ASM instance, disk groups, and non-ASM file systems.

F igur e 18 . 8     The ASM instance and disk groups

Database Server

Diskgroup 1
Non-ASM Data files

Disk 1 /uo1

Oracle
Database

Disk 2 /uo2

Disk 3 /uo3

ASM Storage

Disk 1

Disk 2

Diskgroup 2

Disk 3

Disk 4

Disk 5

Disk 6

Disk 7

ASM
Instance

	 Introducing Grid Infrastructure	 1051

When ASM is managing the storage volume, the database instance is dependent on the
ASM instance. The ASM instance manages the disk group and storage metadata. The data-
base instance could have files on ASM storage and non-ASM disks.

In addition, ASM not only enhances performance by automatically spreading database
objects over multiple devices, but increases availability by allowing new disk devices to be
added to the database without shutting down the database. ASM automatically rebalances
the distribution of files with no DBA intervention. Using ASM does not, however, preclude
you from mixing ASM disk groups with file-system database files. But the ease of use and
performance of ASM makes a strong case for converting all your storage to ASM disk groups.

The ASM instance configured during the GI installation is named +ASM
for a standalone installation. For a RAC installation, each node ASM
instance will have the instance name +ASM1, +ASM2, and so on. The
parameter INSTANCE_TYPE=ASM differentiates an ASM instance from a
database instance.

Oracle ASM is a volume manager and storage system for Oracle database files, including
RAC and non-RAC configurations. Oracle ASM also supports a general-purpose file system
for application needs and Oracle database binaries.

Installing Oracle ASM or Grid Infrastructure is one of the first steps you perform on a
server, if you plan on using ASM for database data file storage. This topic is covered toward
the end of this book so that you will be familiar with databases before storage technologies are
thrown into the mix. To be able to use Oracle Restart or Oracle ASM in Oracle Database 12c,
you must install Oracle Grid Infrastructure for a standalone server. Before installing GI, you
must prepare the storage area by creating disk partitions to mark as ASM disks.

Oracle Automatic Cluster File System (ACFS) extends the Oracle ASM tech-
nology to support file systems for application files and Oracle binaries.

Installing Oracle Grid Infrastructure
The Grid Infrastructure software is delivered along with Oracle Database 12c Media
Pack. Figure 18.9 shows the cloud edelivery.com software download page for Oracle
Database 12c Release 1 (12.1.0.1.0) Media Pack v3 for Linux x86-64. There are two files
for the Oracle Database 12c software and two files for the Grid Infrastructure install.
Download and unzip them on the server where GI needs to be installed.

The GI software downloaded is the same for standalone and cluster installations. The
type of installation is specified during the installation.

Oracle Database 11g Release 2 introduced the Grid Infrastructure Oracle home that
includes Oracle Restart and ASM. To use ASM in Oracle Database 12c, you must install
Grid Infrastructure. Before we install the ASM software, let’s get the storage disks ready.

1052	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

A discussion of storage types and how to set up storage are outside
the scope of this book. We will demonstrate the storage setup using
an example.

F igur e 18 . 9     The Grid Infrastructure Installation Files Download screen

Preparing Storage for a Grid Infrastructure Install
Typically in organizations, storage is managed by a separate team or by the system admin-
istrator. The DBA requests specific disks or LUNs from the storage administrator, and gets
the disk provisioned on the server to use for ASM storage. Oracle ASM uses disk groups to
store data files; an Oracle ASM disk group is a collection of disks that Oracle ASM man-
ages as a unit. During the GI install, one disk group is created; therefore, the disks need to
be prepared before you install GI. Those disks must be partitioned to use for ASM.

The storage admin has provided three disks for you to use for ASM storage. On Linux,
you can query the /proc/partitions to view the partitions.

cat /proc/partitions
major minor #blocks name

 8 0 42991616 sda
 8 1 104391 sda1
 8 2 42885517 sda2
 8 16 41943040 sdb
 8 32 2155084 sdc
 8 48 2155084 sdd
253 0 35717120 dm-0
 253 1 7143424 dm-1

	 Introducing Grid Infrastructure	 1053

Let’s create partitions for disks sdc and sdd. Here is an example of creating a partition
using fdisk for sdc.

fdisk /dev/sdc
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel.
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-268, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-268, default 268):
Using default value 268

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Reading the partitions file again shows the new partitions sdc1 and sdd1 are created.

cat /proc/partitions
major minor #blocks name

 8 0 42991616 sda
 8 1 104391 sda1
 8 2 42885517 sda2
 8 16 41943040 sdb
 8 32 2155084 sdc
 8 33 2152678 sdc1
 8 48 2155084 sdd
 8 49 2152678 sdd1

1054	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

 253 0 35717120 dm-0
 253 1 7143424 dm-1

ASMLib is an optional support library for Oracle ASM that is included with the Oracle
Linux unbreakable kernel. Using ASMLib is optional. One advantage to using ASMLib is
that you can name the disks using the createdisk option.

oracleasm createdisk ORAD1 /dev/sdc1
Writing disk header: done
Instantiating disk: done

oracleasm createdisk ORAD2 /dev/sdd1
Writing disk header: done
Instantiating disk: done

oracleasm listdisks
ORAD1
ORAD2

ls -l /dev/oracleasm/disks
total 0
brw-rw---- 1 oracle dba 8, 33 Jan 25 00:20 ORAD1
brw-rw---- 1 oracle dba 8, 49 Jan 25 00:21 ORAD2

Notice that the disks are owned by the oracle software owner/user. Now the storage is
ready for ASM installation, which is accomplished through the Grid Infrastructure for a
standalone server installation, which is discussed in the next section.

If you are not familiar with ASMLib or oracleasm, you can read more at
http://www.oracle.com/technetwork/server-storage/linux/asmlib.

Installing Grid Infrastructure for a Standalone Server
After you download the GI software installation files and unzip them (Figure 18.9), the
installation files will be under the grid folder. Similar to the Oracle Database 12c software
installation you reviewed in Chapter 9, “Creating and Operating Oracle Database 12c,”
the GI is also installed by invoking runInstaller on Linux and Unix systems. When you
invoke runInstaller, the first screen prompts you for software updates. You can choose to
update the software, skip the software update, or provide a location if you have previously
downloaded the software using runInstaller -downloadUpdates.

http://www.oracle.com/technetwork/server-storage/linux/asmlib

	 Introducing Grid Infrastructure	 1055

Figure 18.10 shows the Select Installation Option screen of Grid Infrastructure Install.
The first option, Install and Configure Oracle Grid Infrastructure for a Cluster, is used
for a GI cluster (RAC) installation. To install GI on a standalone server and to configure
Oracle Restart, choose the second option: Install and Configure Oracle Grid Infrastructure
for a Standalone Server. For this installation, choose this option, which will install the GI
software and configure the ASM instance. This option can also upgrade an existing instal-
lation of ASM to GI, or an 11g R2 GI to 12c R1 GI.

F igur e 18 .10     GI Install – The Installation Option screen

The third option in Figure 18.10 is used to upgrade the ASM or GI to the 12c version.
You may also choose the Install Oracle Grid Infrastructure Software Only option to install
only the GI software, but you will have to manually configure the GI components and ASM
instance by running the roothas.pl script. If you are doing a software-only install, the
disk partitions are required only when you create the ASM disk group.

The next screen is the Product Languages screen. Choose the languages you want to
install in the GI home. By default, only English is chosen. Figure 18.11 shows the Create
ASM Disk Group screen. We will be using the disks we prepared in the earlier section to
create an ASM disk group.

In the Create ASM Disk Group screen, you can create only one ASM disk group. Additional
disk groups can be created using the Automatic Storage Management Configuration Assistant
(ASMCA) utility. Provide a name for the disk group; in the example, the disk group name is
ORADATA. ASM allows three levels of redundancy when creating the disk group. Normal redun-
dancy is two-way mirroring, which means you should allocate twice the number of storage
disks required for the disk group. High redundancy is three-way mirroring. If the disks are
from a storage array where RAID architecture is already implemented, you may tell Oracle
ASM not to manage the redundancy in ASM, but rely on redundancy from the underlying
storage system.

Best practice calls for at least a few disks in each disk group, and each disk in the disk
group must be of the same size. This is because I/O activity is spread evenly across all
available disks in a disk group to avoid hot spots. ASM also eliminates the need for over-
provisioning a disk, because you can add or remove disks while the database is running
without impacting the database. When a disk is added or removed from a disk group,
ASM automatically redistributes blocks so that the utilized space in each disk is the same.

1056	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

The smallest unit of storage in an ASM disk group is the allocation unit (AU). Oracle
Database 12c permits sizes of 1, 2, 4, 8, 16, 32, or 64MB. An allocation unit is the size of
the blocks allocated to a data file. The AU must be small enough not to create any hot spots
and large enough for efficient sequential reads. The default is 1MB, and 4MB AU is recom-
mended for most databases.

F igur e 18 .11     GI Install – The Create ASM Disk Group screen

The Add Disks section in Figure 18.11 shows the disks partitioned and owned by GI
software owner. Choose the disks you want to allocate to the disk group. You can add
more disks or remove disks later using ASMCA or using SQL*Plus. When the disks are
configured using ASMLib, the user-friendly names you used to create the ASMLib disks
will appear. If you did not use ASMLib, the complete path name for disks will appear—for
example, /dev/sdc1. If you want to change the search location for the disks from /dev/*
to some other location—say /dev/did/rdisk, for example—you can click the Change
Discovery Path button and enter the new location.

The ASM_DISKSTRING parameter tells the ASM instance where the disk
devices are located. If ASMLib is used, set ORCL: for the ASM_DISKSTRING
parameter. The ASMLib interface is not required to run ASM; however,
using it makes it easier to manage disk discovery and provisioning.

	 Introducing Grid Infrastructure	 1057

The next screen is used to assign passwords. Here you can assign passwords to SYS user
and ASMSNP user. Similar to the database installation, you can choose two different passwords
or the same passwords for these users. ASMSNMP user is similar to DBSNMP user for databases
and is primarily used to monitor the instance through OEM Cloud Control. You can connect
to the ASM instance using the SYSDBA or SYSASM privilege. The SYSASM privilege is required
to manage disk groups. It separates the role of DBA from storage administrator for the
ASM instance.

Figure 18.12 shows the Privileged Operating System Groups screen. Choose the appropri-
ate OS groups that will have privileges on the ASM instance to connect without a password.

F igur e 18 .12     GI Install – The Privileged Operating System Groups screen

Oracle ASM Administrator (OSASM) group members are granted the SYSASM privilege,
which gives full administrator privileges on the ASM instance, including storage administra-
tion. If you have created a group named asmadmin, then OUI picks that group as the default
for the OSASM group. The Oracle ASM DBA (OSDBA) group members are granted only
a subset of SYSASM privileges, such as stopping and starting the ASM instance. The Oracle
ASM Operator (OSOPER) group members are granted read and write privileges on the files
managed by ASM.

Figure 18.13 shows the location of the GI installation files. Specify the Oracle Base
location and the GI home location.

The next screen is the Root Script Execution Configuration. If you have the root pass-
word handy, or if the GI software owner (usually oracle user) has the sudo privilege, you
may choose the appropriate option. If you do not have root access, don’t worry; at the end
of installation, you can ask your system administrator to run the script to complete the
ASM configuration.

OUI performs the prerequisite checks and lets you know of any issues that need your
attention. Figure 18.14 shows the Perform Prerequisite Checks screen.

1058	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

F igur e 18 .13     GI Install – The Specify Installation Location screen

F igur e 18 .14     GI Install – The Perform Prerequisite Checks screen

You can view the failed checks (by default), view all successful checks, or view all checks
by selecting the appropriate option from the drop-down menu. You can use the Fix & Check
Again button to correct any fixable errors. When you click on a reported issue, you will see

	 Introducing Grid Infrastructure	 1059

brief failure or success information at the bottom of the screen. Click the More Details link to
learn more about the check and how to fix an issue. If you fixed an issue outside the OUI, you
can click the Check Again button to validate the fix. If you think an issue reported is not appli-
cable in your environment, you can click the Ignore All button and continue to the next screen.

The Summary screen, shown in Figure 18.15, summarizes the options chosen and the
location of the install. It also shows the disk group being created.

F igur e 18 .15     GI Install – The Summary screen

Click the Install button to begin the installation. The installation progress will be dis-
played. After the software installation completes, you will be prompted to run the root.sh
script. A sample execution of the root.sh script is shown here.

/u03/app/oracle/grid/12.1.0/root.sh
Performing root user operation for Oracle 12c

The following environment variables are set as:
 ORACLE_OWNER= oracle
 ORACLE_HOME= /u03/app/oracle/grid/12.1.0

1060	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Entries will be added to the /etc/oratab file as needed by
Database Configuration Assistant when a database is created.
Finished running generic part of root script.
Now product-specific root actions will be performed.
Using configuration parameter file: /u03/app/oracle/grid/12.1.0/crs/install/
crsconfig_params
LOCAL ADD MODE
Creating OCR keys for user 'oracle', privgrp 'dba'..
Operation successful.
LOCAL ONLY MODE
Successfully accumulated necessary OCR keys.
Creating OCR keys for user 'root', privgrp 'root'..
Operation successful.
CRS-4664: Node emcc successfully pinned.
2014/01/25 15:15:34 CLSRSC-330: Adding Clusterware entries to file '/etc/
inittab'

emcc 2014/01/25 15:16:05 /u03/app/oracle/grid/12.1.0/cdata/emcc/
backup_20140125_151605.olr
2014/01/25 15:16:21 CLSRSC-327: Successfully configured Oracle Grid
Infrastructure for a Standalone Server.
#

After the root.sh script is executed, OUI will configure the Grid Infrastructure.
Figure 18.16 shows the components configured by the GI install.

F igur e 18 .16     GI Install – The Component Install Status screen

After the installation completes successfully, you will see several processes running out
of the GI home. You will also see the process for the +ASM instance running. The ASM
instance has fewer background processes than the database instance. The following are
processes started by GI.

/etc/init.d/init.ohasd
/u03/app/oracle/grid/12.1.0/bin/ohasd.bin reboot

	 Introducing Grid Infrastructure	 1061

/u03/app/oracle/grid/12.1.0/bin/oraagent.bin
/u03/app/oracle/grid/12.1.0/bin/evmd.bin
/u03/app/oracle/grid/12.1.0/bin/evmlogger.bin -o /u03/app/oracle/grid/12.1.0/
log/[HOSTNAME]/evmd/evmlogger.info
/u03/app/oracle/grid/12.1.0/bin/tnslsnr LISTENER -no_crs_notify -inherit
/u03/app/oracle/grid/12.1.0/bin/cssdagent
/u03/app/oracle/grid/12.1.0/bin/ocssd.bin

You will learn more about stopping and starting these services in the “Using Oracle
Restart” section.

In the 10g and 11g versions of Oracle ASM, each server must have a dedi-
cated ASM instance to be able to use ASM storage for databases. In Oracle
Database 12c, the Flex ASM feature eliminates this requirement for cluster
installations.

Managing Oracle ASM Storage
ASMCA is the configuration tool used to manage ASM storage. In addition to manag-
ing ASM disk groups, ASMCA can also configure an ASM instance if there is no ASM
instance running, and it can upgrade an ASM instance if the version of the ASM running
is lower than 12.1. ASMCA is invoked by running asmca from the <GIHome>/bin directory.
Figure 18.17 shows the ASMCA screen.

The Create button is used to create a new disk group. The Mount All button can be used
to mount all the disk groups. You can choose a disk group and right-click to access additional
menu actions that can be performed on the disk group. To increase the size of the disk group
by adding more disks to it, use the Add Disks option. To reduce the size of the disk group,
choose the Drop Disks option. The Edit Attributes option gives you the opportunity to adjust
the compatibility parameters for the disk group. By default, the ASM Compatibility value is
12.1.0, meaning the minimum software version required for an ASM instance to mount this
disk group (versions 10.1 and above). Database Compatibility by default is set to 10.1.0, and
it is the minimum software version required for a database instance to use files in this disk
group (versions 10.1 and above). You can also dismount and drop the disk group by choosing
the appropriate menu options.

In the next section, you will learn to use SQL*Plus to manage the disk groups.

Managing Disk Groups
Because the data in the disk groups is distributed evenly among the disks, for better
performance, you should allocate more than one disk for each disk group. A database
should have at least two disk groups: one for database-related files and another for
recovery-related files (for the fast recovery area). To manage the disk group storage, you
should connect to the ASM instance with SYSASM privileges.

1062	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

F igur e 18 .17     ASMCA – The Disk Groups tab

Creating and Dropping a Disk Group

The CREATE DISKGROUP statement is used to create a new disk group. The syntax for this
statement is

CREATE DISKGROUP <dg_name> [<redundancy_option>]
[<failure_group>]
DISK <disk_path>
[ATTRIBUTE <attribute_values>]

The redundancy option by default is NORMAL, which means you should have at least
two failure groups. A simple statement using external redundancy to create a disk group
is shown here:

CREATE DISKGROUP fradisk EXTERNAL REDUNDANCY
DISK '/dev/rd/sd10c1', '/dev/rd/sd11c1';

This code creates a disk group named fradisk with two disks, and redundancy managed
at the storage layer. Because no alias names are provided for the disks, ASM assigns a system-
generated name.

Before defining the type of mirroring within a disk group, you must group the disks into
failure groups. A failure group is one or more disks within a disk group that share a com-
mon resource such as a disk controller, whose failure would cause the entire set of disks to
be unavailable to the group. In most cases, the ASM instance does not know the hardware

	 Introducing Grid Infrastructure	 1063

and software dependencies for a given disk. Therefore, unless you specifically assign a disk
to a failure group, each disk in the disk group is assigned to its own failure group. The fol-
lowing code creates a disk group with normal redundancy and two failure groups. Each fail-
ure group has two disks. Instead of using system-generated names, the disks are named. The
allocation unit size defaults to 1MB, if not specified. In the example, AU is set to 4MB.

CREATE DISKGROUP datadisk NORMAL REDUNDANCY
FAILGROUP datadisk_fg1 DISK
'/dev/rd/sd10c1' NAME ddfg1a0,
'/dev/rd/sd11c1' NAME ddfg1a1
FAILGROUP datadisk_fg2 DISK
'/dev/rd/sd12c1' NAME ddfg2a0,
'/dev/rd/sd13c1' NAME ddfg2a1
ATTRIBUTE 'AU_SIZE'='4M';

When creating a disk group with HIGH REDUNDANCY, you must specify three failure
groups. High redundancy uses three-way mirroring, with each extent getting two mirrored
copies. HIGH REDUNDANCY disk groups can tolerate the loss of two failure groups.

To drop a disk group, use the DROP DISKGROUP statement. If the disk group being dropped
contains any files, you must use the INCLUDING CONTENTS clause. For you to drop a disk group,
the disk group must be in the mounted state. If errors prevent you from mounting the disk, you
can use the FORCE option to drop the disk group. The following examples illustrate dropping
an empty disk group, dropping a disk group with files, and force-dropping a disk group.

SQL> DROP DISKGROUP oradev;

SQL> DROP DISKGROUP oradev INCLUDING CONTENTS;

SQL> DROP DISKGROUP oradev FORCE INCLUDING CONTENTS;

When specifying the disk while creating a disk group, you can use the wild-
card *. The search string’s matching disk should not be used by another
ASM disk group. For example, you may use CREATE DISKGROUP ORADATA
EXTERNAL REDUNDANCY DISK '/dev/md/sd1*c1'.

Adding and Dropping Disks

You can modify the disk group to add and drop disks. This action can be performed while
the database using the disk group is running. The following example illustrates how to add
disks to disk group datadisk, which was created using normal redundancy and two fail
groups.

ALTER DISKGROUP datadisk ADD
FAILGROUP datadisk_fg1 DISK

1064	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

'/dev/rd/sd14c1' NAME ddfg1a2
FAILGROUP datadisk_fg2 DISK
'/dev/rd/sd15c1' NAME ddfg2a2;

To add a disk to the fradisk created earlier, you can use the following code.

ALTER DISKGROUP fradisk ADD
DISK '/dev/rd/sd16c1';

The ALTER DISKGROUP statement can also be used to resize a disk allocated to a disk
group. This action is not needed normally, because you will usually allocate the whole disk
to a disk group.

If the ASMLib is configured, you should use ORCL:<diskname> instead of the device
path when you’re creating a disk group and adding a disk to a disk group. When you drop
a disk from the disk group, you must use the disk name and not the path. For example, if
you want to drop disk '/dev/rd/sd10c1' from fradisk, you must find the name of the disk
from V$ASM_DISK and use that name to drop.

SQL> SELECT name, path
 FROM v$asm_disk
 WHERE path = '/dev/rd/sd10c1';

NAME PATH
------------ ------------------------
FRADISK_000 /dev/rd/sd10c1

SQL> ALTER DISKGROUP fradisk DROP DISK fradisk_000;

Disk Array Migration Using ASM Storage

When ASM is being used for storage, database migration from one disk array to another
is as easy as attaching the new array to the server. To migrate the disk groups from one
array to another, in versions before 12c, the following steps are performed.

	 1.	 Attach the new storage array to the database server.

	 2.	 Create partitions and prepare the LUNs for ASM storage on the new array.

	 3.	 Add disks from the new array to an existing disk group using the ALTER DISKGROUP
ADD DISK statement.

	 Introducing Grid Infrastructure	 1065

	 4.	 Use the ALTER DISKGROUP DROP DISK statement to remove disks from the old array
of the existing disk group.

	 5.	 Once the rebalancing operation completes, the disks from the old array will be
removed from the disk group and can be detached from the database server.

In Oracle Database 12c, the ALTER DISKGROUP statement includes a new clause named
REPLACE DISK. Steps 3 and 4 can be combined into one step using the REPLACE clause.
The syntax of the REPLACE clause is

ALTER DISKGROUP diskgroup_name
 REPLACE DISK disk_name

 WITH 'path_name'

 [POWER integer] [WAIT | NOWAIT]

Disk Group Rebalancing

Disk group rebalancing happens automatically when you add a new disk to the disk group
or remove a disk from the disk group. Oracle ASM redistributes data files evenly across all
drives. No DBA intervention is required for the rebalance operation, but you may want to
control the speed of the rebalance operation by adjusting the rebalancing power. There are
two ways to adjust the rebalance speed.

The rebalance power at the instance level applicable to all disk groups in the ASM
instance is managed by the initialization parameter ASM_POWER_LIMIT. The default value for
this parameter is 1, but it has a range of values 0 to 1,024 and can be adjusted dynamically.
The higher the power limit, the more quickly a rebalance operation can complete. Higher
power values consume large amounts of I/O resources, which could impact database per-
formance. Rebalancing takes longer with lower power values, but it consumes fewer pro-
cessing and I/O resources.

If you do not want to change the ASM rebalancing power at the instance level, you can
use the ALTER DISKGROUP statement to adjust the rebalancing power by disk group. You can
change the rebalance power for an ongoing rebalancing operation, too. Here is an example:

ALTER DISKGROUP oradata REBALANCE POWER 8;

Data dictionary views with ASM information begin with V$ASM_. When a
database is using ASM storage, these views are also available in the data-
base, only showing the disk groups used by the database. V$ASM_DISKGROUP
lists all disk groups. V$ASM_DISK shows all the disks discovered by the ASM
instance. If the disk belongs to a disk group, the group_number column will
identify the disk group. If the disk is not assigned to any disk group, the
group number will be 0.

1066	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Using ASM Storage for a Database
In the earlier chapters, we discussed storage for database data files, redo log files, control
files, the fast recovery area, and parameter files. Although ASM storage was an option
on various occasions, we did not discuss in detail using ASM storage. ASM and Oracle
Managed Files go together very well, eliminating all file management and I/O balancing
activities from the DBA.

Using OMF with ASM

Oracle Managed Files (OMF) are best suited to use with an ASM disk group, by managing
the file locations in the database initialization parameter file. Although you do not specify the
plus sign (+) when creating a disk group, you must use + with the disk group when you’re using
the ASM disk group. This distinguishes the disk group name from the file system storage for
the database. For example, to specify the archive location to +FRA, you can use the following
ALTER SYSTEM statement.

ALTER SYSTEM log_archive_dest_1 = 'LOCATION=+FRA';

The following parameters can use the ASM disk group name as the value. Remember to
specify the disk group name prefixed with a +.

DB_CREATE_FILE_DEST:    Location to create database data files when CREATE TABLESPACE
or ALTER TABLESPACE statements do not specify the file location.

DB_CREATE_ONLINE_LOG_DEST_1 to 5:    Location to create multiplexed online redo log files
when the filename is not specified when adding a redo log group or member.

DB_RECOVERY_FILE_DEST:    Location of the fast recovery area. By default archive logs and
flashback log files go under the fast recovery area.

asmcmd is a command-line utility that you can use to manage Oracle ASM
instances; disk groups and file access control for disk groups, files, and
directories within disk groups; templates for disk groups; and volumes.

Migrating Files Between ASM and File System Storage

The online data-file move option can be used to migrate a file from the ASM disk group to
another disk group, ASM to file system, or file system to ASM. The following example shows
a non-OMF data file belonging to tablespace X1 migrated to ASM storage using OMF.

SQL> alter system set db_create_file_dest = '+ORADATA';
System altered.

SQL> SELECT file_name FROM dba_data_files
 2 WHERE tablespace_name = 'X1';

	 Introducing Grid Infrastructure	 1067

FILE_NAME

/u01/app/oracle/oradata/ocadb1/x11.dbf

SQL> ALTER DATABASE MOVE DATAFILE '/u01/app/oracle/oradata/ocadb1/x11.dbf';
Database altered.

SQL> SELECT file_name FROM dba_data_files
 2 WHERE tablespace_name = 'X1';

FILE_NAME

+ORADATA/OCADB1/DATAFILE/x1.257.837811593

When you perform a SHUTDOWN NORMAL or TRANSACTIONAL or IMMEDIATE
on ASM instance, and if any database instance using the ASM instance is
up, the ASM shutdown returns an error. If you perform SHUTDOWN ABORT
(or STARTUP FORCE) on the ASM instance, the Oracle instances using the
ASM instances are terminated.

Managing Tablespace Storage

When creating a tablespace or adding a data file to a tablespace, you can specify the disk
group name using two different methods. If you omit the disk group name, the file will be
created in the disk group specified in the DB_CREATE_FILE_DEST parameter. To create the
data file in a specific disk group, you can provide the disk group name. The following code
shows an example of each method.

SQL> CREATE TABLESPACE APPS_XX_DATA DATAFILE SIZE 100M;

SQL> ALTER TABLESPACE APPS_XX_DATA ADD DATAFILE '+MYPRODDISK' SIZE 50M;

When files are created in ASM disk group, ASM follows a standard naming
convention and places the files under appropriate aliases (or subdirectories).
Under each disk group, the directory is named with the value of DB_UNIQUE_
NAME parameter. Under the database name level, subdirectories are named
based on the file type. DATAFILE, CONTROLFILE, ONLINELOG, ARCHIVELOG,
TEMPFILE, PARAMETERFILE, and FLASHBACK are some of the most common
ASM file types.

1068	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Using Oracle Restart
Oracle Restart is a subset of Oracle clusterware services normally installed with an RAC
setup. Oracle High Availability Service (OHAS) is the heart of Oracle Restart. The OHAS
daemon ensures that Oracle components are started in the proper order, taking into account
their dependencies. Oracle Restart is used only in standalone servers (non-RAC). Oracle
Restart runs periodic check operations to monitor the health of these components. If a check
operation fails for a component, the component is shut down and restarted, thus improving
the availability of the Oracle database. Oracle Restart is more than just a database restart
during server cycle or after a database crash. The components managed and automatically
restarted by Oracle Restart are

■■ Database instances

■■ Non-default database services

■■ Oracle Net Listener

■■ Automatic Storage Management instance

■■ Mounting ASM disk groups

■■ Oracle Notification Services (ONS), where Data Guard is used

Oracle Restart includes the Server Control (srvctl) utility that you can use to manually
start and stop Oracle Restart–managed components. Once you configure the components
with Oracle Restart, we recommend that you use srvctl to manually start and stop the
components.

Grid Infrastructure is required to configure Oracle Restart. Oracle Restart is
not part of the database software, although srvctl is included in the data-
base home. You are not required to configure ASM to use Oracle Restart.

Registering Components with Oracle Restart
Oracle Restart maintains a list of all the components it manages and establishes depen-
dency between the components. When a component is registered with Oracle Restart, the
necessary configuration information is registered with the component. For example, when
you register a listener, you have to provide the Oracle home directory and port number;
when you register a database, you have to provide the Oracle home and spfile.

When you create an ASM instance, database, or listener using the wizard tools, they
register the component with Oracle Restart if Grid Infrastructure is configured on the
server. When you set up a new database server, installing GI is usually one of the first
activities before you install a database.

The Server Control utility is available in the GI home and database home. Use the srvctl
utility from GI home to stop and start the ASM instance, mount disk groups, and start and
stop the listener from GI home and ONS. Use the srvctl from the database home to start
and stop database and database services.

	 Introducing Grid Infrastructure	 1069

It is possible to manually stop the components using native utilities like
sqlplus, lsnrctl, netca, or asmcmd; srvctl will not restart the services
automatically, because these utilities are integrated into Oracle Restart.
One advantage of using srvctl rather than native utilities is its ability to
automatically stop and start the dependent services.

Use the add command of srvctl to add a component to Oracle Restart. The syntax is
srvctl add object options. The object can be asm, database, diskgroup, filesystem,
home, listener, service, and ons. You may use abbreviations for database, diskgroup, lis-
tener and service (db, dg, lsnr, serv, respectively). The options depend on the component
being registered.

You can obtain help using srvctl -help. For help with a specific command on a
component, such as adding a database, you can use srvctl add database -help.

$ srvctl
Usage: srvctl <command> <object> [<options>]
 commands: enable|disable|start|stop|status|add|remove|modify|getenv|
 setenv|unsetenv|config|upgrade|downgrade
 objects: database|service|asm|diskgroup|listener|home|ons
For detailed help on each command and object and its options use:
 srvctl <command> -help [-compatible] or
 srvctl <command> <object> -help [-compatible]

The following are a few examples of adding various components to Oracle Restart. The
examples illustrate some of the most common and mandatory options. We encourage you
to practice the other options by using the -help feature.

Registering a Listener

A listener is registered using the add listener option. When the listener is registered, Oracle
Restart attempts to verify if the listener port is already in use. If the listener is already running,
you can add the -skip option to skip checking the listener port.

Remove a listener by name listener, which is the default listener. Add a listener named
listenerasm from the GI home.

$ srvctl remove listener -listener listener

Add a new listener from the GI home.

$ srvctl add listener -listener listenerasm -endpoints "TCP:1521" -oraclehome
$ORACLE_HOME

Verify the listener configuration using the config command.

$ srvctl config listener -listener listenerasm
Name: LISTENERASM

1070	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Home: /u03/app/oracle/grid/12.1.0
End points: TCP:1521

Check to see if the listener is running.

$ srvctl status listener -listener listenerasm
Listener LISTENERASM is enabled
Listener LISTENERASM is not running

Start the listener.

$ srvctl start listener -listener listenerasm

Check the status again.

$ srvctl status listener -listener listenerasm
Listener LISTENERASM is enabled
Listener LISTENERASM is running on node(s): emcc

Registering an ASM Instance

When you install GI with the Install and Configure Oracle Grid Infrastructure for a
Standalone Server option, the ASM instance is registered with Oracle Restart by OUI,
after creating the ASM instance. The following examples show how to register an ASM
instance, list the configuration of ASM in Oracle Restart, modify the registration options,
and remove the ASM instance from Oracle Restart. Because we installed ASM using GI
(see the “Installing Oracle Grid Infrastructure” section), the ASM instance is already
registered. But, for demonstration purposes, we are going to remove the ASM registration
and add it again.

Before removing the existing ASM instance registration, obtain the configuration
information.

$ srvctl config asm
ASM home: /u03/app/oracle/grid/12.1.0
Password file: +ORADATA/orapwasm
ASM listener:
Spfile: +ORADATA/ASM/ASMPARAMETERFILE/registry.253.837789509
ASM diskgroup discovery string:

Check the status of ASM.

$ srvctl status asm
ASM is running on emcc

	 Introducing Grid Infrastructure	 1071

Removing the ASM instance registration does not work because the instance is run-
ning. Let’s remove the registration using the -force option, which will stop the running
ASM instance.

$ srvctl remove asm
PRCR-1025 : Resource ora.asm is still running
$ srvctl remove asm -force

Register the ASM instance. Notice that not all configuration options are given.

$ srvctl add asm -listener listenerasm -spfile "+ORADATA/ASM/ASMPARAMETERFILE/
registry.253.837789509"

Verify the status of the registration. Notice the password file and ASM disk discovery
string values.

$ srvctl config asm
ASM home: /u03/app/oracle/grid/12.1.0
Password file:
ASM listener: LISTENERASM
Spfile: +ORADATA/ASM/ASMPARAMETERFILE/registry.253.837789509
ASM diskgroup discovery string: ++no-value-at-resource-creation--never-
updated-through-ASM++

Use the modify option to add additional configuration options.

$ srvctl modify asm -pwfile "+ORADATA/orapwasm" -diskstring "ORCL:"

Verify the configuration.

$ srvctl config asm
ASM home: /u03/app/oracle/grid/12.1.0
Password file: +ORADATA/orapwasm
ASM listener: LISTENERASM
Spfile: +ORADATA/ASM/ASMPARAMETERFILE/registry.253.837789509
ASM diskgroup discovery string: ORCL:

Check the status of the ASM instance.

$ srvctl status asm
ASM is not running.

Start the ASM instance and verify the status again.

$ srvctl start asm

$ srvctl status asm
ASM is running on emcc

1072	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Registering a Database Instance

When you register a database with Oracle Restart, you’ll have several configurable options.
To view those options, execute srvctl add database -help. Unlike an ASM instance, you
do not have to stop the database to remove a database registration from Oracle Restart (you
will still have to use the -force option if the database is running, though), and removing the
registration will not shut down the database.

Add database ocadb1 to Oracle Restart.

$ srvctl add database -db ocadb1 -oraclehome /u02/app/oracle/product/12.1.0/
dbhome_1 -spfile /u02/app/oracle/product/12.1.0/dbhome_1/dbs/spfileocadb1.ora

Verify the configuration.

$ srvctl config database -database ocadb1
Database unique name: ocadb1
Database name:
Oracle home: /u02/app/oracle/product/12.1.0/dbhome_1
Oracle user: oracle
Spfile: /u02/app/oracle/product/12.1.0/dbhome_1/dbs/spfileocadb1.ora
Password file:
Domain:
Start options: open
Stop options: immediate
Database role: PRIMARY
Management policy: AUTOMATIC
Database instance: ocadb1
Disk Groups:
Services:

Add and verify an additional service named enccdb1 for the database ocadb1. Oracle
Database 12c automatically adds and enables a service name as the database unique name.
You cannot add a service name that is the same as the database’s unique name to Oracle
Restart.

$ srvctl add service -db ocadb1 -service emccdb1

$ srvctl config service -db ocadb1
Service name: emccdb1
Service is enabled
Cardinality: SINGLETON
Disconnect: false
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false

	 Introducing Grid Infrastructure	 1073

AQ HA notifications: false
Global: false
Commit Outcome: false
Failover type:
Failover method:
TAF failover retries:
TAF failover delay:
Connection Load Balancing Goal: LONG
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE
Edition:
Pluggable database name:
Maximum lag time: ANY
SQL Translation Profile:
Retention: 86400 seconds
Replay Initiation Time: 300 seconds
Session State Consistency:

Modify the database registration to add a password file and the disk groups associated
with the database.

$ srvctl modify database -db ocadb1 -diskgroup ORADATA -pwfile /u02/app/oracle/
product/12.1.0/dbhome_1/dbs/orapwocadb1

You can use srvctl disable component to disable a component. When a
component is disabled, it will no longer restart automatically and it cannot
be started using srvctl. Use this option if you have to perform maintenance
or repair a component. After the repair is made, the component can be
enabled using srvctl enable.

Setting Environment Variables

You may need to set additional environment variables before you start a component. Use the
setenv command to set the environment variables in Oracle Restart for the ASM instance,
database, and listener. The getenv command can be used to display all the variable set for a
component. To remove the environment variable, use the unsetenv command.

The -env option can be used to set one variable, and the -envs option can be used to set
multiple variables. Here is an example of setting the environment variables for a database
using setenv, and retrieving the variables using getenv.

$ srvctl setenv database -db ocadb1 -env ORACLE_BASE=/u03/app/oracle

$ srvctl setenv database -db ocadb1 -envs "ORA_NLS10=$ORACLE_HOME/nls/data,TNS_
ADMIN=/u03/app/oracle/tns_admin"

1074	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

$ srvctl getenv database -db ocadb1
ocadb1:
TNS_ADMIN=/u03/app/oracle/tns_admin
ORA_NLS10=/u02/app/oracle/product/12.1.0/dbhome_1/nls/data
ORACLE_BASE=/u03/app/oracle

You can remove an environment variable using the unset command.

$ srvctl unsetenv database -db ocadb1 -envs TNS_ADMIN

$ srvctl getenv database -db ocadb1
ocadb1:
ORA_NLS10=/u02/app/oracle/product/12.1.0/dbhome_1/nls/data
ORACLE_BASE=/u03/app/oracle

Starting and Stopping Oracle Restart
Oracle Restart services or OHAS services are started and stopped using the Cluster Read
Services Control utility (crsctl) from the GI home. You must be logged in to the server as
the owner of GI software or the root user. Six commands are supported by crsctl to manage
has: enable, disable, start, stop, check, and config.

The following examples show how to use these commands, which will help you better
understand how the commands work.

Check to see if an automatic start of Oracle Restart is enabled. If you enable an auto-
matic restart of has, Oracle Restart is automatically started when GI services are started
after a server reboot.

$ crsctl config has
CRS-4622: Oracle High Availability Services autostart is enabled.

Check to determine if Oracle Restart is started.

$ crsctl check has
CRS-4638: Oracle High Availability Services is online

Stopping has will stop all the components registered in Oracle Restart. You can use the -f
option to forcefully stop has.

[root@emcc bin]# pwd
/u03/app/oracle/grid/12.1.0/bin
[root@emcc bin]# ./crsctl stop has
CRS-2791: Starting shutdown of Oracle High Availability Services-managed
resources on 'emcc'
CRS-2673: Attempting to stop 'ora.ocadb1.emccdb1.svc' on 'emcc'
CRS-2673: Attempting to stop 'ora.LISTENERASM.lsnr' on 'emcc'
CRS-2677: Stop of 'ora.ocadb1.emccdb1.svc' on 'emcc' succeeded

	 Introducing Grid Infrastructure	 1075

CRS-2673: Attempting to stop 'ora.ocadb1.db' on 'emcc'
CRS-2677: Stop of 'ora.LISTENERASM.lsnr' on 'emcc' succeeded
CRS-2677: Stop of 'ora.ocadb1.db' on 'emcc' succeeded
CRS-2673: Attempting to stop 'ora.evmd' on 'emcc'
CRS-2673: Attempting to stop 'ora.ORADATA.dg' on 'emcc'
CRS-2677: Stop of 'ora.ORADATA.dg' on 'emcc' succeeded
CRS-2673: Attempting to stop 'ora.asm' on 'emcc'
CRS-2677: Stop of 'ora.asm' on 'emcc' succeeded
CRS-2677: Stop of 'ora.evmd' on 'emcc' succeeded
CRS-2673: Attempting to stop 'ora.cssd' on 'emcc'
CRS-2677: Stop of 'ora.cssd' on 'emcc' succeeded
CRS-2793: Shutdown of Oracle High Availability Services-managed resources on
'emcc' has completed
CRS-4133: Oracle High Availability Services has been stopped.
[root@emcc bin]#

To start Oracle Restart, use crsctl start has.

[root@emcc bin]# ./crsctl start has
CRS-4123: Oracle High Availability Services has been started.

[root@emcc bin]# ./crsctl check has
CRS-4638: Oracle High Availability Services is online

The status command shows the status of individual components. The -t option is used
to display output in a tabular format.

[root@emcc bin]# ./crsctl status res -t

Name Target State Server State details

Local Resources

ora.LISTENERASM.lsnr
 ONLINE ONLINE emcc STABLE
ora.ORADATA.dg
 ONLINE ONLINE emcc STABLE
ora.asm
 ONLINE ONLINE emcc Started,STABLE
ora.ons
 OFFLINE OFFLINE emcc STABLE

1076	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Cluster Resources

ora.cssd
 1 ONLINE ONLINE emcc STABLE
ora.diskmon
 1 OFFLINE OFFLINE STABLE
ora.evmd
 1 ONLINE ONLINE emcc STABLE
ora.ocadb1.db
 1 ONLINE OFFLINE emcc Instance Shutdown,ST
 ARTING
ora.ocadb1.emccdb1.svc
 1 ONLINE OFFLINE STABLE

To display the output in list format, use the same command without the -t option—for
example, crsctl status res.

Summary
In this chapter, we discussed how to move data using Oracle Data Pump, using
SQL*Loader, and using external tables. You also learned how to install and use the
Oracle Grid Infrastructure components.

Data Pump is a very high-speed utility for moving data and metadata. The client utilities
expdp and impdp are used to unload and load data and metadata. The Data Pump architec-
ture includes the data and metadata movement engine DBMS_DATAPUMP, the metadata API
DBMS_METADATA, the external tables API, and the client utilities.

Data Pump Exports and Imports are performed on the server. You can attach to a job
from any computer and monitor its progress or make resource adjustments. In the interac-
tive mode, you can add a file to export a dump-file set, kill a job, stop a job, change the
parallelism, and enable detailed status logging.

SQL*Loader is used to load ASCII files to the Oracle database. You can invoke Data
Pump and SQL*Loader using EM Database Control or SQL Developer. You can also use
external tables to move data. You can use the ORACLE_DATAPUMP access driver to write data
to an external table, and you can use the ORACLE_LOADER access driver to read flat files into
an Oracle database.

The Grid Infrastructure for a standalone server, also known as Oracle Restart, pro-
vides system support for Oracle systems, including database storage, volume manage-
ment, file systems for applications, and automatic restart of various components in the
system. Oracle Restart uses the ohas daemon to monitor and restart the components
registered. Oracle Restart components include the ASM instance, database, listener, and
database services.

	 Exam Essentials	 1077

The Server Control (srvctl) utility is used to register and configure the components of
Oracle Restart. Oracle Restart itself is started and stopped by using the crsctl utility.

Exam Essentials

Know how to create database directory objects.    Directory objects are required for use in
the Data Pump Export and Data Pump Import programs.

Know that directory objects are not owned by an individual schema.    Directory
objects are not schema objects. Instead, they are owned by the database, just as roles
or profiles are.

Be aware of the Data Pump Export and Import modes.    Data Pump Export has data-
base, schema, table, tablespace, and transport tablespace modes. Data Pump Import has
full, schema, table, and tablespace modes. Although these modes sound similar, they dif-
fer between the two tools.

Be familiar with the Data Pump options that let you transfer both data and metadata from
one schema to another.    The content= parameter controls whether data, metadata, or
both are copied. The remap_schema parameter allows you to transfer data from one schema
to another.

Be aware of the limitations of SQL*Loader direct path mode, including unusable indexes.   
The SQL*Loader direct path mode has several limitations, the most prominent being that
it locks the table in exclusive mode for the duration of the load. Unique indexes are marked
unusable if unique violations are found after a direct path load. These unique violations
must be resolved before the index can be rebuilt.

Know the external table access drivers.    ORACLE_DATAPUMP and ORACLE_LOADER are the
access drivers used with external tables. The ORACLE_DATAPUMP access driver can be used to
read and write to an external table. The ORACLE_LOADER access driver is read-only.

Know which Data Pump option can be used to upgrade an 11g R2 database.    Data Pump
full export and transportable tablespace features are combined in the full transportable
export feature, which can be used to migrate 11.2.0.3+ databases to 12.1.0.

Understand the installation options available for Grid Infrastructure.    Grid Infrastructure
can be installed for clustered environments and standalone servers. GI includes Oracle
Restart and Oracle ASM.

Know the ASM disk group redundancy options.    ASM disk groups have normal, high, and
external redundancy. Learn how to specify and use fail groups.

Understand how Oracle Restart Components are registered.    Oracle Restart understands
the dependency between registered components. Oracle Restart automatically restarts a
component if it detects failure.

1078	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

Review Questions

	 1.	 Which two PL/SQL packages are used by Oracle Data Pump?

	 A.	 UTL_DATAPUMP

	 B.	 DBMS_METADATA

	 C.	 DBMS_DATAPUMP

	 D.	 UTL_FILE

	 E.	 DBMS_SQL

	 2.	 Which of these options is not a benefit of Oracle Data Pump? (Choose two.)

	 A.	 Data Pump supports fine-grained object selection using the EXCLUDE, INCLUDE, and
CONTENT options.

	 B.	 Data Pump has the ability to specify the target version of the database so that the
objects exported are compatible. This is useful in moving data from Oracle 12c to
Oracle 11g.

	 C.	 Data Pump has the ability to specify the maximum number of threads to
unload data.

	 D.	 The DBA can choose to perform the export using a direct path or external tables.

	 E.	 The Data Pump job can be monitored from another computer on the network.

	 3.	 The Data Pump job maintains a master control table with information about Data
Pump. Choose the right statement.

	 A.	 The master table is the heart of Data Pump operation and is maintained in the
SYS schema.

	 B.	 The master table contains one row for the operation that keeps track of the object
being worked so that the job can be restarted in the event of failure.

	 C.	 During the export, the master table is written to the dump-file set at the beginning
of export operation.

	 D.	 The Data Pump job runs in the schema of the job creator with that user’s rights
and privileges.

	 E.	 All of the above.

	 4.	 When using the expdp and impdp clients, the parameters LOGFILE, DUMPFILE, and SQLFILE
need a directory object where the files will be written to or read from. Choose the nonsup-
ported method for nonprivileged users.

	 A.	 Specify the DIRECTORY parameter.

	 B.	 Specify the filename parameters with directory:file_name.

	 C.	 Use the initialization parameter DATA_PUMP_DIR.

	 D.	 None of the above (all are supported).

	 Review Questions	 1079

	 5.	 Which command-line parameter of expdp and impdp clients connects you to an exist-
ing job?

	 A.	 CONNECT_CLIENT

	 B.	 CONTINUE_CLIENT

	 C.	 APPEND

	 D.	 ATTACH

	 6.	 Which option unloads the data and metadata of the SCOTT user, except the tables that
begin with TEMP? The dump file also should have the DDL to create the user.

	 A.	 CONTENT=BOTH TABLES=(not like 'TEMP%') SCHEMAS=SCOTT

	 B.	 SCHEMAS=SCOTT EXCLUDE=TABLE:"LIKE 'TEMP%'"

	 C.	 INCLUDE=METADATA EXCLUDE=TABLES:"NOT LIKE 'TEMP%'" SCHEMAS=SCOTT

	 D.	 TABLES="NOT LIKE 'TEMP%'" SCHEMAS=SCOTT

	 7.	 Which parameter is not a valid one for using the impdp client?

	 A.	 REMAP_INDEX

	 B.	 REMAP_TABLE

	 C.	 REMAP_SCHEMA

	 D.	 REMAP_TABLESPACE

	 E.	 REMAP_DATAFILE

	 8.	 When do you use the FLASHBACK_TIME parameter in the impdp utility?

	 A.	 To load data from the dump file that was modified after a certain time.

	 B.	 To discard data from the dump file that was modified after a certain time.

	 C.	 When the NETWORK_LINK parameter is used.

	 D.	 FLASHBACK_TIME is valid only with expdp, not with impdp.

	 9.	 To perform a Data Pump import from a live database, which parameter needs to be set?

	 A.	 db_link

	 B.	 network_link

	 C.	 dumpfile

	 D.	 directory

	10.	 When is it most appropriate to use an external table?

	 A.	 When you need to read binary files (PDF and photos) into Oracle Database

	 B.	 To query a large file without loading the data into the database

	 C.	 When the expdp and impdp utilities are not licensed for use

	 D.	 To load a large file into the database quickly

1080	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

	11.	 Choose the statement that is not true from the following about direct path load.

	 A.	 Direct path load cannot occur if active transactions against the table are
being loaded.

	 B.	 Triggers do not fire during direct path loads.

	 C.	 During direct path loads, foreign key constraints are disabled at the beginning of
the load and then re-enabled after the load.

	 D.	 Only primary key, unique, and NOT NULL constraints are enforced.

	 E.	 Direct path load allows other users to perform DML operations on the table while
the direct load operation is in progress.

	12.	 Which two statements regarding the Grid Infrastructure are true?

	 A.	 It is mandatory to create a disk group during the GI install using the Install and
Configure Oracle Grid Infrastructure for a Standalone Server option.

	 B.	 You can only create one disk group during the GI install.

	 C.	 A disk group must have at least two disks.

	 D.	 After a GI install, ASMCA must be run to configure an ASM instance.

	13.	 What is the smallest unit of storage in an ASM disk group?

	 A.	 Database block

	 B.	 OS block

	 C.	 Allocation unit

	 D.	 Smallest disk in the disk group

	14.	 Which privilege is required to start and stop an ASM instance?

	 A.	 SYSDBA

	 B.	 SYSASM

	 C.	 SYSDBA or SYSASM

	 D.	 SYSDBA or ASMOPER

	15.	 What Oracle Restart utility that is used to start and stop ASM instances also starts the
listener associated with the ASM?

	 A.	 crsca

	 B.	 asmca

	 C.	 asmcmd

	 D.	 srvctl

	 Review Questions	 1081

	16.	 How many fail groups are required to configure a disk group with NORMAL
redundancy?

	 A.	 0

	 B.	 1

	 C.	 2

	 D.	 Fail groups are not applicable for NORMAL redundancy.

	17.	 Review the following statement, and choose the SQL statement that successfully drops
a disk from the disk group.

SQL> SELECT name, path
 FROM v$asm_disk
 WHERE group_number = 1;

NAME PATH
------------ ------------------------
FRADISK_000 /dev/rd/sd10c1
FRADISK_001 /dev/rd/sd11c1

	 A.	 DROP DISK FRADISK_000

	 B.	 ALTER DISKGROUP DROP DISK FRADISK_000

	 C.	 ALTER DISKGROUP DROP DISK '/dev/rd/sd10c1'

	 D.	 ALTER DISKGROUP DROP DISK FRADISK_000, FRADISK_001

	18.	 Which of the following statements can speed up the disk group rebalancing process?
(Choose two.)

	 A.	 ALTER SYSTEM SET ASM_POWER_LIMIT=0

	 B.	 ALTER SYSTEM SET ASM_POWER_LIMIT=100

	 C.	 ALTER DISKGROUP oradata REBALANCE POWER 100

	 D.	 ALTER DISKGROUP oradata ASM_POWER_LIMIT 100

	19.	 Choose the option that can be used to start an ASM instance.

	 A.	 sqlplus

	 B.	 asmcmd

	 C.	 asmca

	 D.	 srvctl

	 E.	 All of the above

1082	 Chapter 18  ■  Using Grid Infrastructure and Data Movement Tools

	20.	 Which command registers an ASM instance in Oracle Restart?

	 A.	 srvctl add asm

	 B.	 srvctl config asm

	 C.	 srvctl register asm

	 D.	 srvctl start asm

Appendix

A
Answers to Review
Questions

Chapter 1: Introducing Oracle
Database 12c RDBMS

	 1.	 B. Because the relationship between MOVIES and CHARACTERS is represented
through a solid line with a crowfoot at one end, the relationship is mandatory one-to-
many, which means each movie must have one or more characters.

	 2.	 D. When the physical structure is being designed, an entity in the ER diagram may be
mapped as a table in the database. An attribute may be mapped as a column, a rela-
tionship is the referential integrity, and a unique identifier is the primary key.

	 3.	 A. Object type lets you define structures that satisfy the business requirement. It can
include built-in and user-defined types.

	 4.	 D. Oracle Database 12c has the multitenancy database feature, where multiple data-
bases are plugged in. These pluggable databases share resources such as Oracle home,
the memory area, processes, and the disk. Therefore, patching one pluggable database
is not possible. Patches are applied to the container database.

	 5.	 B. SQL*Plus can be invoked with no parameters or with connection attributes. When
connection attributes are provided, the <username> is mandatory. The <password>
and <connect_string> commands are optional. When connection attributes are not
provided, sqlplus prompts for username and password. If username is included in the
command line, sqlplus prompts for password.

	 6.	 B, C. Oracle Enterprise Manager Cloud Control is a separate product to manage and
administer various Oracle products including the database. TOAD is not an Oracle
product.

	 7.	 C. The relationship between the entities is part of one or more constraints between the
tables. The unique identifiers of an entity become the primary key of the table. The
relationship between tables becomes the foreign key.

	 Chapter 2: Introducing SQL	 1085

	 8.	 D. SQL Developer is Oracle’s GUI interface to the database. It has menus and reports
for DBAs, developers, and end users.

	 9.	 B. In RAC architecture, more than one instance communicates to the database. If an
instance on one server fails, the remaining instances in the RAC pool remain active
and service users.

	10.	 B. Easy connect uses the information provided in the connect string to connect to the
database directly, without looking for information in another source. Easy connect
uses hostname, port, and the service name to connect to the database.

Chapter 2: Introducing SQL

	 1.	 C. Column alias names enclosed in quotation marks will appear as typed. Spaces and
mixed case appear in the column alias name only when the alias is enclosed in double
quotation marks.

	 2.	 A. Statements 1 and 2 will produce the same result. You can use the column name,
column alias, or column position in the ORDER BY clause. The default sort order is
ascending. For a descending sort, you must explicitly specify that order with the DESC
keyword.

	 3.	 B. In the arithmetic evaluation, multiplication and division have precedence over addi-
tion and subtraction. Even if you do not include the parentheses, salary*0.1 will be
evaluated first. The result is then divided by 2, and its result is added to 200.

	 4.	 A, C. Character literals in the SQL statement are enclosed in single quotation marks.
Literals are concatenated using ||. Employee Name: is a character literal, and 10 is a
numeric literal.

	 5.	 D. DISTINCT is used to display a unique result row, and it should follow immediately after
the keyword SELECT. Uniqueness is identified across the row, not by a single column.

	 6.	 B. The WHERE clause is used to filter the rows returned from a query. The WHERE clause
condition is evaluated, and rows are returned only if the result is TRUE. The ORDER BY
clause is used to display the result in a certain order. The OFFSET and FETCH clauses are
used to limit the rows returned.

	 7.	 B. There are three records belonging to DEPTNO 10: EMPNO 7934 (MILLER), 7839 (KING),
and 7782 (CLARK). When you sort their names by descending order, MILLER is the first
row to display. You can use alias names and columns that are not in the SELECT clause
in the ORDER BY clause.

1086	 Appendix A  ■  Answers to Review Questions

	 8.	 D. Here, a character column is compared against a string using the BETWEEN operator,
which is equivalent to ename >= 'A' AND ename <= 'C'. The name CLARK will not be
included in this query, because 'CLARK' is > 'C'.

	 9.	 C. Column alias names cannot be used in the WHERE clause. They can be used in the
ORDER BY clause.

	10.	 A. The IN operator can be used. You can write the WHERE clause as WHERE empno IN
(7782, 7876);. Using the =ANY operator also produces the same result.

	11.	 C. Because _ is a special pattern-matching character, you need to include the ESCAPE
clause in LIKE. The % character matches any number of characters including 0, and _
matches a single character.

	12.	 C. A CASE expression begins with the keyword CASE and ends with the keyword END.

	13.	 B. The default sorting order for a numeric column is ascending. The columns are
sorted first by salary and then by name, so the row with the lowest salary is displayed
first. It is perfectly valid to use a column in the ORDER BY clause that is not part of the
SELECT clause.

	14.	 D. In the SELECT clause, the column names should be separated by commas. An alias
name may be provided for each column with a space or by using the keyword AS.
The FROM clause should appear after the SELECT clause. The WHERE clause appears
after the FROM clause. The ORDER BY clause comes after the WHERE clause.

	15.	 B. Column alias names cannot be used in the WHERE clause of the SQL statement. In
the ORDER BY clause, you can use the column name or alias name, or you can indi-
cate the column by its position in the SELECT clause.

	16.	 C. The query will return an error, because the substitution variable is used without an
ampersand (&) character. In this query, Oracle treats V_DEPTNO as another column name
from the table and returns an error. Substitution variables are not case sensitive.

	17.	 B, C. When a variable is preceded by double ampersands, SQL*Plus defines that vari-
able. Similarly, when you pass values to a script using START script_name arguments,
SQL*Plus defines those variables. Once a variable is defined, its value will be available
for the duration of the session or until you use UNDEFINE variable.

	18.	 D. % is the wild character to pattern-match for any number of characters. Option A is
almost correct, except for the SORT keyword in the ORDER BY clause, which will produce
an error because it is not a valid syntax. Option B will produce results but will sort them
in the order you want. Option C will not return any rows because LIKE is the operator
for pattern matching, not =. Option E has an error similar to Option A.

	19.	 C. In the first SQL statement, the comm IN (0, NULL) will be treated as comm = 0 OR
comm = NULL. For all NULL comparisons, you should use IS NULL instead of = NULL. The
first SQL statement will return only one row where comm = 0, whereas the second SQL
will return all the rows that have comm = NULL as well as comm = 0.

	 Chapter 3: Using Single-Row Functions	 1087

	20.	 A. Option A is correct. It includes the OFFSET 3 clause to skip the first three rows
and the FETCH 1 ROW clause to get the fourth row. The WITH TIES option retrieves all
records if there is a tie for the fourth position. Option B SQL will error out because the
SQL is missing the ONLY or WITH TIES clause—one should be specified. Even after
the syntax is fixed, the result will be wrong. The sorting is performed in the reverse
order. Option C is similar to Option A, but will retrieve the fifth position instead of the
fourth. Option D will produce the wrong results—it is missing the DESC keyword as
well as the OFFSET clause.

Chapter 3: Using Single-Row Functions

	 1.	 C. Double quotation marks must surround literal strings like "Week".

	 2.	 D. The TRUNC function removes the time portion of a date by default, and whole numbers
added to or subtracted from dates represent days added or subtracted from that date.
TRUNC(SYSDATE) –5 means five days ago at midnight.

	 3.	 C. The two statements are equivalent.

	 4.	 B. SUBSTR returns part of the string. INSTR returns a number. LPAD adds to a character
string. LEAST does not change an input string.

	 5.	 C. Options A and B do not account for NULL surcharges correctly and will set the
bonus to NULL where the surcharge is NULL. In option B, the NVL function is applied to
the base_price column instead of the surcharge column. In option C, the LEAST func-
tion will return a NULL if surcharge is NULL, in which case BASE_PRICE * 1.05 would
be returned from the COALESCE function.

	 6.	 B, D. ROUND does not accept character arguments. SUBSTR accepts only character argu-
ments. SIGN accepts only numeric arguments.

	 7.	 A. The functions are evaluated from the innermost to outermost, as follows:

SIGN(ABS(NVL(-32,0))) = SIGN(ABS(-32)) = SIGN(32) = 1

	 8.	 D. The NVL function returns zero if the salary value is NULL, or else it returns the origi-
nal value. The NVL2 function returns the second argument if the salary value is not
NULL. If NULL, the third argument is returned.

	 9.	 A, B. RTRIM removes trailing (not leading) characters. INSTR returns a number. STRIP is
not a valid Oracle function. SUBSTR, with the second argument greater than 1, removes
leading characters from a string.

	10.	 B. MOD returns the number remainder after division. The REMAINDER function is similar to
MOD but will use the ROUND function in the algorithm; hence, the result of REMAINDER(11,4)
would be –1. MOD uses FLOOR in the algorithm.

1088	 Appendix A  ■  Answers to Review Questions

	11.	 D. The SUBSTR function in option A would return the last two characters of the last
name. These two characters are right-trimmed using the RTRIM function. The result
would be the first portion of the last name and is concatenated to 'XX' only if the last
two characters are not repeating (for example, Pululul will be PXX). Option B would
replace all the occurrences of the last two characters. Option C would choose only the
last two characters.

	12.	 A. The CURRENT_TIMESTAMP function returns the session date, session time, and session
time zone offset. The return datatype is TIMESTAMP WITH TIME ZONE.

	13.	 C. Option A will result in NULL TOTAL_SALES for rows where there are NULL WARRANTY_
SALES. Option B is not the correct syntax for NVL2, because it requires three arguments.
With option C, if WARRANTY_SALES is NULL, then CAR_SALES is returned; otherwise, CAR_
SALES+WARRANTY_SALES is returned. The COALESCE function returns the first non-NULL
argument and could be used to obtain the desired results, but the first argument here is
CAR_SALES, which is not NULL. Therefore, COALESCE will always return CAR_SALES.

	14.	 C. The ADD_MONTHS function returns the date d plus i months. If <d> is the last day of
the month or the resulting month has fewer days, then the result is the last day of the
resulting month.

	15.	 C. Statement 1 will result in 30-SEP-0007, and statement 2 will result in 30-SEP-2007.
The RR and RRRR formats derive the century based on the current date if the century is
not specified. The YY format will use the current century, and the YYYY format expects
the century in the input.

	16.	 B. The COALESCE function returns the first non-NULL parameter, which is the character
string 'Oracle'.

	17.	 E. Option A will not work if there is a February 29 (leap year) in the next 365 days.
Option B will always add one year to the present date, except if the current date is Feb-
ruary 29 (leap year). Option C will return the date one day later. NEW_TIME is used to
return the date/time in a different time zone. ADD_MONTHS (SYSDATE,12) can be used to
achieve the desired result.

	18.	 A. LOCALTIMESTAMP does not return the time zone. CURRENT_DATE and SYSDATE return
neither fractional seconds nor a time zone; they both return the DATE datatype.

	19.	 D. CONVERT is used to change from one character set to another. EXTRACT works on
date/time datatypes. TRANSLATE changes all occurrences of each character with a posi-
tionally corresponding character, so 'I like IBM' would become 'S like SUN'.

	20.	 C. The INITCAP function capitalizes the first letter in each word. The REPLACE func-
tion performs search-and-replace string operations. There is no IFELSE function. The
DECODE function is the one that implements IF…THEN…ELSE logic.

	 Chapter 4: Using Group Functions	 1089

Chapter 4: Using Group Functions

	 1.	 D. Even though you do not have a state column in the SELECT clause, having it in the
GROUP BY clause will group the results by state, so you end up getting two values (two
columns) for each state.

	 2.	 A. All requirements are met. The gross-, net-, and earned-revenue requirements
are satisfied with the SELECT clause. The second- and third-quarter sales requirement is
satisfied with the first predicate of the WHERE clause—the sales date will be truncated to
the first day of a quarter; thus, 01-Apr-1999 or 01-Jul-1999 for the required quarters
(which are both between 01-Apr-1999 and 01-Sep-1999). The state codes requirement
is satisfied by the second predicate in the WHERE clause. This question is intentionally
misleading, but so are some exam questions (and, unfortunately, some of the code in
some shops is too).

	 3.	 C. Because the department_id column does not have any aggregate function applied to
it, it must appear in the GROUP BY clause. To make the query work, the ORDER BY clause
in the SQL instructions must be replaced with a GROUP BY clause.

	 4.	 A. Because group functions do not include NULL values in their calculations, you do
not have to do anything special to exclude the NULL values. Only COUNT(*) includes
NULL values.

	 5.	 B. An aggregate function is not allowed in the WHERE clause. You can have the GROUP
BY and HAVING clauses in any order, but they must appear after the WHERE clause.

	 6.	 D. The SQL code will work fine and produce the desired result. Because group functions
are nested, a GROUP BY clause is required.

	 7.	 A. It is perfectly all right to have one function in the SELECT clause and another function
in the HAVING clause of the query. Options B and C are trying to use the alias name, which
is not allowed. Option D has a group function in the WHERE clause, which is not allowed.

	 8.	 D. The query will return how many distinct alphabets are used to begin names in
the EMPLOYEES table. You can nest a group function inside a single-row function,
and vice versa.

	 9.	 E. All the queries will return the same result. Because ORDER_NO is the primary key, NULL
values cannot be in the column. Hence, ALL and DISTINCT will give the same result.

	10.	 D. Option A will display the highest salary of all the employees. Options B and E use
invalid syntax keywords. Option C does not have a GROUP BY clause.

	11.	 B. The first column in the first query counts the distinct MGR values in the table. The
first column in the second query counts all MGR values in the table. If a manager appears
twice, the first query will count her one time, but the second will count her twice. Both
the first query and the second query select the maximum salary value in the table.

1090	 Appendix A  ■  Answers to Review Questions

	12.	 A, B. A group function is not allowed in GROUP BY or WHERE clauses, whether you use it
as nested or not.

	13.	 B. Both statements are valid. The first statement will produce the number of rows equal
to the number of unique first_name values. The second statement will produce the num-
ber of rows equal to the unique number of first characters in the first_name column.

	14.	 D. COUNT(*) will count all rows in the table. COUNT(salary) will count only the number
of salary values that appear in the table. If there are any rows with a NULL salary, state-
ment 2 will not count them.

	15.	 A. A GROUP BY clause must contain the column or expressions on which to perform the
grouping operation. It cannot use column aliasing.

	16.	 A. You cannot place a group function in the WHERE clause. Instead, you should use a
HAVING clause.

	17.	 B. There is at least one column in the SELECT list that is not a constant or group function,
so a GROUP BY clause is mandatory.

	18.	 D. The HAVING clause filters data after the group function is applied. If an aggregate func-
tion is not used in the HAVING clause, the column used must be part of the SELECT clause.

	19.	 C. The HAVING clause can be used in a SELECT statement only if the GROUP BY clause is
present. The optional HAVING clause filters data after the rows are summarized.

	20.	 C. The GROUP BY and HAVING clauses can appear in any order in the SELECT clause. If a
WHERE clause is present, it must be before the GROUP BY clause. ORDER BY clause, if pres-
ent, follows the GROUP BY clause – ORDER BY is recommended for consistent result order.

Chapter 5: Using Joins and Subqueries

	 1.	 C. When table aliases are defined, you should qualify the column names with the table
alias only. In this case, the table name cannot be used to qualify column names. The
line in option C should read WHERE e.deptno = d.deptno.

	 2.	 A. An outer join operator, (+), indicates an outer join and is used to display the
records, even if there are no corresponding records in the table mentioned on the other
side of the operator. Here, the outer join operator is next to the ORDERS table, so even
if there are no corresponding orders from a customer, the result set will have the cus-
tomer ID and name.

	 3.	 B. When an outer join returns values from a table that does not have corresponding
records, a NULL is returned.

	 Chapter 5: Using Joins and Subqueries	 1091

	 4.	 C. The join condition is specified in the ON clause. The JOIN clause specifies the table
to be joined. The USING clause specifies the column names that should be used in the
join. The WHERE clause is used to specify additional search criteria to restrict the rows
returned.

	 5.	 B, D. Option A does not work because you cannot qualify column names when using
a natural join. Option B works because the only common column between these two
tables is DEPARTMENT_ID. The keyword OUTER is optional. Option C does not work,
again because you cannot qualify column names when specifying the USING clause.
Option D works because it specifies the join condition explicitly in the ON clause.

	 6.	 A, C. OR and IN are not allowed in the WHERE clause on the columns where an outer join
operator is specified. You can use AND and = in the outer join.

	 7.	 A, C. Options A and B have an ORDER BY clause used in the subquery. An ORDER BY
clause can be used in the subquery appearing in the FROM clause, but not in the WHERE
clause. Options C and D use the GROUP BY clause in the subquery, and its use is allowed
in FROM as well as WHERE clauses. Option D will give an error because the DEPARTMENT_
ID in the SELECT clause is ambiguous and, therefore, doesn’t need to be qualified as
e.DEPARTMENT_ID. Another issue with option D is that since you used the USING clause
to join, the column used in the USING clause cannot be qualified; e.hire_date in the
SELECT clause should be hire_date.

	 8.	 B. The query fails because the d.DEPARTMENT_ID column is referenced before the
DEPARTMENTS table is specified in the JOIN clause. A column can be referenced only
after its table is specified.

	 9.	 D. Because DEPARTMENT_ID and MANAGER_ID are common columns in the EMPLOYEES
and DEPARTMENTS tables, a natural join will relate these two tables using the two
common columns.

	10.	 B. There are two records in the STATE table with the ST_CODE value as 'TN'. Because
you are using a single-row operator for the subquery, it will fail. Option C would be
correct if it used the IN operator instead of = for the subquery.

	11.	 A. The query will succeed, because there is only one row in the CITY table with the
CTY_NAME value 'DALLAS'.

	12.	 E. There is no error in the statement. The query will return the department number
where the most employees are working and the number of employees in that department.

	13.	 A. A subquery is correlated when a reference is made to a column from a table in the
parent statement.

	14.	 C. The subquery returns 91 to the main query.

	15.	 D. You cannot have an ORDER BY clause in the subquery used in a WHERE clause.

1092	 Appendix A  ■  Answers to Review Questions

	16.	 C. The query will work fine, producing the difference between the employee’s salary and
the average salary in the department. You do not need to use the alias names, because the
column names returned from the subquery are different from the column names returned
by the parent query.

	17.	 C. Because only one column is selected in the subquery to which you are doing the
insert, only one column value should be supplied in the VALUES clause. The VALUES
clause can have only CNT_CODE value (971).

	18.	 B. When using set operators, the ORDER BY clause can appear only on the SQL at the
very end. You can use the column names (or aliases) appearing in the top query or use
positional columns.

	19.	 B. All four queries produce the same result. The first query uses a scalar subquery in
the SELECT clause. The rest of the queries use an inline view. All the queries display the
last name, salary, and difference of salary from the highest salary in the department for
all employees in department 20.

	20.	 D. To find the top n rows, you can select the necessary columns in an inline view with
an ORDER BY DESC clause. An outer query limiting the rows to n will give the result.
ROWNUM returns the row number of the result row.

Chapter 6: Manipulating Data

	 1.	 D. When inserting from another table using a subquery, the VALUES clause should not
be included. Options B and C are invalid syntaxes for the INSERT statement.

	 2.	 E. If a transaction is not currently open, any INSERT, UPDATE, MERGE, DELETE, SELECT
FOR UPDATE, or LOCK statement will implicitly begin a transaction.

	 3.	 B, C. Option A will error out because when columns are used in SET, a subquery must
be used as in option C. Option D is wrong because AND is used instead of a comma to
separate columns in the SET clause.

	 4.	 A, D. COMMIT, ROLLBACK, and any DDL statement end a transaction—DDL is automati-
cally committed. INSERT, UPDATE, and DELETE statements require a commit or rollback.

	 5.	 A. Option A uses a correlated subquery to match the correct employee. Option B selects
all the rows in the subquery and, therefore, will generate an error. Option C is not valid
syntax. Option D will update all the rows in the table because the UPDATE statement does
not have a WHERE clause. The WHERE clause preset belongs to the subquery.

	 6.	 B. In an UPDATE statement, the WHERE clause should come after the SET clause.

	 Chapter 6: Manipulating Data	 1093

	 7.	 D. When deleting a row from a table, do not use column names. To change column
values to NULL, use the UPDATE statement.

	 8.	 C. The FROM keyword in the DELETE statement is optional. Statement 3 first builds a
subquery with the necessary condition and then deletes the rows from the subquery.

	 9.	 B. When two savepoints are created with the same name, Oracle overwrites the older
savepoint; therefore, only the newer savepoint will be available. In the code segment,
the DELETE and the first INSERT are not rolled back.

	10.	 C. When updating more than one column in a single UPDATE statement, separate the
columns by a comma; do not use the AND operator.

	11.	 D. Option A updates the wrong table. Option B has the right syntax but will update
all the rows in the EMPLOYEE table because there is no WHERE clause for the UPDATE
statement. Because the WHERE clause is in the subquery, all the rows that do not belong
to department 22 will be updated with a NULL. Options C and D are similar, except
for the AND keyword instead of WHERE.

	12.	 D. The first INSERT statement and the last INSERT statement will be saved in the database.
The ROLLBACK TO A statement will undo the second and third inserts.

	13.	 B. Option B will raise an exception because there are not enough column values for the
implicit column list (all columns).

	14.	 B. Because the location_id column is defined with a default value of 99, statement 1
will insert 99 for location_id. In statement 2, a NULL is explicitly inserted into the
location_id column; Oracle will not replace the NULL with the default value defined.

	15.	 B. The FIRST clause tells Oracle to execute only the first WHEN clause that evaluates to
TRUE for each row. Because no rows have a channel_id of C, no rows would be inserted
into the catalog_sales table; 24,000 rows have a channel_id of I, so control would
pass to the second WHEN clause 24,000 times, and the internet_sales table would get
24,000 rows. Because the second WHEN clause evaluates to TRUE and the INSERT FIRST
option is specified, these rows would not make it to the third WHEN clause and would not
be inserted into the new_channel_sales table. Had the INSERT ALL option been used,
these 24,000 rows would also be inserted into the new_channel_sales table; 12,000
rows have a channel_id of T, so control would pass all the way to the third WHEN clause
for these rows, and 12,000 rows would be inserted into new_channel_sales.

	16.	 C. The TRUNCATE statement is DDL and performs an implicit commit. After the TRUNCATE
statement is performed on the employees table, there will be 124 rows in the emp table.
The one row that is inserted will be removed when the ROLLBACK statement is executed.

	17.	 D. You must have the SET keyword in an UPDATE statement. The BETWEEN operator and
any other valid operators are allowed in the WHERE clause.

1094	 Appendix A  ■  Answers to Review Questions

	18.	 D. When DML operations are performed, Oracle automatically locks the rows. You can
query (read) the rows, but no other DML operation is allowed on those rows. When you
read the rows, Oracle constitutes a read-consistent view using the undo segments.

	19.	 B. The keywords INSERT INTO are required in single-table INSERT statements but are
not valid in multiple-table INSERT statements.

	20.	 D. The final rollback (to point_d) will roll the changes back to just after setting the
salary to $1,500.

Chapter 7: Creating Tables and
Constraints

	 1.	 B. When you create a table using CTAS (CREATE TABLE AS SELECT), only the NOT NULL
constraints are copied.

	 2.	 B. A VARCHAR2 datatype should always specify the maximum length of the column.

	 3.	 C. The correct statement is C. When you are adding only one column, the column defi-
nition doesn’t need to be enclosed in parentheses.

	 4.	 B, D. Only three special characters ($, _, and #) are allowed in table names along with
letters and numbers.

	 5.	 C. All identifiers (column names, table names, and so on) must begin with an alpha-
betic character. An identifier can contain alphabetic characters, numbers, and the spe-
cial characters $, #, and _.

	 6.	 C. The USER_TABLES view provides information on the tables owned by the user who
has logged on that session. DBA_TABLES will have all the tables in the database, and
ALL_TABLES will have the tables owned by you as well as the tables to which you have
access. USR_TABLES is not a valid dictionary view.

	 7.	 D. When a default value is specified in the new column added, the column values for the
existing rows are not populated with the default value; only the dictionary is updated.

	 8.	 B. In date arithmetic, adding 1 is equivalent to adding 24 hours. To add 6 hours to a
date value with time, add 0.25.

	 9.	 D. If you do not specify a length for a CHAR column, the default length of 1 is assumed.

	 Chapter 7: Creating Tables and Constraints	 1095

	10.	 A. You can use the DROP COLUMN clause with the ALTER TABLE statement to drop a
column. There is no separate DROP COLUMN statement or a REMOVE clause in the ALTER
TABLE statement. The SET UNUSED clause is used to mark the column as unused. This
column can be dropped later using the DROP UNUSED COLUMNS clause.

	11.	 C, D, E. All actions that do not modify the data in the table are permitted on a read-
only table. The actions of creating/dropping a constraint, creating/dropping an index,
and dropping a table are allowed. Even though truncating is a DDL action, it is not
permitted because the data in the table is affected.

	12.	 C, D. The ALTER TABLE statement is used to create and remove constraints. CREATE
PRIMARY KEY and CREATE CONSTRAINT are invalid statements. A constraint is always
added to an existing table using the ALTER TABLE statement.

	13.	 B, C. Check constraints cannot reference the SYSDATE function or other tables.

	14.	 A, D, G. You cannot add two DATE datatypes, but you can subtract to find the differ-
ence in days. Multiplication and division operators are permitted only on INTERVAL
datatypes. When you are adding or subtracting INTERVAL datatypes, both INTER-
VAL datatypes should be of the same category.

	15.	 B. DEFERRABLE specifies that the constraint can be deferred using the SET CONSTRAINTS
command. INITIALLY IMMEDIATE specifies that the constraint’s default behavior is to
validate the constraint for each SQL statement executed.

	16.	 C. The default precision is six digits. The precision can range from 0 to 9.

	17.	 C. Only TIMESTAMP WITH TIME ZONE stores the time-zone information as a dis-
placement from UTC. TIMESTAMP WITH LOCAL TIME ZONE adjusts the time to
the database’s time zone before storing it.

	18.	 C. You can disable a constraint by specifying its constraint name. You may enable
the constraint after the load and avoid the constraint checking while enabling use of the
ALTER TABLE ORDERS MODIFY CONSTRAINT FK_ORDERS ENABLE NOVALIDATE; command.

	19.	 C. RENAME can be used to rename objects owned by the user. ALTER TABLE should be
used to rename tables owned by another user. To do so, you must have the ALTER privi-
lege on the table or the ALTER ANY TABLE privilege.

	20.	 A. The table will be created without error. A table cannot have more than one LONG col-
umn, but LONG and multiple LOB columns can exist together. If a LONG or LONG RAW column
is defined, another LONG or LONG RAW column cannot be used.

1096	 Appendix A  ■  Answers to Review Questions

Chapter 8: Introducing
Oracle Database 12c Components
and Architecture

	 1.	 B, C. Database buffer cache, shared pool, and log buffer are required; they are config-
ured automatically in every instance. It is better to use Automatic Memory Management
or Automatic Shared Memory Management, so that the DBA does not need to tune
individual components.

	 2.	 D. The control file is the most key file in an Oracle database. Due to its importance, it
is a good practice to have two more copies of the file. A database must have at least one
control file to start the database.

	 3.	 A. An Oracle database allows you to manage all memory components dynamically,
except the redo log buffer. Redo log buffer is set at instance startup and is not dynami-
cally alterable without restarting the instance.

	 4.	 C. Control file, data file, and redo log files are part of the Oracle database. The Oracle
instance constitutes the memory structures and background processes.

	 5.	 C. The log writer (LGWR) process writes the redo log buffer information to the online
redo log files. A commit operation is completed only after the redo buffer is written to
online redo log files.

	 6.	 D. When a user issues a commit, the LGWR process makes sure the redo log buffer
is written to the online redo log files. Database writer takes no action against the
commit event.

	 7.	 A. With Real Application Clusters, multiple instances (known as nodes) can mount one
database. One instance can be associated with only one database.

	 8.	 C. The shared SQL area is stored in the library cache in a shared pool and is shared
between users. If a query is executed again before it is aged out of the library cache,
Oracle will use the parsed code and execution plan from the library cache. The data-
base buffer cache has the data blocks cached. The dictionary cache caches data diction-
ary information. There is no SGA component called the parse cache.

	 9.	 A, D. SMON is responsible for performing instance recovery using the online redo log
files and for coalescing contiguous free space in tablespaces. The PMON is responsible
for session cleanup and for freeing up all resources after a user session is terminated.

	 Chapter 8: Introducing Oracle Database 12c Components and Architecture 	 1097

	10.	 B. A table or index has a segment. A segment consists of one or more extents. A seg-
ment can belong to only one tablespace, but it can span across multiple data files.

	11.	 C, D. MMON (Manageability Monitor) captures the AWR database and performs
ADDM analysis. MMNL (Manageability Monitor Lite) performs tasks related to
active session-history sampling and metrics computation. The ARCn (Archiver) process
is responsible for writing redo log copies to the archive log location. This process is
enabled only when the database is running in ARCHIVELOG mode. MMAN (Mem-
ory Manager) is responsible for resizing the memory components when required. This
process is active only when Automatic Memory operations are configured.

	12.	 D. The large pool is configured so that RMAN does not use the shared pool; therefore,
the shared pool is totally dedicated to application space.

	13.	 D. PMON is responsible for cleaning up failed user processes. It reclaims all the
resources held by the user and releases all locks on tables and rows held by the user.
No other process is involved in the session cleanup.

	14.	 D. The LRU mechanism ensures that each user’s server process can find free space in
the shared pool and database buffer cache whenever they need it, but it also keeps fre-
quently used objects cached in those memory areas.

	15.	 A. The instance consists of the SGA and all the Oracle background processes. The
database is composed of the control files, data files, and redo logs.

	16.	 B. Multiple operating-system blocks make up database blocks, contiguous chunks of
which make up extents. A segment consists of one or more extents.

	17.	 D. PMON is one of the critical processes of Oracle Database 12c, and terminating that
process will crash the database. During instance startup, Oracle will require the redo log
files with status CURRENT as well as ACTIVE in order to perform instance recovery.

	18.	 B. During an incremental database checkpoint, the control file is updated with the
checkpoint position; data files are not updated. Data file headers are updated with
checkpoint information by the DBWn process when dirty buffers are written to the
files. During threaded checkpoint or full database checkpoint, all file headers are
updated. This happens during a normal shutdown as well as during online log switch.

	19.	 A, E, C, F, G, B. Data blocks are always changed in the memory, and the change vec-
tors are written to redo the log buffer. LGWR writes the redo log buffers to redo the
log files on disk as soon as the commit occurs. This guarantees recoverability. During a
checkpoint, data files are updated with the changed blocks by the DBWn process.

	20.	 A. Redo log groups with status CURRENT and ACTIVE are required during instance
crash recovery.

1098	 Appendix A  ■  Answers to Review Questions

Chapter 9: Creating and Operating
Oracle Database 12c

	 1.	 C. When using ALTER SYSTEM to change parameter values, the change is made to
the server parameter file (spfile) too, because the default for the SCOPE clause is BOTH.
Option D would have been correct, if the pfile were used to start up the database.
When a database is created using DBCA, the parameter file created is always spfile.

	 2.	 B. DIAGNOSTIC_DEST is the initialization parameter that determines where the
Automatic Diagnostic Repository home is located. The alert log file would
be in the <diagnostic_dest>/diag/rdbms/<dbname>/<instancename>/alert
directory. A text version of the alert log is in the <diagnostic_dest>/diag/
rdbms/<dbname>/<instancename>/trace directory. But BACKGROUND_DUMP_DEST
shows the full path of the trace directory location.

	 3.	 C. V$PARAMETER shows information about the parameters and their current values in
the database. V$SPPARAMTER shows the information as read from the spfile.

	 4.	 D. When creating a new database or creating a control file, the database should be in
the NOMOUNT state.

	 5.	 B. The alert log file in Oracle Database 12c is saved in the $ORACLE_BASE/diag/
rdbms/<dbname>/<instancename>/trace directory. The XML version of the alert log
file is in the $ORACLE_BASE/diag/rdbms/<dbname>/<instancename>/alert directory.

	 6.	 C. The Custom template lets you choose the database block size in the DBCA. If the
template includes data files, the block size of the template cannot be changed. The pre-
defined templates that come with data files have the block size at 8KB.

	 7.	 A. The Database Configuration Assistant lets you create databases, manage templates,
add database options, and delete databases. Although you can change initialization
parameters when you are defining a database, this is not one of the management
options available.

	 8.	 B. The runInstaller executable performs a preinstall check of the operating system
and hardware resources before starting the OUI graphical tool.

	 9.	 D. While the Unix system administrator is responsible for creating volume groups and
mount points, the DBA generally decides where the Oracle binaries will be installed—
the location derived from $ORACLE_BASE or designated by the $ORACLE_HOME environ-
ment variable.

	 Chapter 9: Creating and Operating Oracle Database 12c	 1099

	10.	 C. When starting the instance, Oracle looks for spfileOCA12C.ora file. If it cannot
find that file, it looks for spfile.ora. If that file is not found, Oracle looks for the
initOCA12C.ora file.

	11.	 A. The block size of the database cannot be changed after database creation. The
database name can be changed after the control file is re-created with a new name,
and the CONTROL_FILES parameter can be changed after the control files are copied
to the new location.

	12.	 D. The catalog.sql script creates the data dictionary views, dynamic performance
views, and synonyms.

	13.	 B. The text-alert log file has the name alert_<instancename>.log. For most non-RAC
databases, the instance name and database name would be the same.

	14.	 B, D. STARTUP FORCE will perform a SHUTDOWN ABORT and STARTUP of the database.
SHUTDOWN ABORT will terminate all sessions and processes and will shut down the
instance.

	15.	 C. The recovery of a database occurs when the database moves from the MOUNT mode
to the OPEN mode. All these options attempt to start up and open the database except
for option C, which only puts the database in NOMOUNT mode.

	16.	 A. When you perform a SHUTDOWN ABORT, Oracle never performs a clean shutdown. All
other types of shutdowns are considered clean shutdowns because Oracle will not have
to perform a recovery on a subsequent database startup.

	17.	 B. The STARTUP RESTRICT choice opens the database and allows only users with
RESTRICTED database access to connect and use it.

	18.	 C. An spfile is another term for a server-side binary file that Oracle reads when a
database startup is performed. This binary file contains all the nondefault initializa-
tion parameters used at startup.

	19.	 D. The Oracle alert log contains a chronological history of administrative events and
actions and certain types of database errors that occur within the database. Adding a
column to a user table is not an administrative action and is not recorded in the alert
log. Adding a column will be written to alert log if the parameter enable_ddl_logging
is set to TRUE; the default is FALSE.

	20.	 B, C. A database cannot be started or stopped using OEM Database Express. The Data-
base Control repository is not created when the CREATE DATABASE statement is executed.
DBCA creates the Database Control repository and configures Database Control for you.

1100	 Appendix A  ■  Answers to Review Questions

Chapter 10: Understanding Storage and
Space Management

	 1.	 C. Bigfile tablespaces can have only a single data file. The traditional or smallfile
tablespace can have many data files (the limit is OS-dependent, mostly 1022).

	 2.	 D. Segment space management refers to free-space management, with automatic seg-
ment space management using bitmaps instead of FREELISTS, PCTFREE, and PCTUSED.

	 3.	 B. Redo information is not stored in a segment; it is stored in the redo logs. Undo seg-
ments are stored in the undo tablespace; temporary segments are in the temporary
tablespace; and permanent segments go into all the other tablespaces.

	 4.	 C. An extent is composed of two or more data blocks; a segment is composed of one or
more extents; and a data file houses all these.

	 5.	 D, E. When a tablespace is read-only, DML operations and operations that affect data
in the table are not allowed. TRUNCATE is not allowed, but the DROP operation is allowed.
You can also rename the table using the RENAME statement or the ALTER TABLE statement.

	 6.	 C, A. To make a tablespace read-only, all the data files belonging to the tablespace must
be online and available. So bring the tablespace online, and then make it read-only.

	 7.	 A, B. You can add more space to a tablespace either by adding a data file or by increas-
ing the size of an existing data file. Option A does not have a filename specified; it uses
the OMF feature to generate the filename.

	 8.	 B. DB_CACHE_SIZE doesn’t need to be set for the standard block size because Automatic
Memory Management is used. If you set DB_CACHE_SIZE, its value will be used as the
minimum. DB_16K_CACHE_SIZE should be set for the nonstandard block size. You must
not set the DB_8K_CACHE_SIZE parameter because the standard block size is 8KB.

	 9.	 C. Locally managed temporary tablespaces are created using the CREATE TEMPORARY
TABLESPACE command. The data files (temporary files) belonging to these tablespaces are
in the DBA_TEMP_FILES view. The EXTENT_MANAGEMENT column of the DBA_TABLESPACES
view shows the type of tablespace. The data files belonging to locally managed perma-
nent tablespaces and dictionary-managed (permanent and temporary) tablespaces can
be queried from DBA_DATA_FILES. Locally managed temporary tablespaces reduce con-
tention on the data dictionary tables.

	10.	 D. The INCLUDING CONTENTS clause is used to drop a tablespace that is not empty.
Oracle does not remove the data files that belong to the tablespace if the files are
not Oracle-managed; you need to do it manually using an OS command. Oracle

	 Chapter 10: Understanding Storage and Space Management	 1101

updates only the control file. To remove the files, you can include the INCLUDING CON-
TENTS AND DATAFILES clause.

	11.	 A. You can use the ALTER TABLESPACE command to rename a file that belongs to
the tablespace, but all other file-management operations are done through the
ALTER DATABASE command. To enable autoextension, use ALTER DATABASE DATAFILE
<FILENAME> AUTOEXTEND ON NEXT <INTEGER> MAXSIZE <INTEGER>.

	12.	 C. The data files belonging to the SYSTEM tablespace can be renamed when the database
is in the MOUNT state by using the ALTER DATABASE RENAME FILE statement.

	13.	 B, C. OEM Database Express does not have an option to adjust the server-managed
alerts in Database 12c Release 1. OEM Cloud Control and DBMS_SERVER_ALERT.SET_
THRESHOLD can be used to set the threshold for tablespaces.

	14.	 A, B, C. ALTER TABLE … SPLIT PARTITION involves creating extents; therefore, it is
resumable. However, ALTER TABLE … SHRINK SPACE does not create any new extents and
is not resumable. The SELECT statement is resumable, because it could create sort extents.
INSERT INTO … SELECT is resumable, as is any INSERT statement. CREATE TABLESPACE is
not resumable, because it does not create any extents when a tablespace is created.

	15.	 B, C. There is no out-of-the-box mechanism to notify a suspended resumable session.
When a session is suspended, information is written to the alert log, an AFTER SUSPEND
trigger is fired, and a resumable session suspended alert is issued.

	16.	 D. ALTER TABLE … MOVE and ALTER TABLE … REBUILD are not online operations and
will require an exclusive lock on the object. Segment shrink is accomplished using the
SHRINK SPACE clause of ALTER TABLE and ALTER INDEX. A shrink operation does not
invalidate dependent objects.

	17.	 C. The COMPRESS option by itself enables basic compression, and it compresses only
direct-load operations. NOCOMPRESS disables compression. COMPRESS for ONLINE DML is
an invalid syntax.

	18.	 A. An extent consists of one or more contiguous Oracle blocks. Option B is true if
you extend the answer a little bit, that an Oracle block is a multiple of OS blocks. A
segment consists of one or more extents, not the other way. An extent is not always
allocated when a table is created; an extent is allocated when the first row is inserted
into the table.

	19.	 B. The tablespace X is created without any error and the syntax is correct. The
tablespace created will have the default characteristics. It will use an Oracle Man-
aged File of 100M, autoextensible up to 32GB. It will also have LOGGING, NOCOMPRESS,
ONLINE, PERMANENT, EXTENT MANAGEMENT LOCAL AUTOALLOCATE, and SEGMENT SPACE
MANAGEMENT AUTO properties.

	20.	 C. Segment ID is not part of ROWID. ROWID includes the data object number, relative
file number where the block is stored, the block number in the file, and the row number.

1102	 Appendix A  ■  Answers to Review Questions

Chapter 11: Managing Data
Concurrency and Undo

	 1.	 C. By ending the transaction, a commit makes pending DML changes permanent. A
rollback also ends the transaction. When a checkpoint occurs, DBWR flushes dirty
buffers to disk, which is independent of transaction boundaries.

	 2.	 D. When you use SET TRANSACTION READ ONLY, no data changes can be made in the
transaction. You can make DDL changes though. A DDL statement does an implicit
COMMIT and ends the transaction. ALTER USER is a DDL statement.

	 3.	 A. Guaranteed undo retention can be set at the tablespace level by using the RETENTION
GUARANTEE clause with either the CREATE TABLESPACE or ALTER TABLESPACE command.
Only undo tablespaces can have this attribute.

	 4.	 C. SHARE ROW EXCLUSIVE mode permits concurrent queries but prohibits updates to the
locked table. SHARE mode is required to create an index on the table. ROW SHARE is the
least restrictive mode of the table lock and allows updates on the table. ROW EXCLUSIVE
locks the modified rows, but allows updates to the table for nonlocked rows. SHARE
lock held by a transaction allows other transactions to query the rows, but updates are
allowed when a single transaction holds the share table lock.

	 5.	 A. If an undo tablespace is not explicitly created in the CREATE DATABASE command,
Oracle automatically creates one with the name SYS_UNDOTBS.

	 6.	 B, C. Locks are resolved at the user level by either committing or rolling back the transac-
tion holding the lock. Also, the DBA can kill the session holding the lock as a last resort.

	 7.	 D. At 10:01, session 1 waits for session 2. At 10:05, a deadlock will occur; Oracle
detects the deadlock and cancels one of the statements.

	 8.	 A, D. If a transaction fills up an undo segment, either a new extent is allocated for
the undo segment or other extents in the segment are reused if the undo data in those
extents is no longer needed by other transactions using the same undo segment. Trans-
actions cannot cross segment boundaries in an undo tablespace, and they cannot move
to another segment.

	 9.	 B. Regardless of the type of lock requested, NOWAIT is required if you want the command
with the lock request to terminate immediately if a lock is already held on the table.

	10.	 B. Undo information is required for instance recovery but only to roll back uncommitted
transactions after the online redo logs roll forward. The redo is used for roll forward,
and undo is used to roll back uncommitted transactions.

	11.	 C. Undo segments are always owned by SYS.

	 Chapter 11: Managing Data Concurrency and Undo	 1103

	12.	 D. The Undo Advisor uses the desired time period for undo data retention and analyzes
the impact of the desired undo retention setting.

	13.	 D. In Oracle, locks never block readers. Option A would be true, if it did not include
the word queries in it. Only DML statements wait when the table is locked in exclusive
mode. SELECT…FOR UPDATE locks only the rows returned by the SELECT clause; it does
not lock the table. The DDL_LOCK_TIMEOUT parameter is used to specify the number of
seconds to wait when DDL statements on locked objects are executed. The LOCK TABLE
statement can include the WAIT clause to specify the number of seconds to wait to
acquire the lock.

	14.	 D. Because Sara did not perform the commit until 10:18, the changes she made are not
visible to John. So the queries he ran at 10:14 and 10:16 have the same result. The query
at 10:16 will read the undo segment to produce a consistent query result. The query
run at 10:20 will have salary 100 for employee 206.

	15.	 D. With the undo technology, Oracle is able to have readers access consistent data, irre-
spective of underlying data modified during or before the start of the query.

	16.	 B. Global temporary tables are created in temporary tablespaces, and writing to tem-
porary tablespace does not generate redo. Keep in mind that even this operation gener-
ates undo, and hence you can argue that redo is generated. In Oracle Database 12c,
TEMP_UNDO_ENABLED can be set to TRUE to have the undo segments also created in the
temporary tablespace; therefore, no redo is involved.

	17.	 D. Option C is completely wrong and is unrelated to the Snapshot Too Old error. All
other options are viable based on the situation, but increasing the tablespace size is the
best. Once the tablespace is increased and its size is fixed, Oracle will keep the undo
until it needs to expire for other transactions. Undo retention is applicable when the
undo tablespace is not a fixed size (autoextensible). Sometimes running the query again
is a solution, especially if you find out that the underlying table used by Maria was
updated and committed during the query execution, causing the undo blocks to expire
because the database was really busy with many transactions.

	18.	 A, B. Multiple active transactions can write concurrently to the same undo segment
or to different segments. Multiple active transactions can write simultaneously to the
same current extent or to different current extents in the same segment. Within an
undo extent, a data block contains data for only one transaction.

	19.	 B. A DDL statement performs an implicit commit before the statement and ends the
transaction. After the DDL, it does an implicit commit again; therefore, DDL can never
roll back. UPDATE is DML and does not perform a commit. ALTER SESSION is a session-
control statement, and ALTER SYSTEM is a system-control statement. Neither of them
perform an implicit commit.

1104	 Appendix A  ■  Answers to Review Questions

	20.	 D. Oracle automatically acquires the minimum required lock appropriate for the DML
operation. Developers need not and should not lock the rows. They should let Oracle
manage the locks. When a row in the table is locked, it is locked in exclusive mode, and
the table is locked in shared mode where other updates on the table on different rows
are possible. When two sessions update the row at the same time, one will succeed and
the other will wait until the first one commits or rolls back.

Chapter 12: Understanding Oracle
Network Architecture

	 1.	 A. The listener is the process that manages incoming connection requests. The listener
.ora file is used to configure the listener and must be configured to start a nondefault
listener. The sqlnet.ora file is an optional client- and server-side file. The tnsnames.ora
file is used for doing local naming resolution. There is no such file as lsnrctl.ora. You
do not need the listener.ora file to start a default listener on port 1521.

	 2.	 B. Because the default listener name is LISTENER, simply enter lsnrctl start. The
name LISTENER is assumed to be the listener to start in this case.

	 3.	 C. When services are dynamically registered with the listener, their information is not
present in the listener.ora file.

	 4.	 D. Connection Manager is a middleware solution that provides for the multiplexing of
connections, cross-protocol connectivity, and network access control. All the answers
describe Connection Manager.

	 5.	 B. Host naming is typically used in small installations that have few Oracle databases.
This is an attractive option when you want to minimize client-side configuration. TCP/IP
is a requirement when you use host naming.

	 6.	 A, C. Even if DRCP is enabled in the database, the client or application connection
must always request a pooled connection using SERVER=POOLED in connect syntax. To
use Easy Connect and DRCP, the syntax is host:port/service_name:POOLED.

	 7.	 B, C. Supplying a net service name that is not contained in the tnsnames.ora file can
cause this error. Problems with the tnsnames.ora file can cause this error, too. Listener
problems will not cause this error.

	 8.	 D. The HOST portion specifies the name of the server to contact. CONNECT_DATA specifies
the database service to connect to. The PORT portion specifies the location where the lis-
tener is listening on the HOST. Option C, SERVICE_NAME, is the name of the actual data-
base service.

	 Chapter 12: Understanding Oracle Network Architecture	 1105

	 9.	 A, D. The correct syntax to use with the Oracle Easy Connect method when you
are connecting to a non-URL location is connect username/password@host:port/
service_name. If the service name and the host are identical, you do not have to
include the service name. If the port is any port other than the default port of 1521,
it must be specified. Because you want to connect to a nondefault port where the
database name and the hostname are the same, the best answer is A, but D is
also correct.

	10.	 B. Shared Server is a scalability option of Oracle. It provides a way to increase the
number of supported user processes while reducing the overall memory usage. This
configuration is well suited to high-volume, small-transaction-oriented systems with
many users connected. Because users share processes, the number of overall idle pro-
cesses is also reduced. It is not well suited for large data-retrieval-type applications
such as decision support.

	11.	 D. Users can still request dedicated connections in a Shared Server configuration.
Bequeathed and dedicated connections are one and the same. The database cannot be
stopped or started by the DBA when connected over a Shared Server connection.

	12.	 A. A user must explicitly request a dedicated connection when a server is configured in
Shared Server mode. Otherwise, the user gets a Shared Server connection. The correct
parameter is (SERVER=DEDICATED).

	13.	 C. The Shared Server configuration parameters exist in the init.ora or the SPFILE file
on the Oracle Server machine.

	14.	 C. Once a dispatcher receives a request from the user process, it places the request on
the request queue. Remember that in a Shared Server environment, a request can be
handled by a shared server process. This is made possible by placing the request and
user information in the SGA.

	15.	 D. A small PGA is maintained even though most of the user-specific information is
moved to the SGA (specifically called the UGA in the shared pool or the large pool).
The only information left in the reduced PGA is stack space.

	16.	 C. Request queues reside in the SGA, and there is one request queue per instance. This
is where shared server processes pick up requests that are made by users. Dispatchers
have their own response queues, but they share a single request queue.

	17.	 C. The LREG process notifies the listener after a client connection is established. This
is so that the listener can keep track of the number of connections being serviced by
each dispatcher. In versions prior to Oracle Database 12c, the functions of LREG were
performed by PMON.

	18.	 B. Dedicated server uses session memory from PGA. A pooled server connection is
similar to dedicated server once connected; therefore, the memory is coming from PGA
as well. For a shared server, the server process is shared; therefore, the request and
response information must be kept in the SGA.

1106	 Appendix A  ■  Answers to Review Questions

	19.	 B. Database links facilitate communication between databases. Using a database link
access syntax (@dblink_name), data from a remote database is available locally.

	20.	 B. Private database links are created under the user who executes the CREATE DATABASE
LINK statement. You cannot create a database link under another schema. A link by the
name SCOTT.SALES_LINK.BJS.COM is created under schema MIKE. You can use the Easy
Connect syntax or the Oracle Net connect syntax, or you can resolve the alias name by
using tnsnames.ora in the USING clause. During database link creation, a connection is
not made to the target database to validate the connection or credentials.

Chapter 13: Implementing
Security and Auditing

	 1.	 A, B. Authentication by the operating system is called external authentication, and the
Oracle account name must match the operating-system account name prefixed with
the OS_AUTHENT_PREFIX string. When a user is created with the OS_AUTHENT_PREFIX
string, the password provided in option A is ignored, and the user is created as exter-
nally authenticated.

	 2.	 C. The AUDIT_TRAIL parameter with the value DB,EXTENDED enables you to capture
SQL statements and bind variables in auditing. OS,EXTENDED is not a valid value for
AUDIT_TRAIL.

	 3.	 A. Altering a table in another user’s schema requires either the object privilege ALTER on
that object or the system privilege ALTER ANY TABLE. Option A has the correct syntax
for granting the object privilege on ALTER gl.accounts to user desmond. The alter
table privilege in option C is invalid. CREATE TABLE implicitly gives the privilege to alter
a table. One would need the ALTER ANY TABLE privilege to alter another user’s table.

	 4.	 D. Conferring the ability to further grant the privilege requires the keywords WITH
ADMIN OPTION for system or role privileges or the keywords WITH GRANT OPTION for
object privileges. Only option D has both the correct syntax and the correct keywords.
Option B would be correct if WITH GRANT OPTION were used. Option C would be correct
if WITH ADMIN OPTION were used. Option A is not syntactically correct.

	 5.	 B. JOHN will be able to log in to the database using SQL*Plus, and Oracle will prompt
for new password when John logs in the first time. Because John’s default tablespace
is INDEX01, the tables and indexes created will be on the INDEX01 tablespace if the
TABLESPACE clause is omitted. Although INDEX01 is the default tablespace, to create
objects on INDEX01 or any other tablespace, a specific space quota needs to be defined,
or the user should have the UNLIMITED TABLESPACE system privilege.

	 Chapter 13: Implementing Security and Auditing 	 1107

	 6.	 A. When object privileges are granted through an intermediary, they are implicitly
dropped when the intermediary is dropped. CASCADE REVOKE and NOCASCADE REVOKE
are not part of the GRANT statement syntax.

	 7.	 B. When system privileges are granted through an intermediary, they are not affected
when the intermediary is dropped. CASCADE REVOKE and NOCASCADE REVOKE are not
part of the GRANT statement syntax.

	 8.	 D. The CREATE ANY JOB and CREATE ANY PROCEDURE system privileges allow the
grantee to create and run programs with the privileges of another user. The ALTER
USER privilege allows the grantee to change a user’s password, connect as that user,
and then change the password back. These are all powerful system privileges and
should be restricted to as few administrative users as practical.

	 9.	 D. The SET ROLE statement enables or disables roles in the current session.

	10.	 B. To enable a password-protected role, you need to either execute a SET ROLE state-
ment specifying the password or alter the user to make the role a default role. Default
roles do not require a SET ROLE statement or a password to become enabled.

	11.	 A. By default, user accounts have no quota in any tablespace. Before a user can cre-
ate a table or an index, you need to either give the user a quota in one or more specific
tablespaces or grant the UNLIMITED TABLESPACE system privilege to give an unlimited
quota (including autoextends) in all tablespaces.

	12.	 C. Profiles limit the amount of idle time, CPU time, logical reads, or other resource-
oriented session limits. Option C uses the correct syntax to limit idle time for a session
to 30 minutes.

	13.	 B. Although option D could also work, it involves storing the passwords in a table in the
database, which could be a security concern. It also takes a lot more effort to config-
ure and maintain. The better technique is to use the standard database profile features
PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX. Setting one of these profile parameters
to UNLIMITED and the other to a specific value prevents passwords from being reused. If
both of these profile parameters are set to UNLIMITED, these parameters are essentially
disabled. There is no initialization parameter called NO_PASSWORD_REUSE.

	14.	 B. Because HR_QUERY has the SELECT ANY TABLE privilege, no other privilege is required
to query user tables in the database. To avoid the error, HR_QUERY must be defined as
a default role for John, or John should use the SET ROLE statement. A password is not
needed for SET ROLE because the role is not password protected.

	15.	 C. In Oracle Database 12c, user passwords are case sensitive. The username is not case
sensitive if you did not enclose it in double quotes.

	16.	 A. You limit the number of failed logon attempts with a profile.

1108	 Appendix A  ■  Answers to Review Questions

	17.	 C. When a space quota is exceeded or a quota is removed from a user on a tablespace,
the tables remain in the tablespace, but no new extents can be allocated. New rows can
be inserted into the table as long as the table does not require Oracle to allocate a new
extent in the table.

	18.	 B. Fine-grained auditing is managed using the DBMS_FGA package. The AUDIT and
NOAUDIT statements are used to manage statement, privilege, and object auditing. The
GRANT and REVOKE statements are used to manage system, object, and role privileges.
FGA compliments Unified Auditing by enabling audit conditions to be associated
with specific columns.

	19.	 C. The AUDIT_ADMIN role is required to manage Unified Auditing in Oracle Database 12c.
This role is granted to SYS and SYSTEM. An audit policy can be created using the AUDIT
ANY privilege, but not other administrative actions. DBA and SYSDBA roles are not
required, though those privileges work.

	20.	 B. Audit records are written to a read-only table owned by AUDSYS user. The view
UNIFIED_AUDIT_TRAIL shows the audit trail records.

Chapter 14: Maintaining the Database
and Managing Performance

	 1.	 B. The MMON process gathers statistics from the SGA and stores them in the AWR.
The ADDM process then uses these statistics to compare the current state of the data-
base with baseline and historical performance metrics before summarizing the results
on the EM Cloud Control screens.

	 2.	 D. Setting STATISTICS_LEVEL = BASIC disables the collection and analysis of AWR
statistics. TYPICAL is the default setting, and ALL gathers information for the execution
plan and operating-system timing. OFF is not a valid value for this parameter.

	 3.	 B. Automatic Memory Management is enabled by setting a nonzero value for the
MEMORY_TARGET parameter. The default value for this parameter is zero. SGA_TARGET
enables the ASSM (Automatic Shared Memory Management) feature. AMM_TARGET and
AUTOMATIC_MEMORY are invalid parameters.

	 4.	 B, C. When the WORKAREA_SIZE_POLICY is set to AUTO, work areas used by memory-
intensive operations are sized automatically, based on the PGA memory used by the
system, and the target PGA memory set in PGA_AGGREGATE_TARGET. When WORKAREA_
SIZE_POLICY is set to MANUAL, the *_AREA_SIZE parameters need to be configured
manually.

	 Chapter 14: Maintaining the Database and Managing Performance	 1109

	 5.	 C. You can use the SQL Tuning Advisor to determine if there is a better optimizer plan
and use SQL Access Advisor to determine if creating an index or materialized view
would improve performance. These tools together can be used to determine whether
I/O can be minimized and overall DB Time reduced to the targeted SQL statement.

	 6.	 C. The log buffer cannot be dynamically resized once the instance is started. There is
rarely a need to dynamically adjust the redo log buffer. All other components in the
SGA can be dynamically modified.

	 7.	 B. The DBMS_STATS.SET_TABLE_PREFS procedure is used to set the PUBLISH preference to
FALSE. To be able to use the pending statistics, the OPTIMIZER_USE_PENDING_STATISTICS
parameter must be set to TRUE in the session.

	 8.	 D. DBA_ADVISOR_RATIONALE provides the rationale for each ADDM recommendation.
The ADDM findings are stored in DBA_ADVISOR_FINDINGS. The objects related to the
findings are shown in DBA_ADVISOR_OBJECTS. The actual ADDM recommendations are
found in DBA_ADVISOR_RECOMMENDATIONS.

	 9.	 C. The Memory Advisor can help determine whether or not the overall size of the SGA
is appropriate and whether or not memory is properly allocated to the SGA components.

	10.	 B. Setting STATISTICS_LEVEL to BASIC disables Automatic Memory and Shared Mem-
ory Management as well as the memory advisors. CONTROL_MANAGEMENT_PACK_ACCESS
specifies which of the Server Manageability Packs is active in the Enterprise Edition of
Oracle Database 12c. MEMORY_TARGET enables Automatic Memory Management, but it
does not disable Shared Memory Management or the memory advisors.

	11.	 B. SGA_MAX_SIZE is not modifiable regardless of whether Automatic Memory Manage-
ment is used or not. When either MEMORY_TARGET or MEMORY_MAX_TARGET is specified,
the default value of SGA_MAX_SIZE is set to the larger of the two parameters and is not
ignored. When SGA_TARGET is specified and SGA_MAX_SIZE is not specified, SGA_MAX_
SIZE gets the value of SGA_TARGET.

	12.	 C. You can specify both warning and critical thresholds for monitoring the available
free space in a tablespace. In this situation, the warning threshold is generally a lower
number than the critical threshold.

	13.	 B. Because many transactional systems run batch processing during off-hours, having
a relevant baseline for each type of usage pattern yields better results in terms of alerts
and ADDM recommendations.

	14.	 A, C. Whenever an AWR snapshot is taken, either automatically or manually, the
ADDM is run. The MMNL process is responsible for ASH and not AWR. The MMON
process is responsible for AWR. AutoTask manages only three components: optimizer
statistics, Segment Advisor, and SQL tuning.

1110	 Appendix A  ■  Answers to Review Questions

	15.	 B. MEMORY_TARGET represents the total size allocated for SGA and PGA components.
The maximum that can be allocated for these structures is determined by the MEMORY_
MAX_TARGET parameter. You still can set the SGA_TARGET and PGA_AGGREGATE_TARGET
parameters; Oracle will use these as the minimums.

	16.	 C. Throughput is an important performance metric because it is an overall measure
of performance that can be compared against similar measures taken before and after
tuning changes are implemented.

	17.	 D. An alert log is written to a subdirectory under DIAGNOSTIC_DEST. The location
specified by DIAGNOSTIC_DEST is known as ADR Base. The ADR_Base/rdbms/database/
instance directory is known as ADR Home for the instance. The Text alert log is written
to trace directory under ADR Home and is named alert_SID.log. The XML alert log
is written to alert directory under ADR Home and is named log.xml. _DUMP_DEST direc-
tories are ignored if they are set. If they are not explicitly set, they show the directory
where trace files are written.

	18.	 A. By default, database statistics are retained in the AWR for eight days. You can change
the default duration using the EM Database Control Automatic Workload Repository
link on the Performance tab or using the DBMS_WORKLOAD_REPOSITORY PL/SQL package.

	19.	 B. The Performance tab of EM Database Control provides a quick overview of how the
host system, user sessions, and throughput are impacted by the system slowdown. You can
also drill down into any of these three areas to take a look at details about this slowdown.

	20.	 A. Running the SQL Tuning Advisor provides the most information about how the
performance of this SQL statement might be improved. The SQL Access Advisor is
run only after the output from the SQL Tuning Advisor indicates that it will be use-
ful. EM Database Control does not store detailed information about I/O activity in
its alerts nor in the alert log.

Chapter 15: Using Backup and Recovery

	 1.	 A. Losing an entire redo log-file group can result in losing committed transactions that
may not yet have been written to the database files. Losing all members of a redo log-
file group except for one does not affect database operation and does not result in data
loss. A message is placed in the alert log file. The failure of LGWR causes an instance
failure, but you do not lose any committed transaction data. When an ARCn process
fails or is manually terminated, Oracle spawns another one.

	 2.	 C. In ARCHIVELOG mode, recovering the database is possible up to the last COMMIT state-
ment; in other words, no committed transactions are lost in ARCHIVELOG mode.

	 Chapter 15: Using Backup and Recovery	 1111

	 3.	 A. Image copies are duplicate data and log files in OS format. Backup sets are binary
compressed files in Oracle proprietary format. In addition to storing multiple data files
in a single output file, backup sets do not contain unused blocks.

	 4.	 B. Although it is recommended that you multiplex your online redo log files, it is not
required to enable ARCHIVELOG mode of the database.

	 5.	 D. During an online backup, even if all data files are backed up at the same time, they
are rarely, if ever, in sync with the control file.

	 6.	 A. The trace backup is created in a subdirectory under the location specified by the
DIAGNOSTIC_DEST parameter—$DIAGNOSTIC_DEST/diag/<dbname>/<instancename>/
trace directory.

	 7.	 A. The instance name is not in the control file. The control file has information about
the physical database structure.

	 8.	 B. When adding log-file members, specify the group number or specify all the existing
group members.

	 9.	 A. To put the database into ARCHIVELOG mode, the database must be in the MOUNT state;
the control files and all data files that are not offline must be available to change the
database to ARCHIVELOG mode.

	10.	 B, C, D. The substitution variable %d, which represents the database ID, is required
only if multiple databases share the same archive log destination.

	11.	 C. The parameter FAST_START_MTTR_TARGET specifies the desired time, in seconds,
to recover a single instance from a crash or instance failure. The parameters LOG_
CHECKPOINT_TIMEOUT and FAST_START_IO_TARGET can still be used in Oracle 12c but
should be used only together with an advanced-tuning scenario or for compatibility
with older versions of Oracle. MTTR_TARGET_ADVICE and FAST_START_TARGET_MTTR
are not valid initialization parameters.

	12.	 B. The instance must be shut down, if it is not already down, to repair or replace the
missing or damaged control file.

	13.	 B, C. Media failure, physical corruption, logical corruption, and missing data files all
can be identified by the Data Recovery Advisor, which also provides recommendations
for repair.

	14.	 B, E. If a tablespace is taken offline because a data file is missing, the instance can
still be started as long as the missing data file does not belong to the SYSTEM or UNDO
tablespace.

	15.	 A. If a network card fails, the failure type is network; the actual media containing the
database files are not affected.

1112	 Appendix A  ■  Answers to Review Questions

	16.	 B. The Data Recovery Advisor in Oracle Database 12c Release 1 does not support
RAC databases. It is integrated with EM Cloud Control and with RMAN. CHANGE
FAILURE and other commands can be executed using RMAN. The ADVISE FAILURE
command must be run before you can perform REPAIR FAILURE.

	17.	 B. Instance recovery, also known as crash recovery, occurs when the DBA attempts to
open the database but the files were not synchronized to the same SCN when the data-
base was shut down. Once the DBA issues the STARTUP command, Oracle uses informa-
tion in the redo log files to restore the data files (including the undo tablespace’s data
files) to the state before the instance failure. Oracle then uses undo data in the undo
tablespace after the database has been opened and made available to users to roll back
uncommitted transactions.

	18.	 D. The MTTR Advisor can tell the DBA the most effective value for the FAST_START_
MTTR_TARGET parameter. This parameter specifies the maximum time required in sec-
onds to perform instance recovery.

	19.	 B. The loss of one or more of a tablespace’s data files does not prevent other users from
doing their work in other tablespaces. Recovering the affected data files can continue
while the database is still online and available.

	20.	 D. All copies of the control files, as defined in the spfile or the init.ora file, must be
identical and available. If one of the redo log-file groups is missing a member, a warn-
ing is recorded in the alert log, but instance startup still proceeds. If the instance was
previously shut down with SHUTDOWN ABORT, instance recovery automatically occurs
during startup. Only an spfile or an init.ora file is needed to enter the NOMOUNT state,
not both. If a tablespace is offline, the status of its data files is not checked until an
attempt is made to bring it online; therefore, it will not prevent instance startup.

Chapter 16: Controlling
Resources and Jobs

	 1.	 A. The Resource Manager in Oracle can only divide up CPU usage as a way of spread-
ing out resource power between different requirements.

	 2.	 E. All of the options are true, and the Resource Manager can do much more than this.

	 3.	 B. A is true, but unless some needs have higher priorities than others, there might be ill
effects. Both C and D are correct, but they have far less impact overall than controlling
and allocating the CPU cycles to the various tasks in a database.

	 4.	 B, D. With respect to A, aborting a session has nothing to do with archive logs and
archive log space exhaustion. For C, transactions cannot be controlled but sessions

	 Chapter 16: Controlling Resources and Jobs 	 1113

can. So a session can be aborted, but it can also have its allocation of CPU curtailed to
reduce overhead by moving the session to a consumer group with less CPU cycles.

	 5.	 C. Resources are allocated to plan directives, which are assigned to plans and subplans,
and grouped with consumers of those plan directives into resource consumer groups.

	 6.	 A, D. The packages are called DBMS_RESOURCE_MANAGER and
DBMS_RESOURCE_MANAGER_PRIVS.

	 7.	 A, B. Plans and subplans contain the details of how resources are allocated. Consumer
groups simply group together the consumers that will consume the details of the plans.

	 8.	 E. E is correct because the total must add up to 100 percent, where the consumer group
can have a maximum of 10 percent.

	 9.	 D. All three of these settings are useful for controlling parallel processing. The degree
of parallelism can be used to execute queries and some DML statements much faster.
When a parallel process is started, it starts up multiple parallel servers to handle the
separate parallel executed threads. Parallel queue timeouts force parallel processes to
abort a little sooner. All of these settings will help to prevent overzealous parallel pro-
cessing from becoming out of control parallel processing, which can swamp and drasti-
cally slow database performance.

	10.	 D. Eight hierarchical layers of CPU utilization can be set for a multiple level hierarchy
of plans, subplans, and consumer groups.

	11.	 B. JOB_QUEUE_PROCESSES determines the number of slave processes available for the
scheduled jobs to run. DBMS_JOB and Oracle Scheduler share the same job coordinator
and job slaves. The default value for this parameter is 1,000. Setting JOB_QUEUE_PROCESS
to 0 will disable Oracle Scheduler and DBMS_JOB.

	12.	 D. The GRANT_SYSTEM_PRIVILEGE privilege is a privilege granted by the DBMS_
RESOURCE_MANAGER_PRIVS procedure.

	13.	 D, E. Options A, B, and C do not exist.

	14.	 C. A and B are not resource management, and D is incorrect.

	15.	 D. The CREATE_SIMPLE_PLAN allows a single CPU percentage allocation to be set for
each of eight consumer groups, and it only creates a single plan at once.

	16.	 D. D is the most complete and, therefore, the best answer.

	17.	 B. The DBA_SCHEDULER_JOBS.STATE column will be set to DISABLED.

	18.	 D. A COMPLETE job will not run again. B and C are nonsense. A job that will run again
will be repeatable at a scheduled interval and will, therefore, be rescheduled to run
again. SCHEDULED means it will run again.

1114	 Appendix A  ■  Answers to Review Questions

	19.	 A. A job can be executed once using the CREATE_JOB procedure. To execute a job more
than once, a schedule has to be created using the CREATE_SCHEDULE procedure to con-
figure the repetition.

	20.	 A. The scheduler metadata views are named DBA%SCHED%. Option C is partially
correct as the query will show the metadata views related to the scheduled jobs only.

Chapter 17: Upgrading to
Oracle Database 12c

	 1.	 B. Oracle Database 12c gives the option to do a direct upgrade for all versions mentioned
in option B, and not all versions as specified in option A. Option C is not correct because
you cannot downgrade to any version of Oracle 11g. The lowest version you can down-
grade to is 11.1.0.7 if you upgrade an 11g R1 or 10g R2 database. For 11.2 databases,
you can downgrade to the version from which you upgraded. Although a 10.2.0.5 data-
base cannot be downgraded back to 10.2.0.5, it can be downgraded to 11.1.0.7, which
might not be useful for your business.

	 2.	 B. The terminal release of Oracle 10g R2 is 10.2.0.5. Oracle Database 12c supports a
direct upgrade from the versions 10.2.0.5, 11.1.0.7, 11.2.0.2, and higher.

	 3.	 C, D. DBUA has an option to back up the database prior to the upgrade. It’s up to you
to back up the database after the upgrade is completed. There is no option to disable
archiving during the upgrade. In fact, Oracle encourages you to run the database in
ARCHIVELOG mode with flashback on, and DBUA can create a guaranteed restore point
as a backup method during the upgrade.

	 4.	 B. The first step is to run the Pre-Upgrade Information utility preupgrd.sql. When you
are ready to upgrade, start the database using STARTUP UPGRADE. The catctl.pl script
performs the database upgrade and shuts down the database. Then start up the database
and perform utlu121s.sql.

	 5.	 B, D. The Pre-Upgrade Information utility does not make any changes to the database.
The utility creates a fix-up script that can be used to make trivial changes to the data-
base. Not all issues can be fixed by the fix-up script; therefore, option A is not correct.
The tool is comprised of preupgrd.sql and utluppkg.sql scripts, so you need to copy
both scripts.

	 6.	 A, D. STARTUP UPGRADE is the only way you can bring up an instance prior to upgrading
the database. You still need to upgrade the database using the upgrade scripts after start-
ing up the database. This is not just for documentation; it differs from STARTUP NORMAL.

	 Chapter 17: Upgrading to Oracle Database 12c	 1115

	 7.	 B. DBUA performs a restore from the backup it created prior to the upgrade; it restores
the database files and configuration files from the backup location. For this, you should
choose the Use RMAN backup option or the Use Flashback and Guaranteed Restore
Point option in the Recovery Options screen (Figure 17.9).

	 8.	 E. Oracle Database 12c has a very simplified upgrade process that determines all the
components of the database to be upgraded and automatically upgrades them. Oracle
uses DBMS_REGISTRY to identify the components to be upgraded.

	 9.	 C. DBMS_REGISTRY is used by Oracle to keep the status of components loaded to the
database. You can query DBA_REGISTRY to see all the components and their status. It
also provides the schema owner of the component and the script to run if a component
is invalid.

	10.	 A. The minimum COMPATIBLE value for Oracle Database 12c is 11.0.0. Because the
value is not set in the parameter file, the default value for the version of the database is
11.1.0. If you keep the parameter the same version as the upgraded database, you will
have the opportunity to downgrade the database if something goes wrong after the
upgrade; therefore, the best option is to keep the value at 11.1.0.7 during the upgrade.
Option C and D are valid values, but you would lose the downgrade opportunity. The
default value of the parameter is 12.0.0 if you do not specify the parameter explicitly.

	11.	 C. The Data Pump Export/Import method copies data from the source database to
an already-created Oracle Database 12c database. As the tables and indexes are newly
created and data rows are inserted, there will be no fragmentation of space in the new
database. The Transport Database option is available for databases 11.2.0.3 or higher,
but it does not defragment tables.

	12.	 B. The database must be running from the original Oracle database home. The Pre-
Upgrade Information tool does not make any changes to the database or impact the
application using the database. The Pre-Upgrade Information scripts (preupgrd.sql and
utluppkg.sql) may be copied to another directory, and you can run preupgrd.sql to
invoke the tool.

	13.	 A. If $ORACLE_BASE is defined, the generated scripts and log files are saved in the
$ORACLE_BASE/cfgtoollogs/db_unique_name/preupgrade directory. If $ORACLE_BASE
is not defined, then the generated scripts and log files are created in $ORACLE_HOME/
cfgtoollogs/db_unique_name/preupgrade.

	14.	 C. DBUA can migrate, copy, and configure the listener in the new 12c Oracle home,
depending on the choices you make in the Network Configuration screen of DBUA
(Figure 17.8). It will also register the database with the listener by setting the LOCAL_
LISTENER parameter.

	15.	 D. DBUA takes care of most of the tasks for DBA during the upgrade, including running
the Pre-Upgrade Information tool, performing the upgrade, configuring the network,

1116	 Appendix A  ■  Answers to Review Questions

performing a backup of the database before upgrade, recompiling invalids, adding the
database to oratab, etc. It also provides a detailed upgrade progress report with the
product component being upgraded and the upgrade phase. If DBUA identifies that
there is a space deficiency in the tablespaces or in the fast recovery area, you must fix it
manually outside DBUA.

	16.	 B. The Full Transportable Export/Import option is available for database versions at or
higher than 11.2.0.3.

	17.	 D. Although the utlu121i.sql script is available in the $ORACLE_HOME/rdbms/admin
directory, it does nothing. The Pre-Upgrade Information tool in Oracle Database 12c
is invoked by running preupgrd.sql, which calls the utluppkg.sql script. The Post-
Upgrade Status tool follows the naming convention of its predecessor versions and is
named utlu121s.sql.

	18.	 A. The predefined Unified Auditing policies are disabled after a database upgrade—
both manual and DBUA. After the upgrade, the pre-12c audit configuration is main-
tained, and records are written to the AUD$ table. You can enable Unified Auditing
policies and create new policies along with pre-12c audit configuration (mixed-mode).
The two types of audits write information to different tables. For performance reasons,
Oracle recommends that you switch to Unified Auditing Only mode by relinking the
oracle executable with uniaud_on option.

	19.	 A, B. Having current dictionary statistics helps the database upgrade. The upgrade
does not touch or use the application tables; hence, there is no need to run full data-
base statistics. In Oracle Database 12c, the EM Database Control is replaced with
EM Database Express. During the upgrade, EM Database Control is dropped. This
step can be completed prior to starting the upgrade in order to save upgrade time.
RECYCLE_BIN must be purged before the upgrade is performed.

	20.	 B. Because the database is small, exporting and importing to an existing or newly created
Oracle Database 12c database is faster and cleaner.

Chapter 18: Using Grid Infrastructure
and Data Movement Tools

	 1.	 B, C. The DBMS_METADATA package provides the database object definitions to the export
worker processes in the order of their creation. The DBMS_DATAPUMP package has the API
for high-speed export and import for bulk data and metadata loading and unloading.

	 2.	 B, D. Oracle Data Pump is known to versions 10g and newer; Oracle9i does not sup-
port Data Pump. Although Data Pump can perform data access using the direct-path

	 Chapter 18: Using Grid Infrastructure and Data Movement Tools	 1117

or external-table method, Data Pump makes the decision automatically; the DBA can-
not specify the data-access method. Data Pump also supports network mode to import
directly from the source database and can estimate the space requirements for the
dump file.

	 3.	 D. The master table is the heart of the Data Pump operation and is maintained in the
schema of the job creator. It bears the name of the job, contains one row for each object
and each operation, and keeps status. Using this information helps restart a failed job or
suspend and resume a job. The master table is written to the dump file as the last step of
the export and is loaded to the schema of the user as the first step of the import.

	 4.	 C. If a directory object is created with the name DATA_PUMP_DIR, the privileged users can
use this location as the default location for Data Pump files. Privileged users are users
with EXP_FULL_DATABASE or IMP_FULL_DATABASE roles. Using %U in the filename generates
multiple files for parallel unloads, with each parallel process writing to one file.

	 5.	 D. The ATTACH parameter lets you attach or connect to an existing Data Pump job and
places you in interactive mode. ATTACH without any parameters attaches to the currently
running job, if there is only one job from the user. Otherwise, you must specify the job
name when using the ATTACH parameter.

	 6.	 B. If the CONTENT parameter is not specified, both data and metadata will be unloaded.
The valid values for CONTENT are METADATA_ONLY, DATA_ONLY, and ALL. If SCOTT is per-
forming the export, SCHEMAS=SCOTT is optional.

	 7.	 A. REMAP_DATAFILE changes the name of the source data file to the target data filename
in all DDL statements where the source data file is referenced. REMAP_SCHEMA loads
all objects from the source schema into the destination schema. When using REMAP_
TABLESPACE, all objects selected for import with persistent data in the source tablespace
are remapped to be created in the destination tablespace. REMAP_TABLE changes the
name of the table. Because the dump file is in XML format, Data Pump can make these
transformations easily. REMAP_INDEX is an invalid parameter.

	 8.	 C. You can specify the FLASHBACK_TIME or FLASHBACK_SCN parameter only when per-
forming a network import where the source is a database.

	 9.	 B. The network_link parameter specifies a database link to the source database.

	10.	 B. External tables can be used to read ASCII flat files without loading them into the
database. The external table must be created with the ORACLE_LOADER access driver.

	11.	 E. While the direct path load is in progress, users cannot run any DML statements
against the table. Only queries are allowed.

	12.	 A, B. If you do not want to create a disk group during the GI install, you must choose the
Software Only install option. Only one disk group can be created during the GI install.
Additional disk groups can be created after the installation using ASMCA or SQL*Plus.

1118	 Appendix A  ■  Answers to Review Questions

Although we recommend that you have more than one disk in each disk group, it is not
mandatory. GI install configures the ASM instance and uses the disk group created dur-
ing the install to save the parameter file and password file of ASM instance.

	13.	 C. The smallest unit of storage in an ASM disk group is the allocation unit. Oracle
Database 12c permits sizes of 1, 2, 4, 8, 16, 32, or 64MB. The allocation unit is
the size of the blocks allocated to a data file. The AU must be small enough to keep
hot spots from occurring and large enough for efficient sequential reads. 1MB is the
default, and 4MB AU is recommended for most databases.

	14.	 B. You must be connected to the ASM instance with the SYSASM privilege to start and
stop the ASM instance.

	15.	 D. Server control is used to start and stop all Oracle Restart components including
ASM, listener, and database.

	16.	 C. A NORMAL redundancy disk group requires two fail groups, and a HIGH redun-
dancy disk group requires three fail groups.

	17.	 B. Option A is an invalid statement. The disk path can be used only when adding a
disk; when dropping a disk the disk name must be provided. Option C is using a disk
path with the drop clause and is invalid. Option D is syntactically correct, but you can-
not drop all disks from a disk group. A disk group must have at least one disk.

	18.	 B, C. The rebalance speed at an instance level is adjusted using the ASM_POWER_LIMIT
parameter. Rebalance power can be adjusted using the ALTER DISKGROUP statement as
well. The higher the power limit, the more quickly a rebalance operation can complete.
Higher power values consume more I/O resources, which could impact database per-
formance. Rebalancing takes longer with lower power values, but it consumes fewer
processing and I/O resources.

	19.	 E. All of the tools listed in options A to D can be used to start an ASM instance. You have
to explicitly provide start commands in sqlplus, asmcmd, and srvctl, but if asmca finds
that the ASM instance is not started, it gets confirmation from you and starts the instance.

	20.	 A. The Server Control utility (srvctl) is used to register a component during an Oracle
Restart. The add command is used to register a component. The config command
shows the configuration information. The start command starts the component after
it is registered. The register command is not valid.

Appendix

B
About the Additional
Study Tools

✓✓ In This Appendix:

■■ Additional study tools

■■ System requirements

■■ Using the study tools

■■ Troubleshooting

Additional Study Tools
The following sections are arranged by category and summarize the software and other
goodies you’ll find on the companion website. If you need help installing the items, refer
to the installation instructions in the “Using the Study Tools” section of this appendix.

You can find the additional study tools at www.sybex.com/go/oca12sg. You’ll
also find instructions on how to download the files to your hard drive.

Sybex Test Engine
The files contain the Sybex test engine, which includes bonus practice exams, as well as the
assessment test and the chapter review questions, which are also included in the book.

Electronic Flashcards
These handy electronic flashcards are just what they sound like. One side has a question, and
the other side shows the answer.

Bonus Author Materials
I’ve included some bonus Whitepapers on how to install an Oracle 12c database on
Windows, how to create a non-CDB Oracle Database 12c on Windows, and how to
install Oracle Enterprise Manager 12c on Virtual Box. I’ve also included all of the code
from the book so you don’t have to retype it.

PDF of Glossary of Terms
We have included an electronic version of the glossary in .pdf format. You can view the
electronic version of the glossary with Adobe Reader.

http://www.sybex.com/go/oca12sg

	 Troubleshooting	 1121

Adobe Reader
We’ve also included a copy of Adobe Reader so you can view PDF files that accompany the
book’s content. For more information on Adobe Reader or to check for a newer version,
visit Adobe’s website at www.adobe.com/products/reader/.

System Requirements
Make sure your computer meets the minimum system requirements shown in the following
list. If your computer doesn’t meet these requirements, you may have problems using the
software and files. For the latest and greatest information, please refer to the ReadMe file
located in the download.

■■ A PC running Microsoft Windows XP or newer

■■ An Internet connection

Using the Study Tools
To install the items, follow these steps:

	 1.	 Download the .zip file to your hard drive, and unzip it to your desired location. You
can find instructions on where to download this file at www.sybex.com/go/oca12sg.

	 2.	 Click the Start.EXE file to open the study tools file.

	 3.	 Read the license agreement, and then click the Accept button if you want to use the
study tools.

The main interface appears and allows you to access the content with just a few clicks.

Troubleshooting
Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. If a program does not work properly, the two likeliest problems are
that you don’t have enough memory (RAM) for the programs you want to use or you have
other programs running that are affecting the installation or running of a program. If you
get an error message such as “Not enough memory” or “Setup cannot continue,” try one or
more of the following suggestions and then try using the software again:

Turn off any antivirus software running on your computer.    Installation programs some-
times mimic virus activity and may make your computer incorrectly believe that it’s being
infected by a virus.

http://www.adobe.com/products/reader/
http://www.sybex.com/go/oca12sg

1122	 Appendix B  ■  About the Additional Study Tools

Close all running programs.    The more programs you have running, the less memory is
available to other programs. Installation programs typically update files and programs, so
if you keep other programs running, installation may not work properly.

Have your local computer store add more RAM to your computer.    This is, admittedly, a
drastic and somewhat expensive step. However, adding more memory can really help the
speed of your computer and allow more programs to run at the same time.

Customer Care
If you have trouble with the book’s companion study tools, please call the Wiley
Product Technical Support phone number at (800) 762-2974, or email them at http://
sybex.custhelp.com/.

http://sybex.custhelp.com/
http://sybex.custhelp.com/

A
ABS function, 110
absolute value, 110
access

Connection Manager, 610
Data Pump, 1011–1012

accessibility, network, 613
ACCOUNT LOCK option, 685
accounts. See user accounts
ACID properties, 570
ACOS function, 110
Action Audit option, 736
ACTIONS clause, 737
active log files, 419, 834
Active Session History (ASH), 775, 779–780, 779
Active Session Pool with Queuing option, 910
Activity Log option, 470
ADD clause

tables, 363
tablespaces, 529

add command in srvctl, 1069, 1071–1072
ADD_FILE command, 1019
ADD_FILE parameter, 1029
ADD_GROUP_MEMBER procedure, 941
ADD_MONTHS function, 123–124
ADD_POLICY procedure, 732–733
Add Table Preferences screen, 765, 765, 770
addition

dates, 334
expressions, 42
months, 123–124

ADDM (Automated Database Diagnostic
Monitoring) feature, 782–784

EM Cloud Control, 784–790, 785–786
real-time, 792, 793
views, 790–792

addmrpt.sql script, 786
ADDRESS attribute, 653
ADDRESS parameter

listener.ora, 624
tnsnames.ora, 645

ADDRESS_LIST parameter, 645
ADMINISTER_RESOURCE_MANAGER

privilege, 911–913
administrative privileges

overview, 698–699
Resource Manager, 911–913

ADR (Automatic Diagnostic Repository)
alert files, 501
description, 755
overview, 801–805

ADR_BASE parameter for listener.ora, 625
ADRCI interface, 501, 803–806
Advanced Mode option, 448
Advanced Security feature, 611
ADVISE FAILURE command, 889–890
Advisor Central screen, 784–785, 785
Advisor Findings option, 582
advisors

DRA
non-system-critical data file recovery,

887–892, 887–888
system-critical data file recovery, 893
working with, 883–884, 883–884

overview, 793–795, 793
SQL Access Advisor, 797–798, 797–798
SQL Tuning Advisor, 795–797, 796

AFTER SUSPEND trigger, 561–562
aggregate functions, 176–178

AVG, 184–185
CORR, 194
COUNT, 186
COVAR_POP, 195
COVAR_SAMP, 195–196
CUME_DIST, 196–197
DENSE_RANK, 197–198
exam essentials, 218
GROUP BY clause, 178–182
GROUP_ID, 198
GROUPING, 198–199
GROUPING_ID, 199
HAVING clause, 207–208
KEEP, 199–200
LISTAGG, 190–191
MAX, 186–187
MEDIAN, 188–189
MIN, 187–188
nesting, 215–217
overview, 182–184
PERCENT_RANK, 200–201
PERCENTILE_CONT, 201–203
PERCENTILE_DISC, 203–204
in queries, 192–194
RANK, 204–205
review questions, 219–226

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

1124	 Alert Log option  –  ALTER TABLE DISABLE PRIMARY KEY CASCADE statement

STDDEV, 189
STDDEV_POP, 205–206
STDDEV_SAMP, 206
SUM, 188
summary, 218
superaggregates, 208–215
VAR_POP, 206–207
VAR_SAMP, 207
VARIANCE, 189–190

Alert Log option, 470
alert logs

monitoring, 497–501
for performance, 807
viewing, 803–806, 806

alerts
Automatic Diagnostic Repository for, 801–805
server-generated, 798–801, 799–800

aliases
columns, 48–49
tables, 230–231

ALL EXCEPT clause, 702–703
ALL keyword

aggregate functions, 176
INSERT, 287

ALL_OBJECTS view, 476
ALL operator

comparisons, 55–56
subqueries, 255–256

ALL_TAB_PRIVS view, 689
All warnings for upgrades, 978
allocation types in Resource Manager,

908–910, 909
allocation units (AUs) for disk groups, 1056
ALTER_CHAIN procedure, 944–945
ALTER DATABASE ADD LOGFILE statement,

836–837
ALTER DATABASE BACKUP CONTROLFILE

statement, 850
ALTER DATABASE CLEAR LOGFILE

statement, 839, 885
ALTER DATABASE DATAFILE statement, 546
ALTER DATABASE DATAFILE OFFLINE

statement, 536
ALTER DATABASE DATAFILE ONLINE

statement, 536
ALTER DATABASE DATAFILE RESIZE

statement, 536
ALTER DATABASE DEFAULT TABLESPACE

statement, 682
ALTER DATABASE DROP LOGFILE GROUP

statement, 838
ALTER DATABASE DROP LOGFILE MEMBER

statement, 839
ALTER DATABASE ENABLE BLOCK CHANGE

TRACKING statement, 857
ALTER DATABASE FLASHBACK statement, 847
ALTER DATABASE MOUNT statement, 494

ALTER DATABASE MOVE DATAFILE
statement, 536–538

ALTER DATABASE OPEN statement, 494, 893
ALTER DATABASE RENAME DATAFILE

statement, 536
ALTER DATABASE RENAME FILE statement,

538–539
ALTER DISKGROUP statement, 1063–1065
alter logs, reviewing, 886
ALTER_POOL statement, 663
ALTER privilege, 688, 690
ALTER PROFILE statement, 712–717
ALTER_RUNNING_CHAIN statement, 944
ALTER SEQUENCE statement, 721
ALTER SESSION statement

date format conversions, 119–120
date functions, 121–122
Oracle Managed Files, 540
parameters, 488

ALTER SESSION ENABLE RESUMABLE
statement, 560–561

ALTER SESSION ENABLE TIMEOUT
statement, 561

ALTER SESSION SET CONSTRAINT
statement, 369

ALTER SYSTEM statement
archive location, 1066
archived redo log files, 840
circuits, 658
control files, 831
dispatchers, 655–656
Flash Recovery Area, 846
log switches, 834
Oracle Managed Files, 540
Oracle Scheduler, 906
parameters, 488–489
shared servers, 657–658
tablespaces, 518

ALTER SYSTEM ARCHIVE LOG GROUP
statement, 885–886

ALTER SYSTEM CHECKPOINT statement, 835
ALTER SYSTEM KILL SESSION statement, 594
ALTER SYSTEM SET statement

auditing, 719
resources, 711, 714

ALTER SYSTEM SWITCH LOGFILE statement,
834–835

ALTER TABLE statement
auditing option, 721
constraints, 362

ALTER TABLE ADD statement, 351–352
ALTER TABLE ADD CONSTRAINT statement,

363–366
ALTER TABLE DISABLE CONSTRAINT

statement, 367–368
ALTER TABLE DISABLE PRIMARY KEY

CASCADE statement, 367

	 ALTER TABLE DROP statement  –  ASM Disk process	 1125

ALTER TABLE DROP statement, 355
ALTER TABLE DROP CONSTRAINT

statement, 367
ALTER TABLE DROP PRIMARY KEY

CASCADE statement, 367
ALTER TABLE DROP UNIQUE statement, 367
ALTER TABLE ENABLE statement, 368
ALTER TABLE ENABLE ROW MOVEMENT

statement, 879
ALTER TABLE MODIFY statement, 353,

367, 369
ALTER TABLE MODIFY NULL statement, 363
ALTER TABLE MODIFY VISIBLE clause, 356
ALTER TABLE READ ONLY statement, 358
ALTER TABLE RENAME COLUMN

statement, 354
ALTER TABLE RENAME TO statement, 358
ALTER TABLE SET UNUSED COLUMNS

clause, 355
ALTER TABLESPACE ADD DATAFILE

statement, 529, 540
ALTER TABLESPACE APPL_DATA

statement, 528
ALTER TABLESPACE BEGIN BACKUP

statement, 531, 852
ALTER TABLESPACE DATAFILE statement, 1067
ALTER TABLESPACE END BACKUP statement,

531, 852
ALTER TABLESPACE READ ONLY

statement, 530
ALTER TABLESPACE READ WRITE

statement, 530
ALTER TABLESPACE USER_DATA

statement, 529
ALTER TABLESPACE USER_DATA OFFLINE

statement, 537–538
ALTER USER DEFAULT ROLE statement, 703
ALTER USER PASSWORD statement, 687
ALTER USER privilege, 697
ALTER USER PROFILE statement, 684
ALTER USER QUOTA statement, 683
ALWAYS keyword in identity columns, 345–347
AMM (Automatic Memory Management), 398,

815–817
ampersands (&)

positional notation for variables, 76
substitute variables, 71, 73–75

Analysis Period setting, 582–583
ANALYZE ANY privilege, 699
ANALYZE_DB procedure, 790
AND DATAFILES clause, 528
AND operators, 57–58, 111
ANSI syntax for joins

Cartesian, 240
inner, 232
outer, 243–245

ANY operator, 54–55, 255–256

ANY privilege, 707
APPEND keyword

query results files, 28
SQL buffer, 23
SQL*Loader, 1043

apxrelod.sql script, 996
architecture, database, 391–393, 392–393

background processes, 403–410
data files, 415–416, 416
exam essentials, 425
instances, 396, 397
logical, 421–424, 422
memory structures, 396–403, 400
redo log files, 417–420, 418–419
review questions, 426–430
storage structures, 410–415, 414, 422
summary, 424
user and server processes, 394–396, 395

archive log mode, 419
archive logs, 419
archived log files, 845
archived redo log files, 839

architecture, 840
contents, 411
destinations, 840–843, 841–842
space issues, 844

ARCHIVELOG clause, 843
ARCHIVELOG mode, 840

non-system-critical data file recovery,
887–891, 887–888

system-critical data file recovery, 892–893
upgrades, 975

Archiver process, 405
archiving, 457–458, 839
ARCn process, 405, 419–420, 419
arithmetic

dates, 334–336
operators, 42–43

AS OF TIMESTAMP clause, 873–874
AS SELECT clause, 349–350
ASBM process, 405
ASC keyword, 62
ASCII function, 96–97
ASCIISTR function, 133–134
ASH (Active Session History), 775, 779–780, 779
ashrpt.sql script, 779
ASIN function, 110
ASM (Automated Storage Management),

456–458, 1050–1051
databases, 1066–1067
disk groups

creating, 1055–1056, 1056
managing, 1061–1065

instances, 1050, 1050, 1070–1071
overview, 1061

ASM Balance process, 405
ASM Disk process, 405

1126	 ASM_DISKSTRING parameter  –  backups

ASM_DISKSTRING parameter, 1056
ASM_POWER_LIMIT parameter, 1065
ASMCA (Automatic Storage Management

Configuration Assistant) utility, 1055,
1061, 1062

ASMLib library, 1054, 1056
ASMM (Automatic Shared Memory

Management), 463, 813–815, 979
ASMM screen, 818, 818
ASMSNP user, 1057
asterisks (*)

column selection, 49
comments, 28
dates, 336
disk groups, 1063
multiplication, 42

ATAN function, 111
ATAN2 function, 111
atomicity in ACID properties, 570
attributes in ER model, 6, 6
AUD$ table, 729–730
AUDIT POLICY statement, 739–740
Audit Settings screen, 727, 727
AUDIT statement, 720
AUDIT_SYS_OPERATIONS parameter, 723
AUDIT_TRAIL_ types, 744
AUDITABLE_SYSTEM_ACTIONS table, 737
auditing, 718–719

fine-grained, 732–734
objects, 725–727
privileges, 724–725
purging audit trails, 729–731
SQL Developer, 727–729, 727–729
statements, 720–724
unified. See unified auditing

AUs (allocation units) for disk groups, 1056
authentication, 679–681
AUTO_CASCADE constant, 758
AUTO_DEGREE constant, 758
AUTO_INVALIDATE constant, 759
AUTO_SAMPLE_SIZE constant, 759
AUTOALLOCATE option, 519
AUTOEXTEND clause, 535, 546–547, 552, 581
AUTOEXTEND ON clause, 547
Automated Database Diagnostic Monitoring

(ADDM) feature, 782–784
EM Cloud Control, 784–790, 785–786
real-time, 792, 793
views, 790–792

Automated Maintenance Tasks, 756, 772–775,
773–774

Automated Maintenance Tasks screen, 773, 773
Automated Storage Management (ASM),

456–458, 1050–1051
databases, 1066–1067
disk groups

creating, 1055–1056, 1056
managing, 1061–1065

instances, 1050, 1050, 1070–1071
overview, 1061

Automatic Diagnostic Repository (ADR)
alert files, 501
description, 755
overview, 801–805

Automatic Memory Management (AMM), 398,
815–817

AUTOMATIC segment space management, 520
Automatic Shared Memory Management

(ASMM), 463, 813–815, 979
automatic space management, 547–551,

548–549, 551
Automatic SQL Execution Memory

Management, 815
Automatic Storage Management Configuration

Assistant (ASMCA) utility, 1055, 1061, 1062
Automatic Undo Management screen, 581, 582
Automatic Workload Repository (AWR)

baselines, 780–782, 782
collection, 775–778, 777
Segment Advisor, 554
snapshots, 778
upgrades, 974

Automatic Workload Repository screen, 777
AUTOSTATS_TARGET parameter, 764
Availability screen, 893
averages, 184–185
AVG function, 184–185
AWR (Automatic Workload Repository)

baselines, 780–782, 782
collection, 775–778, 777
Segment Advisor, 554
snapshots, 778
upgrades, 974

AWR Baselines screen, 782, 782

B
B code in number conversions, 146
background processes, 403–410
Backup and Recovery Admin job role, 436
BACKUP CURRENT CONTROLFILE

statement, 851
BACKUP RECOVERY AREA statement, 848
backup sets, 857
Backup Settings: Backup Set screen, 854, 854
Backup Settings: Device screen, 853–854, 853
Backup Settings: Policy screen, 854–855, 855
backup to trace backups, 850
backups, 848

control files, 850–851
database, 851–852
exam essentials, 895–896
full and incremental, 857–861, 858, 860–861
image copies and backup sets, 857

	 Bad file type with SQL*Loader  –  character datatypes	 1127

managing, 861–864, 862–863
reports, 863–864
review questions, 897–901
RMAN, 852–861, 853–855
settings, 853–857, 853–855
summary, 894–895
tablespace backup mode for,

530–531
terminology, 848–849

Bad file type with SQL*Loader, 1040
baselines in AWR, 780–782, 782
BEGIN BACKUP clause, 531, 852
BEGINDATA keyword, 1043
bequeath connections, 615
BETWEEN operator, 59–60
BFILE datatype, 337
BFILENAME function, 155
bigfile tablespaces, 517
BIN_TO_NUM function, 134
binary backups, 850
binary datatypes, 336–337
BINARY_DOUBLE datatype, 330
BINARY_FLOAT datatype, 329–330
binary operators, 42
binary parameter files (spfiles), 479–480

autobackups in Flash Recovery
Area, 845

creating, 993
multiplexing control files, 831
settings, 485–486, 486

bit field conversion functions, 134
BITAND function, 111
BLOB datatype

conversions, 151
functions, 157
syntax, 337

block formats, 514
block sizes, 421

nonstandard, 524–526
setting, 464

blocks, 421
BLOCKSIZE clause, 523
BOTH trimming value, 106
Broken job state, 932
buckets

hash functions, 160
histograms, 118–119

buffers
database, 396, 400–401
redo log, 396, 401, 409
SQL, 22–25

BWnn process, 403
BY ACCESS clause, 720
BY SESSION clause, 720
BYTE keyword, 327

C
C code in number conversions, 146
caches

database, 396, 400–401
recovery, 574
result, 398

carets (^) for inequality operator, 52
Cartesian joins, 239–240
CASCADE clause

constraints, 367
dependent indexes, 557
statistics preferences, 764
users, 686

CASCADE CONSTRAINTS clause, 355, 527
CASCADE parameter, 759
CASE expression

scalar subqueries in, 260
syntax, 69–71

CAST function, 134–136
Catalog Additional Files button, 863
catalog maintenance, 863
catalog.sql script, 479
catctl.pl script, 989–990
catdwgrd.sql script, 996
catproc.sql script, 479
catrelod.sql script, 996
catuppst.sql script, 991
CBO (cost-based optimizer), 755
CDA_TAB_PRIVS view, 689
CDBs (container databases), 12–14, 393
CEIL function, 112
Chain_stalled job state, 932
chains for jobs, 943–947
Chains object, 934
CHANGE command, 23–24
CHANGE FAILURE command, 891
change_password command, 631
Change to Unavailable option, 863
Change Tracking Writer process, 406
change vectors, 401
CHAR datatype, 39, 327
character datatypes, 38–39

built-in, 325–329
conversion functions, 133–134, 141–147, 153
single-row functions

ASCII, 96–97
CHR, 97
CONCAT, 97
INITCAP, 98
INSTR, 98–99
INSTRB, 99
LENGTH and LENGTHB, 99
LOWER, 99–100
LPAD, 100

1128	 character sets  –  compression

LTRIM, 100–101
overview, 95–96
REPLACE, 101–102
RPAD, 102
RTRIM, 102–103
SOUNDEX, 103
SUBSTR, 103–105
SUBSTRB, 105
TRANSLATE, 105–106
TRIM, 106–107
UPPER, 107–108

character sets
configuring, 464–465, 465
template definitions, 451

Character Sets tab, 464–465, 465
CHARTOROWID function, 136
CHECK clause, 363–364
check command in crsctl, 1074
check constraints, 363–364
Checkpoint process, 403, 408–409
checkpoints, 408–409, 831–832
child tables, 386
CHR function, 97
CIRCUITS parameter, 658
CJQn process, 405
CKPT process, 403, 408–409, 832
CLASS_JOB_CLASS procedure, 949
classes for jobs, 939–940
CLEAN_AUDIT_TRAIL procedure, 731
CLEAR BUFFER command, 25
CLEAR_PENDING_AREA procedure, 918
CLEARING log file status, 419
CLEARING_CURRENT log file status, 419
clearing online redo log files, 839
client configuration, 637

Easy Connect method, 639–640
local naming method, 641–646, 642–644
name resolution, 637–639
troubleshooting, 646–648

client/server architecture, 606–607
clients, Data Pump, 1010–1012
CLOB datatype

conversions, 151
functions, 157
syntax, 328

cloud, 19
CLUSTER_DATABASE parameter, 480
Cluster Read Services Control (crsctl) utility,

1074–1076
clusters

description, 322, 387
RAC, 10, 391, 420, 444, 652, 1050, 1055

COALESCE function, 93–94
Codd, Edgar, 385
coefficient of correlation function, 194
cold backups, 851–852

collecting statistics, 756–757, 760
AWR, 775–778, 777
Enterprise Cloud Optimizer Statistics Wizard,

759–760, 760
SQL*PLUS, 757–759

columns
adding, 350–352
alias names, 48–49
default values, 341–344
definition changes, 353
derived, 349
dropping, 354–356
hiding, 356–357
identity, 345–348
names, 339–340
RDBMSs, 8
renaming, 354
sequence values, 344–345
virtual, 320

COLUMNS CONTINUE clause, 355
commas (,) in number conversions, 145
COMMENT statement, 348
COMMENT ON COLUMN statement, 348
COMMENT ON TABLE statement, 348
comments

script files, 28–29
tables, 348

COMMIT statement
deadlocks, 593
transactions, 300–303, 571

committed undo information, 579
Common Database option, 452
communication between databases, 666–668
COMPACT option, 557
Compact Segments And Release Space option, 556
comparison operators, 52–54
compatibility of disk groups, 1061
COMPATIBLE parameter, 480, 993–994, 1037
compiling files, 446–447
Completed job state, 932
complex inner joins, 230
complex resource plans, 921
Component Install Status screen, 1060, 1060
component registration in Oracle Restart,

1068–1069
ASM instances, 1070–1071
database instances, 1072–1073
environment variable settings, 1073–1074
listeners, 1069–1070

components, auditing, 738–739
COMPOSE function, 136
composite keys, 364
COMPOSITE_LIMIT resource, 713–714
compound queries, 247–252
COMPRESS option, 550
compression, 550–551, 551

	 CONCAT function  –  CONVERT function	 1129

CONCAT function, 97
concatenating strings, 43, 97
concatenation operator, 43
concurrency, 584–585

DML changes, 570–572, 572
exam essentials, 595–596
locks for, 585–587

conflicts, 590–594, 591–593
modes, 588–590

review questions, 597–601
summary, 595
undo vs. redo, 572–576, 574

config command
crsctl, 1074
srvctl, 1069–1071

Configure Automated Maintenance Tasks screen,
773, 774

Configure Database Options option, 448
CONFIGURE_POOL procedure, 663
conflicts, locks, 590–594, 591–593
CONNECT command, 18
CONNECT_DATA parameter, 645
CONNECT role, 704
CONNECT_TIME resource, 712
CONNECT TO clause, 667–668
connected user database links, 667
Connection Manager, 610, 611
Connection Mode tab, 465–467, 466
connections

listener requests, 614–618, 615–618
Oracle Database, 13–14
Oracle Shared Server, 660–661
processes, 394
settings, 465–467, 466

CONNECTIONS attribute, 653
Connections pane, 15
connectivity, network, 608, 608
consistency

ACID properties, 571
read, 575–576
transaction control, 304–305

consistent backups, 848–849, 851
constraints, 361–362, 516

check, 363–364
creating, 362, 370–373
deferred checking, 369–370
description, 387
disabled, 367
dropping, 367
enabling and disabling, 367–368
exam essentials, 374
foreign key, 365–366
NOT NULL, 362–363
parent-child relationships, 386
primary key, 364–365
review questions, 375–380

summary, 373–374
unique, 364
validated, 368–369

consumer groups
creating, 919–921
initial, 913
plans, 905–907, 906–907
switching, 915–916
updating and deleting, 926–927

CONTAINER clause, 679
container databases (CDBs), 12–14, 393
CONTENT parameter, 1023, 1027
CONTINUE_CLIENT command

expdp, 1019
impdp, 1022

CONTINUE_CLIENT parameter, 1029
CONTINUE LOAD DATA command, 1042–1043
CONTROL_FILE_RECORD_KEEP_TIME

parameter, 829
control files, 411, 827–828

architecture, 828–829
backing up, 850–851
failure recovery, 881–883
in Flash Recovery Area, 845
information in, 412–415, 414
multiplexing, 829–831
SQL*Loader, 1040, 1042–1044

CONTROL_FILES parameter, 480, 830–831, 881
Control Files section for template definitions, 451
CONTROL_MANAGEMENT_PACK_ACCESS

parameter, 784
CONTROLFILE_RECORD_KEEP_TIME

parameter, 414
conversions

date formats, 119–120
functions

ASCIISTR, 133–134
BIN_TO_NUM, 134
CAST, 134–136
CHARTOROWID, 136
COMPOSE, 136
CONVERT, 137
DECOMPOSE, 137
HEXTORAW, 137
NUMTODSINTERVAL, 137
NUMTOYMINTERVAL, 138
RAWTOHEX, 138
ROWIDTOCHAR, 138
SCN_TO_TIMESTAMP, 138–139
summary, 131–133
TIMESTAMP_TO_SCN, 139
TO_BINARY_DOUBLE, 139–140
TO_BINARY_FLOAT, 140
TO_CHAR, 141–147

numbers to words, 149–150
CONVERT function, 137

1130	 Coordinated Universal Time (UTC)  –  Customize Storage screen

Coordinated Universal Time (UTC), 331
copying files in installation, 446–447
corporation passwords, 717–718
CORR function, 194
correlated subqueries, 252, 258–259
COS function, 112
COSH function, 112
cost-based optimizer (CBO), 755
COUNT function, 176–177, 186
COVAR_POP function, 195
COVAR_SAMP function, 195–196
CPU_PER_CALL resource, 712
CPU_PER_SESSION resource, 712
CPU resources, allocating, 908, 910
crash recovery, 870
Create a Database option, 448–449
Create a New Guaranteed Restore Point

option, 981
Create a New Offline RMAN Backup option, 980
Create And Configure A Database option, 442
Create As Container Database option, 448
Create ASM Disk Group screen, 1055, 1056
CREATE AUDIT POLICY statement, 736–739
CREATE_BASELINE statement, 780
CREATE BIGFILE statement, 517
CREATE_CAPTURE statement, 708
CREATE_CHAIN statement, 944
CREATE_CONSUMER_GROUP statement,

919–920
CREATE_CREDENTIAL statement, 947–948
CREATE_DATABASE_DESTINATION

statement, 947
CREATE DATABASE LINK statement, 667
Create Database option, 448, 467
CREATE DATABASE statement

Oracle Managed Files, 540
redo log files, 833–834, 836
tablespaces, 516
temporary tablespaces, 525

Create Database With Default Configuration
screen, 448

CREATE DIRECTORY statement, 1012
CREATE DISKGROUP statement, 1062–1063
CREATE_EXTENDED_STATS statement, 770
CREATE_GROUP statement, 940–941, 948
CREATE_JOB statement, 937–938
CREATE_JOB_CLASS statement, 939–940
Create Job screen, 942, 942–943
CREATE OR REPLACE FUNCTION

statement, 717
CREATE_PENDING_AREA statement, 918
CREATE_PLAN statement, 921
Create Preserved Snapshot screen, 782, 782
CREATE PROFILE statement, 711–714
CREATE PUBLIC DATABASE LINK

statement, 667
CREATE ROLE statement, 701, 703
CREATE_SCHEDULE statement, 935

CREATE SEQUENCE statement, 324, 346
CREATE_SIMPLE_PLAN statement, 916–917
CREATE SMALLFILE statement, 517
CREATE_SNAPSHOT statement, 778
CREATE TABLE AS SELECT statement,

349–350, 962
Create Table dialog, 360–361, 360–361
CREATE TABLE statement, 338–339

constraints, 362–363
external tables, 1046–1048

CREATE TABLESPACE statement, 516–519
CREATE TABLESPACE APPL_DATA statement,

518–519, 522, 535
CREATE TABLESPACE DATAFILE statement,

542, 1067
Create Tablespace screen, 548–550, 548–549
CREATE TEMPORARY TABLESPACE

statement, 525
CREATE UNDO TABLESPACE statement,

526–527
CREATE USER statement, 678–679

profiles, 684
quotas, 683
tablespaces, 681

CREATE USER IDENTIFIED BY statement, 679
CREATE USER IDENTIFIED EXTERNALLY

statement, 680
CREATE USER IDENTIFIED GLOBALLY

statement, 681
createdisk option, 1054
Creation Mode screen, 448
Creation Options screen, 467–468, 467
CREATIVE_PLAN_DIRECTIVE procedure,

921–923
credentials, database, 453–454, 454
Credentials object in Scheduler, 934
Critical alert level, 800
cross joins, 240
cross-protocol connectivity, 610
Crosscheck option, 863
Crosscheck All option, 863
crsctl (Cluster Read Services Control) utility,

1074–1076
CTAS syntax, 349
CTWR process, 406
CUBE modifier, 208–209, 211–215
CUME_DIST function, 196–197
cumulative distributions, 196–197
CURRENT_DATE function, 124
current_listener command, 632
CURRENT log file status, 418
current log files, 834
current session, retrieving, 71–72
Current tab, 485
CURRENT_TIMESTAMP function, 124–125
custom scripts, 460–461, 461
Custom SQL Scripts tab, 979
Customize Storage screen, 468–472, 468

	 D code in number conversions  –  DATABASE LINK statement	 1131

D
D code in number conversions, 145
data blocks

contents, 514–515, 515
storage characteristics, 515–516

data concurrency
locks for, 585–587

conflicts, 590–594, 591–593
modes, 588–590

managing, 584–585
data consistency, 304–305
Data Control Language (DCL) statements, 570
Data Definition Language (DDL) statements, 570

description, 37
lock waits, 590
tablespaces, 534

data dictionary
caches, 402
protecting, 705
storage structures, 423–424
views, 476–479, 477, 810–811

data files, 411, 535
in Flash Recovery Area, 845
information about, 544–547
moving, 540
online and offline, 536
Oracle Managed Files, 539–543
overview, 512–514, 513
renaming, 536–538
size, 535–536
SQL*Loader, 1040
tablespaces, 415–416, 416
template definitions, 451

Data Guard, 962
Data Manipulation Language statements. See

DML (Data Manipulation Language)
statements

Data Pump Export: Options screen, 1033, 1034
Data Pump Export: Review screen, 1033, 1035
Data Pump facility, 961–963

access methods, 1011–1012
architecture, 1009, 1009
clients, 1012
components, 1010
data and metadata filters, 1027–1029
description, 1006, 1007
EM Cloud Control, 1033–1038, 1033–1036
export and import modes, 1014–1016
exports

expdp, 1016–1017
full transportable, 1037–1039
parameters, 1018–1020
working with, 1033–1034, 1033–1035

fine-grained object selection, 1032

imports
disabling logging, 1025–1026
EM Database Control, 1035–1037, 1036
impdp, 1020–1021
parameters, 1021–1023
transformations, 1024–1025

job management, 1029–1032
loading external tables, 1046–1048
location setup, 1012–1014, 1014
overview, 1007–1009
processes, 1010–1011

Data Pump Import: Re-mapping screen, 1035, 1036
Data Recovery Advisor (DRA), 795

non-system-critical data file recovery,
887–892, 887–888

system-critical data file recovery, 893
working with, 883–884, 883–884

Data Redaction feature, 611
data visibility, 304–306
Data Warehouse template, 449
database, OUI. See Oracle Universal

Installer (OUI)
database-authenticated accounts, 679
Database Components section for template

definitions, 451
Database Configuration Assistant (DBCA)

configuration settings, 472
creation options, 467–468, 467
credential settings, 453–454, 454
database deletions, 472–473
description, 447
exam essentials, 504–505
identification settings, 452–453, 452
initialization parameters, 462–467, 466
invoking, 447–449, 448
management options, 453, 453
network settings, 454, 455
new databases, 390, 442
Options settings, 458–459, 458, 460
review questions, 506–509
sample schemas and custom scripts,

460–461, 461
storage locations, 455–458
storage options, 455, 468–472, 468–471
summary, 503–504
template definitions

creating, 474–475, 474
deleting, 475
predefined, 449–452, 450–451

Database Control. See Enterprise Manager
Database Control tool

Database Credentials screen, 453–454, 454
DATABASE_EXPORT_OBJECTS view, 1028
Database Identification screen, 452–453, 452
database instances in Oracle Restart, 1072–1073
DATABASE LINK statement, 721

1132	 database maintenance  –  DB_CREATE_ONLINE_LOG_DEST parameter

database maintenance, 754–755
ADR, 801–805
advisory framework, 793–798, 793, 796–798
automated, 772–775, 773–774
exam essentials, 820
optimizer statistics. See optimizer statistics
performance statistics. See performance

statistics
review questions, 821–824
server-generated alerts, 798–801, 799–800
summary, 819–820

database management systems (DBMSs), 4, 385
Database mode for Data Pump, 1015
Database Operation screen, 448–449, 448
Database Options screen, 458–459, 458, 460, 469
DATABASE_PROPERTIES view, 517, 682
Database Resident Connection Pooling (DRCP),

610, 661
architectures, 663–665, 664
configuring, 662–663
connection methods, 665–666

Database Resource Manager. See
Resource Manager

Database Services screen, 623, 623
Database Storage screen, 469
Database Summary screen, 469–470, 470
Database Templates screen, 449, 450, 452, 459
Database Upgrade Assistant (DBUA), 443, 959–962

silent mode, 986–987
upgrades with, 976–985, 977–984

Database Upgrade Assistant - Management
Options screen, 979, 980

Database Upgrade Assistant - Move Database
Files screen, 979, 981

Database Upgrade Assistant - Network
Configuration screen, 979, 981

Database Upgrade Assistant - Prerequisite Check
screen, 978, 979

Database Upgrade Assistant - Progress screen,
982–983, 984

Database Upgrade Assistant - Recovery Options
screen, 980–982, 982

Database Upgrade Assistant - Select Database
screen, 977–978, 978

Database Upgrade Assistant - Select Operation
screen, 977, 977

Database Upgrade Assistant - Summary screen,
982, 983

Database Upgrade Assistant - Update Results
screen, 984, 984

Database Upgrade Assistant - Upgrade Options
screen, 978–979, 980

Database Vault and Label Security option, 458
Database Writer process, 403, 408
databases

alert logs, 497–501
ASM storage, 1066–1067
auditing. See auditing

backups. See backups
buffer caches, 396, 400–401
communication between, 666–668
configuring, 472
creating, 501–503
DBCA. See Database Configuration

Assistant (DBCA)
defined, 391
deleting, 472–473
file locations, 456
links, 322–323, 387
maintaining. See database maintenance
objects, 386–388
Oracle Database 12c, 9
Oracle Managed Files for, 541–542
overview, 385
privileges, 693
recovering. See recovering databases;

recovery components
relational, 385–386, 386
roles, 704–705
shutting down, 495–497
starting up, 490–494
startup states, 494
templates, 449–452, 450–451
upgrades. See upgrades
upgrading, 1037–1039

DATAFILE clause, 542
Datafiles tab for undo tablespace, 584
datatypes, 38, 325, 326

binary, 336–337
character, 38–39, 325–329
conversion function, 134–136
date and time, 41–42, 330–334
extended, 995
numeric, 39–41, 329–330
row ID, 336–337

DATE datatype, 41–42, 331
date datatypes, 38, 41–42, 330–334
DATE keyword, 45
dates

arithmetic, 334–336
conversions, 141–145, 147–148, 152
default format, 465
format conversions, 119–120
retrieving, 124
rounding, 129
single-row functions, 120–131
truncating, 130

datetime datatypes
literals, 45
single-row functions, 120–131

DB_BLOCK_SIZE parameter, 421, 480, 514, 524
DB_CACHE_SIZE parameter, 524
DB_CREATE_FILE_DEST parameter, 480, 518,

537, 540, 1067
DB_CREATE_ONLINE_LOG_DEST parameter,

480, 541–542

	 DB_DOMAIN parameter  –  DBMS_STATS package	 1133

DB_DOMAIN parameter, 481
DB_FLASH_CACHE_FILE parameter, 401
DB_FLASH_CACHE_SIZE parameter, 401
DB_K_CACHE_SIZE parameter, 524
DB_KEEP_CACHE_SIZE parameter, 401
DB_NAME parameter, 481
DB_RECOVERY_FILE_DEST parameter,

481, 847
DB_RECOVERY_FILE_DEST_SIZE parameter,

481, 846–848
DB_RECYCLE_CACHE_SIZE parameter, 401
DB Time, 783–784
DB_UNIQUE_NAME parameter, 481
DB_WRITER_PROCESSES parameter, 408
DBA_ADDM_FINDINGS view, 790–791
DBA_ADDM_TASKS view, 790
DBA_ADVISOR_ACTIONS view, 556, 790, 792
DBA_ADVISOR_FINDINGS view, 555
DBA_ADVISOR_OBJECTS view, 556, 790–792
DBA_ADVISOR_RATIONALE view, 791–792
DBA_ADVISOR_RECOMMENDATIONS view,

556, 791
DBA_ALERT_HISTORY view, 801
DBA_AUDIT_MGMT_CLEAN_EVENTS

view, 731
DBA_AUDIT_MGMT_CLEANUP_JOBS

view, 731
DBA_AUDIT_MGMT_CONFIG_PARAMS

view, 731
DBA_AUDIT_MGMT_LAST_ARCH_TS

view, 731
DBA_AUDIT_POLICIES view, 734
DBA_AUDIT_TRAIL view, 724
DBA_CPOOL_INFO view, 661–662
DBA_DATA_FILES view

description, 477, 810
file identifier numbers, 536
information in, 533, 545–546
queries on, 262, 415
tablespace usage, 551

DBA_DATAPUMP_JOBS view, 1029–1030
DBA_DATAPUMP_SESSIONS view, 1029
DBA_EXTERNAL_LOCATIONS view, 1048
DBA_EXTERNAL_TABLES view, 1048
DBA_FGA_AUDIT_TRAIL view, 734
DBA_FREE_SPACE view, 262, 551, 811, 876
DBA_HIST_ views, 811
DBA_HIST_ACTIVE_SESS_HISTORY

view, 779
DBA_HIST_SNAPSHOT view, 778
DBA_HISTOGRAMS view, 811
DBA_INDEXES view, 810
DBA_LOCK view, 594
DBA_OBJ_AUDIT_OPTS view, 726
DBA_OBJECTS view, 476, 811
DBA_OUTSTANDING_ALERTS view, 801, 847
DBA_PRIV_AUDIT_OPTS view, 725
DBA privilege, 707

DBA_RESUMABLE view, 561
DBA role, 704
DBA_SCHEDULER_JOBS view, 930, 942
DBA_SEGMENTS view, 192, 551, 810
DBA_STMT_AUDIT_OPTS view, 723
DBA_SYS_PRIVS view, 701
DBA_TAB_COLUMNS view, 477
DBA_TAB_PRIVS view, 689
DBA_TABLES view, 476, 810
DBA_TABLESPACES view, 262, 477, 531, 811
DBA_TEMP_FILES view

information in, 533, 546–547
queries on, 262
tablespace usage, 551

DBA_THRESHOLDS view, 553, 554, 800
DBA_UNUSED_ views, 708–710
DBA_USERS view, 476
DBA_USERS_WITH_DEFPWD view, 687
DBA_VIEWS view, 477
DBA_WAITERS view, 594, 811
DBCA. See Database Configuration

Assistant (DBCA)
dbca command, 448
DBCA Database Templates screen, 452
DBMS_ADVISOR package, 554
DBMS_ADVISOR.SET_DEFAULT_TASK_

PARAMETER procedure, 785
DBMS_AUDIT_MGMT package, 730
DBMS_AUTO_TASK package, 757
DBMS_CONNECTION_POOL package, 661–663
DBMS_CRYPTO package, 706
DBMS_DATAPUMP.OPEN procedure, 1011
DBMS_DATAPUMP package, 1008, 1010–1011
DBMS_DATAPUMP.START_JOB procedure, 1011
DBMS_DST package, 993
DBMS_FGA.ADD_POLICY procedure, 732–733
DBMS_FGA.DISABLE_POLICY procedure, 733
DBMS_FGA.DROP_POLICY procedure, 734
DBMS_FGA.ENABLE_POLICY procedure, 733
DBMS_FLASHBACK.TRANSACTION_

BACKOUT procedure, 880
DBMS_JOBS package, 930
DBMS_METADATA package, 1010–1011
DBMS_MONITOR package, 807
DBMS_OBFUSCATION_TOOLKIT package, 706
DBMS_PRIVILEGE_CAPTURE package, 707
DBMS_REGISTRY package, 964
DBMS_RESOURCE_MANAGER package, 905,

911, 915
DBMS_RESOURCE_MANAGER_PRIVS

package, 905, 911, 913
DBMS_SCHEDULER package, 934–935, 944
DBMS_SERVER_ALERT package, 800
DBMS_SESSION package, 915
DBMS_SPACE_ADMIN package, 520
DBMS_STATS.CREATE_EXTENDED_STATS

procedure, 770
DBMS_STATS package, 756, 758–761

1134	 DBMS_STATS.SET_GLOBAL_PREFS procedure  –  DICTIONARY view

DBMS_STATS.SET_GLOBAL_PREFS procedure,
762–765

DBMS_STATS.SET_SCHEMA_PREFS
procedure, 766

DBMS_TRACE package, 71
DBMS_TTS package, 1038
DBMS_WORKLOAD_REPOSITORY

package, 776
DBMSs (database management systems), 4, 385
DBTIMEZONE function, 125
DBUA (Database Upgrade Assistant), 443,

959–962
silent mode, 986–987
upgrades with, 976–985, 977–984

DBWn process, 400, 403, 408
DCBA (Database Configuration Assistant)

tool, 442
DCL (Data Control Language) statements, 570
DDL (Data Definition Language) statements, 570

description, 37
lock waits, 590
tablespaces, 534

DDL_LOCK_TIMEOUT parameter, 590
DDL tab, 360, 360
deadlocks, 593–594
DEBUG privilege, 688, 690
debugging-oriented system privileges, 693
DECODE function, 155–156, 214–215
DECOMPOSE function, 137
dedicated connections

listeners, 615–616, 615–616
Oracle Shared Server, 660

Dedicated Server Mode, 465
dedicated servers

connection settings, 465–466, 466
listeners, 614
vs. shared servers, 648–649, 650

DEFAULT clause, 341, 343, 346
Default Language setting, 465
DEFAULT pool, 401
DEFAULT profile, 714
DEFAULT STORAGE clause, 523, 528
DEFAULT TABLESPACE clause, 681–682
DEFAULT TEMPORARY TABLESPACE

clause, 525
Default Territory setting, 465
defaults

caches, 401
column values, 341–344
data file size, 542–543
initialization-parameter files, 484–485
roles, 703–705
sequence values, 344–345
statistics staleness threshold, 769
tablespaces, 516
user accounts, 687

DEFERRABLE clause, 369–370
DEFERRED keyword, 488
deferred segment creation, 683
deferring constraint checks, 369–370
DEFINE_CHAIN_RULE procedure, 944
DEFINE command, 73
Define Extents option, 549
definitions for templates, 474–475, 474
Degree of Parallelism Limit directive, 910
DEGREE parameter, 759, 764
DEL command, 24–25
Delete a Database option, 448
Delete All Expired button, 863
Delete All Obsolete button, 863
DELETE_CATALOG_ROLE role, 704
DELETE_CONSUMER_GROUP procedure, 927
Delete option for backup sets, 863
DELETE_PLAN procedure, 926
DELETE_PLAN_CASCADE procedure, 926
DELETE_PLAN_DIRECTIVE procedure, 925
DELETE privilege, 688, 690
DELETE statement

ADDM analysis, 790
audit trails, 729
rows, 294–296
SQL*Loader, 1043
in subqueries, 268

DELETE TABLE statement, 721
deleting

consumer groups, 926–927
databases, 472–473
directives, 924–925
resource plans, 926
rows, 294–296
template definitions, 475

DENSE_RANK function, 197–198
derived columns, 349
DESC keyword, 62–63
DESCRIBE command

columns, 65–66, 339
structural information, 21–22

DESCRIPTION parameter
DISPATCHERS, 654
listener.ora, 624
tnsnames.ora, 645

destinations for archived redo log files, 840–843,
841–842

Destinations object in Scheduler, 934
Details tab for undo tablespace, 584
DIA0 process, 404
DIAG process, 404
Diagnosability process, 404
DIAGNOSTIC_DEST parameter, 500, 801
dictionary-managed tablespaces, 518
DICTIONARY table, 942
DICTIONARY view, 479

	 dictionary views  –  DROP TABLE statement	 1135

dictionary views, 262–266, 476–479, 477
dimensions, 322
direct handoff connections, 615–616, 615
Direct Path API (DPAPI), 1010
direct path loading, 1045
direct upgrades, 959–961, 960
directives

implementing, 921–924, 922
updating and deleting, 924–925

directories
Data Pump, 1012–1014, 1014
naming, 609
OFA paths, 437–440

Directory Objects screen, 1013, 1014
dirty buffers, 400, 574
DISABLE_CAPTURE procedure, 708
disable command in srvctl, 1073
DISABLE CONSTRAINT clause, 367–368
DISABLE NOVALIDATE clause, 368–369
DISABLE_POLICY procedure, 733
DISABLE PRIMARY KEY CASCADE clause, 368
DISABLE procedure

job chains, 944–945
statistics gathering, 757

DISABLE VALIDATE constraint, 368–369
disabled constraints, 367
Disabled job state, 932
disabling

auditing policies, 739–740
constraints, 367–368
FGA policies, 733–734
object auditing, 727
privilege auditing, 725
roles, 703
statement auditing, 723
statistics gathering, 757

discard files, 1040
Disk Backup Location parameter, 854
Disk Backup Type parameter, 854
disk groups, 1050–1051, 1050

adding and dropping disks, 1063–1064
compatibility, 1061
creating, 1052, 1055–1056, 1056, 1062–1063
dropping, 1062–1063
managing, 1061
migrating, 1064–1065
rebalancing, 1065
tablespace storage, 1067

disk space requirements, 434
dispatcher processes, 405, 649
DISPATCHERS parameter, 654–656
DISPLAY variable, 441
Displaymode command, 632
DISTINCT keyword

aggregate functions, 176
SELECT, 49–50, 63
subqueries, 256

division, 42
DML (Data Manipulation Language) statements,

282, 570–571
change in, 571–572, 572
DELETE, 294–296
description, 37
exam essentials, 307
INSERT, 283–289
MERGE, 297–299
review questions, 308–318
subqueries in, 268–269
summary, 306–307
transaction rollback, 573
UPDATE, 289–293

Dnnn process, 405
documentation in software installation, 433
dollar signs ($)

identifier names, 339
number conversions, 145

dots (.)
number conversions, 145
substitution variables, 74

double quotation marks (") for identifier
names, 339

DOWNGRADE mode, 492
downgrading, 995–996
downtime with upgrades, 975
DPAPI (Direct Path API), 1010
DRA (Data Recovery Advisor), 795

non-system-critical data file recovery,
887–892, 887–888

system-critical data file recovery, 893
working with, 883–884, 883–884

DRCP (Database Resident Connection Pooling),
610, 661

architectures, 663–665, 664
configuring, 662–663
connection methods, 665–666

DROP_BASELINE procedure, 780
DROP_CAPTURE procedure, 708
DROP_CHAIN procedure, 944, 946
DROP_CHAIN_RULE procedure, 944
DROP_CHAIN_STEP procedure, 944
DROP clause, 355
DROP CONSTRAINT clause, 367
DROP DISKGROUP procedure, 1063
DROP_EXTENDED_STATISTICS procedure, 772
DROP_GROUP procedure, 941
DROP_JOB procedure, 946
DROP_JOB_CLASS procedure, 940
DROP_JOBS procedure, 939
DROP LOGFILE MEMBER clause, 839
DROP_POLICY procedure, 734
DROP PRIMARY KEY CASCADE clause, 367
DROP_SCHEDULE procedure, 935
DROP_SNAPSHOT_RANGE procedure, 778
DROP TABLE statement, 357

1136	 DROP TABLESPACE statement  –  entities in ER model

DROP TABLESPACE statement, 527
DROP UNIQUE clause, 367
DROP UNUSED COLUMNS clause, 355
DROP USER statement, 686
dropping

baselines, 780
columns, 354–356
constraints, 367
disk groups, 1063
disks from disk groups, 1064
FGA policies, 734
redo log groups, 838
redo log members, 838–839
tables, 357
tablespaces, 527–528
user accounts, 686–687

DUAL table, 50–51
_DUMP_DEST parameters, 801–802
dump file sets, 1016
dump files with Data Pump, 1012, 1016
DUMP function, 156–157
DUMPFILE parameter, 1019
durability in ACID properties, 571
dynamic performance tables, 477–478
dynamic performance views, 398, 477–479, 775,

809–810
dynamic service registration, 626, 634–635

E
Easy Connect method, 639–640
Edit Archive Mode Parameters option, 458
Edit Audited Objects screen, 728, 728
Edit Audited Privileges screen, 728, 728
Edit Audited Statements screen, 729, 729
EDIT command for SQL buffer, 22, 25
editing SQL buffer, 22–25
EEEE code in number conversions, 146
ELSE clause, 69
EMNC process, 405
EMPTY_BLOB function, 157
EMPTY_CLOB function, 157
Enable Archiving option, 457–458
ENABLE_CAPTURE procedure, 708
ENABLE clause for constraints, 368
ENABLE NOVALIDATE constraint, 368
ENABLE_POLICY procedure, 733
ENABLE procedure

job chains, 944–945
statistics, 757

ENABLE TRIGGERS clause, 879
ENABLE VALIDATE constraint, 368–369
enabling

auditing policies, 739–740
constraints, 367–368

FGA policies, 733
object auditing, 726
Oracle Managed Files, 540–541
privilege auditing, 724–725
roles, 702
statement auditing, 720–723

Encryption Key Management Admin job role, 436
END BACKUP clause, 852
END keyword in CASE, 69
Enterprise Edition installation type, 444
Enterprise Manager

automated maintenance tasks, 772–775,
773–774

installing, 453
Enterprise Manager Cloud Control tool

ADDM analysis, 784–790, 785–786
alert logs, 806, 806
alerts, 799–800, 800
ASH statistics, 779, 779
AWR baselines, 782, 782
AWR statistics, 776–777, 777
Data Pump, 1013, 1014, 1033–1038,

1033–1036
DRA, 883–884, 883–884
Flash Recovery Area, 846–847, 847
installing, 390
instance failures, 872, 872
jobs, 942
memory management, 817–818, 817–818
non-system-critical data file recovery,

887–888, 887–888
Optimizer Statistics Wizard, 759–767,

760–763, 765–766
performance, 811
redo logs, 841
resources, 905–907, 906–907, 921
system-critical data file recovery, 893
user error recovery, 879–881, 879

Enterprise Manager Database Control tool
Data Pump exports, 1032
downgrades, 995
importing with, 1035–1037, 1036
monitoring links, 808
upgrades, 970, 988

Enterprise Manager Express tool, 18, 388
control files, 414, 414
data files, 416, 416
initialization-parameter files, 485–486, 486
physical storage, 411, 412
redo logs, 417, 418, 841
SGA components, 399, 400
tablespaces, 534, 534, 548, 548, 552, 552
undo tablespace, 581–584, 582
user accounts, 685, 685
working with, 389–390, 390

Enterprise Manager Support Workbench, 883, 884
entities in ER model, 5, 6

	 entity-relationship (ER) model  –  Flash Recovery Area	 1137

entity-relationship (ER) model, 5
environment variables

directory paths, 437–440
Oracle Restart settings, 1073–1074

equal signs (=)
equality operator, 52
inequality operator, 52
joins, 229
single-row subqueries, 253

equality joins, 229
equality operator, 52
ER (entity-relationship) model, 5
error codes, client-side, 647–648
Errors and Warnings option, 582
ESCAPE clause, 61–62
ESTIMATE parameter, 1026
ESTIMATE_PERCENT parameter, 759, 764
EVALUATE clause in auditing, 737–738
Event Monitor process, 405
Exadata I/O setting, 910
exclamation points (!) for inequality, 52
EXCLUDE parameter, 1023, 1027–1028
EXCLUSIVE lock mode, 587–588
exclusive locks, 306, 588
EXECUTE_CATALOG_ROLE role, 704
EXECUTE privilege, 690, 706
EXECUTE PROCEDURE statement, 721
EXISTS operator, 60, 255, 259
EXIT_CLIENT parameter

expdp, 1019
impdp, 1022
purpose, 1029

EXIT command in lsnrctl, 631
EXP_FULL_DATABASE role, 1021
EXP function, 112–113
expdp utility, 1012, 1016–1020
expired undo information, 579
explicit locks, 305
exponent function, 112–113
exports

Data Pump
EM Cloud Control, 1033–1034, 1033–1035
expdp, 1012, 1016–1020
export modes, 1014–1016

full transportable, 1037–1039
expressions

CASE, 69–71
working with, 68–69

extended datatypes, 995
extended statistics, 770–772
EXTENT MANAGEMENT LOCAL clause

automatic space management, 547
temporary tablespaces, 526
undo tablespaces, 527

EXTENT MANAGEMENT LOCAL UNIFORM
SIZE clause, 519

extents
defined, 422, 422
free space for, 513, 514
managing, 518–520
tablespaces, 548–549, 549

external procedures, 613
external tables, populating, 1046–1049
External Tables tool, 1006–1007
externally authenticated users, 680–681
extproc process, 613
EXTRACT function, 125–126

F
Failed job state, 932
FAILED_LOGIN_ATTEMPTS parameter,

714–715
failure groups in disk groups, 1062–1063
failures, 864–865

instance, 867–868
media, 868
network, 866
statement, 865
user error, 866–867
user process, 865–866

Failures option in upgrades, 978
FALSE value, 56
fast recovery area (FRA), 457
FAST_START_IO_TARGET parameter, 872–873
FAST_START_MTTR_TARGET parameter, 835,

871–873
FDBA process, 405
FET$ table, 518
FETCH clause, 67
FGA (fine-grained auditing), 732–734
FGA_LOG$ table, 730
file locations for databases, 456
file system storage, 456
File Watchers object, 934
filenames, parsing, 104–105
FILESIZE parameter, 1019
filling strings, 100, 102
filters, data and metadata, 1027–1029
fine-grained auditing (FGA), 732–734
fine-grained object selection, 1032
firewalls, 612
FIRST keyword, 67
Fix Now option in upgrades, 978
Fix Pre-Upgrade option in upgrades, 978
fixed user database links, 667
fixed views, 478
Flash Recovery Area, 844

EM Cloud Control, 846–847, 847
managing, 847–848

1138	 FLASHBACK ANY TABLE privilege  –  Grid Infrastructure (GI)

occupants, 845
SQL commands, 846

FLASHBACK ANY TABLE privilege, 700
Flashback Data Archive process, 405
FLASHBACK DATABASE command, 847
flashback features

drop, 876–878
logs, 411, 845
queries, 873–875
table, 878–879
transactions, 880
undo management, 580

FLASHBACK ON/OFF clause, 524
Flashback Query feature, 880
FLASHBACK_SCN parameter, 1026
FLASHBACK TABLE statement, 876–879
FLASHBACK_TIME parameter, 1026
FLOAT datatype, 330
floating-point literals, 45
FLOOR function, 113
FM code in number conversions, 146
FOR DROP clause, 536
FOR RECOVER option, 529
FOR UPDATE clause, 305
FORCE LOGGING clause, 523
FORCE mode, 492
foreign key constraints, 365–366
foreign keys, 8, 386
formats for dates, 119–120, 465
FRA (fast recovery area), 457
free buffers, 399
free space

data blocks, 514
dictionary views for, 262–266
requirements, 434
tablespaces, 551–554, 552–554

From an Existing Database (Structure As Well As
Data) option, 475

From an Existing Database (Structure Only)
option, 475

From an Existing Template option, 474
FROM clause

DELETE, 294
multiple-table queries, 228
SELECT, 46–47, 51

FROM_TZ function, 126–127
full backups

creating, 857–861, 858, 860–861
description, 848–849

full outer joins, 244–245
full transportable exports, 1037–1039
functions, 323

group. See aggregate functions
nesting, 215–217
single-row. See single-row functions
stored, 387

G
G code in number conversions, 145
GATHER_ procedures, 758–759
Gather Dictionary Statistics job, 988
Gather Optimizer Statistics screen, 761–762,

761–762
Gather Optimizer Statistics task, 773
GATHER_TABLE_STATS procedure, 770
General Purpose or Transaction Processing

template, 449–450
Generate Database Creation Scripts option, 467
GENERATE_RESULT procedure, 708
GENERATED keyword, 345–347
GET_SCHEDULER_ATTRIBUTE procedure,

935–936
GET_THRESHOLD procedure, 800
getenv command in srvctl, 1073
Getting Started with Database Resource Manager

screen, 907, 907
GLOBAL_DBNAME parameter, 624, 639
Global Statistics Gathering Options screen,

762, 763
global temporary tables (GTTs), 320, 340–341
globally authenticated users, 681
Golden Gate, 962
GRANT ANY OBJECT PRIVILEGE privilege, 699
GRANT ANY PRIVILEGE privilege, 699
GRANT ANY ROLE privilege, 695, 699
GRANT CREATE SESSION statement, 683
GRANT PROCEDURE statement, 721
GRANT SCHEDULER_ADMIN statement, 931
GRANT SEQUENCE statement, 721
GRANT statement, 690–692, 699–701
GRANT_SWITCH_CONSUMER_GROUP

procedure, 911, 915
GRANT_SYSTEM_PRIVILEGE procedure, 911
GRANT TABLE statement, 721
granting privileges, 687–688, 690–692, 691,

699–701, 700
GRANULARITY parameter, 764
granules, 398
greater than operators, 53–54
greater than signs (>)

inequality operator, 52
more than operators, 53–54

GREATEST function, 157–158
green-screen applications, 605
Greenwich mean time, 331
Grid Infrastructure (GI)

ASM storage, 1060–1067, 1062
exam essentials, 1077
installing, 1051–1052

standalone servers, 1054–1061, 1055–1060
storage preparation for, 1052–1054

	 Grid Installation Options screen  –  init.ora file	 1139

Oracle Restart, 1068–1076
overview, 1050–1051, 1050
review questions, 1078–1082
summary, 1076–1077

Grid Installation Options screen, 443–444, 443
GROUP BY clause

aggregate functions, 178–182
superaggregates, 208–215

GROUP_ID function, 198, 214–215
GROUPING function, 176, 198–199, 213–214
GROUPING_ID function, 199
groups

functions. See aggregate functions
job role separation, 436–437
redo log, 836–837, 886
Scheduler, 940–941

Groups object in Scheduler, 934
GTTs (global temporary tables), 320, 340–341
GUID generation, 165

H
hash functions, 160–161
HAVING clause, 207–208
Health Monitor (HM) tool, 883–884
Heterogeneous Services component, 613
HEXTORAW function, 137
HGMT_Pn directive, 908
hiding columns, 356–357
high-think applications, 648
histograms, 118–119
HM (Health Monitor) tool, 883–884
home preparation, 974–975
HOST parameter

listener.ora, 624
tnsnames.ora, 645

hosts
listeners, 621
naming methods, 638–639, 642, 642

hot backups, 851–852
hyphens (-)

dates, 334–335
subtraction, 42–43

I
I Have My Own Backup and Restore Strategy

option, 982
IDENTIFIED BY keywords, 679, 702
IDENTIFIED EXTERNALLY keywords, 680
IDENTIFIED GLOBALLY keywords, 681
identifiers for tables and columns, 339–340
identity columns, 345–348

Idle Time Limit setting, 910
IDLE_TIME resource, 712
Ignore option in upgrades, 978
image copies, 857
IMMEDIATE option

parameter changes, 488
tablespaces, 529

IMP_FULL_DATABASE role, 1021, 1024
impdp utility, 1012, 1020–1026
implementation

Oracle Database 12c, 9–13, 10–12
RDBMSs and ORDBMSs, 8–9

implicit data conversions, 119
implicit locks, 305
imports, Data Pump

EM Database Control, 1035–1037, 1036
impdp, 1020–1021
import modes, 1014–1016
logging during, 1025–1026
network-mode, 1026–1027
parameters, 1021–1023
transformations, 1024–1025

IN operator, 58–59, 255, 258
inactive log files, 419, 834
INBOUND_CONNECT_TIMEOUT

parameter, 625
INCLUDE parameter, 1023, 1027–1028
INCLUDING CONTENTS clause, 527
INCLUDING CONTENTS AND DATAFILES

clause, 527–528
inconsistent backups, 848–849, 851–852
incremental backups

creating, 857–861, 858, 860–861
description, 848–849

INCREMENTAL parameter, 765
INDEX ANY TABLE privilege, 700, 702
INDEX auditing option, 721
index-organized tables (IOTs), 387
INDEX privilege, 688
INDEX_STATS view, 810
indexes

columns
dropping, 355
renaming, 354

constraints, 364–365, 367–369
defined, 321
description, 387
privileges, 693
RDBMSs, 8
segments, 422, 512, 516
tables, 357
truncating, 296–297

inequality operator, 52
INFILE command, 1043
init.ora file

multiplexing control files, 830–831
registering services, 634–635

1140	 INITCAP function  –  jobs

INITCAP function, 98
initialization-parameter files

default, 484–485
exam essentials, 504–505
managing, 479–483
modifying, 485–490
review questions, 506–509
summary, 503–504
template definitions, 451

Initialization Parameters screen, 462
Character Sets tab, 464–465, 465
Connection Mode tab, 465–467, 466
EM Database Express, 485–486, 486
Memory tab, 462–464, 462–463
Sizing tab, 464, 464

INITIALLY DEFERRED clause, 369–370
INITIALLY IMMEDIATE clause, 369
INITRANS parameter, 515
inline views, 252
inner joins, 229

ANSI syntax, 232
complex, 230
JOIN...ON syntax, 235–236
JOIN...USING syntax, 234–235
multiple columns, 236–238
multitable, 236
natural, 232–234
simple, 229
table aliases, 230–231

input
runtime, 72–77
SQL buffer, 24

INPUT command, 24
INSERT_FINDING_DIRECTIVE procedure, 790
INSERT privilege, 688, 690
INSERT_SEGMENT_DIRECTIVE procedure, 790
INSERT_SQL_DIRECTIVE procedure, 790
INSERT statement, 283–285

multiple tables, 287–289
SQL*Loader, 1043
subqueries, 268–269, 285–286

INSERT TABLE statement, 721
Install Database Software Only option, 442–443
installing Grid Infrastructure, 1051–1052

standalone servers, 1054–1061, 1055–1060
storage preparation for, 1052–1054

INSTANCE_NAME parameter, 634, 645
INSTANCE_NUMBER parameter, 481
instances, 391–392, 392

exam essentials, 504–505
failure occurrences, 867–868
failure recovery, 868–873, 872
Oracle Database 12c, 9
overview, 396, 397
recovery, 574, 574
review questions, 506–509
shutting down, 495–497

starting up, 491–494, 868–870
summary, 503–504

INSTR function, 98–99
INSTRB function, 99
integer literals, 44
integrity constraints, 361
interactive SQL statements, 72–77
internals in unified auditing, 744–745
Internet, 606
INTERSECT operator, 250
INTERVAL DAY TO SECOND datatype,

333–334, 336
interval literals, 45
INTERVAL YEAR TO MONTH datatype, 333
INTO clause

INSERT, 287
MERGE, 297

INTO TABLE clause, 1042
inventory in software installation, 435–436
invisible columns, 356–357
invoking DBCA, 447–449, 448
IOTs (index-organized tables), 387
IP-filtering firewalls, 612
IS NOT NULL operator, 60–61
IS NULL operator, 60–61
isolation in ACID properties, 571

J
J format, 149
Java applications, 608
Java Database Connectivity (JDBC) drivers,

608, 608
Java objects

description, 323, 387
privileges, 690

JAVA_POOL_SIZE parameter, 403
Java pools, 398, 403
JDBC (Java Database Connectivity) drivers,

608, 608
Jnnn process, 405
Job Classes object, 934
Job Coordinator process, 930
Job Queue process, 405
Job Queue Monitor process, 405
job scheduler, 694
jobs

chains, 943–947
classes, 939–940
monitoring, 942, 942–943
prioritizing, 948–950
remote systems, 947–948
role separation, 436–437
states, 932–933
working with, 937–939, 940

	 Jobs object  –  LOG_CHECKPOINT_INTERVAL parameter	 1141

Jobs object, 933–934
JOIN...ON syntax, 235–236
JOIN...USING syntax, 234–235
joins, 229

Cartesian, 239–240
exam essentials, 270
inner. See inner joins
nonequality, 246–247
outer, 240–245
review questions, 271–280
self-joins, 245–246
summary, 269–270

Julian dates, 334

K
KEEP cache, 401
KEEP function, 199–200
KEEP pool, 401
keys

constraints, 364–366, 385–386
foreign, 8
primary, 7–8

KILL_JOB parameter
expdp, 1019
impdp, 1022
purpose, 1029

Kyte, Tom, 662

L
L code in number conversions, 146
languages in Grid Infrastructure, 1055
large object datatypes, 38
LARGE_POOL_SIZE parameter, 402
large pools, 398, 402, 652
largest integer function, 113
LAST_DAY function, 127
$LD_LIBRARY_PATH variable, 440, 976
LDAP (Lightweight Directory Access Protocol), 609
LDAP_DIRECTORY_SYSAUTH parameter, 481
LEADING trimming value, 106
LEAST function, 158–159
least recently used algorithm (LRU algorithm),

400–401
left outer joins, 243–244
LENGTH function, 99
length of strings, 99
LENGTHB function, 99
less than operators, 53
less than signs (<)

inequality operator, 52
less than operators, 53

LGWR process, 401, 404, 409–410, 418–420,
833, 835, 840

library caches, 401
Lightweight Directory Access Protocol (LDAP), 609
LIKE operator, 61–62
limiting rows, 51, 65–68
links, database, 322–323, 387, 666–668
LIST command, 23
LIST FAILURE command, 888–889
LISTAGG function, 190–191
LISTENER attribute, 654
LISTENER listener, 620
listener.ora file, 614, 624–626
LISTENER parameter, 624
Listener Registration process, 404
listeners, 614

connection requests, 614–618, 615–618
managing, 618–619, 619

listener.ora parameters, 624–626
lsnrctl, 626–634
Oracle Net Manager, 619–626, 619,

621, 623
Oracle Restart, 1069–1070
Oracle Shared Server, 652–653

listing listeners, 631
literals, 43–45
LN function, 113
load balancing, 652
LOAD DATA command, 1042–1043
loading data, 1039–1045
LOB structures, 151
LOCAL_LISTENER parameter, 634
local naming method, 641–646, 642–644
%LOCAL% variable, 440
locales, 465
locally managed tablespaces, 519, 548–549,

548–549
LOCALTIMESTAMP function, 122–123
LOCATION parameter, 1047
location transparency, 609
LOCK TABLE statement, 305, 587, 589, 721
lock time for passwords, 716
locking user accounts, 685
locks, 585–587

conflicts, 590–594, 591–593
data concurrency, 586–587
modes, 588–590
transaction control, 305–306

LOG_ARCHIVE_DEST_n parameter, 481,
840–842, 845

LOG_ARCHIVE_DEST_STATE_ parameter, 481
LOG_ARCHIVE_FORMAT parameter, 842–843
LOG_ARCHIVE_MIN_SUCCEED_DEST

parameter, 842
LOG_BUFFER parameter, 401
LOG_CHECKPOINT_INTERVAL parameter,

871, 873

1142	 LOG_CHECKPOINT_TIMEOUT parameter  –  MERGE statement

LOG_CHECKPOINT_TIMEOUT parameter,
871, 873

log_directory command, 632
log_file command, 632
LOG_FILE parameter, 625
log files and logging

alerts
monitoring, 497–501
for performance, 807
viewing, 803–806, 806

archive, 457
Data Pump, 1013
listener.ora, 625, 632
Oracle Net servers, 635–636
redo. See redo log files
SQL*Loader, 1039

LOG function, 113
log sequence numbers, 834
log_status command, 632
log switch operations, 834–835
Log Writer process, 404, 409–410
logarithms, 113
LOGGING clause for tablespaces, 523
logging during imports, 1025
logical database structure, 421–424, 422
logical models in RDBMSs, 5–7, 6–7
logical operators, 56–58
LOGICAL_READS_PER_CALL resource, 712–713
LOGICAL_READS_PER_SESSION resource, 713
logical storage, 512–516, 513, 515
LogMiner tool, 880–881
long and raw datatypes, 38, 327–328, 337
LONG datatype, 327–328
LONG RAW datatype, 337
LOWER function, 99–100
lowercase functions, 99–100
LREG process, 404
LRU algorithm (least recently used algorithm),

400–401
lsnrctl interface for listeners, 626–627

command summary, 631–632
dispatcher, 658–659
listing, 631
reloading, 629
starting, 628–629
status, 630–631
stopping, 633–634

LTRIM function, 100–101

M
MAA (Maximum Availability Architecture)

advisor, 795
maintenance

catalog, 863
database. See database maintenance

Manage Current Backups screen, 862, 862
Manage Optimizer Statistics screen, 759–760, 760
Manage Pluggable Databases option, 448
Manage Templates option, 448
manageability of networks, 608–609
Management Agent, 453
Management Options screen, 453, 453, 979, 980
Manual Actions screen, 887, 887
manual Oracle Shared Server connections, 660
Manual Shared Memory Management option,

463, 463
manual upgrades, 987–991
many-to-many relationships, 7, 7
mapping rules and priorities, 913–915
master control process (MCP) in Data Pump,

1010–1011
materialized views

description, 387
uses, 322

MAX_DISPATCHERS parameter, 655–656
MAX_ENABLED_ROLES parameter, 702
MAX function, 186–187, 217
MAX_SHARED_SERVERS parameter, 657–658
MAXDATAFILES clause, 547
Maximum Availability Architecture (MAA)

advisor, 795
MAXLOGFILES clause, 833, 836
MAXLOGMEMBERS clause, 836
MCP (master control process) in Data Pump,

1010–1011
mean time between failures (MTBF), 826
mean time to recovery (MTTR), 826
media failures, 868
MEDIAN function, 188–189
members in redo log groups, 837–839
memory

advisors, 794
AMM, 815–817
ASMM, 813–815
Automatic SQL Execution Memory

Management, 815
components, 812–813
EM Cloud Control, 817–818, 817–818
initialization parameters, 462–464, 462–463
requirements, 434
structures, 396–403, 400

Memory Advisors screen, 817–818, 817
Memory Components screen, 818, 818
Memory Distribution screen, 462–463,

462–463
Memory Manager process, 404, 406
MEMORY_MAX_TARGET parameter, 398, 815
Memory Monitor (MMON) process, 404, 775
Memory Monitor Light (MMNL) process,

404, 775
Memory tab, 462–464, 462–463
MEMORY_TARGET parameter, 815–816
MERGE statement, 297–299

	 metadata  –  NANVL function	 1143

metadata, 475–476
data dictionary views, 476–477, 477
dynamic performance views, 477–479
exam essentials, 504–505
filters, 1027–1029
review questions, 506–509
summary, 503–504

METHOD_OPT parameter, 759, 765, 770
Metric and Collections Settings screen, 799, 800
metrics, performance, 811
MI code in number conversions, 146
middle-tier solutions, 609
middleware components, 606
migration

disk groups, 1064–1065
to Oracle Database 12c, 961–963
to Unified Auditing, 994–995
vs. upgrades, 958–959

MIN function, 187–188, 217
MINIMUM EXTENT clause, 523
MINUS operator, 250
minus signs (-)

dates, 334–335
subtraction, 42–43

missing rows, 875
MMAN process, 406
MMNL (Memory Monitor Light) process,

404, 775
MMON (Memory Monitor) process, 775
MOD function, 114–115
MODIFY clause, 353
modify command in srvctl, 1071, 1073
modulo function, 114
monitoring

alert log, 497–501
databases. See database maintenance
jobs, 942, 942–943
Resource Manager, 927–929, 929
server-generated alerts, 798–801, 799–800
tablespace free space, 551–554, 552–554
undo tablespace, 581–584, 582–584

months
adding, 123–124
between dates, 127
last day function, 127

MONTHS_BETWEEN function, 127
more than operators, 53
MOS (My Oracle Support) location, 433
MOUNT mode, 491, 881
mount point names, 437
MOUNT state, 494, 869
Move Database Files screen, 979, 981
MOVE DATAFILE clause, 536–538
moving data

data files, 540
Data Pump. See Data Pump facility

exam essentials, 1077
populating external tables, 1046–1049
review questions, 1078–1082
SQL*Loader, 1039–1045
summary, 1076–1077
SYS.AUD$ table, 730
tablespaces, 538–539
tools overview, 1006–1008, 1007

MTBF (mean time between failures), 826
MTTR (mean time to recovery), 826
MTTR Advisor, 795
multiple-column subqueries, 267
multiple operating systems, 608
multiple-row subqueries, 254–256
multiple-table queries, 228

joins. See joins
set operators, 247–252

multiple tables, inserting rows into, 287–289
Multiplex Redo Logs option, 457
multiplexing

Connection Manager, 610
control files, 829–831
redo log files, 835–839

multiplication, 42
multiprotocol support, 608
multitable joins, 236
multitenancy, 393, 393
multitenant architecture, 12–13, 12
multitenant databases, 12
My Oracle Support (MOS) location, 433

N
n-tier architecture, 606–607, 607
names

aliases, 48–49, 230–231
client-side resolution, 637–639
columns, 48–49, 339–340, 354
constraints, 362
data files, 536–538
directories, 609
disk groups, 1055
log members, 837–838
tables, 230–231, 339–340
tablespaces, 514
volumes and mount points, 437

NAMES.DEFAULT_DOMAIN parameter, 647
NAMES.DIRECTORY_PATH parameter,

639–640, 647
namespaces

objects, 323–324
USERENV, 161–165

NaN function, 114
NANVL function, 114

1144	 national-language support (NLS)  –  Objects screen

national-language support (NLS), 119
natural joins, 232–234
natural logarithms, 113
NCHAR datatype, 327
NCLOB datatype, 328
nesting

functions, 91, 215–217
subqueries, 252

Net Manager. See Oracle Net Manager
Net Service Name wizard, 641–643, 642–643
Network Configuration screen, 454, 455, 979, 981
NETWORK_LINK parameter, 1026
network-mode imports, 1026–1027
networks

accessibility, 613
architectures, 604–607, 605–607
connectivity, 608, 608
database communication, 666–668
DRCP, 661–666, 664
exam essentials, 670–671
failures, 866
file locations, 647
manageability, 608–609
Oracle Net. See Oracle Net
Oracle Shared Server. See Oracle

Shared Server
protocol selection, 642, 642
review questions, 672–675
scalability, 609–610
security, 611–613
settings, 454, 455
summary, 669
tnsnames.ora file, 644–646

NEW_TIME function, 127–128
NEXT_DAY function, 129
NEXT keyword, 67
NLS (national-language support), 119
NLS_DATE_FORMAT parameter, 119, 121
NLS_DATE_LANGUAGE specification, 141
NLS_LANGUAGE parameter, 481
NLS_TERRITORY parameter, 481
NLS_TIMESTAMP_TZ_FORMAT

parameter, 122
NO_INVALIDATE parameter, 759, 764
NOARCHIVELOG mode, 840

non-system-critical data file recovery in, 887
system-critical data file recovery in, 892

NOAUDIT statement, 723, 725
NOAUDIT POLICY statement, 740
NOCOMPRESS option, 550
NOLOGGING parameter, 523
NOMOUNT mode, 491, 881
NOMOUNT state, 494, 869
non-system-critical data file recovery, 886–892,

887–888
nonequality joins, 246–247
nonseed templates, 474

nonstandard block sizes, 524–526
NORMAL tablespace option, 529
NOT EXISTS statement, 721
NOT operator, 56–59
NOT IN operator, 58–59, 258
NOT NULL constraint, 343, 346, 353, 362–363
NOVALIDATE keyword, 368–369
NOWAIT mode, 589
NULL values, 91

aggregate functions, 176
COALESCE function, 93–94
columns, 341–343
concatenation, 43
NOT NULL constraint, 343, 346, 353,

362–363
NVL function, 91–92
NVL2 function, 92–93
operators, 60–61
SELECT, 67
sorting, 64–65
subqueries, 256–258

NULLIF function, 154, 159
NULLS FIRST keywords, 64
NULLS LAST keywords, 64
NUMBER datatype, 39–41, 329
number signs (#) in identifier names, 339
numbers

conversion functions, 137–140, 145–147,
149–151

literals, 44–45
single-row functions, 108–109

numeric datatypes, 38–41, 329–330
NUMTODSINTERVAL function, 137, 335
NUMTOYMINTERVAL function, 137–138
NVARCHAR2 datatype, 328
NVL function, 91–92
NVL2 function, 92–93

O
Object Level Statistics Gathering Preferences

screen, 765–766, 766
objects

auditing, 725–727
commonly-used, 386–388
information about, 21–22
namespaces, 323–324
overview, 320–322, 321
privileges, 688–690
Scheduler, 933–934
schemas, 322–323
sequences, 324–325

Objects screen
statistics, 761, 761
undo tablespace, 584

	 OFA (Optimal Flexible Architecture) model  –  Oracle Net	 1145

OFA (Optimal Flexible Architecture) model
directory paths, 437–440
file system storage, 456
installation process, 434–435

offline backups, 849
OFFLINE clause

data files, 536
tablespaces, 524

offline data files, 536–538
offline tablespaces, 529–530
OFFSET clause, 67–68
offsets, time zone, 130–131, 331
OHAS (Oracle High Availability Service), 1068
OID (Oracle Internet Directory), 609, 638
OLTP Table Compression, 550
ON clause for joins, 235–236
ON COMMIT clause, 341
ON DELETE clause, 366
one-to-many relationships, 6–7, 7
one-to-one relationships, 6, 7
online backups, 849
ONLINE clause

data files, 536
tablespaces, 524

online data files, 536–537
online redo log files, 839
online tablespaces, 529–530
ONLY keyword, 67
OPEN_CURSORS parameter, 481
OPEN mode, 492
OPEN procedure, 1011
OPEN state for instances, 869
operating systems

multiple, 608
user accounts, 435

Operation screen, 448–449, 448, 472–474
Operator job role, 436
operators

comparison, 52–54
logical, 56–58
miscellaneous, 58–62
precedence, 43
set, 247–250

OPS$ accounts, 680
Optimal Flexible Architecture (OFA) model

directory paths, 437–440
file system storage, 456
installation process, 434–435

optimizer statistics, 755–756
collecting, 756–760, 760
extended, 770–772
pending, 767–768
preferences, 760–767, 761–763, 765–766

optional components, 458–459
OPTIONS parameter, 759
OR operator, 57–58

ORA-01555: Snapshot too old error, 583
ORA_ACCOUNT_MGMT policy, 740, 994
ORA_DATABASE_PARAMETER policy,

740, 994
ORA_HASH function, 160–161
ORA_ROWSCN pseudocolumn, 139
ORA_SECURECONFIG policy, 740, 994
Oracle Application Express component, 459
Oracle ASM Administrator (OSASM) group, 1057
Oracle ASM DBA (OSDBA) group, 436–437, 1057
ORACLE_BASE parameter, 457, 500
$ORACLE_BASE variable, 438, 445
%ORACLE_BASE% variable, 438–440
Oracle Data Guard, 962
Oracle Database 12c overview

architecture. See architecture, database
cloud, 18–19
connections, 13–14
exam essentials, 425
fundamentals, 18, 385–390, 386, 388–390
implementation, 9–13, 10–12
migration to, 961–963
RDBMSs. See RDBMSs (relational database

management systems)
review questions, 426–430
software installation. See software installation
SQL*Plus, 19–30
summary, 424
tools, 14–18, 15–17

Oracle Database Vault component, 459
ORACLE_DATAPUMP access driver, 1046–1048
Oracle Enterprise Manager. See

Enterprise Manager
Oracle flash recovery option, 457
Oracle Golden Gate, 962
Oracle High Availability Service (OHAS), 1068
ORACLE_HOME parameter, 624
$ORACLE_HOME variable, 438, 445
%ORACLE_HOME% variable, 438–439
ORACLE_HOME_PATH variable, 976
Oracle Internet Directory (OID), 609, 638
Oracle JVM component, 459
Oracle Label Security component, 459
ORACLE_LOADER access driver, 1048–1049
Oracle Managed Files (OMF) feature

ASM storage, 1066–1067
benefits, 539–540
database creation, 541–542
default file size, 542–543
enabling, 540–541
tablespaces, 518, 542–544

Oracle Multimedia component, 459
Oracle Net, 613

client configuration. See client configuration
dynamically registering services, 634–635
file type, 411

1146	 Oracle Net Manager  –  passwords

listeners. See listeners
logging and tracing, 635–637

Oracle Net Manager
dedicated connections, 660
Easy Connect configuration, 640
listeners, 619, 619

configuring, 619–622
creating, 620–622, 621
service name information, 622–624, 623

local naming method, 641–644, 642–643
Oracle OLAP component, 459
Oracle Restart, 1050

component registration, 1068–1069
ASM instances, 1070–1071
database instances, 1072–1073
environment variable settings, 1073–1074
listeners, 1069–1070

overview, 1068
starting and stopping, 1074–1076

Oracle scheduler. See Scheduler
Oracle Shared Server, 610, 648

advantages and disadvantages, 650–651
connection methods, 615–616, 615–616
dedicated connections, 660
dedicated servers vs. shared servers,

648–649, 650
information about, 658–660
infrastructure, 651–652
listener role, 652–653
parameters, 653–658
PGA and SGA changes, 652

Oracle SID, 452
%ORACLE_SID% variable, 440
$ORACLE_SID variable, 440
Oracle Spatial component, 459
Oracle Text component, 459
Oracle Universal Installer (OUI), 432, 440–441

copying and compiling files, 446–447
preinstallation checks, 441, 441–442
prompts, 442–445, 443–446
starting, 441
system check by, 434

OracleService service, 410
orainstRoot.sh script, 446
ORDBMSs, 8–9
ORDER BY clause

scalar subqueries in, 261–262
SELECT, 65–68
sorting rows, 62–64

order of precedence, 43
ORGANIZATION EXTERNAL clause, 1047
OS_AUTHENT_PREFIX parameter, 680
OS DBA job role, 436
OSASM (Oracle ASM Administrator) group, 1057
OSDBA (Oracle ASM DBA) group, 436–437, 1057
OTHER_GROUPS group, 913

OUI. See Oracle Universal Installer (OUI)
out-of-space errors, 559–562
outer joins, 240–243

ANSI syntax, 243–245
full, 244–245
left, 243–244
right, 244

overhead in data blocks, 514
OWNNAME parameter, 759

P
packages, 323, 387
PARALLEL command

expdp, 1019
impdp, 1023

PARALLEL_DEGREE_LIMIT directive, 910
parallel execution servers, 910
PARALLEL parameter

Data Pump clients, 1029
tables, 1046–1047

parallel query (PQ) processes, 1010
Parallel Query Slave process, 405
PARALLEL_QUEUE_TIMEOUT directive, 910
PARALLEL_SERVER_LIMIT directive, 910
Parallelism parameter, 854
parameter files, 411
parameters, initialization. See initialization-

parameter files
parent tables, 386
parent-to-child relationships in plans and

subplans, 908
parentheses ()

column definitions, 338
operator precedence, 43
outer joins, 240–243

PARFILE parameter, 1019
parsing filenames, 104–105
partial backups, 848
partial rollbacks, 302–303, 302
PASSWORD EXPIRE option, 684, 687
password files, 411
PASSWORD_GRACE_TIME parameter, 715
PASSWORD_LIFE_TIME parameter, 715
PASSWORD_LOCK_TIME parameter, 714–715
PASSWORD_REUSE_MAX parameter, 715–716
PASSWORD_REUSE_TIME parameter, 715–716
PASSWORD_VERIFY_FUNCTION parameter,

716–717
passwords

corporations, 717–718
expiring, 684, 687
Grid Infrastructure, 1057
implementing, 714–718

	 PASSWORDS parameter  –  precision	 1147

listeners, 625
lock time, 716
roles, 704
SQL*Plus, 16, 16
user accounts, 679–680

PASSWORDS parameter, 625
Patch Set Update (PSU), 974
$PATH variable, 440
%PATH% variable, 440
paths for OFA directory, 437–440
pattern matching, 61–62
PCTFREE parameter

block storage, 515, 520
segments, 520

PCTUSED parameter
block storage, 515, 520
segments, 520

pending area in Resource Manager, 918–919
pending statistics, 767–768
PER INSTANCE auditing option, 738
PER SESSION auditing option, 738
PER STATEMENT auditing option, 738
PERCENT keyword, 68
PERCENT_RANK function, 200–201
percent signs (%) in pattern matching, 61
PERCENTILE_CONT function, 201–203
PERCENTILE_DISC function, 203–204
Perform Prerequisite Checks screen, 445, 446,

1057, 1058
Perform Recovery screen, 879, 879, 883, 883, 888
performance, 806

alert logs for, 807
data dictionary views, 810–811
dynamic performance views, 809–810
exam essentials, 820
memory. See memory
metrics, 811
review questions, 821–824
summary, 819–820
trace files for, 807–809, 808

Performance Home screen, 785–790, 786
performance statistics, 775

ADDM, 782–784
EM Cloud Control, 784–790, 785–786
real-time, 792, 793
views, 790–792

ASH, 779–780, 779
AWR, 775–778, 777
AWR baselines, 780–782, 782

Personal Edition installation type, 445
pfiles (plain text files), 479–480, 993
PGA (program global area)

allocation, 462–463, 463
managing, 815
Oracle Shared Server changes, 652
purpose, 395–396, 395
tuning, 812–813

PGA_AGGREGATE_TARGET parameter, 396,
481, 815

physical model of RDBMSs, 7
physical storage, 512–516, 513, 515
ping utility, 639
pinned buffers, 399
PL/SQL programs, 323, 389, 402
plain text files (pfiles), 479–480, 993
plans and plan directives in Resource Manager,

907–908, 908
pluggable databases, 12–14, 393
plus signs (+)

addition, 42
dates, 334–335
disk groups, 1066
outer joins, 240–243

PMON process, 404, 410, 575
policies

FGA, 732–734
unified auditing

creating, 736–739
enabling and disabling, 739–740
querying, 740–742

POOL attribute, 654
pooled servers. See Database Configuration

Assistant (DBCA)
pools

connections, 618, 618
dispatchers, 654
DRCP, 661–666, 664
Java, 403
large, 402
SGA, 396
shared, 401–402
streams, 398, 403

populating external tables, 1046–1049
PORT parameter

listener.ora, 624
tnsnames.ora, 645

ports
listeners, 621, 624, 645
local naming method, 642, 642

positional notation for variables, 77
Post-Upgrade Status tool, 961, 991–993
post-upgrade tasks, 991–994
postupgrade_fixups.sql script, 971
POWER function, 114
PQ (parallel query) processes, 1010
PR code in number conversions, 146
Pre Requisite Checks screen, 469, 469
Pre-Upgrade Information tool, 960, 964–974, 988
pre-upgrade tasks, 987–988
Pre-Upgrade Utility Checks option, 978
precedence of operators, 43
precision

interval values, 333
numbers, 39–41

1148	 predefined templates  –  quotas

predefined templates, 456
Prerequisite Check screen, 978, 979
preupgrade_fixups.sql script, 970
preupgrd.sql script, 964, 988
primary key constraints, 364–365
primary keys, 7–8, 385
principle of least privilege, 705–707
print_table procedure, 662
priorities

failures, 886
jobs, 948–950
mapping, 913–915

private database links, 666
PRIVATE_SGA resource, 713
Private SQL area, 396
Privileged Operating System Groups screen, 445,

445, 1057, 1057
privileges

administrative, 698–699
auditing, 724–725
Data Pump, 1013
databases, 693
debugging-oriented, 693
granting, 687–688, 690–692, 691,

699–701, 700
indexes, 693
job scheduler, 694
principle of least privilege, 705–707
procedures, 694
profiles, 694
Resource Manager, 911–913
revoking, 691–692, 691, 700, 700
roles, 694–695, 701–705
Scheduler, 931–932
sequences, 690, 695
session-oriented, 695
stored packages, 690
synonyms, 696
system, 692–701, 700
tables, 688–690, 696
tablespaces, 696–697
triggers, 697
unused, 707–711
user accounts, 697
views, 689–690, 698

proactive monitoring, 755
proactive space management, 553–554, 554
PROCEDURE statement, 721
procedures, 323

external, 613
privileges, 694
stored, 387

Process Monitor process, 404, 410
processes

background, 403–410
Data Pump, 1010–1011

maximum number of, 464
Shared Server, 649
user and server, 394–396, 395, 865–866

PROCESSES parameter, 481
Processes setting, 464
Product Languages screen, 1055
PROFILE statement, 721
profiles

privileges, 694
resources, 711
SQL, 773
user accounts, 684–685, 685

program global area. See PGA (program global area)
program name, retrieving, 71–72
Programs object in Scheduler, 934
Progress screen, 982–983, 984
Progress Page screen, 470, 471
prompts

OUI, 442–445, 443–446
SQL*Plus, 17–18, 20

PROTOCOL attribute for dispatchers, 654
PROTOCOL parameter

listener.ora, 624
tnsnames.ora, 645

proxy-based firewalls, 612
ps command, 406
PSU (Patch Set Update), 974
public database links, 666
PUBLIC user, privileges for, 706
PUBLISH parameter, 765
PUBLISH_PENDING_STATS procedure, 768
PURGE DBA_RECYCEBIN privilege, 699
purging

audit trails, 729–731
unified auditing records, 742–744

Q
QMNn process, 405
Qnnn process, 405
queries

aggregate functions in, 192–194
audit policies, 740–742
compound, 247–252
flashback, 873–875
and locks, 586
multiple-table. See joins
saving results, 28
SELECT statement. See SELECT statement
writing, 46

Queue Monitor process, 405
queues, response, 649, 650
QUIT command in lsnrctl, 631
quotas, 682–683

	 RAC (Real Application Clusters)  –  registering services	 1149

R
RAC (Real Application Clusters), 10, 391

components, 420
Grid Infrastructure, 1050, 1055
in installation, 444
listeners, 652

rank functions
DENSE_RANK, 197–198
PERCENT_RANK, 200–201
RANK, 204–205

RAW datatype, 337
rawmode command, 633
RAWTOHEX function, 138
RBAL process, 405
RDBMSs (relational database management

systems), 228, 385
characteristics, 5
implementation, 8–9
logical model, 5–7, 6–7
overview, 4–5
physical model, 7

reactive monitoring, 754–755
read consistency, 304, 575–576
READ ONLY clause

tables, 358
tablespaces, 530

READ_ONLY_OPEN_DELAYED parameter, 530
read-only tables, 358–359
read-only tablespaces, 530
Real Application Clusters (RAC), 10, 391

components, 420
Grid Infrastructure, 1050, 1055
in installation, 444
listeners, 652

real-time ADDM, 792, 793
rebalancing disk groups, 1065
RECO process, 404
Recommendation Details screen, 555, 555
records, purging, 742–744
RECOVER TABLE command, 893
Recoverer process, 404
recovering databases, 864–865

control file loss, 881–883
database failure categories, 864–868
DRA, 883–884, 883–884
exam essentials, 895–896
instance failures, 868–873, 872
non-system-critical data files, 886–892,

887–888
redo log file failures, 884–886
review questions, 897–901
RMAN, 893–894
summary, 894–895
system-critical data files, 892–893
user errors. See user errors, recovering from

Recovery Advice screen, 887–888, 888
recovery components, 827

backups. See backups
checkpoints, 831–832
control files, 827–831
redo log files. See redo log files

recovery instances, 574, 574
Recovery Manager (RMAN)

backups, 852–853
control files, 829, 851
in Flash Recovery Area, 457, 845
full and incremental, 857–861, 858,

860–861
image copies and backup sets, 857
settings, 853–857, 853–855

non-system-critical data file recovery,
887–892, 887–888

table recovery, 893–894
user accounts, 687

Recovery Options screen, 980–982, 982
Recovery Related files settings, 457
Recovery Settings screen, 846–847, 847, 872, 872
Recovery Writer process, 405–406
recycle bin, 876

considerations and limitations, 877–878
dropped table retrieval from, 876–877

RECYCLE cache, 401
RECYCLEBIN command, 877
redirect connection method, 615–617, 616–617
redo

instance recovery, 574, 574
vs. undo, 572–576, 574

redo entries, 401
redo log files, 411, 417–420, 418–419, 832

architecture, 832–834
archived. See archived redo log files
buffers, 396, 401, 409
cache recovery, 574, 574
changes, 571
failure recovery, 884–886
groups and group members, 417, 451, 836–837
log switch operations, 834–835
members, 837–839
multiplexing, 835–839
troubleshooting, 836

Redo Log Groups screen, 837, 886
redundancy in disk groups, 1055, 1062–1063
REFERENCES privilege, 688, 690
referential integrity, 8
registering components in Oracle Restart,

1068–1069
ASM instances, 1070–1071
database instances, 1072–1073
environment variable settings, 1073–1074
listeners, 1069–1070

registering services, 634–635

1150	 relational database management systems (RDBMSs)  –  roles

relational database management systems
(RDBMSs), 228, 385

characteristics, 5
implementation, 8–9
logical model, 5–7, 6–7
overview, 4–5
physical model, 7

relational databases, 385–386, 386
relationships in ER model, 5–6
release numbers, 960
reload command, 629
reloading listeners, 629
REMAINDER function, 115
remainder functions, 114–115
REMAP_DATAFILES parameter, 1024
REMAP_SCHEMA parameter, 1024
REMAP_TABLE parameter, 1024
REMAP_TABLESPACE parameter, 1024
REMARKS command, 28
Remote job state, 932
REMOTE_LISTENER parameter, 481
REMOTE_LOGIN_PASSWORDFILE

parameter, 481
REMOTE_OS_AUTHENT parameter, 707
remote systems for jobs, 947–948
remove command in srvctl, 1069, 1071
REMOVE_GROUP_MEMBER procedure, 941
removing registrations, 1069–1071
RENAME COLUMN clause, 354
RENAME DATAFILE clause, 536
RENAME FILE clause, 536
RENAME statement, 357–358
RENAME TO clause, 358
renaming

columns, 354
data files, 536–538
log members, 837–838
tables, 357–358

REPAIR FAILURE command, 890–891
repeating baselines, 780
REPLACE command, 25
REPLACE function, 101–102
replacing

characters in strings, 103–105
strings, 101–102

reports
backups, 863–864
FGA audit trail entries, 734

RESIZE clause for data files, 536
Resource Manager

administrative privileges, 911–913
allocation types, 908–910, 909
components overview, 905
consumer groups

creating, 919–921
initial, 913
plans, 905–907, 906–907

switching, 915–916
updating and deleting, 926–927

description, 904
directives

implementing, 921–924, 922
updating and deleting, 924–925

exam essentials, 951
functions, 904–905
mapping rules and priorities, 913–915
monitoring, 927–929, 929
pending area, 918–919
plans, subplans, and plan directives,

907–908, 908
resource plans

complex, 921
simple, 916–918
updating and deleting, 926

review questions, 952–955
summary, 951

Resource Manager Statistics screen, 929, 929
RESOURCE role, 704
resource usage control, 711–718
response queues, 649, 650
response time, 811
Restore Database option, 984
RESTORE_DEFAULTS procedure, 663
RESTRICT mode, 492
result caches, 398, 402
resumable space allocation, 560–561
RESUMABLE_TIMEOUT parameter, 560–561
RETENTION GUARANTEE setting, 527, 576,

579–580, 583
RETENTION NOGUARANTEE setting, 527
Retry Scheduled job state, 932
REUSE option for redo log files, 837
Revalidate option in upgrades, 978
REVOKE_SWITCH_CONSUMER_GROUP

procedure, 911
REVOKE_SYSTEM_PRIVILEGE

procedure, 911
revoking privileges, 691–692, 691, 700, 700
right outer joins, 244
RMAN. See Recovery Manager (RMAN)
RMAN CONVERT command, 1038
rn code in number conversions, 146
RN code in number conversions, 146
Role Audit option, 736
role privileges, 687
ROLE statement auditing option, 722
roles

creating and managing, 701
database, 704–705
default, 703–705
disabling, 703
enabling, 702
password-protected, 704
privileges, 694–695, 701–705

	 ROLLBACK statement  –  SEC_CASE_SENSITIVE_LOGON parameter	 1151

ROLLBACK statement, 300–303, 571, 593
ROLLBACK TO SAVEPOINT statement, 300–303
rollbacks

segments, 304–305
transaction control, 302–303, 302, 573

ROLLUP function, 213
ROLLUP modifier, 208–211
Root Script Execution Configuration screen, 1057
root.sh script, 446–447
roothas.pl script, 1055
ROUND function

dates, 129
numbers, 116

round-robin queues, 916
ROW EXCLUSIVE lock mode, 588
ROW keyword, 67
ROW MOVEMENT option, 556
ROW SHARE lock mode, 588
ROWID datatype, 38, 337–338

conversions, 136
UROWID, 338

ROWIDTOCHAR function, 138
rows

caches, 402
data blocks, 514
deleting, 294–296
inserting. See INSERT statement
limiting, 51, 65–68
RDBMSs, 8
sorting, 62–64

ROWS keyword, 67
RPAD function, 102
RTRIM function, 102–103
rules, mapping, 913–915
RUN command, 22, 47
RUN_CHAIN procedure, 944, 946
RUN_JOB procedure, 938
runaway queries, 910
runInstaller command, 441, 441, 1055
Running job state, 932
Running the Segment Advisor task, 773
Running the SQL Advisor task, 773
runtime input, 72–77
RVWR process, 405–406

S
S code in number conversions, 146
sample schemas, 460–461, 461
Save as a Database Template option, 467
SAVE command, 25
save_config command, 631
save_config_on_stop command for lsnrctl, 633

SAVE_CONFIG_ON_STOP parameter for
listener.ora, 625

savepoints, 302–303, 302
saving

query results, 28
variables, 75–76

scalability
networks, 609–610
performance, 811

scalar subqueries, 252, 259–262
scale digits, 39–41
Schedule Customized Backup screen, 859–861,

860–861
Scheduled job state, 932
Scheduler

architecture, 930–931, 931
description, 930
exam essentials, 951
groups, 940–941
jobs

chains, 943–947
classes, 939–940
monitoring, 942, 942–943
prioritizing, 948–950
remote systems, 947–948
states, 932–933
working with, 937–939, 940

objects, 933–934
privileges, 931–932
review questions, 952–955
schedules, 934–935
summary, 951

Scheduler Jobs screen, 939, 940
Schedules object, 934
SCHEMA_EXPORT_OBJECTS view, 1028
Schema mode in Data Pump, 1015
schema objects, 14, 359–361, 422

constraints. See constraints
indexes. See indexes
objects, 322–323
overview, 394
sample, 460–461, 461
sequences. See sequences
tables. See tables
views. See views

SCN_TO_TIMESTAMP function, 138–139
SCNs (system change numbers)

checkpoints, 831–832
conversions, 138–139
transaction control, 305

SCOPE clause, 488–489
script files, 25

comments, 28–29
custom, 460–461, 461

searching in strings, 98–99
SEC_CASE_SENSITIVE_LOGON parameter, 680

1152	 security  –  SET_JOB_ARGUMENT_VALUE procedure

security
auditing. See auditing
exam essentials, 746
networks, 611–613
privileges. See privileges
resource usage control, 711–718
review questions, 747–751
summary, 745–746
user accounts. See user accounts

seed templates, 473
seeds in hash functions, 160
Segment Advisor, 554–559, 555–556, 794
Segment Shrink option, 556
SEGMENT SPACE MANAGEMENT clause,

520–521
SEGMENT SPACE MANAGEMENT AUTO

clause, 547
Segment Space Management option, 549
segments

managing, 520–521
tablespaces, 422, 422, 513, 514

SELECT ANY DICTIONARY privilege, 699
SELECT ANY TABLE privilege, 700, 705
SELECT_CATALOG_ROLE role, 704
Select Database screen, 977–978, 978
Select Database Edition screen, 444, 444
SELECT FOR UPDATE statement, 305
Select Installation Option screen, 443, 443,

1056, 1056
Select Operation screen, 977, 977
SELECT privilege, 688, 690
SELECT statement, 46–48

column alias names, 48–49
comparison operators, 52–54
DUAL table, 50–51
exam essentials, 78–79
expressions, 68–71
GROUP BY clause, 178–182
limiting rows, 51, 65–68
logical operators, 56–58
miscellaneous operators, 58–62
multiple-table queries, 228
review questions, 80–88
scalar subqueries, 260–261
sorting NULLs, 64–65
sorting rows, 62–64
Substitution variables, 73–75
summary, 78
uniqueness, 49–50
user error recovery, 873–874

SELECT SEQUENCE statement, 722
SELECT TABLE statement, 722
self-joins, 245–246
SEQUENCE statement auditing option, 722
sequences

default values, 344–345
defined, 321

description, 387
objects, 324–325
privileges, 690, 695

SERIAL# for sessions, 807–808
Server Control (srvctl) utility, 1068–1073
server-generated alerts, 798–801, 799–800
servers

architecture, 10, 11, 391, 392
connection settings, 465–466, 466
dedicated, 648–649, 650
listeners, 614
logging, 635–636
processes, 394–396, 395
shared

vs. dedicated, 648–649, 650
Oracle. See Oracle Shared Server

tracing, 635–637
SERVICE attribute for dispatchers, 654
service name information for listeners,

622–624, 623
SERVICE_NAME parameter, 645
SERVICE_NAMES parameter, 634
service registration types, 626
services command, 631, 659
SESSION_ROLES view, 702
SESSION statement auditing option, 722
SESSION_TRACE_DISABLE procedure, 807
SESSION_TRACE_ENABLE procedure, 807
sessions

current, 71–72
defined, 488
history information, 779–780, 779
privileges, 695
processes, 394
SQL category, 37
suspended, 561–562

SESSIONS attribute for dispatchers, 654
SESSIONS parameter, 482
SESSIONS_PER_USER resource, 713
SESSIONTIMEZONE function, 129
SET_ATTRIBUTE procedure, 944, 950
SET COLINVISIBLE clause, 356
set commands in lsnrctl, 632–633
SET CONSTRAINTS statement, 300, 369
SET CONSTRAINTS ALL DEFERRED

statement, 370
SET_CONSUMER_GROUP_MAPPING

procedure, 913–914, 920
SET_CONSUMER_GROUP_MAPPING_PRI

procedure, 920
SET_DEFAULT_TASK_PARAMETER

procedure, 785
SET DOCUMENT OFF command, 28
SET_GLOBAL_PREFS procedure, 762–765
SET_JOB_ANYDATA_VALUE procedure, 938
SET_JOB_ARGUMENT_VALUE procedure, 938

	 SET_LAST_ARCHIVE_TIMESTAMP procedure  –  single-row functions	 1153

SET_LAST_ARCHIVE_TIMESTAMP procedure,
730–731

SET NLS_DATE_FORMAT command, 119, 121
set operators, 247–248

INTERSECT, 250
MINUS, 250
UNION, 248–249
UNION ALL, 249
working with, 250–252

SET ROLE statement, 701–703
SET_SCHEDULER_ATTRIBUTE procedure,

935–936
SET_SCHEMA_PREFS procedure, 766
SET SQLPROMPT command, 18, 20
SET_THRESHOLD procedure, 553, 800
SET TIME_ZONE clause, 122–123
SET TRANSACTION statement, 300, 575
SET UNUSED COLUMNS clause, 355
setenv command in srvctl, 1073
severity levels for alerts, 800
SGA (system global area)

allocation, 462–463, 463
components, 396–400, 397, 400
limiting, 713
managing, 815
Oracle Shared Server changes, 652
size, 434
tuning, 812–813

SGA_SIZE parameter, 814
SGA_SIZE_FACTOR parameter, 814
SGA_TARGET parameter, 482, 814
shadow processes

client connections, 648
Data Pump, 1010

SHARE lock mode, 588
share locks, 306, 588
SHARE ROW EXCLUSIVE lock mode, 588
shared memory, 463, 463
shared PL/SQL area, 402
SHARED_POOL_RESERVED_SIZE

parameter, 402
SHARED_POOL_SIZE parameter, 402
shared pools, 396, 399, 401–402
Shared Server Mode, 465
Shared Server process, 405
SHARED_SERVER_SESSIONS parameter, 657
shared servers

vs. dedicated, 648–649, 650
Oracle. See Oracle Shared Server

SHARED_SERVERS parameter, 482, 656–657
shared SQL area, 401–402
SHOW ALERT command, 501, 804–805
SHOW ALL command, 856
show command in lsnrctl, 632
Show Memory Distribution option, 462
SHOW PARAMETER statement, 489–490

SHOW RECYCLEBIN statement, 877
SHOW SGA command, 398
Shrink Segments Options screen, 556, 556
SHRINK SPACE clause, 556–557
shrinking space usage, 556–559, 556
SHUTDOWN statement, 496
SHUTDOWN ABORT statement, 496, 870, 881,

989, 1067
SHUTDOWN IMMEDIATE statement, 495–

496, 852
SHUTDOWN NORMAL statement, 495, 1067
SHUTDOWN state for instances, 869
SHUTDOWN TRANSACTIONAL statement,

495, 852
shutting down instances, 495–497
SID_DESC parameter, 624
SID_LIST_ parameter, 624
SID_NAME parameter, 624
SIDs

listeners, 624
Oracle, 452
sessions, 807–808

SIGN function, 116
silent mode in DBUA, 986–987
simple inner joins, 229
simple resource plans, 916–918
SIN function, 116
single baselines, 780
Single Instance Database Installation option, 444
single quotation marks (') for text literals, 43–44
single-row functions, 90–91

characters
ASCII, 96–97
CHR, 97
CONCAT, 97
INITCAP, 98
INSTR, 98–99
INSTRB, 99
LENGTH and LENGTHB, 99
LOWER, 99–100
LPAD, 100
LTRIM, 100–101
overview, 95–96
REPLACE, 101–102
RPAD, 102
RTRIM, 102–103
SOUNDEX, 103
SUBSTR, 103–105
SUBSTRB, 105
TRANSLATE, 105–106
TRIM, 106–107
UPPER, 107–108

conversion. See conversions
date, 120–131
exam essentials, 168
miscellaneous

1154	 single-row subqueries  –  sqlplus command

BFILENAME, 155
DECODE, 155–156
DUMP, 156–157
EMPTY_BLOB, 157
EMPTY_CLOB, 157
GREATEST, 157–158
LEAST, 158–159
NULLIF, 159
ORA_HASH, 160–161
overview, 154–155
SYS_CONTEXT, 161–165
SYS_GUID, 165
UID, 165–166
USER, 166
USERENV, 166
VSIZE, 166–167

nesting with group functions, 216–217
NULL handling, 91–94
numeric, 108–109
review questions, 169–174
summary, 167–168

single-row subqueries, 253–254
single-tier architecture, 605, 605
SINH function, 117
size

blocks, 421, 464, 464, 514, 524–526
control files, 829
data files, 535–536

Sizing tab, 464, 464
slashes (/)

comments, 28
dates, 336
division, 42

smallest integer function, 112
smallfile tablespaces, 517
SMCO process, 406
SMON process, 404, 410, 575
snapshots in AWR, 778
Snnn process, 405
software installation, 432

documentation, 433
inventory, 435–436
job role separation, 436–437
OFA directory paths, 437–440
OUI. See Oracle Universal Installer (OUI)
planning, 433–435
system requirements, 433–434
user accounts, 435
volume and mount point names, 437

SOME operator, 54–55, 255
sorting

NULLs, 64–65
rows, 62–64

SOUNDEX function, 103
space management

automatic, 547–551, 548–549, 551
compression, 550–551, 551

exam essentials, 563–564
out-of-space errors, 559–562
proactive, 553–554, 554
review questions, 565–568
Segment Advisor, 554–559, 555–556
shrinking usage, 556–559, 556
summary, 562–563
tablespace free space, 551–554, 552–554

Space Management Coordinator process, 406
space quotas, 682–683
spawn command, 633
Specify Installation Location screen, 445,

1057, 1058
SPFile tab, 485–486, 486
spfiles (binary parameter files), 479–480

autobackups in Flash Recovery Area, 845
creating, 993
multiplexing control files, 831
settings, 485–486, 486

SPOOL command, 28, 803
SQL (Structured Query Language), 4,

36–37, 570
alerts, 800–801
buffers, 22–25
Data Pump files, 1013
database startup states, 494
datatypes, 38–42
exam essentials, 78–79
Flash Recovery Area, 846
operators and literals, 42–45
PGA, 396
PL/SQL, 323, 389, 402
profiles, 773
review questions, 80–88
SELECT statement. See SELECT statement
SQL Developer, 389, 389
SQL*Plus. See SQL*Plus utility
statement categories, 37
summary, 78

SQL Access Advisor, 797–798, 797–798
SQL Advisors, 794
SQL Developer tool, 14–15, 15–16

audit management, 727–729, 727–729
lock conflicts, 591–593, 591–593
schema objects, 359–361
storage structures, 420, 421
tablespaces, 548–549, 549, 552–553, 553

SQL Performance Analyzer, 795
SQL Repair Advisor, 795
SQL Tuning Advisor, 773, 795–797, 796
sqlldr command, 1040
SQL*Loader, 1006, 1039–1040

command-line parameters, 1040–1042
control file options, 1042–1044
direct path loading, 1045

sqlnet.ora file, 635, 641
sqlplus command, 16–18

	 SQL*Plus utility  –  storage	 1155

SQL*Plus utility
AWR baselines, 780–781
buffer, 22–25
initialization-parameter files, 486–490
optimizer statistics, 757–759
overview, 16–18, 17
shutting down Oracle, 496–497
starting Oracle, 493–494
statement entry, 19–20
tablespace information, 531–533

SQRT function, 117
srvctl (Server Control) utility, 1068–1073
STALE_PERCENT parameter, 765
staleness threshold for optimizer statistics, 769
stalled database upgrades, 985–986
standalone servers in Grid Infrastructure

installation, 1054–1061, 1055–1060
standard block size, 524
standard deviation functions, 189, 205–206
Standard Edition installation type, 444
Standard Edition One installation type, 444
STAR_TRANSFORMATION_ENABLED

parameter, 482
START command

crsctl, 1075
lsnrctl, 628
SQL buffer, 25
srvctl, 1070–1071

START_JOB command
Data Pump, 1011
expdp, 1019
impdp, 1023

START_JOB parameter, 1029
start listener command, 632
START_POOL procedure, 661
STARTED state for instances, 869
starting

listeners, 628–629, 632
Oracle Restart, 1074–1076

starting up databases, 490–494
STARTUP command, 493, 869
STARTUP DOWNGRADE command, 492
STARTUP FORCE command, 492, 1067
startup modes, 491–492
STARTUP MOUNT command, 491, 493
STARTUP NOMOUNT command, 491
STARTUP OPEN command, 492–493
startup process for instances, 868–870
STARTUP RESTRICT command, 492–493
startup states for databases, 494
STARTUP UPGRADE command,

492, 989–990
STARTUP_WAIT_TIME parameter, 625–626
STARTUP_WAIT_TIME_LISTENER

parameter, 626
startup_waittime command, 633

statements
auditing, 720–724
DCL, 570
DDL

description, 37
lock waits, 590
tablespaces, 534

DML. See DML (Data Manipulation
Language) statements

failures, 865
interactive, 72–77

states, job, 932–933
static service registration, 622, 626
statistics

optimizer, 755–756
collecting, 756–760, 760
extended, 770–772
pending, 767–768
preferences, 760–767, 761–763, 765–766

performance, 775
ADDM. See Automated Database

Diagnostic Monitoring (ADDM)
feature

ASH, 779–780, 779
AWR, 775–778, 777
AWR baselines, 780–782, 782

STATISTICS_LEVEL parameter, 775, 814
STATUS command

crsctl, 1075
expdp, 1019
impdp, 1023
lsnrctl, 630–631
srvctl, 1070–1071

status listener command, 632
status of listeners, 630–631
STATUS parameter, 1029
STDDEV function, 189
STDDEV_POP function, 205–206
STDDEV_SAMP function, 206
stop command

crsctl, 1074–1075
lsnrctl, 633–634

STOP_JOB command, 939
chain jobs, 946
expdp, 1019
impdp, 1023

STOP_JOB parameter, 1029
stop listener command, 632
STOP_POOL procedure, 661
stopping

listeners, 633–634
Oracle Restart, 1074–1076

storage
configuring, 455–458, 455
customizing, 468–472, 468–471
physical and logical, 512–516, 513, 515

1156	 Storage Locations screen  –  SYSTIMESTAMP function

space management. See space management
structures, 410–411

control files, 412–415, 414
data files, 415–416, 416
logical, 421–424, 422
redo log files, 417–420, 418–419

tablespace defaults, 528
Storage Locations screen, 455–458, 455
stored functions, 387, 690
stored packages, 690
stored procedures, 387, 690
strategies, backup, 848
Streams Performance Advisor, 795
streams pool, 398–399, 403
STREAMS_POOL_SIZE parameter, 403
strings

concatenating, 43, 97
conversion functions, 137–138, 151–152
filling, 100, 102
length, 99
lowercase functions, 99–100
replacing, 101–102
replacing characters in, 103–105
searching in, 98–99
Soundex representation, 103
trimming, 100–103, 106–107
uppercase functions, 98, 107–108

Structured Query Language. See SQL (Structured
Query Language)

SUBMIT_PENDING_AREA procedure, 918
subplans in Resource Manager, 907–908, 908
subqueries, 252

correlated, 258–259
in DML statements, 268–269
exam essentials, 270
inserting rows from, 285–286
multiple-column, 267
multiple-row, 254–256
NULL values, 256–258
review questions, 271–280
scalar, 259–262
single-row, 253–254
summary, 269–270
updating rows in, 290–292

substitute variables, 71, 73–75
SUBSTR function, 103–105
SUBSTRB function, 105
subtraction

dates, 334–335
expressions, 42

Succeeded job state, 932
SUM function, 188
Summary screen

DBUA, 982, 983
Grid Infrastructure, 1058, 1058
installation, 445

superaggregates, 208–215
Support Workbench, 883, 884

suspended sessions, 561–562
swap space requirements, 434
SWITCH_CONSUMER_GROUP_FOR_SESS

procedure, 915
SWITCH_CONSUMER_GROUP_FOR_USER

procedure, 915
SWITCH_CURRENT_CONSUMER_GROUP

procedure, 915
switching

consumer groups, 915–916
log files, 834–835

SYNONYM statement auditing option, 722
synonyms

defined, 321
description, 387
privileges, 696

SYS account, 454, 687
SYS.AUD$ table, 729–730
SYS_CONTEXT function, 161–165
SYS database, 13–14
SYS_EXTRACT_UTC function, 130
SYS_GROUP group, 913
SYS_GUID function, 165
SYS user passwords, 1057
SYSASM privilege, 699
SYSAUX tablespace, 415, 513, 516
SYSBACKUP privilege, 698
SYSDATE function, 42, 51, 121–122
SYSDBA authorization, 490
SYSDBA connections, 661
SYSDBA privilege, 698–699, 707
SYSDG privilege, 698
SYSKM privilege, 698
SYSMAN account, 687
SYSOPER authorization, 490
SYSOPER privilege, 698
SYSTEM account, 454, 687
SYSTEM AUDIT statement, 722
system change numbers (SCNs)

checkpoints, 831–832
conversions, 138–139
transaction control, 305

System Control statement category, 37
system-critical data file recovery, 892–893
SYSTEM database, 13–14
system global area. See SGA (system

global area)
SYSTEM GRANT statement, 722
System Monitor process, 404, 410
SYSTEM_PRIVILEGE_MAP view, 693, 736
system privileges, 687, 692–701, 700
system requirements, 433–434
SYSTEM tablespace

creation, 516
description, 415
limitations, 538
objects in, 513

SYSTIMESTAMP function, 122

	 TABLE_EXPORT_OBJECTS view  –  TO_CLOB function	 1157

T
TABLE_EXPORT_OBJECTS view, 1028
Table mode in Data Pump, 1015
TABLE statement auditing option, 722
tables

aliases, 230–231
columns. See columns
comments, 348
creating, 338–339, 370–373
defined, 320
description, 387
dropping, 357
exam essentials, 374
names, 339–340
from other tables, 348–350
privileges, 688–690, 696
read-only, 358–359
recovering, 893–894
renaming, 357–358
review questions, 375–380
rows. See rows
summary, 373–374
temporary, 320, 585
truncating, 296–297

TABLESPACE clause
auditing option, 722
user accounts, 681–682

Tablespace mode, 1015
tablespace point-in-time recovery (TSPITR), 867
tablespaces, 393, 516

adding, 469
ASM storage, 1067
backup mode, 530–531
creating, 516–517, 548–549, 548–549
DDL for, 534
default, 516
extent management, 518–520
free space, 551–554, 552–554
information about, 531–534, 534
modifying, 528–531
moving, 538–539
nonstandard block sizes, 524
offline and online, 529–530
options, 522–524
Oracle Managed Files, 518, 542–544
overview, 421, 422, 512–514, 513
privileges, 696–697
read-only, 530
removing, 527–528
required, 415–416
segments, 520–521
template definitions, 451
temporary, 524–526, 682
undo, 526–527, 573

configuring, 577–578
monitoring, 581–584, 582–584

user accounts, 681–682

Tablespaces screen, 534, 534
TAN function, 117
TANH function, 117–118
task automation. See Scheduler
TDE (Transparent Data Encryption), 611
temp space requirements, 434
TEMP tablespace, 415
TEMP_UNDO_ENABLED parameter, 585
TEMPFILE keyword, 526
Template Details screen, 451, 451
templates

baseline, 781
database, 449–452, 450–451
definitions, 451, 474–475, 474
predefined, 456
seed and nonseed, 473–474

TEMPORARY option, 529
TEMPORARY TABLE keywords, 341
temporary tables

creating, 340–341
description, 320
undo operations, 585

TEMPORARY TABLESPACE clause, 682
temporary tablespaces, 524–526, 682
text backups for control files, 850
text literals, 44
thin drivers, 608
THREADED_EXECUTION parameter, 407
throughput, 811
time datatypes, 41–42, 330–334
time stamps

conversion functions, 138–139, 152
datatypes, 42, 45, 331–333
LOCALTIMESTAMP function, 122–123
retrieving, 124–125
SYSTIMESTAMP function, 122

TIME_ZONE command, 122–123
time zones

constants, 128
offsets, 130–131, 331
retrieving, 126–127, 129
setting, 122–123

TIMESTAMP datatype, 42, 45, 331
TIMESTAMP_TO_SCN function, 139
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 331–333
TIMESTAMP WITH TIME ZONE datatype, 331
timezones, 993
tkprof tool, 808
TNS_ADMIN variable, 641, 647
$TNS_ADMIN variable, 440
%TNS_ADMIN% variable, 440
tnsnames.ora file, 620–621, 641, 644–646, 644
tnsping utility, 646
TO_BINARY_DOUBLE function, 139–140
TO_BINARY_FLOAT function, 140
TO_CHAR function, 131, 141–147, 149
TO_CLOB function, 147

1158	 TO_DATE function  –  unexpired undo

TO_DATE function, 45, 147–149
TO_DSINTERVAL function, 150–151
TO keyword, 538
TO_LOB function, 151
TO_MULTI_BYTE function, 151
TO_NUMBER function, 131, 151
TO_SINGLE_BYTE function, 151–152
TO_TIMESPACE function, 45
TO_TIMESTAMP function, 152
TO_TIMESTAMP_TZ function, 152
TO_YMINTERVAL function, 152–153
Top Activity page, 795–796
total space, finding, 262–266
Trace command in lsnrctl, 632
TRACE_FILE parameter, 625
trace files

locations, 802
for performance, 807–809, 808

TRACE_LEVEL parameter, 625
tracing Oracle Net servers, 635–637
TRAILING trimming value, 106
TRANSACTION_BACKOUT procedure, 880
transactions and transaction control, 299–301

consistency, 304–305
data visibility, 304–306
description, 37
exam essentials, 307
locks, 305–306, 585–587

conflicts, 590–594, 591–593
data concurrency, 586–587
modes, 588–590

review questions, 308–318
rollbacks and savepoints, 302–303, 302, 573
summary, 306–307

transformations, import, 1024–1025
TRANSLATE function, 105–106
Transparent Data Encryption (TDE), 611
Transport Database mode, 1015
TRANSPORT_DATAFILES parameter, 1039
Transport Tablespace mode, 1015
TRANSPORT_TABLESPACES parameter, 1026
transportable exports, 1037–1039
trc_directory command, 633
trc_file command, 633
trc_level command, 633
trcsess tool, 808
TRIGGER statement auditing option, 722
triggers, 323

description, 387
privileges, 697

trigonometric functions, 110–112, 117–118
TRIM function, 106–107
trimming strings, 100–103, 106–107
troubleshooting

client-side connection problems, 646–648
redo log files, 836

TRUE value, 56
TRUNC function

dates, 130
numbers, 118

TRUNCATE statement, 357, 1043
truncating tables, 296–297, 1043
truth tables, 57–58
TSPITR (tablespace point-in-time recovery), 867
two-task common layers, 608
$TWO_TASK variable, 440
two-tier architecture, 605–606, 606
TZ_OFFSET function, 130–131

U
UET$ table, 518
UID function, 165–166
UIDs (unique identifiers), 6
UNARCHIVED keyword, 839
unary operators, 42
UNDEFINE command, 76
underscores (_)

identifier names, 339
pattern matching, 61

undo
configuring, 576
exam essentials, 595–596
flashback operations, 580
instance recovery, 574, 574
read consistency, 575–576
vs. redo, 572–576, 574
retention guarantee, 580–581
review questions, 597–601
segments, 304
summary, 595
transaction rollback, 573
undo tablespaces, 526–527

configuring, 577–578
monitoring, 581–584, 582–584

Undo Advisor, 583, 794
UNDO_MANAGEMENT parameter, 576–577
Undo Pool option, 910
Undo Retention Analysis option, 583
UNDO_RETENTION parameter, 527, 578–580,

583, 874–875
undo segments, 571
Undo Setting option, 582
Undo Statistics Summary settings, 582–583
Undo Summary settings, 582
UNDO_TABLESPACE parameter, 482,

576–578
undocumented configuration parameters,

483–484
unexpired undo, 579

	 UNIFIED_AUDIT_TRAIL view  –  USING clause	 1159

UNIFIED_AUDIT_TRAIL view, 735–736,
740, 994

unified auditing, 735–736
internal, 744–745
migration to, 994–995
policies

creating, 736–739
enabling and disabling, 739–740
querying, 740–742

record purging, 742–744
UNIFORM option, 519, 525
UNION operator, 245, 248–249
UNION ALL operator, 249
unique constraints, 364
unique identifiers (UIDs), 6
UNIQUE keyword

aggregate functions, 177
SELECT, 49–50

UNISTR function, 153
Unix systems, installation on, 434
UNKNOWN value, 56
UNLIMITED keyword

passwords, 715
quotas, 683

unsetenv command in srvctl, 1073–1074
UNUSED log file status, 418
unused privileges, 707–711
UPDATE_CONSUMER_GROUP procedure, 926
UPDATE_PLAN procedure, 926
UPDATE_PLAN_DIRECTIVE procedure,

924–925
UPDATE privilege, 688, 690
Update Results screen, 984, 984
UPDATE statement and updating

consumer groups, 926–927
directives, 924–925
resource plans, 926
rows, 289–290
subqueries, 268, 290–292
WHERE clauses, 292–293

UPDATE TABLE statement auditing option, 722
Upgrade An Existing Database option, 442
UPGRADE mode, 492
Upgrade Options screen, 978–979, 980
upgrades, 958

Database Upgrade Assistant, 976–987,
977–984

databases, 1037–1039
direct, 959–961, 960
downgrades, 995–996
exam essentials, 997–998
manual, 987–991
methods, 958–959
migrating to Unified Auditing, 994–995
migration to Oracle Database 12c, 961–963
post-upgrade tasks, 991–994

preparing, 963
downtime, 975
home, 974–975
Pre-Upgrade Information tool, 964–974

review questions, 999–1003
summary, 997

UPPER function, 107–108
uppercase functions, 98, 107–108
UROWID datatype, 338
Use Automatic Memory Management option, 462
Use Common Locations For All Databases Files

option, 456
Use Database File Locations From Template

option, 456
USE_DB_RECOVERY_FILE_DEST

parameter, 842
Use Existing Guaranteed Restore Point

option, 982
Use Existing RMAN Backup option, 980
Use Oracle-Managed Files option, 457
user accounts

authentication, 679–681
creating, 435, 678–679
default, 687
preconfigured, 454
privileges, 697
profiles and settings, 684–685, 685
quotas, 682–683
removing from databases, 686–687
resource usage control, 711–718
tablespaces, 681–682

USER_AUDIT_TRAIL view, 724
user errors, recovering from, 866–867, 873

EM Cloud Control, 879–881, 879
flashback drop, 876–878
flashback queries, 873–875
flashback table, 878–879
flashback transactions, 880
LogMiner, 880–881

USER function, 51, 166
user global area (UGA), 652
user-managed backups, 530
USER_OBJECTS view, 476
user processes

failures, 865–866
overview, 394–396, 395

USER statement auditing option, 723
USER_TAB_PRIVS view, 689
USER$ table, 684
USERENV function, 166
USERENV namespace, 161–165
Users screen, 685, 685
users vs. schemas, 394
USING clause

joins, 234–235
MERGE, 297

1160	 UTC (Coordinated Universal Time)  –  V$WAITSTAT view

UTC (Coordinated Universal Time), 130, 331
UTILIZATION_LIMIT directive, 908
UTL_FILE package, 706
UTL_HTTP package, 706
UTL_SMTP package, 706
UTL_TCP package, 706
utluiobj.sql script, 991
utluppkg.sql script, 964, 988

V
V code in number conversions, 146
V$ACTIVE_SESSION_HISTORY view, 779
VALIDATE keyword, 368–369
Validate option for backup sets, 863
VALIDATE_PENDING_AREA procedure, 918
validated constraints, 368–369
values input at runtime, 72–77
VAR_POP function, 206–207
VAR_SAMP function, 207
VARCHAR2 datatype, 39, 327–328
V$ARCHIVE_DEST view, 841
V$ARCHIVE_PROCESSES view, 843
variables

positional notation, 77
saving, 75–76
substitute, 71, 73–75

VARIANCE function, 189–190
V$ASM_DISK view, 1066
V$ASM_DISKGROUP view, 1066
V$BGPROCESS view, 408
V$BLOCK_CHANGE_TRACKING view, 857
V$CONTROLFILE view, 414, 852
V$DATABASE view, 478, 840
V$DATAFILE view, 536, 544–545, 810, 852, 869
V$DIAG_INFO view, 500
VERIFY OFF command, 75
Version command in lsnrctl, 632
VERSION parameter, 1020, 1037–1038
vertical bars (||) for concatenation, 43
V$EVENT_NAME view, 809
V$FILESTAT view, 810
V$FIXED_TABLE view, 479
View Backup Report screen, 863–864
VIEW statement auditing option, 723
views

ADDM analysis, 790–792
data dictionary, 476–479, 477, 810–811
defined, 320
description, 387
dynamic performance, 398, 477–479, 775,

809–810
inline, 252
materialized, 322
privileges, 689–690, 698

V$INSTANCE_RECOVERY view, 872
V$IR_FAILURE view, 892
V$IR_FAILURE_SET view, 892
V$IR_MANUAL_CHECKLIST view, 892
V$IR_REPAIR view, 892
virtual circuits, 652
virtual columns, 320
Virtual Keeper of Time process, 404
visibility in transaction control, 304–306
VKTM process, 404
V$LOCK view, 810
V$LOG view, 417, 834
V$LOG_HISTORY view, 834
V$LOGFILE view, 417, 834, 884–885
V$LOGMNR_CONTENTS view, 880
V$MEMORY_DYNAMIC_COMPONENTS

view, 816
V$MEMORY_TARGET_ADVICE view, 816
V$METRIC view, 801
V$METRIC_HISTORY view, 801
V$MTTR_TARGET_ADVICE view, 872
volume names, 437
V$OPTION view, 478
V$PARAMETER view, 482, 486–490, 810
V$PGA_TARGET_ADVICE view, 815
V$PGASTAT view, 809
V$RECOVER_FILE view, 869
V$RECOVERY_AREA_USAGE view, 845
V$SESSION view

Data Pump jobs, 1029–1030
description, 809
querying, 71
SIDs and serial numbers, 807

V$SESSION_EVENT view, 809
V$SESSION_LONGOPS view, 1029
V$SESSION_WAIT view, 809
V$SESSTAT view, 809
V$SGA view, 398
V$SGA_CURRENT_RESIZE_OPS

view, 815
V$SGA_RESIZE_OPS view, 815
V$SGA_TARGET_ADVICE view, 814
V$SGAINFO view, 398–399, 809, 814
VSIZE function, 166–167
V$SPPARAMETER view, 487–490, 810, 882
V$SQL view, 478
V$STATNAME view, 809
V$SYSSTAT view, 215–216, 809
V$SYSTEM_EVENT view, 809
V$TABLESPACE view, 532
V$TEMPFILE view, 545, 810
V$TEMPSEG_USAGE view, 810
V$TIMEZONE_NAMES view, 125, 130
V$UNDOSTAT view, 583
V$VERSION view, 478
V$WAITSTAT view, 809

	 WAIT mode  –  zeroes in number conversions	 1161

W
WAIT mode, 589
wall clock time, 712
Warning alert level, 800
Warnings and Failures option, 978
web applications, 609
WHEN clause, 69–70

auditing, 737–738
rows in multiple tables, 287

WHEN MATCHED THEN UPDATE clause, 297
WHEN NOT MATCHED THEN INSERT

clause, 297
WHENEVER NOT SUCCESSFUL clause,

720, 723
WHENEVER SUCCESSFUL clause, 720
WHERE clause

aggregate functions, 207
DELETE, 294
MERGE, 297
scalar subqueries in, 261
SELECT, 51, 65–68
UPDATE, 289–290, 292–293

whole backups, 848–849

WIDTH_BUCKET function, 118–119
wildcards for disk groups, 1063
windows for aggregate functions, 194
Windows object in Scheduler, 934
WITH clauses in subqueries, 268–269
WITH ADMIN OPTION clause, 699–701
WITH GRANT OPTION clause,

690–692, 700
WITH TIES keyword, 67–68
words, converting numbers to, 149–150
WORKAREA_SIZE_POLICY parameter, 815
worker processes, 1010

X
X code in number conversions, 146
XMLDB account, 687

Z
zeroes in number conversions, 145

Comprehensive Study Tool Package Includes:

■■ Assessment Test to help you focus your
study to specific objectives

■■ Chapter Review Questions to reinforce
what you learned

■■ Four Total Practice Exams to test your
knowledge of the material

■■ Electronic Flashcards to reinforce your
learning and give you that last-minute test
prep before the exam

■■ Bonus Author Content including all the code
from the book and additional Whitepapers

■■ Searchable Glossary gives you instant
access to the key terms you’ll need to
know for the exam

Free Online Study Tools
Register on Sybex.com to gain access to a complete set of study tools

to help you prepare for your OCA on Oracle 12c certification

Go to www.sybex.com/go/oca12csg to register
and gain access to this comprehensive study
tool package.

http://www.sybex.com/go/oca12csg

	Cover
	Contents
	Introduction
	Assessment Test
	Answers to Assessment Test

	Part I: Oracle Database 12c: SQL Fundamentals
	Chapter 1: Introducing Oracle Database 12c RDBMS
	Relational Database Management Systems
	The Oracle Database 12c
	Becoming Familiar with SQL*Plus
	Summary
	Exam Essentials
	Review Questions

	Chapter 2: Introducing SQL
	SQL Fundamentals
	Writing Simple Queries
	Accepting Values at Runtime
	Summary
	Exam Essentials
	Review Questions

	Chapter 3: Using Single-Row Functions
	Single-Row Function Fundamentals
	Using Single-Row Character Functions
	Using Single-Row Numeric Functions
	Using Single-Row Date Functions
	Using Single-Row Conversion Functions
	Using Other Single-Row Functions
	Summary
	Exam Essentials
	Review Questions

	Chapter 4: Using Group Functions
	Group Function Fundamentals
	Utilizing Aggregate Functions
	Summary
	Exam Essentials
	Review Questions

	Chapter 5: Using Joins and Subqueries
	Writing Multiple-Table Queries
	Using Set Operators
	Using Subqueries
	Summary
	Exam Essentials
	Review Questions

	Chapter 6: Manipulating Data
	Using DML Statements
	Understanding Transaction Control
	Summary
	Exam Essentials
	Review Questions

	Chapter 7: Creating Tables and Constraints
	Database Objects Overview
	Built-in Datatypes
	Creating Tables
	Modifying Tables
	Managing Constraints
	Summary
	Exam Essentials
	Review Questions

	Part II: Oracle Database 12c: Installation and Administration
	Chapter 8: Introducing Oracle Database 12c Components and Architecture
	Oracle Database Fundamentals
	Oracle Database 12c Architecture
	Summary
	Exam Essentials
	Review Questions

	Chapter 9: Creating and Operating Oracle Database 12c
	Oracle Database 12c Software Installation
	Using DBCA to Create an Oracle 12c Database
	Working with Oracle Database Metadata
	Managing Initialization-Parameter Files
	Starting Up and Shutting Down an Oracle Instance
	Monitoring the Database Alert Log
	Summary
	Exam Essentials
	Review Questions

	Chapter 10: Understanding Storage and Space Management
	Understanding the Physical and Logical Storage
	Managing Tablespaces
	Managing Data Files
	Managing Space
	Summary
	Exam Essentials
	Review Questions

	Chapter 11: Managing Data Concurrency
	Managing Data Changes Using DML
	Managing Data Concurrency
	Summary
	Exam Essentials
	Review Questions

	Chapter 12: Understanding Oracle Network Architecture
	Introducing Network Configurations
	An Overview of Oracle Net Features
	Configuring Oracle Net on the Server
	Configuring Oracle Net for the Client
	An Overview of Oracle Shared Server
	Understanding Database Resident Connection Pooling
	Communicating Between Databases
	Summary
	Exam Essentials
	Review Questions

	Chapter 13: Implementing Security and Auditing
	Creating and Managing User Accounts
	Granting and Revoking Privileges
	Controlling Resource Usage by Users
	Auditing Database Activity
	Summary
	Exam Essentials
	Review Questions

	Chapter 14: Maintaining the Database and Managing Performance
	Proactive Database Maintenance
	Managing Performance
	Summary
	Exam Essentials
	Review Questions

	Chapter 15: Using Backup and Recovery
	Understanding and Configuring Recovery Components
	Performing Backups
	Understanding Types of Database Failures
	Performing Recovery Operations
	Summary
	Exam Essentials
	Review Questions

	Chapter 16: Controlling Resources and Jobs
	Resource Management with the Resource Manager
	Task Automation with Oracle Scheduler
	Summary
	Exam Essentials
	Review Questions

	Chapter 17: Upgrading to Oracle Database 12c
	Determining the Database
Upgrade Method
	Preparing for a Database Upgrade
	Upgrading the Database
	Summary
	Exam Essentials
	Review Questions

	Chapter 18: Using Grid Infrastructure and Data Movement Tools
	Tools for Moving Data
	Migrating Data Using Data Pump
	Loading Data with SQL*Loader
	Populating External Tables
	Introducing Grid Infrastructure
	Summary
	Exam Essentials
	Review Questions

	Appendix A: Answers to Review Questions
	Chapter 1: Introducing Oracle Database 12c RDBMS
	Chapter 2: Introducing SQL
	Chapter 3: Using Single-Row Functions
	Chapter 4: Using Group Functions
	Chapter 5: Using Joins and Subqueries
	Chapter 6: Manipulating Data
	Chapter 7: Creating Tables and Constraints
	Chapter 8: Introducing
Oracle Database 12c Components
and Architecture
	Chapter 9: Creating and Operating Oracle Database 12c
	Chapter 10: Understanding Storage and Space Management
	Chapter 11: Managing Data Concurrency and Undo
	Chapter 12: Understanding Oracle Network Architecture
	Chapter 13: Implementing
Security and Auditing
	Chapter 14: Maintaining the Database and Managing Performance
	Chapter 15: Using Backup and Recovery
	Chapter 16: Controlling
Resources and Jobs
	Chapter 17: Upgrading to Oracle Database 12c
	Chapter 18: Using Grid Infrastructure and Data Movement Tools

	Appendix B: About the Additional Study Tools
	Additional Study Tools
	System Requirements
	Using the Study Tools
	Troubleshooting

	Index
	Free Online Study Tools

